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ABSTRACT

In the present supplementary file we provide the datailed proofs of the theoretical results given in the main article. The
martingale theory is the key issue to prove these results.

S1 Analytical proofs
Denote by X∗

t,h the random variable that takes value 1 when the ball extracted from urn h at time-step t has a new (for all the
system) color and is equal to 0 otherwise. Then Z∗

t,h defined in (4) coincides with P(X∗
t+1,h = 1 |past) = E[X∗

t+1,h |past] and D∗
t,h

can be written as ∑
t
n=1 X∗

n,h. Since we have

Z∗
t,h =

θh +∑
t
n=1 ∑

N
j=1 γ j,hX∗

n, j

θh + t
,

we obtain the following dynamics for Z∗
t,h:

Z∗
0,h = 1, Z∗

t+1,h = (1− rt,h)Z∗
t,h + rt,h

N

∑
j=1

γ j,hX∗
t+1, j for t ≥ 0 ,

where rt,h = 1/(θh + t +1) = 1/(t +1)+Oh(1/t2). The corresponding vectorial dynamics for Z∗
t = (Z∗

t,1, . . . ,Z
∗
t,N)

⊤ is

Z∗
0 = 1

Z∗
t+1 =

(
1− 1

t +1

)
Z∗

t +
1

t +1
Γ
⊤X∗

t+1 +O(1/t2)

= Z∗
t −

1
t +1

(I −Γ
⊤)Z∗

t +
1

t +1
Γ
⊤

∆M∗
t+1 +O(1/t2) for t ≥ 0,

(S:1)

where ∆M∗
t+1 = X∗

t+1 −Z∗
t and O(1/t2) = (O1(1/t2), . . . ,ON(1/t2))⊤.

We prove the following key result:

Theorem S1.1. Under the same assumptions and notation of Theorem 3.1, we have

t1−γ∗Z∗
t

a.s.−→ Z̃∗∗
∞ u ,

where Z̃∗∗
∞ is an integrable strictly positive random variable.

Proof. We firstly want to decompose the vectorial process Z∗
t based on the Jordan representation of the matrix Γ. Specifically,

for any γ ∈ Sp(Γ⊤)\ γ∗, we can denote as Jγ the Jordan block and with Uγ and Vγ the matrices whose columns are, respectively,
the left and right (possibly generalized) eigenvectors of Γ associated to the eigenvalue γ , i.e.

ΓVγ =Vγ Jγ and U⊤
γ Γ = JγU⊤

γ .



Then, we can consider the decomposition
Z∗

t = Z̃∗
t u+ ∑

γ∈Sp(Γ⊤)\γ∗
Z∗

γ,t ,

where Z̃∗
t = v⊤Z∗

t and Z∗
γ,t =UγV⊤

γ Z∗. Secondly, we set

ζ0 = 1, ζt = 1/
t

∏
k=1

[
1− (1− γ∗)

k

]
∼ t1−γ∗ ↑+∞

and
Z∗∗

t = ζtZ∗
t , Z̃∗∗

t = ζt Z̃∗
t and Z∗∗

γ,t = ζtZ∗
γ,t

(note that Z̃∗∗
t is non-negative but not bounded by 1 as Z̃∗

t ) so that we have

Z∗∗
t = Z̃∗∗

t u+ ∑
γ∈Sp(Γ⊤)\γ∗

Z∗∗
γ,t .

In the following steps, we are going to show that Z̃∗∗
t converges almost surely and in mean to an integrable random variable Z̃∗∗

∞

such that P(Z̃∗∗
∞ > 0) = 1 and that each Z∗∗

γ,t converges almost surely to zero. In particular, this last task will be done separately
for the eigenvalues with |γ|< γ∗ and with |γ|= γ∗. Remember that the assumption that Γ (or, equivalently, Γ⊤) is irreducible
ensures that γ∗ is real, simple and |γ| ≤ γ∗ for any γ ∈ Sp(Γ⊤). In the sequel of the proof, the symbol Ft denotes the past until
time-step t.

Study of Z̃∗∗
t . By multiplying equation (S:1) by v⊤ we obtain

Z̃∗
0 = 1, Z̃∗

t+1 =

[
1− 1

t +1
(1− γ

∗)

]
Z̃∗

t +
1

t +1
γ
∗
∆M̃∗

t+1 + Õ
(

1
t2

)
.

Then, multiplying everything by ζt+1 and using the relation ζt+1 = ζt [1− (1− γ∗)/(t +1)]−1 we get the following dynamics
for Z̃∗∗

t = ζt Z̃∗
t , where ∆M̃∗

t+1 = v⊤∆M∗
t+1,

Z̃∗∗
0 = 1, Z̃∗∗

t+1 =

[
1− 1

t +1
(1− γ

∗)

]
ζt+1

ζt
ζt Z̃∗

t +
ζt+1

t +1
γ
∗
∆M̃∗

t+1 + Õ
(

ζt+1

t2

)
= Z̃∗∗

t +
ζt+1

t +1
γ
∗
∆M̃∗

t+1 + Õ
(

ζt+1

t2

)
.

(S:2)

Therefore, we have
E[Z̃∗∗

t+1|Ft ] = Z̃∗∗
t + Õ(ζt+1/t2).

Since γ∗ > 0 and so ∑t ζt+1/t2 ∼ ∑t 1/t1+γ∗ < +∞, the process Z̃∗∗
t is a non-negative almost (super-)martingale, almost

surely convergent toward a finite random variable Z̃∗∗
∞ (see Appendix S1.2). Then, using Theorem S1.3, we can prove that

P(Z̃∗∗
∞ > 0) = 1. Indeed, if we define the stochastic process W = (Wt)t≥0, taking values in the interval [0,1], as

W0 = Z̃∗
0

Wt+1 =

(
1− 1

t +1

)
Wr +

1
t +1

Yt+1, t ≥ 0,
(S:3)

where Yt+1 = γ∗X̃∗
t+1 = γ∗v⊤X∗

t+1 (that takes values in [0,1], since γ∗ < 1, X∗
t+1, j ∈ {0,1} and v⊤1 = 1), then we have

|Wt − Z̃∗
t |= O(1/t2)→ 0

and also
|ζtWt − Z̃∗∗

t |= |ζtWt −ζt Z̃∗
t |= O(ζt/t2) = O(1/t1+γ∗)→ 0 .

From Theorem S1.3 applied to (Wt) with δ = γ∗, we get that ζtWt converges almost surely to a random variable with values in
(0,+∞). This random variable is obviously also the almost sure limit of Z̃∗∗

t and so we can conclude that P(Z̃∗∗
∞ > 0) = 1.

Furthermore, we can observe that, for each t, we have |E[Z̃∗∗
t ]−E[Z̃∗∗

0 ]| ≤ ∑
t−1
n=0 |E[Z̃∗∗

n+1]−E[Z̃∗∗
n ]| ≤ ∑n |O(ζn+1/n2)| and

thus, since the last series is finite, we have supt E[Z̃∗∗
t ]<+∞. By Fatou’s lemma, this fact implies that Z̃∗∗

∞ is integrable.
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Now, we are ready to prove Lemma S1.2, whose statement and proof is postponed at the end of the present proof. A first
consequence of this lemma is that the convergence of Z̃∗∗

t to Z̃∗∗
∞ is also in mean. Indeed, from (S:2), since supt E[Z̃∗∗

t ]<+∞

and (∆M̃∗
t+1)

2 ≤C ∑
N
j=1(∆M∗

t+1, j)
2, we can obtain

E[(Z̃∗∗
t+1)

2]≤ E[(Z̃∗∗
t )2]+ (γ∗)2 ζ 2

t+1

(t +1)2 CE[V ∗
t ]+ Õ(ζt+1/t2) ,

where V ∗
t is defined in the statement of Lemma S1.2. Then, we find

|E[(Z̃∗∗
t )2]−E[(Z̃∗∗

0 )2]| ≤
t−1

∑
n=0

|E[(Z̃∗∗
n+1)

2]−E[(Z̃∗∗
n )2]|

≤ (γ∗)2
∑
n

ζ 2
n+1

(n+1)2 CE[V ∗
n ]+∑

n
|O(ζn+1/n2)|<+∞ ,

where we have used Lemma S1.2 in order to say that the first series is finite. Therefore, we have supt E[(Z̃∗∗
t )2]<+∞ and so

(Z̃∗∗
t )t is uniformly integrable and we can conclude that Z̃∗∗

t converges to Z̃∗∗
∞ also in mean.

Dynamics of Z∗∗
γ,t . By multiplying equation (S:1) by ζt+1 we get

ζt+1Z∗
t+1 = ζt+1Z∗

t −
1

t +1
ζt+1(I −Γ

⊤)Z∗
t +

1
t +1

ζt+1Γ
⊤

∆M∗
t+1 +O(ζt+1/t2)

Z∗∗
t+1 =

ζt+1

ζt
Z∗∗

t − 1
t +1

ζt+1

ζt
(I −Γ

⊤)Z∗∗
t +

ζt+1

t +1
Γ
⊤

∆M∗
t+1 +O(ζt+1/t2),

where Z∗∗
t = ζtZ∗

t and ∆M∗∗
t = ζt∆M∗

t . Then, using the relation ζt+1/ζt = 1+(ζt+1/ζt)(1− γ∗)/(t + 1) and recalling that
ζt+1/ζt = 1+O(1/t), we obtain

Z∗∗
t+1 = Z∗∗

t +
ζt+1

ζt

1− γ∗

t +1
Z∗∗

t − 1
t +1

ζt+1

ζt
(I −Γ

⊤)Z∗∗
t +

ζt+1

t +1
Γ
⊤

∆M∗
t+1 +O(ζt+1/t2)

= Z∗∗
t − 1

t +1
(γ∗I −Γ

⊤)Z∗∗
t +

ζt+1

t +1
Γ
⊤

∆M∗
t+1 +O(ζt+1/t2).

(S:4)

Study of Z∗∗
γ,t with |γ|< γ∗. Let Bt =V⊤

γ Z∗∗ and since Z∗∗
γ,t =UγV⊤

γ Z∗∗ =Uγ Bt , it is enough to prove that ∥Bt∥2 converges a.s.
to zero. To this end, by multiplying equation (S:4) by V⊤

γ , we have

B∗∗
t+1 =

[
I − 1

t +1
(γ∗I − J⊤γ )

]
B∗∗

t +
ζt+1

t +1
J⊤γ V⊤

γ ∆M∗
t+1 +O(ζt+1/t2).

Then, since for any real matrix A we can write

E[∆M∗⊤
t+1A∆M∗

t+1|Ft ] =
N

∑
j=1

a2
j jE[∆M∗2

j,t+1|Ft ]≤ max
j

a2
j jV

∗
t , (S:5)

we have that

E[∥B∗∗
t+1∥2|Ft ] =

∥∥∥[(1− γ∗

t +1

)
I +

1
t +1

Jγ

]
B∗∗

t

∥∥∥2
+

(
ζ 2

t+1

(t +1)2

)
N

∑
j=1

[V̄γ J̄γ J⊤γ V⊤
γ ]2j jE[∆M∗2

j,t+1|Ft ]

≤
(

1− γ∗

t +1
+

∥Jγ∥2,2

t +1

)2

∥B∗∗
t ∥2 +

(
ζ 2

t+1

(t +1)2

)
max

j
{[V̄γ J̄γ J⊤γ V⊤

γ ]2j j}V ∗
t .

Then, regarding the first term, we note that(
1− γ∗

t +1
+

∥Jγ∥2,2

t +1

)2

≤
(

1− γ∗

t +1
+

|γ|+ γ∗

2(t +1)

)2

=

(
1− γ∗−|γ|

2(t +1)

)2

,
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and so

E[∥B∗∗
t+1∥2|Ft ]≤

(
1− γ∗−|γ|

2(t +1)

)2

∥B∗∗
t ∥2 +C

ζ 2
t+1

(t +1)2 V ∗
t .

Therefore, since γ∗ > |γ| and by Lemma S1.2, the process ∥B∗∗
t ∥2 is a non-negative almost supermartingale that converges

almost surely. Moreover, by applying the expectation we obtain

E[∥B∗∗
t+1∥2]≤

(
1− γ∗−|γ|

2(t +1)

)2

E[∥B∗∗
t ∥2]+C

ζ 2
t+1

(t +1)2 E[V ∗
t ],

which, since ∑t(γ
∗−|γ|)/(t + 1) = +∞, by Lemma S1.2 and Lemma S1.6, we can conclude that ∥B∗∗

t ∥ a.s.−→ 0, and hence
B∗∗

t
a.s.−→ 0.

Study of Z∗∗
γ,t with |γ| = γ∗. From the Frobenious-Perron theory, we know that each eigenvalue with maximum modulus

is simple. Then, set bt = v⊤γ Z∗∗ so that, since we have Z∗∗
γ,t = uγ v⊤γ Z∗∗ = uγ bt , it is enough to prove that |bt | almost surely

converges to zero. To this end, by multiplying equation (S:4) by v⊤γ , we have

b∗∗t+1 =

[
1− 1

t +1
(γ∗− γ)

]
b∗∗t +

ζt+1

t +1
γv⊤γ ∆M∗

t+1 +O(ζt+1/t2).

Then, using (S:5), we have that

E[|b∗∗t+1|2|Ft ] =
∣∣∣1− γ∗

t +1
+

γ

t +1

∣∣∣2|b∗∗t |2 +

(
ζ 2

t+1

(t +1)2

)
|γ|2

N

∑
j=1

|v j|2E[∆M∗2
j,t+1|Ft ]

≤
∣∣∣1− γ∗

t +1
+

γ

t +1

∣∣∣2|b∗∗t |2 +

(
ζ 2

t+1

(t +1)2

)
|γ|2 max

j
{|v j|2}V ∗

t .

Then, regarding the first term we have that

∣∣∣1− γ∗

t +1
+

γ

t +1

∣∣∣2 = (1− γ∗

t +1
+

Re(γ)
t +1

)2

+

(
I m(γ)

t +1

)2

= 1+
(

γ∗−Re(γ)
t +1

)2

−2
(

γ∗−Re(γ)
t +1

)
+

(
I m(γ)

t +1

)2

= 1−
(

2(γ∗−Re(γ))
t +1

)
+

(
γ∗2 −2γ∗Re(γ)+Re(γ)2 +I m(γ)2

(t +1)2

)
= 1−

(
2(γ∗−Re(γ))

t +1

)
+

(
2γ∗(γ∗−Re(γ))

(t +1)2

)
= 1−2

(
1

t +1
− γ∗

(t +1)2

)
(γ∗−Re(γ))

and so

E[|b∗∗t+1|2|Ft ]≤
(

1−2
(

1
t +1

− γ∗

(t +1)2

)
(γ∗−Re(γ))

)
|b∗∗t |2 +C

ζ 2
t+1

(t +1)2 V ∗
t .

Therefore, since γ∗ > Re(γ) and by Lemma S1.2, the process |b∗∗t |2 is a non-negative almost supermartingale that converges
almost surely. Moreover, by applying the expectation, we obtain

E[|b∗∗t+1|2]≤
(

1−2
(

1
t +1

− γ∗

(t +1)2

)
(γ∗−Re(γ))

)
E[|b∗∗t |2]+C

ζ 2
t+1

(t +1)2E[V
∗

t ] .

Since ∑t(1/(t +1)− γ∗/(t +1)2) = +∞ and by Lemma S1.2 and Lemma S1.6, we can conclude that |b∗∗t | a.s.−→ 0, and hence
b∗∗t

a.s.−→ 0.
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Lemma S1.2. Set V ∗
t = ∑

N
j=1 E[(∆M∗

t+1, j)
2 |Ft ]. Then, if Γ is irreducible, we have

∑t
ζ 2

t+1
(t+1)2 E[V ∗

t ]<+∞ and so ∑t
ζ 2

t+1
(t+1)2 V ∗

t <+∞ a.s. (S:6)

Proof. First notice that by definition

V ∗
t =

N

∑
j=1

E[(∆M∗
t+1, j)

2 |Ft ] =
N

∑
j=1

Z∗
j,t(1−Z∗

j,t)≤
N

∑
j=1

Z∗
j,t .

Then, denoting by vmin the minimum element of v, which is strictly positive since Γ⊤ is irreducible, we have that ∑
N
j=1 Z∗

j,t ≤
v⊤Z∗

t /vmin = Z̃∗
t /vmin. Therefore, we have

ζtV ∗
t ≤ Z̃∗∗

t

vmin
.

Therefore, recalling that supt E[Z̃∗∗
t ]<+∞ and ζt+1

(t+1)2 = O(1/t1+γ∗), we get

E

[
∑

t

ζ 2
t+1

(t +1)2 V ∗
t

]
= ∑

t

ζ 2
t+1

(t +1)2 E[V ∗
t ]≤

1
vmin

sup
t

E[Z̃∗∗
t ]∑

t

ζt+1

(t +1)2 <+∞.

This concludes the proof.

Proof of Theorem 3.1
Leveraging on Theorem S1.1, we can prove Theorem 3.1. Indeed, by the previous convergence results for (Z∗

t,h)t , we have

D∗
t,h =

t

∑
n=1

X∗
n,h with E[X∗

t+1,h |past] = Z∗
t,h

a.s.∼ Z̃∗∗
∞ uh

t1−γ∗

and so, by Lemma S1.8, we get

D∗
t,h

a.s.∼ D∗∗
∞,h tγ∗ with D∗∗

∞,h =
Z̃∗∗

∞ uh

γ∗
.

As a consequence, we obtain
D∗

t,h

D∗
t, j

a.s.−→
D∗∗

∞,h

D∗∗
∞, j

=
uh

u j
.

Proof of Theorem 3.2
Recall from (5) that, for any color c already present in the network at time t, Pt(h,c) = P(Ct+1,h = c| past) denotes the
conditional probability that the extraction at time-step t +1 from urn h gives the old color c, while Kt(h,c) indicates the number
of times the color c has been drawn from urn h until time-step t.

First of all, we observe that, from (5), we have

Pt(h,c) =
∑

N
j=1 w j,hKt( j,c)− γ j∗(c),h

θh + t
=

∑
t
n=1 ∑

N
j=1 w j,h∆Kn( j,c)

θh + t
−

γ j∗(c),h

θh + t
,

where ∆Kn( j,c) = Kn( j,c)−Kn−1( j,c). Notice that ∆Kn( j,c) takes values in {0,1} and E[∆Kn+1( j,c)|past] = Pn( j,c). Then,
we obtain the following dynamics for Pt(h,c):

Pt+1(h,c) = (1− rt,h)Pt(h,c)+ rt,h

N

∑
j=1

w j,h∆Kt+1( j,c) ,

where rt,h = 1/(θh+t+1)= 1/(t+1)+Oh(1/t2). Thus the corresponding vectorial dynamics for Pt(c)= (Pt(1,c), . . . ,Pt(N,c))⊤

is

Pt∗(c)(c) ̸= 0, Pt+1(c) =
(

1− 1
t +1

)
Pt(c)+

1
t +1

W⊤
∆Kt+1(c)+O(1/t2)

= Pt(c)−
1

t +1
(I −W⊤)Pt(c)+

1
t +1

W⊤
∆Mt+1(c)+O(1/t2), for t ≥ t∗(c),

(S:7)
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where t∗(c) denotes the time-step of the first extraction of c, ∆Kt(c) = (∆Kt(1,c), . . . ,∆Kt(N,c))⊤, ∆Mt+1(c) = ∆Kt+1(c)−
Pt(c) and O(1/t2) = (O1(1/t2), . . . ,ON(1/t2))⊤. We can note that the dynamics of Pt(c) in (S:7) presents exactly the same
form of the dynamics of Z∗

t in (S:1). Indeed, the only difference lies in the interacting matrix, which is W in (S:7), while was Γ

in (S:1). The different conditions on these two matrices, i.e. W⊤1 = 1 and Γ⊤1 < 1, lead through the Frobenious-Perron theory
to have different leading eigenvalues, that is w∗ = 1 for W and γ∗ < 1 for Γ. Then Pt(c) converges almost surely to a strictly
positive random variable, while, as proven above, Z∗

t converges almost surely to 0. To prove the almost sure convergence of
Pt(c), we can apply exactly the same proof of Theorem S1.1 replacing Γ (and the corresponding eigen-structure) by W . In
general this simplifies the proof, e.g. ζt ≡ 1 and the relation (S:6) (with ζt ≡ 1 and V ∗

t = ∑
N
j=1 E[(∆Mt+1, j(c))2 |Ft ]) is trivially

true. Therefore, since for W we have u = 1, we have

Pt(c)
a.s.−→ P̃∞(c)1,

where P̃∞(c) is a bounded strictly positive random variable. The fact that it is strictly positive comes from Theorem S1.3 with
δ = w∗ = 1 and t∗(c) as the initial time-step (since P̃t∗(c)(c)> 0).

Finally, since Kt( j,c) = ∑
t
n=1 ∆Kn( j,c) and E[∆Kn+1( j,c)|past] = Pn( j,c) a.s.∼ P̃∞(c), by Lemma S1.8, we can conclude that

Kt(h,c)
a.s.∼ P̃∞(c) t

and so the statement of Theorem 3.2 holds true with K∞(c) = P̃∞(c).

S1.1 A general result
Define the stochastic process W = (Wt)t≥0 taking values in the interval [0,1] and following the dynamics

Wt+1 =

(
1− 1

t +1

)
Wt +

1
t +1

Yt+1, t ≥ 0, (S:8)

where Yt+1 takes values in [0,1] and is such that E[Yt+1 |past] a.s.∼ δWt with 0 < δ ≤ 1.

We are going to prove the following result

Theorem S1.3. Given W0 > 0, we have that Wt converges almost surely to 0 as t−(1−δ ), that is t(1−δ )Wt converges almost
surely to a random variable with values in (0,+∞).

First of all, we note (see1 for details) that, for each t, the random variable Wt corresponds to the proportion Ht/st of balls of
color A inside the urn at time-step t for a two-color urn process where the number of balls of color A (resp. B) added to the urn
at time-step t is UA

t = αtYt (resp. UB
t = αt(1−Yt)) with αt =

1/t
∏

t
n=1(1−1/n) ∼ 1 (and so st = 1/∏

t
n=1(1−1/k)∼ t). Note that, if

(Ft)t is the filtration associated to the urn process, we have

E[UA
t+1|Ft ]

a.s.∼ αt+1δWt . (S:9)

We observe also that, since Yt takes values in [0,1] and so Y 2
t ≤ Yt , we have

E[(UA
t+1)

2|Ft ]≤ α
2
t+1E[Yt+1 |Ft ]

a.s.∼ δWt . (S:10)

In the following two lemmas we will show that Ht diverges almost surely to +∞ and 1/Ht = o(t−1/θ ) for θ > 1/δ .

Lemma S1.4. Assuming W0 > 0, Ht diverges almost surely to +∞

Proof. Since Ht = W0 +∑
t
n=1 UA

n , where the random variables UA
n are positive and uniformly bounded by a constant. By

Lemma S1.7, we have Ht
a.s.−→+∞ if and only if ∑t E[UA

t+1|Ft ] = +∞ almost surely. Therefore, it is enough to observe that this
last condition is satisfied when W0 > 0, because of (S:9) and the fact that Wt ≥ W0

1
st

a.s.∼ W0/t.

Lemma S1.5. For each θ > 1/δ , we have 1/Ht = o(t−1/θ ).
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Proof. We have

E

[
t +1
Hθ

t+1
− t

Hθ
t
|Ft

]
= E

[
t +1
Hθ

t
− t

Hθ
t
+

t +1
Hθ

t+1
− t +1

Hθ
t

|Ft

]
=

1
Hθ

t
+E

[
(t +1)

(
1

(Ht +UA
t+1)

θ
− 1

Hθ
t

)
|Ft

]
≤

1
Hθ

t
+ tE

[(
1

(Ht +UA
t+1)

θ
− 1

Hθ
t

)
|Ft

]
.

Let C so that 0 ≤ UA
t = αt+1Yt ≤ C. Using the Taylor expansion of the function f (x) = 1/(a+ x)θ (that is f (x)− f (0) =

f ′(0)x+ f ′′(x0)
2 x2 with x0 ∈ (0,x)) with a = Ht and x =UA

t+1, we have eventually (so that Ht ≥ 1)

1
(Ht +UA

t+1)
θ
− 1

Hθ
t

≤− θ

Hθ+1
t

UA
t+1 +

θ(θ +1)
Hθ+2

t
(UA

t+1)
2 ≤− θ

Hθ+1
t

UA
t+1 +

θ(θ +1)
Hθ+2

t
CUA

t+1

and so, recalling that Wt = Ht/st
a.s.∼ Ht/t, we get

E

[
1

(Ht +UA
t+1)

θ
− 1

Hθ
t
|Ft

]
≤− θ

Hθ+1
t

αt+1E[Yt+1 |Ft ]

(
1+

(θ +1)C
Ht

)
a.s.∼ −θδ

Hθ
t

1
t

[
1+O

(
1
Ht

)]
.

Therefore, we have

E

[
t +1
Hθ

t+1
− t

Hθ
t
|Ft

]
≤ 1

Hθ
t t

[
−(θδ −1)+O

(
1
Ht

)]
and so, for θδ > 1, since Ht →+∞, we can conclude that the above conditional expectation is eventually negative. This proves
that, for each θ > 1/δ , (t/Hθ

t )t is eventually a (positive) super-martingales and so, for each θ > 1/δ , it converges almost
surely to a finite random variable. Since θ > 1/δ is arbitrary, we necessarily have that t/Hθ

t converges almost surely to zero.
This fact concludes the proof.

Now we are ready for the proof of the previous theorem.

Prood of Theorem S1.3.
Set Lt = ln(Ht/tδ ), ∆t = E[Lt+1 −Lt |Ft ] and Qt = E[(Lt+1 −Lt)

2|Ft ]. If we prove that ∑t ∆t and ∑t Qt are almost surely
convergent, then Lt converges almost surely to a finite random variable (see Lemma S1.9). This fact implies that Ht/tδ

converges to a random variable with values in (0,+∞). The rest of the proof is devoted to verify that ∑t |∆t | < +∞ and
∑t Qt <+∞ almost surely.
To this regard, we note that

∆t =E[ln(Ht+1)− ln(Ht)|Ft ]−δ (ln(t +1)− ln(t)) =

E[ln(Ht +UA
t+1)− ln(Ht)|Ft ]−δ ln(1+1/t) =

E

[∫ UA
t+1

0

1
Ht + x

dx

]
−δ ln(1+1/t) .

Since 1/(Ht + x) ≤ 1/Ht and ln(1+ 1/t) ≥ 1/t − 1/(2t2) for each x ≥ 0 and each t, the last term of the above equalities is
smaller than or equal to

1
Ht

E[UA
t+1|Ft ]−

δ

t
+

δ

2t2
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and so, recalling (S:9) and that Wt = Ht/st
a.s.∼ Ht/t, it is smaller than or equal to

αt+1E[Yt+1|Ft ]

Ht
− δ

t
+

δ

2t2
a.s.∼ δ

t
− δ

t
+

δ

2t2 = O(1/t2) .

Therefore ∆t = O(1/t2). Finally, we note that −∆t = δ ln(1+1/t)− ln(Ht+1)+ ln(Ht). Using ln(1+1/t)≤ 1/t and 1/(Ht +
x)≥ 1/Ht − x/H2

t for each x ≥ 0 and each t, we find that −∆t is smaller than or equal to

δ

t
− 1

Ht
E[UA

t+1|Ft ]+
1

2H2
t

E[(UA
t+1)

2|Ft ]

and so, recalling (S:9), (S:10) and that Wt = Ht/st
a.s.∼ Ht/t, it is smaller than or equal to

δ

t
− αt+1E[Yt+1|Ft ]

Ht
+

α2
t+1E[Yt+1|Ft ]

2H2
t

a.s.∼ δ

2tHt
= O(1/(tHt)).

By the previous Lemma, we have 1/Ht = o(t−η) for some η > 0 and so −∆t = O(1/t1+η). Thus, ∑t |∆t |<+∞ almost surely.
Similarly we have

E[(ln(Ht+1)− ln(Ht)−δ ln(t +1)+δ ln(t))2|Ft ]≤
2
{

E[(ln(Ht+1)− ln(Ht))
2|Ft ]+δ (ln(t +1)− ln(t))2}≤

2E

(∫ UA
t+1

0

1
Ht + x

dx

)2 ∣∣∣Ft

+2δ
2/t2 ≤

2E[(UA
t+1/Ht)

2|Ft ]+O(1/t2)≤ 1
H2

t
α

2
t+1E[Yt+1|Ft ]

a.s.∼

O(1/(tHt))+O(1/t2) .

Therefore, we get Qt = O(1/t1+η) for some η > 0 and so ∑t Qt <+∞ almost surely.

S1.2 Non-negative almost supermartingale
Let (Yn) be an F -adapted sequence of non-negative random variables satisfying

E[Yn+1|Fn]≤ (1+∆n)Yn +R1,n −R2,n,

where ∆n, R1,n, R2,n are all non-negative sequences of random variables. Then (Yn) is called non-negative almost super-
martingale.

By2, we know that it almost surely converges on {∑n ∆n <+∞ ,∑n R1,n <+∞}.

S1.3 Some technical results
For the reader’s convenience, we here recall some technical results used in the previous proofs.

Lemma S1.6 ( [3, Supplementary material]). If at ≥ 0, at ≤ 1 for t large enough, ∑t at = +∞, δt ≥ 0, ∑t δt < +∞, b > 0,
yt ≥ 0 and yt+1 ≤ (1−at)

byt +δt , then limt yt = 0.

Lemma S1.7 ( [4, Theorem 46, p. 40]). Let (Yt)t be a sequence of non-negative random variables, adapted to a filtration
F = (Ft)t . Then the set {∑t E[Yt+1|Ft ]<+∞} is almost surely contained in the set {∑t Yt <+∞}. If the random variables Yt
are uniformly bounded by a constant, then these two sets are almost surely equal.

Lemma S1.8 ( [5, Sec. 12.15]). Let (Yt)t be a sequence of Bernoulli random variables, adapted to a filtration F = (Ft)t and
such that Zt = P(Yt+1 = 1 |Ft). Then ∑

t
n=1 Yn/∑

t−1
n=0 Zn

a.s.−→ 1.

Lemma S1.9 ( [6, Lemma 3.2 ]). Let (Ln)n be a sequence of random variables, adapted to a filtration Gn. Set ∆n =
E[Ln+1 −Ln|Gn] and Qn = E[(Ln+1 −Ln)

2|Gn]. If ∑n ∆n and ∑n Qn are almost surely convergent, then (Ln)n converges almost
surely to a finite random variable.
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S2 Heuristics
We here describe an heuristic argument (also employed in7), useful in order to detect the rate at which each D∗

t,h grows along
time in the case of a general matrix Γ.

The dynamics that rules the vectorial process D∗
t = (D∗

t,1, . . . ,D
∗
t,N)

⊤ can be approximated (as t →+∞) by the linear system
of (deterministic) differential equations

ḋ∗(t) = Γ
d∗(t)

t

and hence we can say that D∗
t ≈ d∗

t for t →+∞. By the change of variable t = ez, we get

ḋ∗(z) = Γd∗(z) ,

whose general solution is given by d∗(z) = eΓzc. Now, the term eΓz can be expressed using the canonical Jordan form of the
matrix Γ, so that we obtain

d∗(z) =
r

∑
k=1

eγkz
pk−1

∑
i=0

zici,

where γ1, . . . ,γr are the distinct eigenvalues of Γ, p1, . . . , pr are the sizes of the corresponding Jordan blocks and ci are suitable
vectors related to c and to the generalized eigenvectors of Γ. Indeed, we can write Γ as PJP−1, where J is its canonical Jordan
form and P is a suitable invertible matrix of generalized eigenvectors. Therefore, we have eΓz = PeJzP−1, where eJz is a block
matrix with blocks of the form eJkz with Jk block in J. On the other hand, if Jk = γkI +Nk is a generic Jordan block of Γ with
size pk and associated to the eigenvalue γk, we have

eJkz = eγkzeNkz = eγkz
pk−1

∑
i=0

zi

(i−1)!
Ni

k .

Changing the variable from z to t, we find

D∗
t ≈ d∗(t) =

r

∑
k=1

tγk
pk−1

∑
i=0

lni(t)ci (S:11)

and so the rate at which D∗
t,h increases is given by the leading term in the expression of d∗

h(t).

In particular, when Γ is irreducible, the above general formula leads, for each D∗
t,h, to the same asymptotic behavior tγ∗ ,

with γ∗ equal to the leading eigenvalue of Γ (recall that γ∗ is simple and so the logarithm term is not present). However, it
is important to note that, with this heuristic argument, we can deduce the right rate at which each D∗

t,h grows, but we cannot
get any information about the limit random variable: we can deduce that, for each h, the quantity D∗

t,h/(uhtγ∗), where u is the
vector of the relative centrality scores, converges almost surely to a certain random variable (first statement of Theorem 3.1), but
we cannot affirm that these limit random variables are all equal and this last fact is fundamental in order to obtain the second
statement of Theorem 3.1. Nevertheless, we can affirm that the merit of this heuristics is the fact that, from (S:11), we can get
the rate at which each D∗

t,h grows for any matrix Γ.

S3 A preliminary idea for the estimation of the interaction in the case N = 2
In this section, for the case N = 2, we provide a parametric family for the matrix Γ = (γ j,h) j,h=1,2 such that its leading eigenvalue
γ∗ and the ratio r = u1/u2 of the components of its corresponding left eigenvector coincide with some given values. More
precisely, given the values γ∗ ∈ (0,1) and r ∈ (0,1], the matrices

Γ(x1,x2) =

γ∗(1− x1)
γ∗

r x2I(γ∗≤r)+
(1−γ∗)
(1−r) x2I(γ∗>r)

rγ∗x1 γ∗(1− x2)I(γ∗≤r)+
[
γ∗− (1−γ∗)

(1−r) rx2

]
I(γ∗>r)

 , x1, x2 ∈ (0,1) (S:12)

are non-negative, irreducible, such that 1⊤Γ < 1⊤ and have the leading eigenvalue equal to γ∗ and the ratio of the components
of the corresponding left eigenvector equal to r. Moreover, we can define a parametric family for the matrix W = (w j,h) j,h=1,2,
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adding other two parameters, as

W (x1,x2,y1,y2) = Γ(x1,x2)+Λ(x1,x2,y1,y2) where

Λ(x1,x2,y1,y2) =

(
(1− [Γ(x1,x2)

⊤1]1)(1− y1) (1− [Γ(x1,x2)
⊤1]2)y2

(1− [Γ(x1,x2)
⊤1]1)y1 (1− [Γ(x1,x2)

⊤1]2)(1− y2)

)
, y1, y2 ∈ [0,1].

Note that the above matrices W (x1,x2,y1,y2) are non-negative, irreducible and such that 1⊤W = 1⊤. The balance condition is
satisfied by construction.

Given a data set such that the observed processes exhibit asymptotic behaviors in accordance with the provided theoretical
results of the model, the above parametric families for the two interaction matrices Γ and W can be used for performing a
Maximum Likelihood Estimation (MLE) procedure. In details:

1) estimate the quantity γ∗ as the common slope of the lines in the log10− log10 plot of the processes (D∗
t,h), with h = 1, 2;

2) estimate the quantity r as 10û, where û is the difference between the intercepts of the lines in the log10− log10 plot of the
processes (D∗

t,h), with h = 1, 2 (note that, in order to employ the above parametric families of matrices, we need to label
the two categories so that the estimated value for r is ≤ 1, i.e. û ≤ 0);

3) consider the matrices Γ(x1,x2) and W (x1,x2,y1,y2) related to the estimated values for γ∗ and r;

4) perform a MLE procedure in order to estimate from the data the interaction parameters x1, x2, y1 and y2 and, possibly,
the initial parameters θ1 and θ2.

However, in order to get a robust MLE estimation, we may want to reduce the number of parameters by imposing some
conditions on them: for instance, we can take θ1 and θ2 equal to some given values and restrict to matrices Γ(x1,x2) and
W (x1,x2,y1,y2) that are symmetric (which means that the interaction mechanism is symmetric, i.e. the influence of h = 1 on
h = 2 is equal to the one of h = 2 on h = 1). The general formula of the likelihood function that we have to maximize is:

L (θ1,θ2,x1,x2,y1,y2;c1,1,c1,2, . . . ,cT,1,c2,T ) =
T−1

∏
t=1

2

∏
h=1

(
Z∗

t,hI{ct+1,h is new}+Pt(h,c)I{ct+1,h is equal to an old item c}

)
where IE denotes the indicator function of the event E, Z∗

t,h and Pt(h,c) are given in (4) and in (5) , respectively, and (ct,1)1,...,T

and (ct,2)1,...,T are the two observed sequences of items (colors/tables) for the two agents (urns/categories) h = 1, 2.

We now present a simulation study aimed at highlighting the performance of the estimation procedure obtained by following
the steps 1)-4) of the algorithm proposed above. In order to reduce the number of parameters to be estimated, we set θ1 = θ2 = 1
and we impose that both Γ and W must be symmetric. This assumption, combined with the condition W⊤1 = 1, implies that Γ

and W can be univocally identified by four parameters, e.g. γ1,1, γ1,2, γ2,2, w1,2. For each choice of Γ and W , 100 independent
innovation processes following the model presented in this work have been generated until the time-step T = 104. Then, we
have applied steps 1)-4) to the data generated by each simulation, so obtaining a set of 100 estimates of γ∗, r, x1, x2, y1 and
y2 which fulfill the symmetric condition, i.e. each one leading to symmetric estimated matrices Γ̂ and Ŵ . The results of this
simulation study are collected in Table S1, where the mean values and the standard deviations of the estimated elements are
compared with the true ones used for generating the data. Regarding the elements of the two matrices and γ∗, the estimation
procedure works very well in all the cases. Regarding r, we can note that the estimated values are "sensitive" to the strenght of
the interaction term γ1,2: the higher the interaction term, the better is the estimation.

In order to complete the picture, we have also checked how the results can be affected by the choice of θh and, in particular,
if choosing a wrong value of θh in the likelihood could considerably worsen the estimation of Γ and W . To this end, we have
considered some of the scenarios presented in Table S1 and we have computed the estimates of the elements of Γ and W for
two different values of θh and, in particular, including the cases when the value of θh used to generate the simulated data sets is
different from the value of θh used to compute the likelihood. The results of this simulation study on the "sensitivity" of the
parameter θh are collected in Table S2. In general, we can notice that the results seem to be quite robust to the choice of θh
used in the likelihood. Therefore, the problem of using the "right" θh in the likelihood does not seem so important as we could
imagine. However, the performance of the estimation procedure does worsen considerably when the data are generated with
high values of θh. This is probably due to the fact that, when θh is large, the asymptotic behaviors of the innovation processes
are reached after a number of time-steps which is much larger than T = 104 used in this simulation study.

In conclusion, the estimation procedure provided in this subsection is only a first step toward the estimation of the interaction
between two innovation processes. Additional simulations and analyses are needed. In particular, we need to understand how to
test the restrictions on the parameters, for example how to provide a test on the symmetry of the interaction mechanism.
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Table S1. Simulation results of the estimation procedure described in steps 1)-4) with θ1 = θ2 = 1 and assuming Γ and W
symmetric. Each parameter has been estimated by 100 independent simulated processes generated until time-step T = 104.
Columns 1-4: elements of the interacting matrices Γ and W used to generate the data.
Columns 5-8: mean values and standard deviations of the elements of the 100 estimated interacting matrices Γ̂ and Ŵ .
Colmuns 9-10: true γ∗ and r .
Columns 11-12: mean values and standard deviations of the 100 estimates of γ̂∗ and r̂.

γ1,1 γ2,2 γ1,2 w1,2 γ̂1,1 γ̂2,2 γ̂1,2 ŵ1,2 γ∗ r γ̂∗ r̂
0.10 0.40 0.10 0.50 0.10 (0.07) 0.38 (0.05) 0.14 (0.03) 0.52 (0.03) 0.43 0.30 0.43 (0.04) 0.42 (0.11)
0.10 0.40 0.10 0.25 0.14 (0.08) 0.39 (0.05) 0.12 (0.03) 0.26 (0.02) 0.43 0.30 0.44 (0.05) 0.41 (0.10)
0.25 0.40 0.10 0.50 0.27 (0.06) 0.39 (0.05) 0.12 (0.03) 0.50 (0.03) 0.45 0.50 0.46 (0.04) 0.63 (0.16)
0.25 0.40 0.10 0.25 0.28 (0.06) 0.39 (0.05) 0.11 (0.03) 0.25 (0.02) 0.45 0.50 0.46 (0.04) 0.63 (0.14)
0.10 0.40 0.25 0.50 0.10 (0.05) 0.39 (0.04) 0.26 (0.03) 0.51 (0.03) 0.54 0.57 0.54 (0.03) 0.59 (0.06)
0.10 0.40 0.25 0.25 0.13 (0.05) 0.40 (0.04) 0.25 (0.01) 0.25 (0.01) 0.54 0.57 0.54 (0.03) 0.60 (0.05)
0.25 0.40 0.25 0.50 0.26 (0.04) 0.40 (0.04) 0.25 (0.03) 0.50 (0.03) 0.59 0.74 0.59 (0.03) 0.76 (0.07)
0.25 0.40 0.25 0.25 0.27 (0.04) 0.40 (0.04) 0.24 (0.02) 0.25 (0.02) 0.59 0.74 0.59 (0.02) 0.76 (0.08)
0.10 0.40 0.40 0.50 0.11 (0.04) 0.40 (0.04) 0.40 (0.03) 0.50 (0.03) 0.68 0.69 0.68 (0.02) 0.69 (0.03)
0.25 0.40 0.40 0.50 0.25 (0.02) 0.40 (0.03) 0.40 (0.02) 0.50 (0.02) 0.73 0.83 0.73 (0.02) 0.83 (0.03)

Table S2. Simulation results of the estimation procedure described in steps 1)-4) with θ1 = θ2 and assuming Γ and W
symmetric. Each parameter has been estimated by 100 independent simulated processes generated until time-step T = 104.
Columns 1: value of θ1 = θ2 = θData used to generate the data.
Columns 2: value of θ1 = θ2 = θLikelihood put in the likelihood function.
Columns 3-6: elements of the interacting matrices Γ and W used to generate the data.
Columns 7-10: mean values and standard deviations of the elements of the 100 estimated interacting matrices Γ̂ and Ŵ .

θData θLikelihood γ1,1 γ2,2 γ1,2 w1,2 γ̂1,1 γ̂2,2 γ̂1,2 ŵ1,2
1 1 0.10 0.40 0.10 0.50 0.10 (0.07) 0.38 (0.05) 0.14 (0.03) 0.52 (0.03)
1 100 0.10 0.40 0.10 0.50 0.09 (0.07) 0.38 (0.05) 0.13 (0.03) 0.51 (0.03)

100 1 0.10 0.40 0.10 0.50 0.22 (0.02) 0.41 (0.02) 0.18 (0.01) 0.5 (0.01)
100 100 0.10 0.40 0.10 0.50 0.19 (0.02) 0.40 (0.02) 0.19 (0.01) 0.51 (0.01)
1 1 0.10 0.40 0.10 0.25 0.14 (0.08) 0.39 (0.05) 0.12 (0.03) 0.26 (0.02)
1 100 0.10 0.40 0.10 0.25 0.11 (0.09) 0.38 (0.05) 0.13 (0.03) 0.26 (0.02)

100 1 0.10 0.40 0.10 0.25 0.28 (0.02) 0.43 (0.01) 0.14 (0.01) 0.26 (0.01)
100 100 0.10 0.40 0.10 0.25 0.27 (0.02) 0.43 (0.01) 0.15 (0.01) 0.26 (0.01)
1 1 0.25 0.40 0.40 0.50 0.25 (0.02) 0.40 (0.03) 0.40 (0.02) 0.50 (0.02)
1 100 0.25 0.40 0.40 0.50 0.25 (0.03) 0.40 (0.03) 0.40 (0.02) 0.50 (0.02)

100 1 0.25 0.40 0.40 0.50 0.29 (0.02) 0.42 (0.02) 0.41 (0.01) 0.50 (0.01)
100 100 0.25 0.40 0.40 0.50 0.29 (0.02) 0.42 (0.02) 0.41 (0.01) 0.50 (0.01)
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