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ABSTRACT: We propose a numerical technique to accurately simulate the vibrations of
organic molecules in the gas phase, when pairs of atoms (or, in general, groups of degrees
of freedom) are artificially decoupled, so that their motion is instantaneously decorrelated.
The numerical technique we have developed is a symplectic integration algorithm that
never requires computation of the force but requires estimates of the Hessian matrix. The
theory we present to support our technique postulates a pair-decoupling Hamiltonian
function, which parametrically depends on a decoupling coefficient @ € [0, 1]. The closer
a is to 0, the more decoupled the selected atoms. We test the correctness of our numerical
method on small molecular systems, and we apply it to study the vibrational spectroscopic
features of salicylic acid at the Density Functional Theory ab initio level on a fitted
potential. Our pair-decoupled simulations of salicylic acid show that decoupling hydrogen-
bonded atoms do not significantly influence the frequencies of stretching modes, but
enhance enormously the out-of-plane wagging and twisting motions of the hydroxyl and

~ . a2
E:—jzja(af;l(;/qj) 7’:7’] dt «a€[0,1]

carboxyl groups to the point that the carboxyl and hydroxyl groups may overcome high potential energy barriers and change the
salicylic acid conformation after a short simulation time. In addition, we found that the acidity of salicylic acid is more influenced by
the dynamical couplings of the proton of the carboxylic group with the carbon ring than with the hydroxyl group.

B INTRODUCTION

The coupling among atoms in molecular systems is a key
concept in chemistry and materials science, especially in organic
chemistry, where it allows for an intuitive and qualitative
description of the rich reactivity of organic compounds. Direct
evidence of the vibrational couplings can be observed in the
features of the vibrational (IR and Raman) spectrum, and it can
be measured' ™ in the off-diagonal features of 2D vibrational
spectra. In theoretical chemistry, 2D vibrational spectra can be
calculated either by using a model coupling Hamiltonian, "
semiclassical approaches,” or other trajectory based methods.”
This field of research is important even outside the realm of
spectroscopy, because rationalization of the vibrational spectra
allows the prediction, for instance, of selectivity”® and reaction
yields.”

The correlated/coupled motion of the nuclei in a molecular
system is an ultrafast phenomenon, and, as such, it must be
studied using either experimental ultrafast techniques, which
include pulse probe methods, or computer simulation methods
aimed at the interpretation and simulation of two-dimensional
spectra.”® """ In theoretical chemistry, the identification of the
uncoupled degrees of freedom is useful for computational
methodologies that calculate the vibrational spectrum in
reduced dimensionality, such as, for instance, semiclassical
approaches,' > QM/MM calculations,” tensor-trains and
sum of products of basis functions methods**>® and also the
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Multi-Configuration Time-Dependent Hartree method
(MCTDH)*"~*” and methods based on MCTDH-like ansatz.”’
Applications of all the aforementioned methods imply either
that part of a system is partially independent of another or that
the two parts have an artificial interaction. Either way, there is no
rigorous method to establish whether the approximation implied
is appropriate or not.

A field of research that developed accurate techniques for
investigating the couplings is the study of Intramolecular
Vibrational energy Redistribution. (IVR)*'™* An accurate
(yet expensive) procedure used to investigate normal mode IVR
is the instantaneous normal-mode analysis,32’34’35 which consists
in a rediagonalization of the nonequilibrium Hessian matrix,
whose eigenvectors can then be reinterpreted in terms of the
traditional normal modes. The main disadvantage of such a
technique, apart from the frequent need for the second
derivative matrix of the potential, is that it can investigate the
couplings only in normal mode coordinates.
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Point of view of C

Point of view of A

Point of view of B

Figure 1. Cartoon of the pair-decoupling idea, representing the points of view of the three atoms compared to their initial geometry (the shaded
molecules in the background). The top panel represents a snapshot of the simulation, which corresponds to the (objective) point of view of atom C.
The left and right panels represent the points of view of the decoupled (a = 0) atoms A and B, respectively, in which either atom B perceives atom A as if
it never displaced (from its point of view) or vice versa. From the points of view of A and B, connector cp is set at the initial geometry value.

The aim of this study is to investigate the effects of the
couplings from a dynamical perspective, accounting for the real
time vibrations of the molecules and employing the intuitive
Cartesian coordinate system. To that end we provide an entirely
new approach to the study of couplings: We rely on a practical
description of the coupling between pairs of degrees of freedom
that, in its simplicity, allows us to define numerical experiments
of artificially decoupled atoms in molecules. Specifically, we
introduce a method that allows a real time, full dimensional, and
numerically accurate simulation of an artificially decoupled
system.

We define the atom—atom coupling as the phenomenon in
which the force perceived by atom A depends on the position of
atom B. In such cases, we would say that the motion of A and Bis
correlated or that A and B are coupled. First of all, we imagine a
molecule represented by a collection of atoms, in which each pair
of atoms are linked by the end points of a connector. If we put
the molecule in its geometrical equilibrium and then abruptly
displace a single atom, we would have a force acting on every
atom that tries to move the whole system toward the nearest
potential minimum. The force acts by either elongating or
compressing (compared to their state at equilibrium) each
connector and trying to adjust it in response to the deformation.
This means that atoms A and B, connected by the connector c,p,
would feel either an attractive force that pulls them together or a
repulsive one that pushes them apart. However, if we cheat the
physics and artificially set this force to its value before the
deformation, A and B would perceive each other just as if the
system were still in equilibrium, and so the connector ¢,z would
not respond to the deformation, while all the other atoms and
connectors would perceive the force and respond accordingly.
For instance, another atom C would perceive the deformation,
and c,p might either elongate or compress (because of the
compression and elongation of ¢, and/or cc). As a result of this

6094

artificial intervention, the motion of decoupled atoms (A and B)
in response to the deformation is directly uncorrelated
(although it could be indirectly correlated via a third atom). A
cartoon of the pair-decoupling idea is shown in Figure 1.

In practice, if f; is the rate of change of the force perceived by
the connector ¢, in normal conditions, we could artificially scale
it aszB-a, where & is a real number between 0 and 1. Of course,
the closer a is to 1, the more coupled A and B are and the more
realistic the simulation is. On the contrary, the closer a is to 0,
the more artificial it is. The practice of artificially modifying the
potential is commonly used in accelerated molecular dynamics
methods,** ™" to explore the configuration space faster.

We propose to perform the artificial decoupling in a molecular
dynamics simulation, in which the atoms are moved according to
their initial velocities and in which we use a to shield the atoms
from seeing each other’s displacements. To reach this goal, we
developed a very simple numerical technique, called the
Symplectic Explicit with Force (SEF) integration algorithm
that allows an accurate time evolution of pair-decoupled
systems. Moreover, we show that the SEF integration of the
equations of motion preserves the symplectic symmetry and
preserves in a significant amount also time-reversibility. We also
show how the time-reversibility and energy conservation
properties are exact for harmonic potentials and still accurate
when the potential is anharmonic. The reader should notice that
the potential between the atoms A and B is not modified when
they are in their equilibrium position: the attractive/repulsive
contribution of the force on the pair is artificially modified only
when they are displaced during time evolution. In fact, when a =
0, the pair-decoupling implies that pairs of atoms may perceive
each other as if they remain in their initial position. This detail
also implies that while the equilibrium properties of the system
may be unaltered by the decoupling (as it can be the case of
normal mode coordinate decoupling), the dynamical properties
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may change very significantly, as we shall see in the section
dedicated to the salicylic acid decouplings.

Hereafter, the Theory and Methods section formalizes the
pair-decoupling idea and presents the molecular dynamics
modified integrator for artificially decoupled pairs of atoms. The
Results section presents the benchmarking of the method and its
application to salicylic acid. The Discussion and Conclusions
section concludes the paper.

B THEORY AND METHODS

Decoupling Hamiltonian. As anticipated above, we
describe molecular systems as composed of some arbitrarily
pair-decoupled atoms. We call H = K + V the Hamiltonian of the
fully coupled (normal) system and H = K + V the Hamiltonian of
the corresponding pair-decoupled system. For the rest of the
paper, we will assume that V (and V) contains the electron—
electron, electron—nucleus, and nucleus—nucleus Coulomb
interactions, as well as the electron exchange potential and the
electronic kinetic energy. Thus, V (and V) is a function of the
nuclei positions in the Born—Oppenheimer approximation, and
K is the corresponding nuclear kinetic energy. We make the
further approximation that the nuclei behave as classical
particles so that we can express the classical pair-decoupled
Hamiltonian as H = > (pe/2m,) + T/(é), where we assign the
tilde (~) symbol to the canonical coordinates § and p to specify
that they are phase-space coordinates of the pair-decoupled
Hamiltonian. While we do not have an explicit expression for V
in terms of V, we express the relationship in terms of the
potential derivatives because we employ these for integrating the
equation of motion. Specifically, we assume that the main
coupling between pairs is given by the second order derivative
terms with respect to coordinates g; and g; (i.e., the Hessian
matrix elements h,j) and that it can be artificially scaled:

0’V(g)  0V(q)
= =
07,07, 97,07,

ahij(q) @
1

In eq 1, we have assumed that the decorrelation is for pairs of
degrees of freedom, and « is the amount of decoupling, ranging
from 1 (no decoupling) to 0 (fully decoupled). However, one
can decouple multiple degrees of freedom at the same time. For
instance, the pair-decoupled Hessian matrix for a three degrees
of freedom system where two of them are fully coupled and the
third one is partially decoupled from them is

hyy  hy o ahyg
fl(qlf Qy4) =|hy hy ahy
ahyy ahyy  hyy (2)

Notice that when a = 0, eq 2 corresponds to the Hessian
matrix of two independent systems, one of which is two-
dimensional and the second is monodimensional. When the
time-evolution algorithm described in the next sections is
applied to such a system, the evolution of the system is artificially
separable, and the potential is up to the second order of the type
V(1,92 G3) = V12(q1, 32) + V3(73). Notice that in case of a truly
separable potential, we could write V5(g;) — V3(35) = V (4, 3o
7]3) - V(%: 712) ng) and Vl,2(é1) 7]2) - Vl,z(zﬁq; 713‘*) = V(TIU ‘~12; 7]3)
— V (554 35, g3). These last expressions correspond to the
“projected potentials” used to compute the vibrational
spectroscopic features of molecules as large as G-quadruplex
in solution’ with the Divide-and-Conquer SemiClassical Initial
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Value Representation (DC-SCIVR) method.'*'>*° While the
DC-SCIVR method simulates the dynamics of a system under a
full dimensional potential and then approximates the classical
action with a potential projected into subspaces,'* the algorithm
we are presenting here evolves the dynamics entirely under the
subspace-projected potential (or partially projected, when a #
0). Furthermore, the decoupling could be applied to all the
degrees of freedom pertaining to two atoms, that is, for instance,
to the Cartesian product (xy, yy, z;) X (x5, 5, 2,), to decouple
atoms 1 and 2. In this paper, we focus on this Cartesian atom-
decoupling scheme, as it appeals to chemical intuition, and we
believe it would result as the most interesting for the chemical
community. Nonetheless the decoupling idea could be applied
to any coordinate system.

In practice, we propose a time-propagation rule that allows us
to enforce the pair decoupling idea by making explicit the
contributions to the force given by the Hessian matrix. In other
words, we obtain the molecular dynamics force by numerically
integrating the Hessian matrix over time as

F(t) = fotﬁ(t')q'(t') dt’. However, this procedure is tricky

because the variables §(t), p(t), and F(t) must be evaluated at
the same time for the propagation to take place:

i) =10 + [ 50 a
p(r) =p(0) + fofﬁ(t) dt

B(z) = F(0) — / R B () /m dt

0 3)
where h(t) := ad®V (q(®)/ 04;04; is the pair-decoupled Hessian
matrix at time ¢. The procedure we have developed employs a
standard symplectic integration for the coordinates § and p,
while the force is updated from a time-integration of the Hessian
matrix embedded with the symplectic map, consistent with the
canonical variables. Specifically, for an integration that is
accurate to order n, the practical update is a cycle over the
integer k, up until k = n = 2 or 4 of the following four simple
steps:

Bo=F

(4)

v]\crhere m is the mass and p; = p(t = ij= lbjr) and g, = g(t= ),
;< 1a;7) are the momentum and position (vector) variables at
step k of the symplectic map starting from the initial conditions
Doy Gor and Fy = 0 V (§,)/03. The numerical coefficients a;, by,
and ¢; are universal real numbers that depend only on the order
of approximation. Elegant derivations of the a; and by
coefficients for high order integrators can be found in the
literature, as many authors have worked in the field of symplectic
integration.41_43 Thus, in the next sections, we give only a brief
overview for the derivation of the a; and b, coefficients, which
are solutions of the system of equations given in the Appendix

https://doi.org/10.1021/acs.jctc.3c00553
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(we leave a more in depth explanation in the Supporting
Information material). In the next sections, we discuss in some
more detail how the ¢ coefficients can be easily obtained for a
second order integrator and how the fourth and higher order
integrators can be obtained by composition of second order
ones. For a second order integration, we found the unique
solution b; = 0, b, = 1; a; = ¢; = 1/2, a, = ¢, = 1/2, which
corresponds to the symplectic leapfrog algorithm with ¢, = 4.
We then propose a fourth order version of the pair-decoupled
algorithm as a symmetric product of three leapfrog algorithms,
with coefficients a, = a, = (23 + 2734+ 2)/6; ay = a; = — (21 +
273 —1)/6;b,=0;by=b, = (23 +2¥° +4)/6; by = — (27 +
25342)/6, ¢, = a. This choice is the most accurate, according to
our numerical tests. However, several other choices arise when
the higher order algorithms are not derived as symmetric
products of lower order algorithms, as discussed in the next
sections and more in detail in the Supporting Information of this
paper.

Overview of Hamiltonian Systems Integration with
Symplectic Maps. To derive the ay, by, and ¢, coefficients, we
begin with the formal solution of the equations of motion

z(1) = e_fﬁz(O) (5)

where H is an operator that transforms the state function z(t)
into its time derivative. In quantum mechanics, z(t) is a

complex-valued wave function and H = ifl, where H is the
quantum Hamiltonian operator in atomic units. In classical
mechanics, z(t) is a real-valued vector of the canonical

coordinates and H = {H, -}, where H is the classical
Hamiltonian function and { H, -} is called the Liouville (or
Lie) operator, which works as a Poisson bracket of z(t):

0H 0z J0H 0z
) " oo

(6)

We restrict our study to the dynamics of molecules, for which the
nuclear part of the Hamiltonian can be written as a sum of a
kinetic energy and a potential energy; that is,

(i{(q, p) = ‘7A((p) + (i/(q) Hence, the time evolution operator

becomes e "+ V)(¢). Since K and V do not commute, the

exact time evolution operator is not just the product of its kinetic
and potential components. A way to link ¢+ yith products
of kinetic and potential evolution operators*” is via the Baker-
Campbell-Housdorff-Dynkin formula (BCHD), which is an
infinite series of nested commutators and it can not be
implemented directly. Nonetheless, the BCHD formula has
been employed to demonstrate the time-invariance properties of
even-order symplectic integrators.*' In case the Hamiltonian is
not separable in its kinetic and potential contributions, it would
still be possible to use the standard symplectic integration
methods, by evolving copies of the system onto an extended
phase space, as described by Tao."*

—2(K+V)

Two very common approximations for e are the first

order map
M) = K 1 0(?)

and the second order map
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MZ(T) — e—r/Z‘Ke—rq/e—r/Z‘K + 0(13)

The latter approximation is known by various names, depending
on the context (Strang splitting™ by mathematicians, Trotter-
Suzuki splitting™ in the quantum mechanics community,
Symplectic Leapfrog or explicit Verlet in the classical mechanics
community).”” We will refer to the second order map as “SE2”
(Symplectic Explicit of 2™ order).
A more general approximation of the time evolution operator
is given by
e—‘:(‘f(+(€/)z(0) ~ [e—ralf(e—‘rb{i/e—razf(e—rbz’vm] 7)
with the constraints D a; = Db, = 1. Many approximate
solutions in the g, and b, variables have been found in the '80s

and ’90s (assuming the classical expressions for K and V
). 7% A major advancement was done by Creutz,™
Yoshida," and Suzuki,*® who independently derived (among
other things) a general formula for a class of arbitrary even order
integrators using a “symmetric product”*"*****%3% of Jower
order symplectic maps

M,42(7) = M, (r,0)-M((1 = 23)7)- M, (3,7)

withy = W In particular, the symmetric product or SE2
algorithms, gives the well-known fourth order symplectic map
with the coefficients reported by Forest and Ruth.”® Also notice

that the symmetric product formula holds true even if we change

the form of the K and V’ operators, meaning that we can apply it
to our customized pair-decoupling Hamiltonian.

We also consider the coeflicients presented in ref 56, which
provide a very accurate fourth order integrator that, however,
cannot be obtained as a symmetric product of second order
integrators and it is not time-reversible by construction. In the
Supporting Information of this paper, we report a general
derivation of symplectic maps up to fourth order, from which we
can derive both fourth order integrators along with their pair-
decoupled versions. Our approach to derive the ay, by, ¢
coeflicients consists of the direct application of the operators
in eqs 7 or 4 to z(0) for a given truncation of the map (for a given
integer n), followed by a comparison of the resulting z(7) with
the time Taylor series of z(t) centered in z(0) at the same orders
of 7.

We point out, for sake of completeness, that there are also
other ways of writing a symplectic map, for instance, explicitly
including third order terms of the BCHD formula, such as

¢ MV into the map in eq 7, where the commutator,

assuming classical mechanics, evaluates to

IV(q(t) av(q(®) ap(t)
dqz dq op

[V, 1%, VII(q(0), p(t)) = —2

This approach was presented by Suzuki, in an attempt to derive
an integrator with only positive a; and by coeflicients and avoid
the unboundedness of the propagators with otherwise positive
exponents (which make no sense when applied to diffusion
algorithms).”” The actual integrator with positive-only coef-
ficients was derived and implemented by Chin,>* and is proven
to be extremely accurate, but also more expensive, because it
requires evaluation of the Hessian matrix. While this method
might be appropriate to integrate a pair-decoupling integrator,
we disregarded it because of the difficulties of having the

https://doi.org/10.1021/acs.jctc.3c00553
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Table 1. Summary of the a, b, and ¢, Coefficients for Various Versions of the SEF Algorithm

SEF version coefficients k=1 k=2 k=3 k=4
SEF2* ay 1/2 1/2 0 0
by 0 1 0 0
o 1/2 1/2 0 0
SEF4” a (2" +27'3+2)/6 -+ 27-1)/6 - +272 = 1)/6 (2" +273+2)/6
by 0 (2" + 22+ 4)/6 - (272 +27+2)/6 (Y3 + 223 +4)/6
a (2 +273+2)/6 -V +27-1)/6 -2 +272-1)/6 (22 +273 +2)/6
SEF4-1° a J3/6 +1/2 -J3/3 JV3/3 -J3/6+1/2
by 0 —J3/6 +1/4 1/2 J3/6 +1/4
o 5/26 8/3/39 + 4/13 —8/3/39 + 4/13 5/26
SEF4-II° a J3/6 +1/2 —J/3/3 V373 -J3/6+1/2
b 0 -J3/6+1/4 1/2 J3/6+1/4
o 543 /48 J3/8+1/2 -J3/8+1/2 -53/48
SEF4-11I° a J3/6 +1/2 —J3/3 J3/3 —J3/6+1/2
by 0 —J3/6 +1/4 1/2 J3/6 +1/4
o 1/4 J3/6 + 1/4 —J3/6 + 1/4 1/4
SEF4-1V* a J3/6+1/2 -J3/3 J3/3 -J3/6+1/2
by 0 —J3/6 + 1/4 1/2 J3/6 +1/4
e J3/6 1/2 1/2 -J3/6

“Using Symplectic Leapfrog a; and bicoefficients. bUsing Forest and Ruth a; and by coefficients.*’

and by coefficients.’

“Using Brewer, Hulme, and Manolopoulos a;

derivatives of the potential evaluated at the same time t, as
should be clear from the next section of this paper.

The developments in this work can also be applied in different
contexts, although they might require different interpretations.
We collect here some of the recent developments in the use of
geometric and symplectic integrators in the context of
simulating quantum mechanical systems using classical
trajectory methods, that could make use of the pair-decoupling
integrators straightforwardly.”*~%*

Integration of the Pair-Decoupled System. We
construct our algorithm to be of the type of a nth order

symplectic map
=tby{V '} ,—1ay{K,}

M, = Ve dKe) e Ta{K (8)

which consists of a time evolution of a free system, followed by a
time evolution of the pair-decoupled system with zero velocity,
followed by evolution of the free system and so on. Notice that,
in comparison with the standard symplectic map in eqs 7, we

modify only the form of the potential energy operator V,
without changing the structure of the map, which remain

symplectic, independently of how we modify V. In fact, as long
as eq 8 can be written as a single product of time evolution
operators, we are sure that symplectic structure is preserved,
contrary, for instance, to standard Runge-Kutta-Nystrom
algorithms, which cannot be written as a single product, as
explained by Chin.*> We use the definition given in eq 1 to
integrate the Hessian and get the locally harmonic approximated
expression for the (pair-decoupled) force

F(z) = F(0) = ) h(§(by0))-§(br)ee

k=1 9)

The positions and momenta are those resulting from the
application of the operators in the symplectic map of eq 8.
Notice thatin eq 9, one needs g and § to be evaluated at the same

time, t = b;7. However, after the application of the two rightmost
operators of eq 8, one obtains the position and the velocity at
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different time values, i.e., §(a,7) and §/m = §(b,), since, in
general, a; # b;. Hence, we introduce an auxiliary position
variable

ql,uux = q(alr) - (ul - bl)rq(blr) ~ q(blf)

which is the position estimate at the same instant of time of the
conjugated momentum variable. In general,

k
DU = q(ar) — Z (a; — b)7q(b) ~ q(by7)
j=1

In this way, the integration of the force in eq 9 is consistent with
the rest of the algorithm. Finally, given eq 9, we can compare the
explicit form of the evolution operator for the pair-decoupled
potential with the evolution operator of the original potential.
To do that, we first evolve z(0) until we get (p(t,), q(t,)) =
el KA b Vil gr al Ko Hz(0), where we call t,= Y iaz and
t,= D 1b T the time arguments of the momentum and position
varlables Then the additional application of the evolution
operator ¢~ v gives

normal:

e”"k‘v"’z(t},,t)—[l+F(q(bkr))] ( t)

decoupled:

(e, 1) =

k _
1+ [F(O) - fz(qi,m)~q*(afr)cir]]g—;(t,,, t)

i=1

(10)
We call £, := (F(O) - Z:C:lh(qi,aux)ﬁ(uir)cir), Pr = Proy +
bitF_y, and §; == Gy + a,7P, the variables we need to store to
implement the algorithm. We determine the coefficients ¢, by
considering that in the case of no decoupling (a = 1) the pair
decoupled algorithm must provide a good estimate of the
original force, ie., F, & F,, and of the pair-decoupled position
and momentum. Hence, a route to find the ¢, coefficients is to
assume that a; and by coeficients are equal to those derived for
the fully coupled system and then to choose the ¢ coefficients so
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that the errors on §, and p, (and E,) are of a given order of
when a = 1. Notice that, in the particular case of a quadratic
potential, i in eq 10 is a constant (and F(0) =0, assuming that at
t = 0 the system is in equilibrium). Thus, for a quadratic
potential, we have

F(q(b7)) ~ —ﬁz qlaz)er

i=1

This is a good estimate of the force when the sum Z:; L q (ag)ex

is a good estimate of the position, that is, when ¢; = a;. In fact, the
appealing choice ¢, = a; is appropriate also for non-quadratic
potentials when using a second order integrator (that i, either a,
=ay,=1/2,b;=0,b,=1,0rb;=b,=1/2,a;,=0,a,=1). This is
not surprising, because the expanded expression for

e /K VeT /2K o () contains the derivatives of V (g) and

K(p) up to the second order, meaning that it is, in fact, a
propagator of the system under a local quadratic approximation
of the exact functions K(p), which is actually quadratic, and
V(g), which is not. We call this choice the “SEF2” method
(Symplectic Explicit with Force integration of the second
order). The full set of coefficients is reported in the
corresponding lines of Table 1.

The obvious way to derive an integrator of order four and
higher is by composing lower order integrators, as mentioned
above. The fourth order SEF4 integrator can be obtained as a
symmetric product of the second order SEF2, with a; and b;
coefficients equal to those derived by Forest and Ruth (also,
independently derived by Campostrini and Rossi, and Candy
and Rozmus),"”*® and with ¢, = ;. All of the coefficients are
reported in the SEF4 row of Table 1. Integrators of order 6 and
higher can be easily obtained in the same way, resulting in the
coefficients reported by Yoshida,*" with ¢, = ;. However, the
method of composing lower order integrators does not generate
all the solutions to the fourth order symplectic map in eq 7. All
such solutions can be found by solving the system in eq 19 of the
Appendix, where, however, time reversible symmetry is not
enforced. In particular, the coeflicients reported in Appendix of
ref are solutions to eq 16, but do not enforce time reversibility,
despite providing an integrator that is more accurate than Forest
and Ruth’s (in terms of energy conservation). While it is possible
to build a pair-decoupled integrator using the a; and b,
coeflicients by Brewer et al, it is not possible to reach fourth
order accuracy, and there are multiple possible choices of the ¢
coeflicients that we discuss in the Supporting Information. All
such coeflicients are reported in the rows SEF4-I to SEF4-IV of
Table 1, as possible variants of the SEF4 integrator.

In the Numerical tests section we show numerically that our
modification of the symplectic algorithm, which accounts for the
pair-decoupling concept, preserves the properties of symplectic
integration. Considering the Jacobian matrix

CORI0)

J(t, t) = ———
oG (1), 3() o
and the canonical symplectic matrix
0 I
=% )
-1 0 (12)

we measure how much the relation J' (¢, t')-J-J(t, t') = T
holds true for the special case t' = 0. In the case of a quadratic
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potential, the time evolution is exactly time reversible. Instead, in
the case of a generic potential, the time-reversibility property is
only approximate.

Computational Details. In order to test our algorithm of eq
4, we employ accurate quartic force fields®>* for the simulations
of water and formaldehyde molecules. Instead, for salicylic acid
calculations, we use the fitted potential energy DFT surface®”*®
provided alongside the sGDML software.”’~”* The sGDML
PES is given already trained®”® on 1000 training points, and it
showed, with the inclusion of the Tkatchenko-Scheffler
correction to account for the van der Waals interactions,”* a
mean absolute error (MAE) which is less than 0.12 kcal/mol
with respect to the pVDZ/DFT-PBE values.

To test the accuracy of the integration technique, we run 4
types of tests with & = 1. First we check the energy conservation
along the simulation. Then, we checked the symplectic property
of the Jacobian matrix. Then, we check the time-reversibility of
the integrator, and eventually we compute also the classical
power spectrum. The check of energy conservation may appear
redundant because a symplectic integration, by definition,
implies that all the constants of motion are preserved. However,
our approximation of the force implies that the system evolved
under an approximation of the potential. As a matter of fact, even
if @ = 1, if the force estimate in eq 9 is not accurate, the energy (of
the fully coupled system) might not be accurately conserved,
while the integration remains symplectic on the approximated
potential.

To prove that the Jacobian matrix J(t, t') is symplectic we use
the relation J* (t, t')-J-J(t, t') = J for the special case t' = 0,
as anticipated above. The Jacobian with ' = 0 is called the
monodromy matrix M(t), which can be computed numerically
with the extended version of the algorithm described in the
Supporting Information. Hence, we asses the stringent
condition’

Y0 = R EIT M), - I w0
b (13)

Although eq 13 proves the symplectic property of the Jacobian
matrix only for the special case t’ = 0, this is the most stringent
test from the numerical point of view.

To measure the degree of time reversibility of the integrator,
we run a simulation until time T, with a 10 au time step. After
that, we invert the sign of the momentum variable, and we
continue the propagation for another time lapse equal to T
backward, until a total simulation time of 27T is reached. Finally,
we measure the quantity

F
o(t) = % DT — ) — x(H)l % 0
j=1 (14)
where F = 3N, (N, is the number of atoms) and x; is the b
element of the F-dimensional Cartesian geometry vector. In all
our tests, T = 6000 au.

Finally, we apply our integration technique for the calculation
of the vibrational spectra, ranging from small molecules up to the
salicylic acid molecule in the gas phase. We use a numerically
convenient formula’ to evaluate the power spectrum of the j*
mass-scaled normal mode,

2

K@) = | [ p0e a
e Y A A

(1)
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Figure 2. Y (¢) and 7(t) for a 3000 time-step simulation of 10 au each. SE2 (orange), SE4 (red), SEF2 (green), and SEF4 (blue) integration methods
for H,O (circles), H,CO (triangles), and salicylic acid (squares). SEF2 and SEF4 are tested without decoupling.

This formula provides a resolved power spectrum with short (=~
0.6 ps) simulations. In fact, eq 15 is the classical analogue of the
time-averaging method employed in semiclassical spectrosco-
py.76’77 Since eq 15 computes a power spectrum from the
velocity correlation function, all vibrational frequencies are
reproduced and they can be compared with either infrared or
Raman experimental frequencies. Instead, the intensities I(w;)
are not comparable with IR or Raman experiments because they
depend only on the number of times the vibrational mode with
frequency w; has occurred during the simulation time, which
depends ultimately on the trajectory initial conditions. On the
other hand, the experimental infrared and Raman intensities
depend, for example, on the transition dipole moments and on
the polarizabilities. To represent the power spectrum intensity of
a multidimensional system we simply compute the sum of the
power spectra of eq 15, that is

() = ) I(w)
j (16)

The definite integral of eq 16 over a frequency domain can be
interpreted as the average kinetic energy of the modes of
vibration within that frequency domain.”> Thus, when the
intensity I(@) of the pair-decoupled simulation is different from
the nondecoupled one, there must be a shift in the vibrational
frequency or an intramolecular vibrational energy redistribution
caused by the decoupling. The two effects may occur at the same
time.

Although all the integrators described in this paper allow the
system to evolve in any full-dimensional coordinate system, we
always employ mass-scaled normal modes, which have the
advantage of discarding translational and rotational motion. To
decouple the Cartesian degrees of freedom, we just rotate the
normal mode Hessian matrix to Cartesian coordinates, apply the
decoupling, and rotate the decoupled matrix back to normal
modes. We use this procedure, instead of evolving in Cartesian
coordinates, because the SEF algorithm cannot accurately
describe free translations and rotations or other types of motion
that have a very flat (in general very anharmonic) potential
landscape.

All of the simulations described in this paper are full
dimensional and start from the equilibrium geometry of the
fully coupled system. The normal mode coordinates are
constructed using the fully coupled Hessian matrix. Also, in
case the SEF algorithm is used, the initial force is assumed to be
0, just as if the initial geometry were an energy minimum for the
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pair-decoupled system, as well. The initial momentum in normal
mode coordinates is set equal to the square root of the
corresponding harmonic frequency so that the initial kinetic
energy is equal to the harmonic zero point energy. In the
simulations with a # 1 we follow the same recipe, but, when the
effect of the decoupling is weak, we run the simulations for
longer time (5000 time steps), and discard the initial 2000 steps
(which is about 0.5 ps), to allow the decoupled fragments to
actually decorrelate. In some cases, such as when decoupling all
the functional groups of salicylic acid, the decoupling effect is
very strong, and the decorrelation effects can be seen already
from the very beginning of the simulation. In such cases, we run
the simulation for only 3000 steps and discard none. Anyway, if
the pairs of atoms are naturally independent, the normal
spectrum and the pair-decoupled spectrum would be exactly the
same.

B RESULTS

Numerical Tests. We start by testing the accuracy of our
algorithms. In Figure 2 we show how much the SEF2 and SEF4
integrators with a = 1 preserve the symplectic symmetry of the
monodromy matrix M(t) and the time reversibility property.
These are compared with the well established Symplectic
Leapfrog (SE2) and fourth order SE4 method, that is the
Symplectic Explicit integration method with the coefficients of
Forest and Ruth.’’ Independently of the integrator, the larger is
the system, the quicker Y (#) and 7(t) deteriorate, and this is
mainly due to the fact that more operations are carried out in a
finite precision arithmetic. However, when switching from the
SE to the SEF algorithms, no significant further errors in Y ()
are introduced, while the time reversibility accuracy is decreased
by orders of magnitude. This is expected for two main reasons.
First, the calculation of the force in the SEF algorithms is
performed by time integration and it requires four sums of
matrix multiplications. The second, and the most important one,
is that the calculation of the force is based on a local harmonic
approximation of the potential landscape. Our approximate
evolution of the force within the local harmonic approximation
is not a time-reversible process, except for quadratic potentials.
These limitations are clearly amplified with the dimensionality.

The symplectic properties of the SEF integration are
preserved also in the case of the decoupled pairs of degrees of
freedom, ie., @ = 0. We show in the Supporting Information
(Figure S1) that Y(¢) and () have the same shape even for the
pair-decoupled system.
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Figure 3. Power spectra and energy conservation. The left panel shows the power spectra of H,0, H,CO, and salicylic acid molecules computed with
SE2 (orange), SE4 (red), SEF2 (green), and SEF4 (blue) integrators (always with a = 1). The right panel shows the energy profiles of the
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Figure 4. (A) Picture of salicylic acid with labeled atoms and (B, C, D, E) some relevant types of motion®” involving the acid group, H11, and H16 with

their relative harmonic frequencies.

In Figure 3 we show that, for all systems, the spectroscopic
features are perfectly captured by the entire integration method.
SEF4, SE2, and SE4 provide spectra that are almost
quantitatively equivalent when applied to all systems. The
total energy of the H,O and H,CO systems is well conserved by
the SEF algorithms, with SEF2 having an oscillation that is about
~10% larger than SE2, and SEF4 having an oscillation that is
~20% to ~30% larger than SE4. When the system includes
floppy modes, however, such as the salicylic acid, these modes
induce a slow oscillatory pattern in the energy profile that is not
well captured by the SEF algorithm. In fact, SEF can not predict
very accurately the strongly anharmonic contributions to the
force. Nevertheless, this is not an issue, because the SEF energy
does not display a systematic drift, but only a slow oscillatory
pattern that follows the oscillation of the low energy modes.

Decoupling the Salicylic Acid Fragments. Since the pair
decoupling is, by definition, an artificial procedure, we
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rationalize the following results in a reductio ad absurdum
style, where first we enforce that some fragments of the molecule
are independent and simulate the corresponding system, and
then we see how much the vibrational features are affected by the
decoupling. In this way, we can observe that decoupling some
fragments of the salicylic acid does not lead to significant
conformational changes within a short simulation time, while
decoupling other fragments quickly leads to unrealistic
phenomena. However, given a long enough simulation time,
decoupling any pairs of molecular fragments will eventually lead
to unphysical behaviors.

Previous infrared spectroscopic studies of salicylic acid (SA)
focused primarily on the intramolecular H-bond between
hydrogen 11 and oxygen 9”°”*” and hydrogen 11 and oxygen
10”% (see the atom numbering in Figure 4) in the ground and
first excited electronic states. These studies are mainly about the
proton transfer process and deactivation of the excited electronic

https://doi.org/10.1021/acs.jctc.3c00553
J. Chem. Theory Comput. 2023, 19, 6093-6108


https://pubs.acs.org/doi/10.1021/acs.jctc.3c00553?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00553?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00553?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00553?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00553?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00553?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00553?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00553?fig=fig4&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.3c00553?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Journal of Chemical Theory and Computation

pubs.acs.org/JCTC

C=C stretch

———ea =1
—a=0

-
H16 oop
wag
.
"
AV
0 500 1000 1500 2000 2500 3000 3500

4000

Freq / cm™!

Figure S. Power spectra of the salicylic acid (black dashed lines) and of the decoupled (a = 0) C1—010 and O10—H16 stretching modes, without
waiting for any decorrelation time (solid orange line) and after 0.5 ps of decorrelation time (solid green line). The a = 1 spectra are taken over the same
time intervals of the corresponding & = 0 spectra, accounting for the decorrelation time.

state via a radiationless mechanism, which is possible only if O9
and HI1 are close enough, as shown in panel A of Figure 4,
which is at the equilibrium geometry of the ground state. Below
we show that such a configurational arrangement is stable over
time only if the motion of 09 and H11, as well as of 09 and H16,
is correlated. Furthermore, we investigate how much the
carboxyl O — H stretching motion changes after artificially
decoupling the different functional groups of the molecule.

Modes of Vibration of the Salicylic Acid. The salicylic acid
molecule in its minimum energy geometry and within the
harmonic approximation has 42 normal modes of vibration.
Only some of them show a significant displacement of H11 or
H16. However, beyond this approximation, the vibration of the
hydroxyl and carboxylic acid fragments implies the significant
displacement of H11 and H16 from their equilibrium condition.
More specifically, approximating the O4—H11 and O10—-H16
stretching modes with the harmonic approximation implies
neglecting the coupling between these stretching modes and the
twist, wag, and other complex motions that involve the whole
OH and acid fragments. Four low frequency normal modes
which are crucial for the salicylic acid vibrational motion are
reported in panels B, C, and D of Figure 4. These modes are the
acid group twist and the acid group out-of-plane (oop) modes,
which involve, respectively, a twist and oop wagging of the
carboxyl group with respect to the ring and the H16 oop motion,
which is an out of plane wag of the H16 hydrogen. In addition,
panel E of Figure 4 represents an out-of-plane mode that is
delocalized over the three functional groups, involving H11, the
ring, and the carboxylic acid group. We find that these four types
of motion are those that are most significantly influenced by the
pair decoupling of the hydrogen-bonded fragments and of the
functional groups of SA. There are two main reasons for this.
One is that they involve flexible regions of the molecule that
easily couple with many other types of motion, and the other is
that they break the directionality of the intramolecular hydrogen
bonds.

An estimate of the vibrational frequencies of the pair
decoupled system cannot be straightforwardly made within
the harmonic approximation. In fact, while scaling the off-
diagonal entries of the Hessian does not change the trace, which
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is conserved in the diagonalization, it might change the
magnitude of the eigenvalues. These changes imply that the
pair-decoupled Hessian does not correspond to a stationary
point configuration anymore. Consider, for instance, the case
when the carboxyl group is decoupled from the hydroxyl groups;
that is, all of the atoms in the carboxyl group are fully decoupled
from the O and H atoms in the hydroxyl group. The normal-
mode analysis of such a system at the original equilibrium
geometry shows that the now unhindered acid twist mode has a
frequency of about 3650 cm™. This is clearly not realistic. As
mentioned above, the reason a normal-mode analysis can not be
employed for an artificially decoupling analysis is that the
equilibrium geometry of the system, at which the Hessian matrix
is computed, is not a stationary point for the pair-decoupled
system. Instead, computing the vibrational spectrum from the
velocity correlation function does not suffer from this problem,
and it can account for both anharmonicities, nonequilibrium,
and dynamical couplings, which are lacking in the harmonic
approximation.

Decoupling the O10—H16 and C1=09 Stretching Modes.
In this section, we apply the pair-decoupling idea in normal
mode coordinates. In particular, we decorrelate the O—H
stretching mode from the C=O stretching mode of the SA.
Both the O—H and C=O0 stretchings are localized, meaning
that we can interpret the O—H and C=O0 as two oscillators,
where the O and H, and C and O, atoms are each connected by a
spring. Even though the two oscillators are defined as
independent when the molecule is at equilibrium, outside of
equilibrium, the two oscillators are coupled, and each one
depends on the other one’s displacement. Furthermore, both
oscillators also couple with all of the other oscillators that
compose the SA vibrations. All the observations that we can
make about the spectra in Figure S originate from the in-plane
oscillations localized on the carboxylic acid group.

In Figure S we see that if we do not wait for any decorrelation
time, the anharmonic vibrational frequency of the O—H stretch
is red-shifted by nearly 160 cm™. This effect is evidently
localized on the O—H, because the rest of the spectrum is only
slightly changed by the decoupling. However, after 0.5 ps of
decorrelation time, the decoupling also affects the O—C—-O
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Figure 6. Power spectra of the salicylic acid (dashed black line) and of the O9—H16 decoupled (a = 0) salicylic acid (solid orange line). Both spectra

are recorded after discarding the first 0.5 ps of simulation.

scissoring mode, as well as modes that involve deformations and
C=C stretchings. Moreover, after 0.5 ps of decorrelation time,
the O—H stretching frequency becomes again similar to that of
the nondecoupled system. Let us first focus on the bottom part
of Figure 5. O9 and H16 are connected by a nondirectional
hydrogen bond, that is weakened when the C=0 and O—H
bonds are stretched, because the two stretchings move the two
atoms further apart. As the two oscillators stretch, they do not
retain their reciprocal phase, because of the difference in mass
between O and H. However, when we apply the decoupling,
atom H16, would keep feeling the effect of a nonstretched C1—
09 oscillator, while oscillating back and forth. Thus we can see
that the O—H stretching is hampered by the stable O9—H16
hydrogen bond. And we can quantify the importance of this
effect by measuring the red-shift, which amounts to about 160
em™h

Let us now focus on the top part of Figure S. It shows that after
0.5 ps of decorrelation time, also the normal modes localized on
the ring are affected by the decoupling. The involvement of the
other modes implies a structural deformation of the entire
molecule, compared to the nondecoupled dynamics. This brings
the carboxylic acid O—H stretching frequency to about 3570
cm™!, which is slightly blue-shifted from the nondecoupled
spectrum (dashed line). This effect cannot be explained with
simple arguments, because it evidently involves the whole
molecule. As a matter of fact, the only portions of the spectrum
that appear almost unaffected by the decoupling are C—H and
hydroxyl O—H stretching modes, as well as the 700 and 1050
cm™! region, which involves some ring deformation and
breathing modes.

Decoupling the Carboxyl O9—H16 Hydrogen Bond. The
first physical insight provided by the artificially decoupled O9—
H16 hydrogen bond is that the O9 and H16 atoms do not
oscillate synchronously anymore. This asynchronous motion
induces an angular momentum that enhances the acid twist
mode to the point that, after less than 300 fs, the carboxyl group
attempts a 180° rotation around the C1—C2 axis. This 180 deg
rotation has a potential barrier (computed as energy of the
transition state minus energy of the minimum) in the original
fully coupled system of 6366 cm™" at pvVDZ/DFT-PBE level of
theory, and it should be an extremely rare event for the fully
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coupled system, considering that the acid twist motion is
initialized with less than 100 cm™" of kinetic energy. To avoid
this artificial twist, which is not in a fitted region of the given
sGDML potential energy surface, we run simulations where the
acid twist normal mode is kept at equilibrium and the O9—H16
hydrogen bond is still decoupled. The power spectrum of this
simulation after a 0.5 ps decorrelation time is shown in Figure 6.
In this case, we can observe a rather weak decorrelation effect in
terms of the enhanced H16 rock and in-plane wag. The effects of
such enhanced motion are given by the more intense bands in
the 400 to 500 cm ™" and 1100 to 1300 cm ™ regions, as well as by
the blueshift of the O10—H16 stretching mode, indicating a
slightly weaker bond between O10 and H16.

From a fixed nuclei picture of the SA in the minimum energy
configuration, one assumes that the hydrogen bond between O9
and H16 ensures that the carboxyl group remains confined in a
plane and that H16 is oriented toward O9. In a dynamical
picture instead, H16 oscillates out of the 09—C1—-010 plane
and, given enough energy, it might overcome the potential
barrier and get oriented toward C8 in a 180° rotation around the
C1-010 axis. In the original fully coupled system, this barrier
height is about 4355 cm™' at the pVDZ/DFT-PBE level of
theory, and thus, the 180° rotation around the C1—010 axis is a
rare event, considering that the H16 oop wagging is initialized
with §74 cm™ of kinetic energy. The lack of synchronization in
the out-of-plane motion of O9 and H16 redistributes some of
the stretching vibrational energy to the out-of-plane modes to
the point that the rotations become allowed. In fact, if one keeps
the carboxyl twist mode at equilibrium, the H16 oop wag begins
to oscillate significantly after about 1.2 ps of simulation, and we
observe an attempt of 180° rotation of O10—H16 around the
C1-010 axis.

To sum up, the simulations of the O9—H16 decoupled SA
provide two main physical insights. First of all, the artificial
decoupling allows one to appreciate the importance of the
synchronous oop vibration without which the carboxyl group
would rotate, leading to a less stable minimum configuration.
Second, the asynchronous motion of O9 and H16 leads to a fast
vibrational energy redistribution in favor of the out of plane
modes. As a secondary result, we see that the pair decoupling
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Figure 7. Power spectrum of the O9—H11 (solid orange line) and carboxyl—hydroxyl (solid green line) decoupled SA. The black dashed line is the
power spectrum of the fully coupled simulation for comparison. The O9—H11 simulation (orange line) was obtained without evolving the acid twist

mode, and both spectra are recorded after a 0.5 ps decorrelation time.

OH, COOH
rock & ring
deform

COOH

00p wag

I(E)

—a=0
-——a=1

010 - H16
stretch

COOH

twist

110

-u-

aecorr.

€ 7

T
1500

1000

T
2000 2500

I T
3000 3500 4000

Freq / cm™*

Figure 8. Spectrum of the SA with the carbon ring decoupled from the carboxyl group with a = 0, without waiting for any decorrelation time (orange
line) and after 0.5 ps of decorrelation time (green line). The dashed black lines are the spectra of the fully coupled system after discarding the
corresponding amount of simulation time to match the decorrelation time.

allows one to quickly explore otherwise almost forbidden
configurational regions of the potential surface.

Decoupling the Hydroxyl and Carboxylic Acid Groups.
Here we show with our simulations why the O9—H11 hydrogen
bond is fundamental for the planar shape of SA. As a
consequence of the O9—H11 decoupling, the carboxyl group
quickly initiates a large amplitude twist around the C1—C2 axis.
This effect is similar to that one we have described in the
previous section for the O9—HI11 decoupling, where the
decoupling artificially augments the kinetic energy of the acid
twist motion represented in panel B of Figure 4. However, in this
case, the role of the H-bond is very different. When O9 and H11
are decoupled, we argue that, even if the out-of-plane motions
are not synchronized anymore, the oop wag of H11 remains
coupled to O10 (and H16) and this coupling stimulates the oop
motion of O10 (given the planarity of the carboxyl group).
Eventually, the artificially enhanced oop wagging of H11 induces
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an attempted 180° rotation of the carboxyl group around the
C1—-C2 axis. We deduce that there must be a strong
synchronized interaction of each atom composing the whole
hydroxyl group with each atom composing the whole carboxyl
group. This interpretation of the importance of the HII
interaction with each singular atom composing the carboxyl
group is validated by the fact that the acid twist motion is not
enhanced when the whole carboxyl group is decoupled from the
entire hydroxyl group. In Figure 7 we show both the spectrum
when the O9—H11 interaction is decoupled and the acid twist
mode is kept at equilibrium, and also the spectrum when it is the
carboxyl—hydroxyl entire groups to be decoupled. Both spectra
are recorded after 0.5 ps of decorrelation time, and both spectra
show that the decoupling effect is quite significant in terms of
vibrational energy redistribution. In fact, the ring breathing and
ring deformation modes donate vibrational energy to the out-of-
plane and C=0 stretching modes at about 100 to 400, and 1600
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Figure 9. Spectrum of the SA with the carbon ring, carboxyl, and hydroxyl fragments all decoupled from each other with a = 0 (orange line). The
dashed black line is the spectrum of the fully coupled system for comparison. The inset on the right shows a representative frame of the simulation, as a

result of the asynchronous motion of the three decoupled fragments.

cm™’, respectively. More specifically, both the O9—H11 (orange
line) and the carboxyl—hydroxyl decoupled spectra (green line)
show that the decouplings induce significant vibrational energy
redistributions in both the low frequency and fingerprint regions
of the spectra, especially from the ring breathing and ring
deformation modes, while the ring C—H and O—H stretching
signals retain their kinetic energy on average. In both the 09—
H11 and carboxyl—hydroxyl decouplings, the O—H stretching
signals are mildly blue-shifted, indicating slightly weaker
hydrogen bonds. In conclusion, these results clearly show that
the intuitive picture of the independent functional groups in
ortho position on the aromatic ring is partial to describing the
appropriate vibrational dynamics of the SA and that the single
atom—atom instantaneous couplings are essential for an
accurate description of the interactions between the two
functional groups. Our results also show that, surprisingly, the
hydroxyl—carboxyl decoupled system provides a more realistic
simulation of the O9—H11 decoupled one, because it does not
induce the acid twist rotation.

Decoupling the Carboxyl and Ring Fragments. We find that
the strongest decorrelation effects that impact the carboxyl O—
H stretching mode occur when we decouple the motion of the
ring from that of the carboxylic acid group. Specifically, the
stretching O—H mode of the carboxylic acid is blueshifted by
103 cm™! (from 3573 cm™ of the fully coupled system to 3675
cm™' of the @ = 0 decoupled system), as shown by the solid
orange line in Figure 8. This effect is accompanied by an
increased amplitude H16 oop wagging motion, which shortly
after about 0.7 ps induces a 180° rotation of the O—H around
the C1—010 axis. If we keep the H16 oop wag at its equilibrium
geometry to avoid this artificial rotation and record the power
spectrum after 0.5 ps of decorrelation time, the O—H stretching
of the acid is still blueshifted, although only by about S0 cm™, as
shown by the solid green line of Figure 8. We conclude that the
ring and carboxyl group decoupling have a strong effect on the
carboxyl O—H motion. In fact, the C—H and hydroxyl O—H
stretching signals around 3100 cm™" are split, although not one
of those hydrogens is decoupled.

The ring-carboxyl decoupling is a good example of how the
two fragments can be interpreted as independently vibrating
fragments just after the decoupling effect is turned on but not
after 0.5 ps of decorrelation time. As a matter of fact, after the
decorrelation time, the carboxyl O—H stretching signal is
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smeared over nearly S00 cm™’, mainly because of the enhanced
oop wagging motion of the carboxyl group at 150 cm™.
Nonetheless, most of the signals that involve ring stretching and
other motions delocalized over the ring are still well recognizable
in the fingerprint region of the spectrum, even after the
decorrelation time. This observation shows that the effects of
substituents on the vibrational features of the ring are mostly
static, i.e., decorrelating the ring and carboxyl group vibrations
does not induce very significant changes in the ring vibration
frequencies. In fact, the fingerprint region of the spectra,
between 700 and 1500 cm ™', displays only some mild vibrational
energy redistribution, in favors of the COOH twist and oop wag.

Decoupling the Entire SA into a Ring Part and Its
Substituents. We conclude the results section by describing
the scenario in which the SA molecule is decomposed into a ring
and its substituents.

Figure 9 shows in orange the power spectrum of the SA where
its functional groups are artificially decoupled. These groups are
the aromatic carbon ring, the hydroxyl group, and the carboxyl
group. After only 180 fs the decoupled system attempts a
rotation of the O4—HI11 group around the C3—04 axis.
Therefore, in this case, we decided to keep at the equilibrium
position the mode which involves simultaneously the H11, ring,
and acid oop displacements, which is indicated in panel E of
Figure 4. Then, we record the spectrum without waiting for any
decorrelation time. The strongest decorrelation effects observed
in this dynamics consists of the enhanced acid twist, acid oop
wag, and O—H oop wags, represented in panels B, C, and D of
Figure 4. All of these effects quickly bring the molecule into very
energetic regions of the PES, such as shown in the inset of Figure
9. From Figure 9 we can also see the same smearing of the
carboxyl O—H stretching signal observed in the green spectrum
of Figure 8, which occurs without any decorrelation time. This
smearing effect is mainly due to the fact that the acid twists to a
staggered position, and simultaneously, it also bends toward the
ring (see the inset of Figure 9). In such a distorted configuration,
the carboxyl O—H stretching motion strongly depends on the
orientation of the O—H, as well as on the amount of twisting. In
addition, the hydroxyl group is anomalously stretched apart
from the ring and the C1-010—H16 angle is highly increased,
and similarly the signals of the hydroxyl O—H stretchings in the
3100 to 3300 cm™" frequency interval are smeared. On the
contrary the C—H stretching signals at about 3000 and 3100
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cm™" are only slightly shifted but not smeared. The redshift of
the carboxyl stretching can also be interpreted from the distorted
geometry of the SA. When the carboxyl group is twisted, its
electron withdrawing effect on the ring is weakened and it
becomes a weaker acid.

Analogously to what we observed in the ring—carboxyl
decoupling of Figure 8, the fingerprint region of the spectrum
remains reasonably similar (in terms of frequencies) to that of
the fully coupled system. However, some of the ring modes, in
particular the C=C stretchings, ring deformation, and breath-
ing modes, donate vibrational energy to the hydroxyl and
carboxyl groups in the 100 to 500 cm ™" region of the spectrum.

B DISCUSSION AND CONCLUSIONS

In this paper, we introduce a pair-decoupling idea that offers a
novel perspective for the study of relationships among groups of
atoms or, more generally, of degrees of freedom in a molecule.
The pair-decoupling idea is based on a simple, yet always
applicable, mathematical definition: the Hessian matrix of a pair
decoupled system is equal to the Hessian matrix of a normal
system where some of the off-diagonal elements are weighted
with an arbitrary coeflicient @. The SEF algorithm that we
introduce enforces the pair-decoupling idea for the molecular
dynamics simulations of small and medium sized organic
molecules. The simulations faithfully preserve the properties of
symplectic symmetry of classical dynamics, in particular, the
phase space conservation, in agreement with Liouville’s
theorem. The SEF method is effectively a symplectic integration
technique of a system under a locally harmonic, “pair-
decoupled” potential. The main disadvantage of the method is
the requirement of 2 or 4 Hessian matrix calculations per time-
step. However, this limitation could be alleviated by suitable
numerical techniques.*** This unavoidable feature limits the
employment to middle-sized molecules and imposes the use of a
computationally affordable potential for the electronic structure.

The application of our technique to salicylic acid has shown
both intuitive behaviors of the pair-decoupled system, such as
the rotation of the carbonyl in response to a decoupling of the
hydroxyl-carboxyl H-bond, and less intuitive and surprising
effects, such as the blueshift of the carboxyl O—H stretching
frequency when the acid hydrogen is decoupled from the
aromatic ring. We also showed that the synchronous vibrations
of the atoms in the carboxyl and hydroxyl fragments are essential
for the equilibrium configuration to be stable over time. As a
consequence, in the absence of such couplings, the proton
transfer photochemistry of the salicylic acid would be
impossible. Ultimately, our simulations of the pair-decoupled
salicylic acid show that the picture of the molecule as composed
of independent vibrating fragments is partial and often
unreliable. Since this intuitive picture is at the origin of the
functional groups definition, we think that these results show
how there are important exceptions to the functional group
picture. In fact, an artificial decoupling of apparently unrelated
groups of atoms may induce evident changes in the vibrational
spectroscopy of the whole molecule. We think that these
considerations are applicable to many other chemical systems
and that our results open the path to further investigations
thanks to the computational tool that we have presented.
Furthermore, the pair-decoupled simulation technique can be
used to validate applications that assume that a portion of the
system is partially uncoupled from another such as in MCTDH
and QM/MM calculations. The most practical way to do that in
the case of QM/MM, for example, is to simulate the chosen pair-
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decoupled system at the MM level and verify whether it is an
appropriate partition for the QM/MM calculation.

We hope that the pair-decoupling idea can inspire other less
computationally expensive methods that can assess the
importance of couplings in molecules. Finally, we believe that
the SEF algorithm can help increase the sensibility of chemists
toward the (unexpected) effects of approximations that involve
artificially decoupled systems.

B APPENDIX

The solutions of the fourth order map M, _, are obtained from
the following system of equations, which we derived, as
explained in the Supporting Information, with the help of the
SageMath®® computer algebra system:

a+a,+ay;+a =1
by+b,+b;+b =1

1

(a + ay + ag + a)by + (a, + a3 + a))b, + (a3 + a)by + a,b, = Y
1
ab, + (a, + ay)by + (a, + a, + ay)b, = 5

(a, + a, + a)a,b, + (aa, + ajay + aja,)b,

+ ((a) + ay)a; + (a) + ay)a,)b; = s

abib, + ((a, + ay)b; + a,b,)by + ((a, + a, + a;)b, + (a, + a3)b,
+ azby)b, = 5
1 2, 1., 2y, 1., 2
Zal , + 2(a1 + 2a,a, + az) 3+ Z(al + 2a,a, + a,
1
+ 2(a, + ay)ay + a;)b4 = 5

(aay + ayay + aja,)bib, + (((a; + ay)ay + (a, + a,)a,)b;
+ (aya3 + a,a,)b,)by + ((a; + ay + az)ab, + (a, + a3)ab,
+ aya,by)b, = vy

%(af +2a,a, + a; +2(a, + ay)a; + a;)a4b4
+ %(alzaz + alay + ala,)b, + %((alz + 2a,a, + a;)a,

1
+ (a} + 2a.a, + a))a )b, = —
24
albb, + ((a} + 2aa, + a2)b, + (a,a, + a})b,)b
19192 1 192 + a3)Y, 192 + a3)5,)0;
+ ((a + 2a,a, + a; + 2(a; + ay)a; + al)b,
+ (aya, + a; + (a, + 2a,)a; + a;)b,
+ ((a, + a,)a; + a})b)b, = 3

1 1 1
Eusz + g(uf + 3ala, + 3aa; + a;’)b3 + E(uf + 3ala, + 3a,a;

1
+ a3 + 3(a, + ay)a; + a3 + 3(a + 2a.a, + a;)a;)b, = 2—4

1
aayboby + ((ay + ay)azby + (a1, + aia3)by)b, = by

(17)

It is important to notice that this system is undetermined. We
need to choose another constraint to effectively get numerical
values for a; and b, coeflicients. A reasonable choice to saturate
the system is to set b; = 0, which leads to three possible sets of
real coefficients: the first set was first published by Campostrini
and Rossi,”” then independently by Forest and Ruth,”® Yoshida
(who attributes the origin to Neri),*' and Candy and Rozmus.>
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2742742
@9 =———
6
91/3 + 3
4, = ———
6
91/3 + 3
ag= ————
6
2P+ 27 42
4y = —"
6
by=0
234 23 4y
b, = B —
734283 4o
by=——"""-——
6
) 23423 4y
* 6 (18)
while the second was reported by Brewer et al.,*®
a; = —J3/6+1/2
a, =+/3/3
a,=—+/3/3
a, = J3/6+1/2
by=0
b,=-/3/6+1/4
by=1/2
b4=_\/§/6+1/4 (19)
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