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Now and then I try to find
A place in my mind

Where you can stay awake
Forever



Abstract

Sensor-based Human Activity Recognition (HAR) is an active research area, with

relevant applications in healthcare and well-being. Deep Learning (DL) classi-

fiers are currently the leading approach to tackle HAR, but their deployment is

often limited by their inherent opacity and the scarcity of labeled training data.

Fortunately, common sense and domain knowledge about activity execution can

improve purely data-driven approaches. Indeed, in the general machine learning

community, Neuro-Symbolic AI (NeSy) methods are emerging to combine DL

models with more traditional symbolic AI techniques that rely on knowledge-

based reasoning to improve models’ interpretability while reducing their reliance

on labeled data during training.

This thesis explores innovative NeSy solutions proposed to enhance sensor-

based HAR. The initial chapters focus on NeSy methods designed to mitigate

the scarcity of labeled training data. Considering smart-home environments in-

habited by multiple subjects, a main problem is data association, i.e., correctly

associating sensor events (e.g., the opening of the fridge) with the subject(s)

that actually generated them. Most works in the literature addressed this chal-

lenge with purely data-driven solutions, thus aggravating the labeled data scarcity

problem. For this reason, we propose a NeSy method that relies on symbolic rea-

soning to tackle data association without the need for any labeled data.

Moreover, we also address data scarcity for context-aware HAR based on mo-

bile devices. While NeSy approaches have been already proposed in this research

area, they rely on domain knowledge only after the training process of the DL

classifier. This limits its ability to handle data uncertainty. Hence, we present

two novel NeSy approaches that infuse domain knowledge into DL classifiers dur-

ing their learning process. Experimental results show how such methods reduce
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the amount of labeled data required during training while being more robust to

noisy data compared to state-of-the-art NeSy methods.

Finally, we present an initial investigation of interpretability aspects. We

introduce a metric that quantitatively evaluates, based on domain knowledge,

the quality of explanations obtained from DL activity classifiers. Due to time

constraints, this metric has been currently used only to evaluate purely data-

driven approaches. Nonetheless, we plan to employ such a metric to quantify the

interpretability benefits provided by NeSy methods for HAR.

Overall, all the methods presented in this thesis have been experimentally

evaluated on publicly available datasets that have been collected in controlled or

in-the-wild settings.
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Chapter 1

Introduction

1.1 Motivation

In the last few years, technological progress has led to the widespread availability

of cost-effective and sensor-equipped devices with computing and communication

capabilities. This advancement coupled with the efforts in the ubiquitous sensing

research area, whose purpose is to extract knowledge from the data collected by

pervasive sensors, led to the development of pervasive and context-aware appli-

cations [3]. Pervasive systems aim to ubiquitously assist users in fulfilling their

tasks, exploiting data provided by the sensors built into the smart devices that

are embedded in our living spaces. Among pervasive systems, there are context-

aware applications, i.e., solutions that adapt their behavior based on the users’

surrounding context (e.g., the time of the day, local weather conditions, or the

activities the users are performing).

Context-aware applications based on Human Activity Recognition (HAR) frame-

works aspire to detect the activities performed by the users and use such informa-

tion to enhance the services they provide to them. Hence, HAR solutions enable

applications in several domains, including surveillance, security, well-being, and

healthcare [4]. For instance, HAR can be exploited to monitor the physical and

cognitive health of home-based patients [5], thus early detecting and preventing

the emergence of medical conditions.
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1.2 Problem definition

Overall, researchers in the HAR domain mainly focused on the detection of ac-

tivities that fall into two main categories: low-level (physical) activities (e.g.,

standing, sitting on a bus, walking, or running), and high-level activities like Ac-

tivities of Daily Living (ADLs) (e.g., cooking, taking the medicines, or watering

the plants) or the activities that can be performed in a working environment

(e.g., in a meeting). According to the adopted sensing infrastructure, different

methods have been proposed in the literature to detect both activity categories.

Most of the existing works proposed video-based or sensor-based solutions [6].

Video-based methods detect users’ activities by processing videos that are typi-

cally captured by cameras. However, despite the promising results reached with

video-based approaches, the need to continuously monitor users through cameras

raises significant privacy concerns. While these issues can be mitigated thanks

to privacy-preserving hardware/software techniques, cameras are generally per-

ceived as too intrusive by users. Consequently, different research groups preferred

to focus their efforts on sensor-based HAR, a less invasive alternative [7].

In sensor-based HAR, the adopted sensing technology affects the category of

activities that can be recognized. Wearable devices like smartphones and smart-

watches that are equipped with inertial sensors help in monitoring the users’ body

movements at a fine granularity. Hence, they are typically used to classify low-

level activities [8]. Moreover, personal wearable devices can also provide users’

contextual information: for instance, sensor data (e.g., the GPS coordinates col-

lected by the smartphone) and external services like Google’s Places API can

be combined to derive the users’ closest semantic places (e.g., their workplace, a

gym) [1]. Context data are hence useful to expand the set of recognizable activi-

ties by discriminating those with similar motion patterns (e.g., sitting and sitting

on a train).

On the other hand, smart environments (e.g., smart homes/offices) equipped

with environmental sensors like smart plugs and motion sensors allow HAR appli-

cations to monitor the interactions of the users with their surroundings [9]. This

information can be exploited to recognize high-level activities like ADLs. HAR
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researchers mainly explored smart environments occupied by a single user, even

if there are also many real-world cases where multiple subjects are present in the

same space (e.g., co-workers in a smart office, or elderly subjects that cohabit

with their caregivers in a smart home). Multi-subject settings are significantly

more challenging than single-subject ones. One of the major open problems is

data association, i.e., correctly associating environmental sensor events (like the

opening of the fridge) with the subject(s) that actually generated them. Solving

data association would ease the recognition of the users’ activities that can be

performed either individually (e.g., Alice is reading, while Bob is watering the

plants) or collaboratively (e.g., Alice and Bob are cooking together).

Most sensor-based HAR approaches proposed in the literature rely on supervised

Deep Learning (DL) models since they reach high recognition rates, overcoming

some limitations of more conventional Machine Learning (ML) solutions. In-

deed, ML methods for sensor-based HAR depend on heuristic and handcrafted

feature extraction procedures that rely on human domain knowledge. Therefore,

the extracted features usually include only statistical information about the col-

lected data. On the other hand, DL models can automatically learn features that

also encode high-level representations of data, thus making DL more suitable for

complex HAR tasks [7]. Despite their success, the deployment of DL models in

real-world scenarios is limited by research issues that are still open. For instance,

during their learning process, such models require large amounts of labeled train-

ing data that are challenging to annotate (i.e., the data scarcity problem). Indeed,

data annotation is an error-prone, expensive, tedious, and time-consuming pro-

cedure [10]. Moreover, the decision-making process of DL models is inherently

opaque. This does not allow humans to understand the rationale behind each

model’s prediction [11]. Explainable Artificial Intelligence (XAI) is hence be-

coming a popular strategy to make DL models more transparent. However, it is

challenging to generate meaningful explanations for predictions based on sensor

data as well as to evaluate their effectiveness to the target users.

In the sensor-based HAR literature, purely knowledge-based approaches have

been considered to tackle both the lack of transparency and the labeled data

scarcity issues [8]. Such methods rely on reasoning (e.g., through logic rules) over
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a symbolic representation of the HAR domain that is modeled based on human

common sense and domain knowledge. For instance, washing the dishes can be

defined as an activity that is typically performed while standing in the kitchen

close to the sink, after eating. In this way, the most likely activities can be derived

by matching symbolic rules with sensor events and users’ contextual information.

Symbolic approaches present two main advantages: (i) they are based on human-

readable formalisms that make them transparent and interpretable, and (ii) they

do not require any labeled data sample. However, these techniques are too rigid

and not scalable since it is unlikely to take into account logic constraints that

cover all the possible ways in which activities can be performed. Moreover, they

are not suitable for sensors that generate continuous values like accelerometers.

Indeed, such raw sensor measurements cannot be mapped to a clear semantic,

thus making it impossible to include them in any symbolic rule.

Recently, Neuro-Symbolic AI (NeSy) solutions have emerged in the general

ML community to combine the strengths of data-driven and knowledge-based

methods [12]. The overall goal is to enhance DL models through domain knowl-

edge to achieve several potential benefits. To begin, NeSy methods may sig-

nificantly improve the recognition rates by driving classifiers with domain con-

straints. This may be especially true when only limited amounts of labeled data

are available: in these cases, those constraints cannot be learned directly from

data. For instance, according to common-sense knowledge, the activity offline

shopping is typically performed in specific semantic locations (e.g., shops, com-

mercial areas). This intuitive association can be represented using a symbolic for-

malism and infused into the DL model, thus reducing the amount of labeled data

required to learn it. Similarly, domain knowledge may improve the recognition of

those cases out of the training set distribution samples. Moreover, influencing the

decisions of DL models through human knowledge can make them intrinsically

more interpretable and transparent [13].

1.3 An ideal neuro-symbolic framework for HAR

In this thesis, we will focus on novel NeSy methods for sensor-based HAR. Their

goal is to detect low- or high-level activities by relying on the data collected
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through the users’ personal wearable devices and/or environmental sensors in-

stalled within their living spaces. Figure 1.1 presents our vision of an ideal NeSy

framework for sensor-based HAR, where DL classifiers and symbolic reasoning

Figure 1.1: Our illustrated vision of an ideal Neuro-Symbolic AI framework for
sensor-based HAR

are coupled (i) to detect users’ activities by relying on relatively lower amounts

of labeled data compared to purely data-driven approaches, (ii) to make the

solution inherently interpretable by exploiting knowledge-based reasoning, and

(iii) to quantitatively evaluate the degree of consistency of the explanations (ob-

tained through XAI methods) with HAR domain knowledge. In this ideal NeSy
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framework, data collected from wearable devices and/or environmental sensors

are segmented into fixed-length windows. The data included in each window can

be divided into two possibly overlapping subsets: raw sensor data and raw se-

mantic data. Raw sensor data (e.g., accelerometer measurements) are the ones

that are appropriate to be directly processed by a deep neural network to

automatically extract meaningful features. On the other hand, raw semantic

data are sensor measurements that a semantic-data aggregator can use to

derive high-level semantic information about the user, by relying on simple rules

or external services like context-aware middlewares [14] and web services.

Intuitively, high-level semantic data should enable knowledge-based reasoning.

For instance, raw GPS coordinates collected by a smartphone can be used by

the semantic-data aggregator to derive the semantic location of the user

through the interaction with public web services (e.g., Google’s Places API);

hence, knowledge-based reasoning could be used to find the activities that are

typically being performed in the current semantic location of the user (e.g., brush-

ing teeth is typically performed in spaces that are familiar to the users, like their

home or workplace).

According to the application of interest, the NeSy framework can use raw

sensor data and high-level semantic data in different ways. For instance, some

applications may require high-level semantic data only to perform knowledge-

based reasoning through the symbolic reasoner. In other cases, such data can

also be provided as input to the deep neural network.

Overall, the deep neural network finds correlations between input data

and activities in a data-driven way. On the other hand, the symbolic rea-

soner performs knowledge-based reasoning to match its input data with the

domain constraints encoded into a knowledge model. An example of domain

constraint is that, in a multi-subject smart home, only the residents who are

currently in the kitchen can turn the stove on. As we will see in this thesis, the

symbolic reasoner can be designed to solve various HAR tasks, and its output

can be used in different ways to reduce the amounts of labeled data required by

the deep neural network to reliably recognize users’ activities. Moreover,

compared to approaches only based on deep learning, our ideal NeSy framework

is inherently more interpretable since its decision-making process is also driven

23



by knowledge-based reasoning.

Finally, the symbolic reasoner can also be exploited to evaluate through

a score the explanations generated by XAI methods applied to the predictions

made by the deep neural network. More specifically, this explanation score

quantitatively measures the degree of consistency of such explanations with HAR

domain knowledge. This would give an assessment of the framework’s inter-

pretability level.

1.4 Research contributions

In this section, we investigate some of the main issues related to state-of-the-

art approaches for sensor-based HAR that limit their deployment in real-world

scenarios. Then, we introduce every research contribution of the thesis with the

goal of getting closer to our vision for an ideal NeSy framework. It is important

to note that these contributions have been achieved in collaboration with my

research group, i.e., the EveryWare Lab1, at the University of Milan (Italy).

1.4.1 Neuro-symbolic HAR in multi-subject smart-home

environments

One of the main issues of state-of-the-art sensor-based HAR approaches is the la-

beled data scarcity problem. Indeed, collecting and annotating sufficient amounts

of training data to build scalable DL activity classifiers that generalize across dif-

ferent types of users and smart environments is a real challenge. For instance,

users involved in data collection campaigns can directly annotate their own data

while performing activities. However, this approach is particularly error-prone

since users can forget to annotate relevant activities or the exact time in which

they were performed [15]. This negatively impacts the quality and reliability

of the annotated data. Alternatively, external observers can annotate activity

data by monitoring the subjects involved during data acquisition. Unfortunately,

this solution can be expensive and time-consuming, even if performed through

1http://everywarelab.di.unimi.it/
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cameras and semi-automatic video annotation tools. Moreover, constantly moni-

toring users is privacy-invasive, especially considering private smart environments

like smart homes.

The labeled data scarcity issue can be further emphasized in applications

that recognize users’ activities through environmental sensors installed in smart

environments occupied by multiple subjects. In these scenarios, environmental

sensors cannot automatically identify the user(s) that trigger them. For instance,

a pressure mat sensor on a chair cannot reveal the user sitting on it. The process

of mapping environmental events to the correct user is called data association,

and it is essential to reliably infer the activities performed by each user in the

smart environment [16]. Most of the existing literature tackled data association

in a data-driven fashion, thus aggravating the labeled data scarcity problem.

Many solutions involve ML or DL methods that require training sets containing

samples of all the possible combinations of activities that users can potentially

perform together or individually [17]. Sometimes, data association is instead con-

sidered as a separate learning problem before activity classification. In particular,

some research groups performed a weaker form of data association (named res-

ident separation), by investigating unsupervised solutions that identify pairs of

environmental sensors’ events triggered by the same resident, without identifying

her [18]. On the other hand, other works require additional labeled data about

users’ habits to train a supervised classifier that associates each sensor event with

a specific set of identified users [19].

To mitigate the data scarcity problem, in Chapter 3 we propose a novel NeSy ap-

proach that relies on symbolic reasoning to perform data association by combining

users’ contextual information (e.g., their posture and location in the environment)

with triggered sensor events [20, 21]. In this way, annotated data samples can

be separated into a personalized stream of sensor events for each user, without

requiring additional labeled data. Such streams are then used to train an activity

classifier. Hence, symbolic reasoning is involved also after deployment to produce

these personalized streams of sensor events that the classifier receives to predict

the activities performed by each user.

In particular, to further mitigate data scarcity, we developed and experimen-
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tally evaluated a semi-supervised activity classifier. This classifier is an incremen-

tal model initialized with a limited amount of labeled data. Hence, a cache-based

active learning strategy is adopted over time to collect novel annotated data sam-

ples that are exploited to continuously improve such a model. In the proposed

framework, symbolic reasoning is also used to perform context refinement [1],

i.e., to refine the predictions of the classifier by discarding from the probability

distributions it generates those activities that are not consistent with the users’

contextual information (e.g, only the residents that are currently in the kitchen

can cook).

Our results on MARBLE [2], a dataset we collected and published where up

to 4 subjects perform activities at the same time in the same smart environment,

show how the proposed framework reliably recognizes individual and collabora-

tive activities, without requiring any additional labeled data to perform data

association. In particular, the semi-supervised classifier reaches similar recog-

nition rates compared to a fully-supervised model, while requiring significantly

lower labeled data and triggering a limited number of active learning queries.

Moreover, context refinement based on symbolic reasoning further improves the

classifier recognition rates and reduces the active learning queries required by the

semi-supervised approach.

Chapter 3 is based on the following publications:

• Luca Arrotta, Gabriele Civitarese, Claudio Bettini, “MICAR:

Multi-Inhabitant Context-Aware Activity Recognition in Home

Environments”. Distributed and Parallel Database, Springer, 2022. (DOI:

10.1007/s10619-022-07403-z)

• Luca Arrotta, Gabriele Civitarese, Claudio Bettini, “The MARBLE Dataset:

Multi-Inhabitant Activities of Daily Living Combining Wearable and En-

vironmental Sensors Data”. In International Conference on Mobile and

Ubiquitous Systems: Computing, Networking, and Services (MobiQuitous).

Cham: Springer International Publishing, 2021.

• Luca Arrotta, Claudio Bettini, Gabriele Civitarese, Riccardo Presotto,
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“Context-Aware Data Association for Multi-Inhabitant Sensor-Based Ac-

tivity Recognition”. In Proceedings. of the 21st International Conference

on Mobile Data Management (MDM), IEEE Computer Society, 2020.

Scientific contributions:

• Introduction of a novel neuro-symbolic AI framework for multi-

subject activity recognition.

• Use of symbolic reasoning to perform data association without addi-

tional labeled data.

• Presentation of a novel cache-based active learning strategy to further

mitigate labeled data scarcity.

• Experiments on a public multi-subject dataset show (i) how the pro-

posed framework is comparable to a fully supervised solution in terms

of recognition rates, and (ii) how the accuracy of data association

based on symbolic reasoning is close to the one of an ideal approach

based on ground truth.

Personal tasks:

• Collaboration in concept and methodology design.

• Method implementation.

• Collaboration in the design of the evaluation methods.

• Experiments execution.

• Collaboration in results analysis and interpretation.

1.4.2 Knowledge infusion through symbolic features for

context-aware HAR

Labeled data scarcity also affects other application domains, like the context-

aware recognition of low-level (physical) activities through mobile/wearable de-
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vices. In this scenario, researchers introduced the use of contextual information

about the user’s surroundings (e.g., semantic location, speed, and weather con-

ditions) [22] that has the potential to better discriminate activities with similar

motion body movements (e.g., standing and getting an elevator). The disad-

vantage of this approach is that it is not realistic to acquire a comprehensive

training set that includes every possible context condition in which activities can

be performed by different types of users.

Existing NeSy methods in the literature already mitigated this problem [23, 1].

However, like the context refinement approach mentioned in Section 1.4.1, they

only consider domain knowledge to discard from the output of the activity clas-

sifier those activities that are not consistent with the user’s surrounding context.

Approaches of this kind can make wrong decisions when the knowledge model

does not cover all the main context scenarios in which activities can be car-

ried out by users. For instance, if a user runs within a mall and the knowledge

model does not take into account such a scenario, the running activity would

be discarded by these approaches. The same problem arises in the presence of

temporary noisy contextual information: for instance, GPS readings from the

user’s smartphone could be momentarily noisy, thus leading to incorrect contex-

tual information about the user; hence, existing NeSy methods could improperly

discard the wrong activities.

This problem can be mitigated through Knowledge Infusion, i.e., an emerging

NeSy approach that infuses domain knowledge directly into the DL classifier

during training. In this way, the model internally learns and correlates domain

constraints with user activities and the other input data, while handling data

uncertainty thanks to its data-driven learning process. In Chapter 4, we pro-

pose a novel knowledge infusion method for context-aware HAR. The features

automatically extracted by the DL classifier from raw sensor data and high-level

semantic data are combined with the ones inferred through symbolic reasoning.

Such symbolic features encode domain knowledge about the activities that are

consistent with the user’s surrounding context and they are infused within the

DL model, before the classification layer. We implemented two versions of this

NeSy approach. In the first case, symbolic reasoning relies on a standard ontol-
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ogy encoding hard constraints between context information and activities. For

instance, the activity running implies that the current user’s speed is positive.

In the second case, we consider a probabilistic ontology composed of both hard

and soft constraints (i.e., rules associated with a weight). For instance, the soft

constraint running can be performed indoors has a lower weight than the soft

constraint running can be performed outdoors.

Our results on DOMINO [24], a dataset for context-aware HAR we recently

published, and on another real-world context-aware HAR dataset show how the

use of symbolic features mitigates data scarcity while being more robust than

context refinement in the presence of noisy context data. Moreover, we show

how the improvements led by probabilistic ontologies do not justify the signifi-

cant effort required to build them.

Chapter 4 is based on the following publications:

• Luca Arrotta, Gabriele Civitarese, Claudio Bettini, “Semantic Loss: a new

Neuro-Symbolic approach for Context-Aware Human Activity Recognition”.

Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous

Technologies, 2023, to appear.

• Luca Arrotta, Gabriele Civitarese, Riccardo Presotto, Claudio Bettini,

“DOMINO: A Dataset for Context-Aware Human Activity Recognition us-

ing Mobile Devices”. In 2023 24th IEEE International Conference on Mobile

Data Management (MDM) Workshops. IEEE, 2023.

• Luca Arrotta, Gabriele Civitarese, Claudio Bettini, “Probabilistic Knowl-

edge Infusion through Symbolic Features for Context-Aware Activity Recog-

nition”. Pervasive and Mobile Computing, Elsevier, 2023.

(DOI: 10.1016/j.pmcj.2023.101780)

• Luca Arrotta, Gabriele Civitarese, Claudio Bettini, “Knowledge Infusion

for Context-Aware Sensor-Based Human Activity Recognition”. In 2022

IEEE International Conference on Smart Computing (SmartComp), 2022.
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Scientific contributions:

• Introduction of a novel knowledge infusion method for context-aware

HAR to improve the latent space representation of sensor and con-

text data with symbolic features based on domain and common-sense

knowledge.

• Experiments on two public datasets show how the proposed frame-

work (i) outperforms a purely data-driven classifier and (ii) is more

robust in the presence of noisy context data compared to state-of-

the-art neuro-symbolic AI solutions for HAR.

Personal tasks:

• Concept and methodology design.

• Method implementation.

• Collaboration in the design of the evaluation methods.

• Experiments execution.

• Collaboration in results analysis and interpretation.

1.4.3 Knowledge infusion through a semantic loss func-

tion for context-aware HAR

In Chapter 4, we proposed a novel Knowledge Infusion method for context-

aware HAR, comparing it with state-of-the-art NeSy solutions. However, all the

previously introduced methods require symbolic reasoners during classification.

In real-world deployments, where the DL model can be deployed on resource-

constrained devices (e.g., mobile/wearable devices), the adoption of symbolic

reasoning during classification is not desirable since it is computationally de-

manding [25].

For this reason, in Chapter 5, we propose a novel Knowledge Infusion approach
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based on a semantic loss function that infuses knowledge constraints in the HAR

model only during training, avoiding symbolic reasoning after deployment. In

particular, we implemented a custom loss function for the DL model combining

a standard classification loss with a novel semantic loss function. The seman-

tic loss component uses symbolic reasoning to drive the DL model in classifying

activities considering domain knowledge constraints. After the training phase,

the classifier internally encodes such constraints, that are exploited to classify

activities at run-time without requiring symbolic reasoning.

Our results on scripted and in-the-wild datasets show the impact of different

semantic loss functions (that rely on a standard or a probabilistic ontology) in

outperforming a purely data-driven model. We also compare our solution with

existing NeSy methods (including the one proposed in Chapter 4) and analyze

each approach’s strengths and weaknesses. Our method based on a semantic

loss remains the only NeSy solution that can be deployed without the need for

symbolic reasoning modules, reaching recognition rates close (and better in some

cases) to existing approaches. Moreover, our results demonstrate how our se-

mantic loss is significantly more robust than the other NeSy approaches in the

presence of noisy data. Finally, we also briefly inspect interpretability aspects,

qualitatively showing how our semantic loss method makes decisions following

the domain constraints encoded into the infused knowledge. This result is a first

step that indicates how NeSy methods can lead to more interpretable DL models.

Chapter 5 is based on the following publications:

• Luca Arrotta, Gabriele Civitarese, Claudio Bettini, “Semantic Loss: a new

Neuro-Symbolic approach for Context-Aware Human Activity Recognition”.

Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous

Technologies, 2023, to appear.
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Scientific contributions:

• Introduction of a novel knowledge infusion method for context-aware

HAR based on a semantic loss function that does not require symbolic

reasoning after the HAR system deployment.

• Experiments on two public datasets show how our semantic loss

method (i) outperforms a purely data-driven classifier and (ii) is sig-

nificantly more robust than other neuro-symbolic approaches in the

presence of noisy data.

Personal tasks:

• Collaboration in the problem formulation.

• Concept and methodology design.

• Method implementation.

• Collaboration in the design of the evaluation methods.

• Experiments execution.

• Collaboration in results analysis and interpretation.

1.4.4 Explainable deep learning classifiers for sensor-based

HAR

In Chapter 5, we made a first step towards the analysis of possible interpretabil-

ity benefits provided by NeSy methods. However, in the current sensor-based

HAR literature, no quantitative metric has been introduced to measure the in-

terpretability level of DL models. This problem is due to the fact that it is chal-

lenging to apply eXplainable AI (XAI) methods to raw sensor data since most

XAI techniques in the literature are focused on computer vision tasks. Indeed,

the few works that explored XAI methods for HAR only considered interpretable

machine learning models.
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In Chapter 6, we propose a novel methodology to transform sensor data to take

advantage of XAI methods designed for computer vision tasks. We then apply

different XAI approaches for deep learning and, from the resulting heat maps, we

generate explanations in natural language. In order to identify the most effective

XAI method, we design a metric (i.e., the Explanation Score) that measures the

coherence of such explanations with human knowledge about the HAR domain.

Our results show how the evaluations performed through the Explanation Score

are aligned and consistent with the ones obtained through a user-based evaluation

(i.e., a survey). Unfortunately, due to time constraints, we have currently used

the Explanation Score only to evaluate purely data-driven approaches. Nonethe-

less, we believe that the promising results presented in Chapter 6 indicate that

this metric could be considered in the future to quantify the interpretability ben-

efits provided by NeSy methods for sensor-based HAR.

Chapter 6 is based on the following publications:

• Luca Arrotta, Gabriele Civitarese, Claudio Bettini, “DeXAR: Deep Ex-

plainable Sensor-Based Activity Recognition in Smart-Home Environments”.

Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous

Technologies, 2022. (DOI: 10.1145/3517224)
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Scientific contributions:

• Introduction of a novel XAI framework for sensor-based HAR that

relies on deep learning models.

• Design of a metric that measures the coherence of XAI explanations

with HAR domain knowledge.

• Experiments on a public dataset show how the results obtained

through the proposed metric are consistent with the ones of a user-

based evaluation.

Personal tasks:

• Collaboration in the problem formulation.

• Collaboration in the methodology design.

• Method implementation.

• Collaboration in the design of the Explanation Score

• Collaboration in the design of the evaluation methods.

• Experiments execution.

• Collaboration in results analysis and interpretation.

1.5 Outline

The rest of the thesis is structured as follows. Chapter 2 provides a wide overview

of the current literature on sensor-based HAR, introducing the specific challenges

tackled by this thesis. Chapter 3 presents a novel NeSy HAR framework that

relies on symbolic reasoning to perform data association without labeled data in

multi-subject smart homes. In chapters 4 and 5, we present novel NeSy methods

based on Knowledge Infusion for context-aware HAR. In particular, Chapter 4

presents a Knowledge Infusion approach that relies on symbolic reasoning to infer
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additional knowledge-based features to be infused into the DL activity classifier.

Such features guide the model to learn with fewer training samples the corre-

lations between input data and users’ activities. On the other hand, Chapter 5

presents another Knowledge Infusion method based on a semantic loss function to

infuse domain knowledge into the DL classifier only during training, thus avoid-

ing any computationally demanding symbolic reasoning step after deployment.

Chapter 6 introduces a novel XAI framework for sensor-based HAR in smart

homes based on deep learning. This chapter also presents the Explanation Score,

a quantitative metric that measures how much XAI explanations are aligned with

domain knowledge. Finally, Chapter 7 summarizes our contributions, outlines fu-

ture research direction, and concludes this thesis.
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Chapter 2

Related work

2.1 Human Activity Recognition (HAR)

In the last decade, Human Activity Recognition (HAR) has become a task of high

interest since it enables pervasive and context-aware applications that adapt their

services based on information about the users, such as their habits, behavior, and

health status. [3]. HAR systems commonly monitor users to derive the activities

they perform thanks to the data collected by a variety of sensors [26]. In par-

ticular, the existing literature mainly focused on video-based and sensor-based

HAR [27]. Video-based methods analyze videos obtained from optical sensors

like cameras [28]. This information-rich data type leads to very accurate HAR

solutions. However, the deployment of these methods is limited in many envi-

ronments (e.g., private habitations) since cameras are generally perceived as too

intrusive by the monitored users [8]. On the other hand, in sensor-based HAR,

data are usually collected through inertial sensors like accelerometers embedded

into wearable devices or through environmental sensors (e.g., magnetic sensors,

smart plugs) installed in the users’ living spaces [7]. In the last few years, the pro-

liferation of cheap, ubiquitous, and non-intrusive IoT devices led many research

groups to concentrate on sensor-based HAR [6]. Accordingly, in this thesis, we

will focus on these kinds of methods.
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2.1.1 Sensor-based HAR

Overall, the HAR literature focused on the recognition of two types of activities:

low-level (e.g., walking, taking the stairs) and high-level activities (e.g., having

a meeting, eating). In sensor-based HAR, the adopted sensing infrastructure

significantly affects the types of activities that can be recognized [8].

Low-level activities are mostly characterized by the user’s physical movements.

Therefore, these kinds of activities are typically recognized through wearable de-

vices like smartphones or fitness bands. Indeed, these devices are equipped with

inertial sensors (e.g., accelerometers, gyroscopes) that help in monitoring the

users’ body movements at a fine granularity. Moreover, personal wearable devices

like smartphones can collect contextual information about the users’ surround-

ings. For instance, mobile apps installed on the user’s device can interact with

public web services to collect information about local weather conditions. These

kinds of data are helpful to discriminate activities with similar motion patterns

typically performed in different context scenarios [1].

Differently, high-level activities (e.g., cooking) also involve interactions of the

users with their surroundings. Consequently, these activities typically require the

installation in the users’ living spaces of environmental sensors able to capture

such interactions. For instance, a pressure mat sensor can reveal that the user

is currently sitting at the dining table, thus easing the recognition of the eating

activity. Overall, HAR researchers mainly investigated smart environments occu-

pied by a single user [8]. However, many real-world applications involve multiple

users performing activities in the same shared space. For instance, elderly sub-

jects can live with their partners in a smart home. One of the major problems

in multi-subject smart environments is that environmental sensors cannot auto-

matically identify the user that triggered them. For instance, a magnetic sensor

attached to the fridge cannot reveal the users that opened it. The process of

mapping environmental events to the correct user is called data association, and

it is essential to reliably infer the activities performed by each user [16].
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2.2 Methods for sensor-based HAR

In the following, we describe the categories of HAR methods investigated and

proposed in the literature.

2.2.1 Data-driven methods

Regardless of the adopted sensor technology, sensor-based HAR has been mainly

addressed with supervised data-driven methods. The goal of these approaches is

to build a Machine Learning (ML) model able to recognize the users’ activities

based on the available sensor data.

Traditional machine learning methods

Figure 2.1 presents the typical pipeline of HAR frameworks that rely on tra-

ditional ML classifiers (e.g., random forests, support vector machines). Data

Figure 2.1: Pipeline typically adopted by sensor-based HAR approaches based
on standard machine learning classifiers

streams collected from the available sensors are pre-processed (e.g., to remove

noisy measurements) and partitioned into segmentation windows of a fixed size.

Then, from each segmentation window, a set of features (e.g., mean, variance) is

manually extracted from raw data based on heuristic and human domain knowl-

edge. These feature vectors are finally used to train an ML model that after

deployment is able to use the same features to recognize the users’ activities.

The most common traditional ML models proposed for HAR (considering the
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recognition of both low- and high-level activities) are Decision Trees [29, 30],

Support Vector Machines [31, 32], K-Nearest Neighbors [33, 34], and Hidden

Markov Models [35, 36].

The main drawback of pipelines based on traditional ML models is their

handcrafted feature extraction process. Indeed, human expertise can only enable

the extraction of shallow features that usually include only statistical information

about the collected data [7]. For instance, inertial data are typically condensed to

time- and frequency-domain features like the mean and the energy of the signal,

respectively [37]. On the other hand, considering environmental sensors, feature

vectors typically include information like the count of the different sensor events

that occurred during each segmentation window [38].

Deep learning methods

In the last years, Deep Learning (DL) models have become the leading solution

for sensor-based HAR since they overcome the limitations of traditional ML clas-

sifiers. Indeed, beyond reaching high recognition rates, as depicted in Figure 2.2,

DL models have the ability to automatically extract during training meaningful

Figure 2.2: Pipeline typically adopted by sensor-based HAR approaches based
on deep learning classifiers

features that are suitable to solve the HAR task. Different types of DL mod-

els have been proposed in the literature [7]. The most common are Deep fully

connected Neural Networks (DNN) [39], Convolutional Neural Networks (CNN)

[40, 41], Recurrent Neural Networks (RNN) [42], as well as hybrid models [43].
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Despite their undeniable success, the deployment of supervised DL models is

often limited by labeled data scarcity and lack of transparency, two issues that

will be discussed in detail in sections 2.3 and 2.4, respectively. Indeed, supervised

DL classifiers heavily rely on huge amounts of labeled samples during training.

However, data annotation is a real challenge, especially in the HAR domain [10].

Moreover, the decision-making process of DL models is inherently opaque, thus

not allowing humans to understand the rationale behind each model’s prediction

[11].

2.2.2 Knowledge-based methods

In the sensor-based HAR literature, purely knowledge-based (or symbolic) meth-

ods have been proposed to tackle the above-mentioned issues of DL models [8].

Symbolic approaches rely on formal models built by domain experts and encoding

relationships between sensor events, users’ contextual information, and activities

[23, 44]. For instance, brushing teeth can be symbolically represented as an ac-

tivity that is typically performed while being close to a sink in a semantic place

familiar to the users (e.g., their home, their workplace). Hence, knowledge-based

methods derive the most likely users’ activities by reasoning (e.g., through logic

rules) over the domain constraints encoded into the formal model.

Different formalisms have been proposed in the literature to encode HAR

domain knowledge [45]. In particular, ontologies are the most common solution

due to their expressive power and automatic reasoning capabilities [46, 47, 44].

Indeed, different research groups already built ontologies for pervasive computing

[48] and activity recognition [49, 50].

Overall, symbolic approaches have two main advantages: (i) they are trans-

parent and interpretable since based on human-readable formalisms, and (ii) they

do not require labeled data for training purposes. However, these methods are

too rigid and not scalable since it is not feasible to build logic constraints that

cover all the possible ways and contexts in which activities can be performed.

Additionally, symbolic reasoning is not suitable for those sensors that generate

continuous values like accelerometers. Indeed, raw sensor measurements of this

kind cannot be mapped to a clear semantic, thus making it impossible to include
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them in any symbolic rule. For this reason, purely knowledge-based methods

have been mainly proposed for the recognition of high-level activities in smart

homes [51, 44].

2.2.3 Neuro-Symbolic AI (NeSy) methods

The goal of Neuro-Symbolic AI (NeSy) approaches is to integrate neural and sym-

bolic AI architectures to combine their abilities to perform data-driven learning

and knowledge-based reasoning [12]. This combination improves the capability

of the deep learning classifier to learn from smaller amounts of training data,

to better generalize on unseen data, and to increase its interpretability [52]. A

promising NeSy approach is the Knowledge Infusion paradigm that aims at in-

corporating external knowledge (e.g., obtained from a knowledge graph) within

a DL model [53, 54].

Knowledge Infusion in the general ML community

In the general ML community, in the last few years, Knowledge Infusion was

mainly explored in the Computer Vision (CV) [55, 56] and the Natural Language

Processing (NLP) [57, 58] domains. For instance, considering hierarchical multi-

label image classification tasks, researchers explored custom loss functions to

infuse into DL models information about semantic connections between classes

and their hierarchy, with the objective of making misclassification less severe

[59, 60, 61]. Thanks to this approach, an image labeled with the class boy is

more likely to be misclassified with the class man rather than with unrelated

classes like bicycle. Considering the NLP domain, the teacher-student learning

paradigm has been explored in [62] so that a student DL model mimics the

outputs of a teacher model trained with a loss function that takes into account

logical rules. For instance, in sentiment analysis, a logical constraint may consider

the conjunction word ”but” to ensure that the predicted sentiment for the entire

sentence aligns with the sentiment of the clause that follows ”but”.
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NeSy for sensor-based HAR

Unfortunately, only a few NeSy methods exist for sensor-based HAR. In partic-

ular, the effectiveness of Knowledge Infusion for HAR is still an open research

problem since, in most of the existing methods, external knowledge is only con-

sidered before [63] or after [64, 65, 23] the training process, and it is not infused

into the DL model. Considering HAR in smart-home environments, domain

knowledge can be used to derive an initial activity model that is subsequently

adapted to the user’s habits through data-driven strategies [63]. In [66], un-

supervised methods are used to extract frequent patterns from unlabeled data.

These patterns are then associated with the corresponding activities through do-

main knowledge. On the other hand, considering HAR with mobile/wearable

devices, in [1], the probability distribution over the possible activities derived

by a data-driven classifier is refined by common-sense knowledge constraints to

exclude unlikely activities. The main drawback of the above-mentioned HAR

methods is that, without Knowledge Infusion, the DL model cannot intrinsically

learn domain constraints, thus limiting (i) its ability to handle data uncertainties

(e.g., the model’s decisions could be rigidly refined through an incomplete knowl-

edge) and (ii) the interpretability benefits enabled when knowledge is infused.

For instance, consider context refinement [1], i.e., a method that relies on domain

knowledge to discard from the output of the activity classifier those activities

that are not consistent with the user’s surrounding context. This method could

make wrong decisions when the knowledge model does not cover all the main

context scenarios in which activities can be carried out by users. Additionally,

the knowledge model cannot be used to interpret the DL classifier predictions

since knowledge is not infused into it.

Neuroplex [67] is the only existing Knowledge Infusion method for sensor-

based HAR. Specifically, symbolic knowledge (i.e., finite state machines and log-

ical rules) is infused into a neural network responsible for detecting complex

nursing events (e.g., patient cleaning). Indeed, these events can be identified by

reasoning on spatially- and temporally-dependent low-level events derived from

inertial sensors data using data-driven models. For instance, the complex event

patient cleaning can be derived when the sequence of detected low-level events
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is composed of patient oral care followed by diaper exchange. In this thesis, we

will explore NeSy methods based on the Knowledge Infusion paradigm for HAR

applications that are not covered by Neuroplex, i.e., multi-subject HAR in smart

environments and context-aware HAR with mobile/wearable devices. Indeed, in

multi-subject HAR, it is not straightforward to apply the idea behind Neuro-

plex since the considered high-level activities (e.g., cooking) can be performed

by triggering several different combinations of sensor events. On the other hand,

context-aware HAR aims to directly recognize the low-level physical activities

(e.g., sitting) performed by the users.

2.3 The labeled data scarcity issue

As we previously mentioned, labeled data scarcity is one of the main problems

that limit the deployment of DL models for HAR in real-world applications.

Indeed, collecting and annotating sufficient amounts of data to train scalable

supervised DL classifiers is a real challenge. Sensor data can be labeled through

self-annotations or by continuously monitoring users through cameras or external

observers. However, self-annotation is particularly error-prone since users can

forget to label relevant activities or the exact time in which they were performed

[15], thus discouraging the use of such data to train data-driven models. On the

other hand, constantly monitoring users for accurate data annotation is privacy-

invasive, especially in private environments (e.g., users’ habitations). In this

thesis, we will focus on specific HAR applications that further emphasize the

labeled data scarcity problem: multi-subject HAR and context-aware HAR.

2.3.1 Labeled data scarcity in multi-subject HAR

In multi-subject smart environments, labeled data scarcity is accentuated since

most of the existing methods rely on data-driven models not only to recognize

users’ activities but also to perform data association implicitly or in a super-

vised fashion. In this application scenario, purely knowledge-based approaches

have been proposed to solve a weaker form of data association, called subject

separation, where the goal is to determine whether two consecutive sensor events
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were fired by the same subject or by different subjects without identifying them

[68, 69]. Subject separation has also been tackled with unsupervised learning so-

lutions [18]. However, the main drawback of subject separation is that users are

not identified, which is not suitable for use cases requiring personalized service

provision.

Implicit data association

Implicit data association methods involve a data-driven model that implicitly

learns user-specific features that may include personal habits, sensor signals cap-

tured from their personal belongings, and other relevant features that can be

extracted from environmental data. Implicit data association has been achieved

with multi-task learning and multi-label classification.

In the first case, each learning task consists of recognizing the activities of

a specific user [70]. These methods typically rely on Hidden Markov Models

(HMM), where, for instance, each user is assigned to a specific chain of hidden

states [71, 72, 73, 17].

In the case of multi-label classification, a single unified learning task is con-

sidered to recognize the activities performed by different users [74, 75]. In this

scenario, different techniques for multi-label classification have been explored by

the HAR community, like binary relevance [76, 77], classifier chain [78], label

combination [79, 72, 80, 81, 82, 83, 84, 85, 86], and random k-labelsets [87].

Overall, implicit data association methods assume that the available training

set included all the possible combinations of activities that the involved users

could have performed individually or collaboratively in the same living space.

Supervised data association

Supervised data association approaches consider data association as a separate

learning problem before activity classification [19, 88, 18, 89, 90]. For instance,

in [19], labeled data about behaviors and habits of the subjects of a smart envi-

ronment are used to train a supervised classifier that attributes a subject to each

sensor event. The main problems of supervised data association approaches are

that (i) they require additional labeled data to train a data association model
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and that (ii) such a model heavily relies on the specific environment and users’

habits considered during training.

2.3.2 Labeled data scarcity in context-aware HAR

Another HAR application that aggravates the labeled data scarcity issue is the

context-aware recognition of low-level activities based on mobile devices. In this

scenario, contextual information about the users’ surroundings (e.g., semantic

location, speed, and weather conditions) is used to better discriminate activities

with similar motion patterns like standing and getting the elevator [22]. However,

in this application domain, it is not realistic to rely on supervised DL models.

Indeed, they would require comprehensive training sets containing all the possible

context conditions in which activities may be performed.

2.3.3 Mitigating labeled data scarcity in HAR

To mitigate the labeled data scarcity problem, the HAR research community

investigated data augmentation, transfer learning, semi-supervised learning, and

unsupervised learning (e.g., self-supervised learning) approaches [6].

Data augmentation is a popular solution to handle data scarcity, especially

considering imbalanced datasets [91, 92]. These approaches generate new samples

by slightly perturbing the available data, or by relying on generative AI solutions,

like Generative Adversarial Networks (GANs) [93, 94]. However, it is questionable

if such data augmentation techniques are effective when the original dataset is

extremely small since they cannot fully compensate for the lack of diverse and

representative training data.

Transfer learning methods usually take advantage of models trained on a

source domain with a significant amount of labeled data. Such pre-trained models

are then fine-tuned in a target domain using small amounts of labeled samples

[95, 96, 97, 98].

On the other hand, semi-supervised approaches for HAR rely on small labeled

datasets to initialize the model, which is then incrementally updated by leveraging

the unlabeled data stream [10, 99, 100]. Semi-supervised methods for HAR in-

clude self-learning [101], co-learning [102], active learning [103, 104, 105, 106, 107],
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and label propagation [108].

Additionally, unsupervised approaches have been exploited in different ways

by the HAR community. For instance, in [109], unsupervised learning is used to

derive activity clusters from unlabeled sensor data, requiring a few annotations

to reliably associate activity labels to the clusters. On the other hand, in multi-

subject smart environments, unsupervised methods have been explored also to

perform subject separation [110, 111, 112].

Finally, among unsupervised methods, self-supervised learning strategies lever-

age large amounts of unlabeled data to pre-train a model capable of generating

reliable feature representations of sensor data [113, 114, 115]. The pre-trained

model is then fine-tuned using a limited amount of labeled data. More specifi-

cally, a surrogate objective (i.e., the pretext task) is designed so that optimizing

it would lead the DL model to learn features that are meaningful also for the

main classification task (i.e., the downstream task). After training the model to

accomplish the pretext task, fully connected layers for classification can be added

at the top of such a model before fine-tuning it for the downstream task.

NeSy methods to mitigate labeled data scarcity

As already discussed in Section 2.2.3, NeSy methods have the potential to improve

the classifiers’ recognition rates by infusing domain constraints into DL models.

This may be especially true in data-scarce scenarios, where the activity classifiers

would struggle to learn such constraints directly from data.

Moreover, NeSy methods could be potentially coupled with the other tech-

niques previously presented in this section to further improve the recognition

rates in data scarcity scenarios. For instance, in [1], a NeSy approach (not based

on knowledge infusion) is combined with semi-supervised learning to maximize

the recognition rates of a context-aware classifier in charge of recognizing low-

level activities. As another example, we believe that domain constraints could be

infused into a DL model during the fine-tuning phase of a self-supervised learning

procedure to further minimize the amount of required labeled data.
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2.4 The lack of interpretability issue

Another problem that limits the deployment of DL models for HAR is their

opacity: it is challenging to understand the rationale behind their predictions

[116]. Explainable Artificial Intelligence (XAI) approaches recently emerged to

address this problem [117], by providing a human-understandable explanation

associated with each model’s prediction.

Important decisions in pervasive applications may rely on the output of a

HAR classifier. Hence, inferring why a specific activity was predicted is essen-

tial to provide solutions that are understandable, trusted, and transparent [118].

For example, consider a healthcare system that analyzes the daily routines of

elderly subjects. The detection of their activities is one of the fundamental steps

to detect higher-level behaviors to support clinicians’ diagnoses (e.g., cognitive

decline) and interventions [119]. In such a scenario, XAI would allow clinicians to

increase their trust in decision-support systems that rely on activity recognition.

Explanations are also useful to data scientists who need to refine the recognition

system by introducing, removing, or re-positioning sensors, modifying algorithms

and system parameters, or revising/extending the training set. An explainable

system would also make it possible to include the users in the loop, by showing

them which activities are released to clinicians and how the system inferred their

execution by the resident.

2.4.1 XAI taxonomy

According to DARPA1 [120], there are three main categories of XAI approaches:

interpretable model methods, model induction methods (also called black box

methods), and deep explanation methods.

XAI interpretable model approaches are applicable to classic ML algorithms,

like decision trees and Bayesian Rule Lists (BRL), that are inherently explainable

[121, 122]. For instance, BRL models are built by learning from labeled data a set

of human-readable probabilistic rules that correlate the input features with the

target classes. These rules can be used both for classification and, at the same

1The Defense Advanced Research Projects Agency (DARPA) is a research agency of the
United States Department of Defense responsible for the development of emerging technologies
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time, to interpret the rationale behind each output. However, a major open issue

in XAI is to explain complex models whose interpretation is more challenging,

like the ones based on DL.

XAI model induction approaches like LIME [123] and SHAP [124] consider

the classifier as a black box and correlate the input and the output to induce the

explanations [125]. For instance, LIME generates each explanation by deriving a

linear model based on the correlations between perturbed versions of the input

and the predicted class. The weights of the resulting linear model indicate the

most important features for classification. However, model induction approaches

have been recently criticized because they can not reveal the hidden patterns

captured by the black boxes during training, thus providing explanations that

may not identify the actual reasons for the prediction [126].

Finally, XAI deep explanation methods have been proposed to derive expla-

nations from deep learning models [127]. The most common approaches in this

category are saliency-based methods, that analyze the activation of the neurons

at intermediate layers of the network. For instance, Grad-CAM [128] analyzes

the activation of the neurons in the last convolutional layer of the model (i.e., the

ones that capture high-level information) to infer which portions of the input are

important for the classification. However, recent studies indicate that those ap-

proaches may not reveal meaningful explanations [129]. More sophisticated deep

explanation approaches introduce specialized layers in the network to learn some

target class prototypes [130]. Intuitively, each prototype encodes a representa-

tive data sample of the training set for a specific target class. Each prediction

is explained by showing the prototypes that are most similar to the input data.

For instance, the work in [131] relies on metric learning to compute the distance

from the input to the closest prototype, where a fixed number of prototypes is

learned thanks to a specifically designed layer in the network.

2.4.2 Evaluating the effectiveness of explanations

A challenging problem in XAI is how to evaluate the effectiveness of explanations

[120]. The choice of the evaluation strategy is strictly related to the goal of the

underlying system. The target users may be (a) end-users who use AI in their
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daily lives without knowledge about machine learning, (b) data scientists who

use machine learning for analysis, or (c) experts in machine learning.

Moreover, depending on the target users, different aspects should be consid-

ered for evaluating the effectiveness of the explanation. In the literature, several

metrics have been proposed [132], but not in the HAR domain. Most of them

are based on directly interviewing the end-users. In the following, we report the

most common ones:

• Mental model. This metric aims at assessing how a user understands the

underlying system [133]. This metric is usually measured by explicitly

asking the end-users their interpretation of the system’s decision-making

process, with the objective of evaluating the completeness of explanations.

• Explanation usefulness and satisfaction. This metric indicates the under-

standability and sufficiency of details in explanations [134]. This metric

is usually measured in a qualitative or quantitative way through question-

naires.

• User trust. Trust is the cognitive factor that influences the perception of

the system (positively or negatively) [135]. Trust and reliance are usually

measured by asking the end-user opinions during and after the interaction

with the system. Prior knowledge and beliefs can also influence the initial

state of trust, which may change while interacting with the XAI system.

• Computational Measures. This category of metrics quantitatively evalu-

ates the interpretability without involving the end-user. Indeed, reliance

on human evaluation of explanations may lead to persuasive explanations

rather than transparent systems due to user preference for simpler and in-

tuitive explanations [136]. The goal of such approaches is to automatically

compute the correctness, consistency, and fidelity of XAI methods [132].

2.4.3 XAI in activity recognition

XAI approaches have been mainly proposed for video-based activity recognition

[137, 138, 139]. However, generating meaningful explanations for predictions

based on sensor data is more challenging.
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There exist only a few research efforts that focus on explainable approaches for

sensor-based activity recognition and they consider only inherently interpretable

models, like the one proposed in [140] that is based on the feature importance

derived by the model parameters of classic ML methods. The authors in [141]

rely on a rule-based classifier. During the training process, the model learns a

set of human-readable rules that encode the correlations between sensor events

and activities. The results indicate that the proposed model reaches recognition

rates similar to well-known interpretable classifiers (e.g., Decision Tree, JRip)

while generating significantly less complex rules. The work in [142] proposed a

model based on fuzzy logic rules. The solutions proposed in these works do not

generate explanations that are easily understandable by non-expert users. On the

contrary, HealthXAI [143] provides explanations in natural language targeted to

clinicians. However, that work focuses on the detection of high-level abnormal

behaviors of elderly subjects in smart-home environments. Hence, the explana-

tions in HealthXAI are derived from an underlying activity recognition classifier

(i.e., a decision tree) that actually does not provide explanations.

The major limit of all of the above-mentioned works is that they are only XAI

interpretable model approaches, that mainly do not tackle the problem of making

explanations understandable also to non-expert users (e.g., clinicians, caregivers).

Hence, it is still an open problem to understand if and how XAI can be combined

with DL-based activity recognition with sensor data.

2.5 Research problems addressed by this thesis

In this section, we outline the research questions tackled in this thesis. For each

question, we introduce the research problem and indicate the specific chapter

where the problem is addressed.

Q1) Can neuro-symbolic AI mitigate labeled data scarcity in multi-

subject HAR applications?

Labeled data scarcity is one of the main issues that limit the deployment of su-

pervised deep learning models for HAR in real-world applications. This problem
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is emphasized in multi-subject HAR, where the existing literature mainly tackled

data association in a data-driven way.

In Chapter 3, we propose a NeSy approach that relies on symbolic reasoning

to perform data association without requiring any supplementary labeled data.

After data association, an activity classifier is trained through a semi-supervised

learning strategy based on active learning. Symbolic reasoning is hence used also

to refine the predictions of such a model, thus further mitigating data scarcity

and reducing the number of active learning queries triggered to the users.

Q2) Can neuro-symbolic AI based on knowledge infusion provide a

more robust solution for addressing labeled data scarcity in context-

aware HAR compared to existing approaches?

NeSy approaches have been already considered in the literature to mitigate data

scarcity in context-aware HAR applications [1]. However, they only considered

domain knowledge after the training process of the activity classifier, thus limiting

the opportunity to unlock the full potential of Neuro-symbolic AI.

In Chapter 4, we introduce an innovative NeSy method that leverages Knowl-

edge Infusion to mitigate data scarcity while being more robust than existing

NeSy solutions in the presence of noisy context data.

Q3) How can we build knowledge infusion methods for context-aware

HAR without the need for computationally expensive symbolic rea-

soning modules after deployment?

All the existing NeSy methods for HAR (including the one we present in Chap-

ter 4) require computationally expensive symbolic reasoners after training the

activity classifier. This could limit the deployment of such solutions on resource-

constrained devices (e.g., mobile and wearable devices).

In Chapter 5, we present a novel Knowledge Infusion approach based on a

semantic loss function that infuses domain knowledge into the activity classifier

only during training, thus avoiding symbolic reasoning after deployment.
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Q4) How can we measure the interpretability of DL models for HAR

in order to assess the interpretability benefits produced by neuro-

symbolic AI?

Neuro-symbolic AI may enhance the interpretability of deep learning models in

the HAR domain. However, in this field, there is no quantitative metric to

measure the interpretability level of activity classifiers based on deep learning.

This is due to the fact that it is challenging to apply existing XAI methods to

sensor data.

To address this problem, in Chapter 6, we introduce a novel methodology that

enables the use of existing XAI techniques for sensor-based HAR. Additionally,

we present the Explanation Score, a metric that measures the coherence of the

explanations obtained through XAI methods with human knowledge about the

HAR domain. Unfortunately, due to time constraints, we use the Explanation

Score only to evaluate purely data-driven models. Nonetheless, we believe that

this metric can be adopted in the future to evaluate whether Neuro-symbolic AI

for HAR can make DL classifiers intrinsically more interpretable.

52



Chapter 3

Neuro-symbolic HAR in

multi-subject smart-home

environments

3.1 Introduction

The majority of existing recognition methods for high-level activities like Ac-

tivities of Daily Living (ADLs) considered single-subject smart-home settings,

where only one user lives in the environment [8]. However, it often happens that

multiple users live in the same home (e.g., an elderly and a caregiver). In these

settings, to accurately detect ADLs for the fragile target users, it is crucial to

correctly discriminate the activities performed by each subject. Moreover, dif-

ferently from single-subject settings, multiple users may perform ADLs jointly

(e.g., Alice and Bob are cooking together) and concurrently (e.g., Alice watches

TV while Bob is cooking).

Recently, several research efforts on multi-subject ADL recognition have been

proposed in the literature [144]. The major open research problem in this area is

that environmental sensors do not directly identify the users who generated sen-

sor events (e.g., the opening of a kitchen drawer revealed by a magnetic sensor).

Hence, to better recognize the activities performed by each user, it is crucial to

perform data association: mapping each environmental sensor event to the user
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which triggered it [16]. Existing multi-subject solutions assume the complete

availability of labeled data to perform data association implicitly during model

training [17] or as a separate supervised learning problem [19]. Hence, these

approaches further aggravate the labeled data scarcity problem of deep learning

classifiers.

In this chapter, we propose MICAR: a novel multi-subject activity recognition

framework that combines semi-supervised learning with neuro-symbolic AI. Wear-

able and environmental sensor data are leveraged to derive high-level semantic

information about the users (e.g., their posture and location in the home environ-

ment) to reliably perform data association using symbolic reasoning, thus avoid-

ing any additional labeled data. Labeled data scarcity is further mitigated thanks

to a novel cache-based active learning approach that continuously improves an

activity classifier (initialized with limited labeled data) while triggering a limited

number of questions. MICAR is capable of detecting both individual and group

ADLs.

Our experiments on the MARBLE dataset [2] indicate that MICAR reaches a

high recognition rate (F1 score ≈ 0.89) that is slightly behind a fully supervised

approach while triggering a low number of active learning queries (query rate

≈ 3%). Moreover, our results confirm that our data association solution leads to

a recognition rate that is only 2% behind the one obtained by an ideal approach

based on ground truth. Our results also indicate that MICAR is accurate in

detecting the number of users that jointly perform an ADL.

The rest of the chapter is organized as follows. Section 3.2 formally describes

the multi-subject activity recognition problem. Section 3.3 describes the over-

all architecture of MICAR. Section 3.4 describes each component of MICAR in

detail. Section 3.5 presents the evaluation methodology and the main results ob-

tained on MARBLE [2], a dataset we recently published that we used to evaluate

MICAR. Finally, Section 3.6 discusses some limitations of MICAR.
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3.2 The data association problem

Given a limited amount of labeled data, the objective of the activity recognition

system (named just system in the following) is to periodically infer for each user

the activity of daily living (ADL) that she has been performing. The system also

detects situations where ADLs are performed in cooperation by multiple users.

Intuitively, a set of users is jointly performing an ADL when those users are in

the same place and, according to the system predictions, they are performing the

same ADL1.

Let U = {u1, u2, . . . , un} be the set of users (the smart-home residents) and

A = {A1, A2, . . . , Ak} the set of target ADLs. Given an instant t, the system

predicts for each user the activity prediction ⟨u,A, L, t⟩, where u is the user that

performed activity A in the semantic location L. Hence, the system returns a set

of tuples PAt = {⟨(ur, . . . , us), Ai, Lj⟩|⟨u,Ai, Lj, t⟩∀u ∈ (ur, . . . , us)}. Each tuple

represents the set of users that jointly performed Ai the same ADL in the same

semantic location Lj.

In order to achieve this goal, the system continuously analyzes a stream of

time-stamped events coming from inertial and environmental sensors. Given an

instant t and a user u, the system needs to solve a data association problem to

derive a personalized stream s(u)t of sensor events associated with user u and

collected in a time window [t, t + k] where k is the window size parameter. For

example, suppose that Anna opens the fridge door at time t′. The corresponding

sensor event (and its timestamp) generated by the magnetic sensor connected to

the fridge door and recorded by our system should be associated with Anna and

hence considered part of s(Anna)t when t ≤ t′ ≤ t+ k.

The data association problem is straightforward for events coming from iner-

tial sensors on personal devices but challenging for environmental sensors.

1Note that here we assume that users that perform the same ADL in the same semantic
place at the same time are actually jointly performing the ADL. This is indeed the case in our
considered setting.
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3.3 MICAR’s architecture

The general architecture of MICAR is depicted in Figure 3.1. Several environ-

Figure 3.1: Overall architecture of MICAR

mental sensors are deployed in the home (e.g., plug sensors, magnetic sensors,

motion sensors) to capture the interaction of the users with the surrounding en-

vironment. Moreover, each user wears a smartwatch that collects data from its

inertial sensors (e.g., accelerometer) and a micro-localization system (e.g., BLE

beacons, WiFi) deployed in the environment. Raw sensor data are continuously
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transmitted to a smart home gateway, which is in charge of running the algo-

rithms of MICAR.

First, the semantic-data aggregator module pre-processes sensor data

to infer higher-level semantic information (i.e.,, users’ locations and low-level ac-

tivities, the position of the environmental sensors in the smart home). High-level

semantic data, as well as raw sensor data, are then transmitted to the symbolic

data association module. This module relies on symbolic reasoning on high-

level semantic information and sensor events to generate a personalized stream

of inertial and environmental sensor data for each user. The rationale is that it

is possible to use common-sense knowledge in the activity recognition domain to

exploit high-level semantic data to derive the most likely correspondence between

each environmental sensor event and the user that triggered it.

Each personalized stream is then processed by the sensor-based activity

recognition module. This module relies on an incremental semi-supervised

classifier to detect the ADLs performed by a specific user. The output of the

classifier is a probability distribution over the possible activities. The recognition

model is initialized with a limited number of labeled data from a few users (e.g.,

2 in our experiments) that in an initial phase contributed to a small labeled data

acquisition campaign.

High-level semantic information is then processed again by the prediction

refinement module to refine the machine learning classification. Indeed, ADLs

associated with a positive probability but in contrast with the current high-level

semantic data (e.g., watching TV when the TV is not turned on) are removed

from the probability distribution.

The predictions aggregation module combines the refined predictions

from each user to output both individual and joint activities performed by the

residents. In particular, a heuristic method determines whether multiple users

are performing the same activity.

In parallel to predictions aggregation, the prediction confidence

evaluation module evaluates the uncertainty of the refined prediction. If the

uncertainty is greater than a threshold, an active learning process is started: the

system triggers a query to ask the user which activity she is performing through

a dedicated interface. The feedback is used to update the incremental activity
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recognition classifier. Our active learning method is based on a cache to reduce

the number of triggered questions.

In the next section, we describe each component of MICAR in detail.

3.4 MICAR under the hood

3.4.1 Sensing sources

The users are monitored with a combination of wearable and environmental sen-

sors. In particular, each user wears a smartwatch, equipped with inertial sensors

(i.e., accelerometers, gyroscopes, and magnetometers) to track her physical move-

ments. Inertial sensors are particularly useful for capturing ADLs that are charac-

terized by specific gestures (e.g., washing dishes). Smartwatches also collect data

(e.g., RSSI) from a positioning system deployed in the home (e.g., BLE beacons,

Ultra-Wideband, WiFi access points). Positioning data is particularly useful to

continuously monitor the semantic position of the user. Since the smartwatch is

a personal device, the collected data can be automatically associated with the

resident’s identity.

Environmental sensors capture the interaction of the residents with the home

infrastructure. For example, magnetic sensors detect the opening and closing

events of doors and drawers, pressure mats on chairs reveal if someone is sitting,

and smart plugs detect the usage of home appliances. As we already mentioned,

environmental sensors cannot identify the resident which triggers them since they

only output their status.

3.4.2 Semantic-data aggregation

The semantic-data aggregator module receives the raw data from the sens-

ing sources described above. The objective of this module is to derive higher-level

semantic information. As we described in Section 3.3, MICAR uses high-level se-

mantic information to compute data association as well as to refine the classifier’s

prediction.

The semantic-data aggregator module derives the personalized context
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for each user and the home context for the home environment. Given a time in-

stant t, the personalized context of a user u is denoted with C(u)t = (l(u)t, p(u)t),

where l(u)t is the location of u in the home at time t and p(u)t is the posture

of u at time t. For instance, if Bob is sitting in the kitchen at time t then

C(Bob)t = (kitchen, sitting). On the other hand, the home context Ct
H encodes

the status and the position of each sensor in the home. In the following, we

describe how C(u) and CH are computed from raw sensor data.

User’s semantic position

In the following, we describe how we derive the semantic position l(u)t of a user

u at time t. In our implementation, the smartwatch is in charge of collecting

RSSI data from a positioning infrastructure composed of a combination of BLE

beacons and WiFi access points. Raw RSSI data are segmented with a sliding

window of size nl and overlap pl. Then, we apply a Savitzky-Golay filter to

smooth raw RSSI data. In our experimental setup, we use nl = 5s and pl = 50%.

For each temporal window, we extract a feature vector, where each feature

encodes the mean RSSI signal of the window from a specific source (i.e., a specific

BLE beacon or WiFi access point). In our experimental setup, the mean was

sufficient to characterize each signal, while the use of other statistical properties

did not lead to any improvement in the positioning accuracy. Finally, a machine

learning classifier is in charge of classifying the semantic position of the user from

the feature vectors. In our experiments, we used a Random Forest classifier.

Note that the organization of the home in semantic positions should be per-

formed in an offline phase, and its granularity depends on the accuracy of the un-

derlying micro-localization system. A coarse granularity may consider room-level

semantic positions (e.g., living room, kitchen, dining room), while a fine-grained

granularity may map specific regions of each room into semantic positions (e.g.,

cooking area, dining table, and sink area).

In our experimental setup, we implemented a micro-localization infrastructure

at room-level granularity based on a combination of 5 BLE beacons2 uniformly

installed within our smart-home lab and 26 WiFi access points that could be

2We performed several experiments considering up to 10 BLE beacons, but we observed
interference problems when considering more than 5 beacons
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detected in its surroundings. Our infrastructure reaches an average positioning

error of 1−2 meters. However, we did not consider these results to be satisfactory

for an accurate data association.

In the literature, several solutions have been proposed for more accurate in-

door positioning [145]. MICAR is agnostic to the specific micro-localization sys-

tem being used, and we preferred to use ground truth information about po-

sitioning data in our experiments, in order to focus on multi-subject activity

recognition only. We expect that new technologies (e.g., UWB) will be signif-

icantly more accurate in indoor localization, and MICAR could adopt them to

perform reliable data association.

User’s posture

The posture p(u)t (e.g., standing, sitting, lying) of a user u at time t is derived

by feeding a machine learning classifier with the inertial sensors data from the

smartwatch. First, we pre-process raw data by applying a median filter to reduce

the noise. Then, we apply sliding window segmentation, with a window size of

np seconds windows and overlap pp. In our experimental setup, we use np = 8s

and pp = 80%. For each temporal window, we extract several features that are

well-known to be accurate for low-level activity recognition [3]. We obtain in

total 120 inertial features, which are then dimensionally reduced to dp values

through the ANOVA technique [146], and finally standardized. In our experi-

ments, we determined dp = 84. Each feature vector is provided to a machine

learning classifier to distinguish between different postures. In our experiments,

we used a simple multilayer perceptron (MLP) to discriminate between sitting

and not sitting. Note that this process is model-agnostic. Hence, if the set of

user postures to be recognized requires more powerful solutions, it will be possi-

ble to introduce a more complex deep neural network in charge of automatically

extracting meaningful features from raw sensor measurements.

Sensor status and position

As we previously mentioned, MICAR also computes Ct
H as the context of the

home environment. An important contextual aspect is the semantic position of
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each sensor, which we consider as prior knowledge defined during the deploy-

ment phase in the smart home. During the deployment phase, we also map

each environmental sensor to a semantic concept. For instance, when the mag-

netic sensor installed on the fridge door fires, it generates the high-level event

(fridge door, kitchen,OPEN), which means that the fridge door in the kitchen

has been opened.

Ct
H keeps track of the current status of environmental sensors by considering

the previously mentioned high-level information.

Example 3.1 Consider a home H equipped with two plug sensors: one to detect

the usage of the electrical stove in the kitchen and one to detect the usage of the

television in the living room. Suppose that at time t Bob is watching TV and that

no one is using the electrical stove. In this case Ct
H = {(stove,kitchen,OFF),

(television, living room,ON)}.

3.4.3 Symbolic data association

Given the high-level semantic data from the semantic-data aggregator and

the raw sensor data collected from inertial and environmental sensors, the goal of

data association is to periodically compute for each user u a personalized sensor

data stream s(u)t. A stream s(u)t consists of the inertial sensor readings gathered

from the personal device of u, and the environmental sensor events triggered by

u in a time window [t, t + k], where k is the size of the segmentation window.

Note that s(u)t is computed every time a new environmental sensor event (e, st, t)

occurs. In our experiments, we empirically determined k = 14s.

As we previously mentioned, the challenge of data association is to assign

environmental sensor events to the user that most likely triggered it. Indeed,

an environmental sensor event (e, st, t) (e.g. (fridge door,OPEN, 12:32)) cannot

directly identify the user who triggered it.

MICAR performs data association by exploiting the high-level semantic data.

In particular, it approximates a stream s(u)t by including all the environmental

events that are consistent with C(u)t and Ct
H . The notion of consistency is in-

herently related to the semantics of the context and the action revealed by the

event. The Symbolic Data association module of MICAR is implemented

61



with ontological reasoning. In particular, an OWL2 ontology defines the relation-

ships between environmental sensor events and high-level semantic information.

In the following, we describe some axioms that we encode in our ontology.

Among other constraints, our ontology imposes that a user can trigger a

sensor event only if she is in the same semantic position where the sensor is

located (e.g., Alice cannot turn on the TV in the living room while she is in the

bedroom). Other axioms combine user’s posture and sensor status and position

to better associate environmental sensor events when multiple users are in the

same semantic position at the same time. For instance, the activation of the

pressure mat can be associated only with those users who recently switched to

the sitting posture. Similarly, the sitting posture is not compatible with sensor

events that can be triggered only while standing (e.g., turning on the stove).

In general, when a sensor event (e, st, t′) is triggered, our system checks its

semantic consistency for each user u using ontological reasoning. In particular,

MICAR adds factual observations to the ontology to describe the sensor event,

the context C(u)t
′
, and the context CH . Then, by using the automatic consistency

check of the resulting ontology, the system decides whether (e, st, t′) should be

included in s(u)t (with t′ in the time window defined by t)

The output of the symbolic data association module is hence a personal

stream s(u)t ∀u ∈ U. The solution is approximate since there may not be

sufficient information to associate an event to a single user and, in this case, the

event will be associated with the stream of each candidate user.

Example 3.2 Suppose that Anna and Bob are both in the kitchen, and the mag-

netic sensor on the fridge generates an event at time t, thus indicating that

someone opened it. Suppose that Anna is standing, while Bob is sitting on a

chair. This semantic information is detected by the semantic-data aggre-

gator module. Hence, MICAR adds to the ontology the observations about the

users in the home (i.e., Anna and Bob), their high-level semantic information

(i.e., Anna is standing in the kitchen, Bob is sitting in the kitchen), and the

triggered environmental sensor event (the fridge magnetic sensor is ON). By per-

forming a consistency test, our ontology derives that the opening fridge event is

consistent with Anna’s context, while it is not consistent with Bob’s context (i.e.,
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a user cannot open the fridge if he is sitting). Hence, in this case, the fridge

event will be included in s(Anna)t and not in s(Bob)t.

We show a small sample of our ontology in Figure 3.2. In order to simplify

the visualization, the ontology is represented as a graph where each node is an

entity, while each edge encodes a relationship.

Figure 3.2: A simplified representation of a small portion of our ontology. Each
node encodes an entity, while each edge encodes a relationship.

3.4.4 Sensor-based activity recognition

The objective of the sensor-based activity recognition module is to infer

the activities performed by each user in the home. For each user u, it periodi-

cally processes the personalized stream s(u)t received from the symbolic data

association module to derive the activity performed for u at time t. Since the

focus of this work is on performing data association without any labeled sample,
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the sensor-based activity recognition module relies on a pipeline for stan-

dard machine learning methods that we already adopted in other works within

our research lab. Since MICAR is agnostic to the activity classifier, this model

can be easily replaced with more powerful deep-learning solutions if required.

Segmentation and feature extraction

MICAR considers each personalized s(u)t as a temporal window of size k. In

order to improve the recognition model, we also compute overlapping segmenta-

tion between consecutive windows considering an overlap factor of par. In our

experiments, we determined par = 80%.

From each segmentation window, MICAR extracts different features from

inertial and environmental sensor data. Considering inertial data, we apply a

median filter for noise reduction. Hence, we extract 120 well-known statistical

features from accelerometer, gyroscope, and magnetometer data [3]. Examples of

such features are: root mean square, kurtosis, symmetry, zero-crossing rate, num-

ber of peaks, and energy, and the pearson correlation. Considering environmental

sensor data, we extract 36 features that are based on the status of the smart-home

sensors and the number of their activation and deactivation events. In particular,

MICAR implements the feature extraction technique based on temporal decay

that was proposed in [38]. In our experiments, we applied ANOVA to reduce the

dimensionality, reducing the feature space from 156 features to 84.

Activity recognition

Each feature vector fv generated from the personalized stream of a user u is

provided to an incremental single-inhabitant ADLs classifier h to derive the prob-

ability distribution over the possible ADLs performed by u:

h(fv) = ⟨pA1 , pA2 , . . . , pAn⟩

where pAi
∈ [0, 1] ∀i,

∑n
i=1 pAi

= 1, and pAi
is the probability P (Ai|fv) that the

user u is performing activity Ai ∈ A, based on fv. Note that the activity recogni-

tion classifier is initialized using a limited amount of labeled data from a restricted
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number of users. MICAR does not impose a specific choice for the single-subject

classifier. In our experiments, we implemented a small neural network.

3.4.5 Prediction refinement

Activity recognition classifiers are sometimes not accurate, confusing ADLs that

share similar sensor patterns. Considering machine learning-based approaches,

the training set is often limited and it may not generalize on unseen activity

patterns. As a drawback, the classifier can potentially derive a wrong activity.

However, common-sense knowledge about the relationships between activities

and high-level semantic information can be used to mitigate those classification

mistakes.

MICAR uses the high-level semantic information C(u)t and Ct
H , computed

by the semantic-data aggregator module to refine each activity prediction

h(fv). In particular, MICAR adopts an approach inspired by the one proposed

in [1] (named context refinement). The prediction refinement module of

MICAR applies symbolic reasoning on high-level semantic data to exclude from

the probability distribution predicted by the classifier those activities that are not

consistent with the current high-level semantic information. In our experimental

setup, this mechanism is based on the same ontology used by the symbolic data

association module.

Indeed, as it is possible to observe in Figure 3.2, our ontology also contains

axioms about the relationships between high-level semantic data and activities.

MICAR evaluates whether an activity A is consistent by adding to the ontol-

ogy the factual observations about the current high-level semantic information

C(u)t and Ct
H and the fact that u is currently performing activity A. Inconsistent

activities are removed from the probability distribution h(fv), thus generating a

refined probability distribution h′(fv) over the remaining activities.

Example 3.3 Suppose that MICAR inferred that Alice is watching television

with 60% of probability, eating with the 30% of probability, and setting up the

table with the remaining 10%. According to our ontology, the watching televi-

sion activity can be carried out only when: a) the television is in the same user

semantic position (user and sensor position), and b) the television is turned on
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(sensor status). Suppose that Alice is sitting at the dining table in the kitchen

while eating, while the television in the living room is turned on. Hence, watching

television is not consistent for Alice considering how this activity is described in

our knowledge model. The resulting re-normalized probability distribution of Alice

in this case is 75% eating and 25% setting up the table.

3.4.6 Predictions aggregation

The goal of the predictions aggregation module is to detect activities that

are jointly performed by multiple users. For the sake of this work, we assume

that a group activity occurs when two or more users perform the same activity

A in the same smart-home location l during the same time interval.

Note that this module covers the case where different users start to perform

the group activity at different times. For instance, consider a scenario where

Alice watches the television and then eats, while Bob sets up the table and then

eats. Bob starts eating 5 minutes before Alice. The predictions aggregation

module would detect the group activity eating only when both Alice and Bob are

eating. Moreover, the assumption on the semantic locations allows MICAR to

capture the scenario where the same type of ADL is performed by different users

in different rooms (e.g., Alice is watching TV in the living room, while Bob is

watching TV in the bedroom).

In order to derive group ADLs, MICAR analyses the activities predicted for

each user by the single-subject classifier and the users’ location during their

execution. In particular, for each user, the output of the classifier is processed

in real-time to keep track of stable activities predictions. Given a user u, a stable

prediction S(u,A, L, [ti, tj]) is generated from a sequence of consecutive feature

vectors of u classified with the same activity A performed in the location l during

the time interval [ti, tj]. In order to be considered stable, during [ti, tj] the

confidence on A should be higher than a threshold c for at least t times. In our

experiments, we empirically determined c = 0.75 and t = 3.

Two users ui and uj jointly perform an activity A if there exists two stable

predictions S(u1, A, L, [ti, tj]) and S(u2, A, L, [tl, tk]) such that [ti, tj] and [tl, tk]

temporally overlap. The overlap between the time intervals determines the du-
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ration of the joint activity. Clearly, this process works in a similar way for more

than two users.

Note that the specific aggregation approach that should be adopted depends

on the nature of the dataset and the specific target application. For instance,

in a real-world scenario, more users could perform a collaborative activity while

playing the same online multiplayer video game in different locations of the smart

home, using different computers. For the sake of this work, we only target group

activities that occur in the same location.

3.4.7 Prediction confidence evaluation

While MICAR uses symbolic prediction refinement to mitigate classification er-

rors, the system may still be uncertain about the refined prediction. The pre-

diction confidence evaluationmodule takes advantage of a semi-supervised

strategy based on active learning to trigger a query to the user when the confi-

dence in the refined prediction is below a certain threshold. Since this evaluation

is performed on the output of a single-subject classifier, our active learning strat-

egy is not targeted to joint activities.

For each h′(fv) generated by the prediction refinement module, we com-

pute uncertainty based on the entropy of the probability distribution:

H(h′(fv)) =
∑
i

p′Ai
log

1

p′Ai

where p′Ai
is the refined probability distribution related to activity Ai. Note

that the entropy measure is commonly used to compute the uncertainty in active

learning [147]. When the entropy is higher than a threshold π, we assume that the

system is uncertain about the activity currently performed by u. Hence, an active

learning process is started, and MICAR asks to u feedback about the activity

she was actually performing. For the sake of usability, only a few alternatives

among the most likely activities are proposed. In our experiments, we determined

π = 0.6

The feedback is then considered to update the incremental activity recognition

classifier as a newly labeled data sample. MICAR updates the classifier when a
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batch of w feedback is obtained by the users. In our experiments, we empirically

determined w = 32 to balance the trade-off between convergence rapidity and

recognition stability. For the sake of this work, the feedback from each user

contributes to updating the same single-subject classifier that is used for every

resident.

Active learning generally leads to good recognition rates for activity recogni-

tion [1]. However, a high number of queries negatively impacts the user experi-

ence. Since we periodically update the model with a batch of feedback, MICAR

can potentially maintain the same uncertainty for consecutive feature vectors

until the model is not updated. In order to mitigate this problem, MICAR im-

plements a novel active learning strategy based on caching. In particular, for each

user u, MICAR stores the latest uncertainty prompted to u as the set of the two

most likely activities {Ai, Aj} in the probability distribution3, and the feedback

provided by u. Hence, if the same uncertainty occurs multiple times within a

short time period for a specific user, MICAR does not trigger additional queries

and it uses the last feedback provided by u to update the classifier. When a new

uncertainty occurs, MICAR overwrites the user’s cache. After a certain amount

of time, defined by the constant CACHE TTL, MICAR invalids the cache. The

MICAR’s active learning approach is described in detail in Algorithm 1.

3.5 Experimental evaluation

3.5.1 The MARBLE dataset

In order to adequately evaluate MICAR, we collected a novel dataset (called

MARBLE) in our smart-home lab. This dataset is publicly available [2]. To the

best of our knowledge, there are no other publicly available multi-subject ADLs

datasets that combine wearable and environmental sensor data to provide the

high-level semantic information required by MICAR.

Due to privacy concerns, we were not able to acquire long-term data from

actual users in real homes. Nonetheless, based on our previous experience in

real-world deployments and in-the-lab data collections [148], we designed a new

3Note that we consider a set since the order of the two most likely activity is not relevant.
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Algorithm 1 Cache-based active learning

1: cache← ∅
2: lastFeedback ← nil
3: tcache ← nil
4: needToPromptUser ← True
5: for each feature vector fv of a user u generated at time t do
6: h′(fv)← refined prediction from prediction refinement
7: if H(h′(fv)) > π then
8: {Ai, Aj} ← the two most likely activity in the prediction
9: if {Ai, Aj} ≠ cache OR t− tcache >CACHE TTL then
10: cache← ∅
11: needToPromptUser ← True
12: end if
13: if needToPromptUser then
14: Query prompted to user u with uncertainty Ai, Aj

15: Afv ← the user feedback at time tF

16: lastFeedback ← Afv

17: cache← Ai, Aj

18: tcache ← tF

19: needToPromptUser ← False
20: else
21: Afv ← lastFeedback
22: end if
23: Consider the feedback Afv to update the model
24: end if
25: end for
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multi-subject dataset acquisition campaign in a smart-home lab with significant

efforts in making it realistic and diverse. Moreover, the provided annotations are

complete and very accurate. As depicted in Figure 3.3, we equipped the smart-

Figure 3.3: The simulated smart home during the data collection process of
MARBLE

home lab with several environmental sensors: magnetic sensors to detect the

opening and closing events of drawers (e.g., fridge, medicine cabinet), pressure

mat sensors to detect when residents are sitting on chairs/sofa, and plug sensors

to detect the usage of home appliances (e.g., TV, electric cooker). To moni-

tor phone call activities, the residents carried an Android smartphone in their

pockets running a dedicated application to detect starting and ending events of

incoming and outgoing phone calls. The residents were also wearing a smart-

watch4 to collect data from inertial sensors (i.e., accelerometer, gyroscope, and

magnetometer). We also deployed a positioning infrastructure composed of BLE

beacons and WiFi APs. However, since indoor positioning is orthogonal to ADLs

4We used Huawei Sport 2 and other brands with similar features.
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recognition, MARBLE only includes the ground truth about the semantic areas

of each subject within the smart home. More specifically, the smart-home lab

was divided into 6 semantic locations: dining room, hall, kitchen, living room,

medicine area, and office.

MARBLE includes 13 ADLs: answering phone, clearing table, cooking/cooking

a hot meal, eating, getting in/entering home, getting out/leaving home, making

a phone call, preparing/cooking a cold meal, setting up table, taking medicines,

working/using PC, washing dishes, and watching TV. We recruited 12 volunteers

not involved in our research lab. We instructed the volunteers about the sequence

of activities they had to perform, but they were free to execute them in their own

way to increase the dataset variability. Our research team performed the annota-

tions in real time, thanks to cameras. We designed four single-subject scenarios,

three different scenarios involving two subjects concurrently performing both in-

dependent and joint activities, and four different scenarios of ADLs concurrently

performed by four subjects. For instance, Table 3.1 shows one of the 2-subject

scenarios that we designed. In this table, the flow of time is represented vertically,

from top to bottom. Horizontal dashed lines indicate transitions between subse-

quent activities. When subjects collaboratively perform an activity the vertical

line is suppressed. Each designed scenario is identified by a letter followed by the

number of subjects involved during the data acquisition for that scenario.

Each scenario was repeated several times by different volunteers. Overall,

we acquired 12 instances of 4 single-subject scenarios, 10 instances of 3 scenar-

ios involving 2 subjects, and 10 other instances of 4 scenarios with 4 subjects

involved. Table 3.2 shows, for each ADL type, the amount of recorded labeled

data in minutes, and the average duration in seconds, while Table 3.3 shows the

recorded time and the average duration of single-, 2-, and 4-subject scenarios.

Note that, since we had time restrictions for data collection (due to the avail-

ability of volunteers), the execution time of each ADL was limited to a duration

that in some cases does not reflect the actual time a person would need, but

long enough to collect a significant amount of data. For instance, considering

activities like eating or cooking, we asked our volunteers to perform them only

for a few minutes.
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Table 3.1: A scenario involving two subjects

A2
Subject 1 Subject 2

m
o
rn
in
g

set table cook
eat

clear table wash dishes

use pc
watch tv
make call

watch tv
answer call take meds

af
te
rn
o
on

prepare meal
cook

make call
take meds set table

eat
use pc

clear table
make call

leave home

ev
en

in
g

enter home
eat

eat answer call
take meds use pc
make call take meds

watch tv

Table 3.2: Statistics on labeled activities

recorded minutes average duration (s) instances
ANSWERING PHONE 68.6 67.5 61

CLEARING TABLE 38.5 39.9 58
COOKING 80.5 81.9 59
EATING 150.2 28.2 320

ENTERING HOME 19.3 12.2 95
LEAVING HOME 13.7 16.1 51

MAKING PHONE CALL 63.6 53.8 71
PREPARING COLD MEAL 53.0 59.9 53

SETTING UP TABLE 53.9 39.4 82
TAKING MEDICINES 36.3 28.3 77

TRANSITION 276.1 12.9 1282
USING PC 94.1 86.9 65

WASHING DISHES 54.6 48.2 68
WATCHING TV 267.6 90.2 178
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Table 3.3: Statistics on scripted scenarios

type of scenarios recorded minutes average duration (min)

single-subject 307.5 25.6± 4.0
2-subject 315.5 31.5± 7.7
4-subject 84.0 8.4± 1.8

3.5.2 Evaluation methodology

In the following, we describe how we evaluate the recognition rate of MICAR.

Since our semi-supervised activity recognition classifier is incremental, we adopt

a well-known evaluation technique for stream learning algorithms [149]. We pre-

train the classifier using labeled data from 2 subjects that only contributed to

single-subject scenarios. We use the remaining data to evaluate the evolution of

the recognition rate and the number of questions triggered by active learning. We

iterate over each data sample (i.e., feature vector), providing the classifier with

one instance of a scenario at a time. Within a scenario instance, the order of data

samples provided to the classifier reflects the temporal order of data collection.

Each data sample is first classified using the current model. The ground truth

and the classification output are stored for evaluation. Then, we apply the active

learning strategy presented in Section 3.4.7 to determine if the query is needed. If

this is the case, we use the data sample labeled with the ground truth to update

the recognition model and we update the number of triggered questions.

In order to show the evolution of the classifier, we use a sliding window ap-

proach to periodically compute both the overall F1 score and the percentage of

triggered questions. Each window contains 800 data samples, and we consider an

overlap factor of 75%.

In order to achieve statistically robust results, the whole experiment is re-

peated 100 times, averaging the results. Moreover, at each repetition, we also

randomly shuffle the order of the scenario instances that we provide to the clas-

sifier.
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3.5.3 Results

Recognition rate

In the following, we show results about the recognition rate of the sensor-based

activity recognition module of MICAR, including the prediction refinement

step. Figure 3.4 depicts the evolution of the recognition rate using the evaluation

methodology presented above. Thanks to active learning, the recognition rate

quickly converges to high values. Without active learning, the classifier (only

pre-trained using data from 2 users) is never updated, and the F1 score is stable

on low values.

Figure 3.5 compares the recognition rate reached by MICAR with the one

obtained by a supervised version of MICAR (i.e., with full availability of labeled

data and without active learning). We will refer to this approach as Supervised

MICAR.

Figure 3.4: Evolution of the recogni-
tion rate of MICAR

Figure 3.5: MICAR vs a fully super-
vised approach

We computed the F1 score of MICAR by considering the mean of the F1

scores obtained on the last four windows (see Figure 3.4). On the other hand,

we computed the F1 score of Supervised MICAR using a leave-one-scenario-out

cross-validation approach. At each fold, we considered a specific instance of a

scenario as the test set, while the data of all the remaining scenario instances as

the training set. To make our validation robust, we also removed from the training

set: 1) data related to the other instances of the same scenario in the test set,

and 2) data of the subjects in the test set. We observed that the recognition rate
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of MICAR is only ≈ 1% behind the one reached by Supervised MICAR, with the

great advantage of requiring a limited amount of labeled data. In Section 3.5.3

we show results about the number of active learning queries triggered by MICAR.

Figure 3.6 shows the confusion matrix generated by MICAR. Activities like

Figure 3.6: Confusion matrix

watching TV and using PC are recognized with a recall of around 98%. Indeed,

in the MARBLE dataset, these activities are associated with specific semantic

areas and environmental sensors that uniquely characterize them. For example,

watching TV can only be performed in the living room triggering the smart plug

sensor connected to the television.

On the other hand, those activities that are not uniquely characterized by

available high-level semantic data exhibit a lower recognition rate. For example,

the activities that can be performed by standing in the kitchen (e.g., preparing a
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cold meal, setting up the table, and cooking) are often confused between them since

they trigger similar sensors. Nonetheless, cooking still reaches good recognition

rates thanks to the plug sensor that detects the electrical stove usage. Also,

we observed that washing dishes is well-recognized even if it is associated with

high-level semantic information similar to the above-mentioned kitchen-based

activities. This is likely due to the ability of inertial sensor data to capture the

gestures that uniquely characterize the activity. MICAR also confuses getting in

and getting out activities due to their similar patterns. The remaining activities

are well-recognized by MICAR.

Effectiveness of active learning

Besides the recognition rate, a fundamental aspect is the number of questions

triggered by active learning due to its direct impact on user experience. Figure 3.8

shows that the percentage of active learning questions quickly converges to low

values (below 5%) with a decreasing trend (i.e., the system asks fewer and fewer

questions over time).

Figures 3.7 and 3.8 also compare our cache-based approach described in Sec-

tion 3.4.7 with respect to a traditional method that does not use a cache (i.e.,

a query is triggered every time there is an uncertainty). We observed that the

Figure 3.7: Impact of the cache on the
evolution of the recognition rate

Figure 3.8: Impact of the cache on the
evolution of the percentage of active
learning queries

recognition rate of our cache-based method is almost identical to the one reached
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by a traditional approach, while the percentage of questions is dramatically lower.

We also observed that the cache was used by MICAR 66% of the times there was

an uncertainty. This is due to the fact that MICAR updates the classifier with

a batch-based approach. Hence, since the model update is delayed, the classifier

often has the same uncertainty on consecutive feature vectors.

Symbolic data association

Figures 3.9 and 3.10 show the effectiveness of our data association method com-

pared with two alternatives. The first is called naive data association, and it

simply assigns each environmental sensor event to every user in the home, inde-

pendently from high-level semantic data. The second one is called perfect data

association, and it assigns each environmental sensor event to the correct user

by using the ground truth. Clearly, perfect data association is an ideal approach

that cannot be implemented in practice, and we consider it as an upper bound.

Note that, to better highlight the impact of data association, we show the re-

sults that we obtained without prediction refinement. The data association

Figure 3.9: The recognition rate ob-
tained by our data association ap-
proach with respect to a naive solution
and an ideal solution

Figure 3.10: The percentage of ques-
tions obtained by our data association
approach with respect to a naive solu-
tion and an ideal solution

strategy of MICAR significantly outperforms in terms of F1 score the naive data

association approach (+6%). At the same time, our solution is only 2% behind a

77



perfect data association, without requiring any labeled data sample. These results

suggest that our data association approach is accurate. Considering the number

of active learning queries, the data association strategy of MICAR triggers a re-

duced number of queries than the naive data association solution, reaching very

close results to perfect data association.

Prediction refinement

Figures 3.11 and 3.12 show the impact of the prediction refinement module

in refining the classification mistakes. We compare our method with two alterna-

tives: without prediction refinement and context as features. The first is MICAR

without the prediction refinement module. Hence, the classification output

is not refined using high-level semantic information. On the other hand, the

context as features approach considers high-level semantic information as addi-

tional features in the machine learning process, instead of processing them with a

symbolic approach after classification. Our results show that high-level semantic

Figure 3.11: The impact of our predic-
tion refinement approach on the recog-
nition rate

Figure 3.12: The impact of our predic-
tion refinement approach on the per-
centage of questions

data significantly improve the recognition rate. Indeed, the without context ap-

proach reaches the lowest F1 score. Moreover, MICAR outperforms the context

as features solution (+4%). This is due to the fact that ADLs can be performed

in many different context situations. Considering high-level semantic data as fea-
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tures makes the learning task more complex, thus requiring more labeled data.

Moreover, our symbolic approach is more flexible since new context information

can be added dynamically to the ontology, while the machine learning classifier

should be re-trained from scratch if new features need to be considered.

Considering active learning queries, MICAR outperforms both approaches.

Indeed, by discarding the inconsistent activities thanks to the prediction re-

finement module, MICAR often increases its confidence in the remaining ac-

tivities, thus reducing the percentage of triggered questions.

Predictions aggregation

Finally, we quantitatively evaluate the effectiveness of the predictions aggre-

gation module in detecting jointly performed activities. For the sake of this

evaluation, we only considered data from 2− and 4−subject scenarios.
We used the method proposed in Section 3.4.6 to compute group activities

both on the classification output as well as on the ground truth. Figure 3.13

shows a confusion matrix that reveals MICAR’s accuracy in detecting the correct

number of users that are jointly performing an activity. Let ⟨A,U, [ti, tj]⟩ be a

detected group activity where A is the joint activity, U is the set of users jointly

performing A, and [ti, tj] is the time interval of the group activity. Similarly, let

⟨A⋆, U⋆, [tl, tk]⟩ be a ground truth group activity where A⋆ is the joint activity,

U⋆ is the set of users performing A⋆, and [tl, tk] is the time interval of the ground

truth group activity. We compare a predicted group activity and a ground truth

group activity when A = A∗ and [ti, tj] ∩ [tl, tk] ̸= ∅ (i.e., the activity is the

same and they temporally overlap). Hence, in this evaluation, we do not consider

misclassifications, that are already captured by the results reported in Figure 3.6.

We consider a true positive when U = U⋆ (i.e., the set of users is exactly

the same). We consider a false positive when U ⊃ U⋆ (i.e., the predicted group

activity involves a higher number of users w.r.t. the ground truth). Finally, a

false negative occurs when (U ∩ U⋆) ⊂ U⋆ (i.e., only a subset of the users in

the ground truth is actually in the prediction). From the confusion matrix, we

observed that individual activities are sometimes detected as 2-subject activities.

This is probably due to mistakes in data association. For instance, if Alice is
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Figure 3.13: Confusion matrix on the number of users attributed to group activ-
ities

preparing a salad in the kitchen while Bob is cooking pasta in the same room,

the electric cooker event could be mistakenly assigned to both users. Hence,

MICAR could detect that Alice and Bob are cooking together over a certain

interval of time.

Group activities are sometimes detected with a lower number of users com-

pared to the ground truth. This could happen when MICAR performs a miss-

classification for a subset of users in the group. For example, suppose that Alice

washed the dishes from t0 to t3, while Bob was clearing the table in the same

time interval. From t4 to t6 they watched television together. MICAR may cor-

rectly predict Bob’s activity while it may mistakenly detect that Alice washed

the dishes from t0 to t4 and that she started to watch the television with Bob at

t5. In this case, we count a true positive (Alice and Bob watched the television

together from t5 to t6), but also a false negative (Bob individually watched the

television from t4 to t5).

The accurate recognition rate for 4-subject activities is due to the fact that,

in our dataset, only ADLs that are easy to detect (like eating and watching TV)

are performed in this setting.
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3.6 Discussion

3.6.1 Acceptability and privacy issues

MICAR is an ADL recognition system that continuously records the behavior of

the users in their daily lives. Considering the application of our framework for

healthcare applications, it may be perceived as a component of a therapy, hence

it is more likely accepted with respect to other solutions. Moreover, MICAR does

not consider intrusive devices like microphones and cameras. However, the data

collected by MICAR are sensitive, and privacy measures should be considered

in order to manage them. In our vision, the MICAR algorithms should run on

a smart-home gateway and detailed sensor data should not be accessible from

outside. In order to release information to healthcare stakeholders (e.g., clini-

cians), there are several solutions. Among them, aggregated ADLs data can be

outsourced in an encrypted form to a cloud server. By relying on searchable

encryption, it is possible to outsource encrypted data and, at the same time, to

allow clinicians to perform queries on encrypted data [150].

Active learning may also be considered invasive and ethically inappropriate.

Indeed, each query is an interruption to the daily life of a resident. Hence, active

learning queries may not be acceptable if too frequent or if they are prompted

at inappropriate times. While we show that the number of queries generated

by MICAR is low and their frequency decreases quickly, in future work we will

investigate a context-aware strategy in charge of prompting active learning queries

based on the user’s context, interrupting her only when appropriate.

3.6.2 Personalization

Personalization is an important aspect for accurate ADLs recognition [151]. This

is also true for data association. Indeed, we believe that the additional personal

high-level semantic information of the users may further improve data association.

For instance, each user may have specific habits and routines, also depending on

the role in the home (e.g., caregiver, elderly woman, elderly man). For instance, if

the caregiver and an elderly subject are at the same time in the kitchen while the

stove is being turned on, the caregiver is more likely the one triggering this event.
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This high-level information can be considered as the system’s prior knowledge or,

alternatively, it can be automatically derived using pattern mining approaches

that learn typical routines of each subject.

We also believe that the personal agenda of each user may help in providing

hints about data association (e.g., if Alice has a dentist appointment in 20 min-

utes, she is more likely the one who is opening the door to leave home). In future

work, we will investigate how to improve personalization aspects in MICAR.

3.6.3 Need for real-world experiments

A limitation of this work is that experiments are conducted using a public dataset

acquired in a controlled setting. Experiments using real-world datasets are needed

to better assess the effectiveness of our approach. We plan to perform this eval-

uation in the future, in the context of research projects related to healthcare.

Moreover, for the sake of this work, we did not consider the remote control

of smart devices. Considering the specific sensors that we adopted in our ex-

perimental setup, only the smart plugs (controlling the TV and the stove) could

actually be remotely controlled. Indeed, other devices like magnetic and mat

sensors require physical interaction with the subject.

The remote control of smart devices introduces new challenges as we illustrate

in the following example.

Example 3.4 Alice is in the kitchen, while Bob is in the living room. Since Bob

intends to prepare some food in the next few minutes, he decides to remotely turn

on the oven to warm it up while he is still in the living room. MICAR mistakenly

associates the event Turning ON oven to Alice, since she is the one actually in

the kitchen.

We believe that the data association strategy of MICAR can be extended to

consider the remote activation of smart devices. For instance, when a resident

controls a device by using her personal smartphone, the association is straight-

forward (i.e., the smartphone directly identifies the resident). However, smart

devices may be also controlled using voice-based home assistants. In this sce-

nario, a possible solution is to identify the users through the voice captured by

the microphone.
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Note that, considering Example 3.4, when Bob is turning on the oven from

the living room, it is not clear if this event should be actually associated with

him. Indeed, it is not trivial to determine what ADL classes the system should

recognize when events related to remote control of smart devices are detected.

We will investigate this direction in future work.

3.7 Summary

In this chapter, we presented MICAR, a novel framework for multi-subject HAR.

This approach addresses the research question Q1 presented in Section 2.5 by

relying on symbolic reasoning to perform data association without requiring sup-

plementary labeled data, thus mitigating labeled data scarcity. To the best of

our knowledge, MICAR is the first work that combines Neuro-symbolic AI with

semi-supervised learning to mitigate this issue for the recognition of ADLs in

multi-subject smart environments. Our results showed how the symbolic data

association strategy of MICAR allows the system to achieve results compara-

ble with the ones of an ideal approach that performs data association based on

ground truth. Moreover, MICAR reaches similar recognition rates compared to

a fully supervised approach, while requiring significantly lower labeled data and

triggering a limited number of active learning queries. One of the limitations

of MICAR is that the prediction refinement module refines the activity

classifier’s predictions by relying on rigid ontological reasoning procedures that

cannot capture the intrinsic uncertainty of sensor data. For instance, consider

a user who is washing the dishes in the kitchen. MICAR could derive a wrong

user’s posture (e.g., sitting) from the inertial sensor data collected by her smart-

watch. This information is rigidly used to refine the prediction of the activity

classifier, thus incorrectly discarding activities (like washing the dishes) that can-

not be performed while sitting according to the proposed ontology. In the next

two chapters of this thesis, we will investigate other less rigid Neuro-symbolic

approaches for HAR that are based on the Knowledge Infusion paradigm. In

particular, these methods will be investigated in another HAR domain affected

by labeled data scarcity, i.e., the context-aware recognition of low-level activities

on mobile/wearable devices.
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Chapter 4

Knowledge infusion through

symbolic features for

context-aware HAR

4.1 Introduction

In the previous chapter, we have seen how Neuro-Symbolic AI (NeSy) solutions

can be considered, even in combination with semi-supervised learning, to mit-

igate labeled data scarcity in multi-subject HAR. However, data scarcity also

affects other application domains, such as the context-aware recognition of low-

level activities (e.g., walking, running) through mobile and wearable devices. In

this scenario, researchers introduced the use of contextual information about

the users’ surroundings like their semantic location and speed, or current local

weather conditions [22]. This information has the potential to better discrim-

inate activities with similar motion patterns, but executed in different context

scenarios (e.g., sitting and sitting on transport). Unfortunately, it is not feasible

to acquire comprehensive datasets that include every possible context condition

in which activities may be performed by users.

Even in this case, NeSy methods can reduce the amounts of labeled data

required to reliably build a context-aware activity classifier. However, like the

prediction refinement module of MICAR presented in Section 3.4.5, existing
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NeSy solutions for context-aware HAR [1, 23] only consider domain knowledge

to discard from the probability distribution generated by the activity classifier

those activities that are not consistent with the user’s surrounding context. This

could lead to wrong decisions if the knowledge model is incomplete or in the

presence of temporary noisy contextual information. For instance, GPS readings

collected from the user’s smartphone can be momentarily noisy, thus leading to

consider incorrect contextual information about the user. Hence, in these situ-

ations, existing NeSy methods are too rigid and they could improperly discard

wrong activities.

Knowledge Infusion is an emerging NeSy paradigm that may mitigate this prob-

lem since it aims to infuse domain knowledge directly into DL classifiers. In this

way, the model internally learns domain constraints, while handling data uncer-

tainty thanks to its data-driven learning process. In this chapter, we present

a novel Knowledge Infusion method we designed for context-aware HAR. The

features automatically extracted by a DL-based activity classifier from raw sen-

sor data and high-level context data about the user’s surroundings are combined

with the ones inferred through symbolic reasoning. The symbolic features encode

domain knowledge about the activities that are consistent with the surrounding

context of the user and they are infused within the DL model, before its classifi-

cation layer.

In particular, we will present two versions of our method. In the first ver-

sion, symbolic reasoning relies on a standard ontology encoding hard constraints

between context data and activities. For instance, this ontology may represent

running as an activity implying that the user’s current speed is positive. In the

second version, we consider a probabilistic ontology composed of both hard and

soft constraints, i.e., rules associated with a weight. For instance, in this ontol-

ogy, the soft constraint running can be performed indoors has a lower weight than

the soft constraint running can be performed outdoors.

Our results on two publicly available datasets for context-aware HAR indicate

how the use of symbolic features mitigates data scarcity while being more robust

than existing NeSy approaches in the presence of noisy context data. Moreover,

we show how the improvements led by probabilistic ontologies do not justify the
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significant effort required to build them.

The rest of the chapter is organized as follows. Section 4.2 formalizes context-

aware HAR and formulates the NeSy context-aware HAR problem. Section 4.3

introduces our novel knowledge infusion method based on symbolic features. Sec-

tion 4.4 presents the standard and the probabilistic ontologies we used as knowl-

edge models, as well as their knowledge-based reasoning engines. Finally, Section

4.5 describes the experimental evaluation and the results obtained on two pub-

licly available datasets for context-aware HAR, while Section 4.6 discusses the

main limitations of the proposed method.

4.2 Preliminaries

In this section, we formalize context-aware HAR and we formulate the NeSy

Context-Aware HAR problem. Moreover, we take advantage of this formalization

to re-formulate existing NeSy strategies for Context-Aware HAR.

4.2.1 Context-Aware Human Activity Recognition

Let Du be the dataset of raw sensor data collected from the mobile devices (e.g.,

smartphone, smartwatch) of a user u. Given a set of users U = {u1, . . . , un}, let
D⋆ = {Du1 , . . . , Dun} be the set of datasets of all the users. Let A = {a1, . . . , ak}
be the set of considered activities. The dataset D⋆ is associated with a set of

annotations L that describes the activities performed by each user u. Each anno-

tation λ ∈ L is a tuple λ = ⟨u, a, ts, te⟩ where a is a label identifying the activity

actually performed by u during the time interval [ts, te]. Each user dataset Du is

partitioned in a set of non-overlapping fixed-length windows Wu = {w1, . . . , wq}
with each window including z seconds of consecutive raw sensor data of Du.

In this work, we use the notion of context as a specific high-level situation

that occurs in the environment surrounding and including the user while sensor

data are being acquired (e.g., it is raining, location is a park, current speed is

high). Let C = ⟨C1, . . . , Cp⟩ be a set of possible contexts that are meaningful for

the application domain.
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For each window w of raw data we identify two subsets wR and wC . The subset

wC includes raw sensor data that we consider useful to derive high-level contexts

in C through reasoning and/or abstraction, while wR includes raw data that we

consider appropriate to be directly processed by a data-driven model (e.g., data

from inertial sensors). Note that these subsets can have a non-empty intersection

and their union is the whole w. The composition of wR and wC strictly depends on

the target application, the available data, the knowledge model, and the available

external services to obtain high-level context information.

Considering, for example, location data, it may be appropriate to exclude raw

GPS coordinates from wR and use it to obtain semantic location or other higher-

level location information that can be more easily correlated with activities. On

the other hand, leaving raw GPS data in wR may not lead to a better model (it

may be difficult to find correlations with activities and even when found, it may

be difficult for the model to generalize).

Given wC , let ca(wC) be a function named context aggregator that de-

rives all the contexts Cw ⊂ C that are true during w based on wC . This function

can rely on simple rules, available services, or context-aware middlewares [14].

For instance, the geographical coordinates provided by the location service of the

user’s smartphone can be used to derive her semantic location (e.g., at home, in

a public park) by querying a dedicated web service.

Definition 1 (Context-aware HAR) Given a dataset D⋆ and the annotations

set L, the problem of context-aware Human Activity Recognition is to provide to

an unseen tuple ⟨wR, Cw⟩, derived from a sensor data window w from user u,

the probability distribution P = ⟨p1, . . . , pk⟩, where pi is the probability that u

performed the activity ai in contexts Cw, with
∑k

i=1 pi = 1.

4.2.2 Neuro-Symbolic Context-aware HAR

The context-aware HAR problem could be tackled by using purely data-driven

models where context data are simply used as input. However, a more effective

approach combines data-driven models with a knowledge model K that, based

on a set of contexts C, encodes relationships between the activities in A and the

contexts in C. For instance, according to common-sense knowledge, the activity
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cooking is usually performed in a kitchen or, anyway, in a room equipped with

a cooker, microwave, or oven. This relationship between the activity and the

typical environment in which it is performed can be used in the HAR process,

thus reducing the amount of labeled data required to learn it.

Note that K can be built in several different ways: by domain experts us-

ing common-sense knowledge on HAR, re-using existing knowledge bases (e.g.,

ontologies), or considering semi-automatic approaches in charge of extracting

knowledge from external sources (e.g., text, images, and videos from the web).

In any case, building a comprehensive and robust knowledge model is a challeng-

ing task. Even the knowledge of a domain expert is limited and is not guaran-

teed to capture all the possible context situations in which an activity can be

performed [152].

Even though knowledge models cannot capture all the possible scenarios, our

experiments will show their advantages in mitigating data scarcity when properly

combined with data-driven methods. Indeed, in addition to the available training

data, common-sense knowledge has the potential to capture constraints/patterns

that are not learnable because of insufficient data. While there may be cases in

which some rigid constraints would wrongly indicate the inconsistency between a

context and an activity due to incompleteness, the knowledge model is supposed

to model most of the usual context situations, and it can be refined and extended.

Hence, we expect these cases to be rare. Also note that knowledge representation

frameworks, like ontologies, have an open-world assumption. Hence, if reasoning

cannot find an explicit inconsistency between a given context and an activity,

their relationship is considered consistent.

Formally, given a knowledge modelK and a set of contexts Cw, let SR(K,Cw)

be a function named symbolic reasoner that outputs, for each activity ai, a

likelihood value l(ai) (a value between 0 and 1) of ai being consistent with the

observed context Cw according to the constraints in K. Note that the majority

of symbolic representation and reasoning approaches, including most ontologies,

are based on formal logics that do not support uncertainty. In these cases SR()

will associate the value 1 to each ai that is consistent with the observed context

Cw according to the constraints in K, and the value 0 otherwise.
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Definition 2 (Neuro-Symbolic Context-Aware HAR model) A Neuro-Symbolic

Context-Aware Human Activity Recognition model combines a deep learning model

DNN and the symbolic reasoner function SR() to solve the context-aware HAR

problem.

This very general definition is intended to capture in a single category ap-

proaches that combine in different ways the DNN and the SR() modules as

we will describe in Sections 4.2.3 and 4.3. Figure 4.1 graphically illustrates the

high-level architecture of NeSy Context-Aware HAR shared by these approaches.

Figure 4.1: The neuro-symbolic context-aware HAR approach
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4.2.3 Formalization of existing Neuro-Symbolic approaches

In this section, we re-formulate existing Neuro-Symbolic AI (NeSy) approaches

with the notation introduced in sections 4.2.1 and 4.2.2 to compare them with

our novel NeSy approach in an appropriate way. In particular, we consider the

state-of-the-art approach for NeSy HAR, which is named context refinement [1].

Note that context refinement is the approach that inspired the prediction re-

finement module of MICAR presented in Chapter 3.

The goal of the context refinement method is to a posteriori review the DNN

predictions using the HAR knowledge encoded in K. As shown in Figure 4.2,

the DNN is trained with the cross-entropy loss function Lcross, which penalizes

misclassifications on the training data. During classification, the output of the

SR() function is used to refine the probability distribution derived by DNN on

a specific input. Intuitively, the likelihood values obtained by SR() are used to

reduce the probability of those activities that are less likely to be the correct

predictions considering the current user’s context.

Figure 4.2: The context refinement neuro-symbolic approach [1]. In this example,
two activities are excluded from the probability distribution since their likelihood,
according to the Symbolic Reasoner module, is 0.

More formally, given a probability distribution P = ⟨p1, . . . , pk⟩ emitted by
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DNN on a tuple ⟨wR, Cw⟩, and the likelihoods values provided by SR(K,Cw),

for each candidate activity ai with i = 1, . . . , k we compute pi ∗ l(ai) and then

normalize in order to obtain a knowledge-refined probability distribution.

Note that when symbolic reasoning is based on a standard ontology, l(ai) is

a binary value and the above operation is equivalent to excluding some of the

activities from the candidates and normalizing.

The objective of context refinement is to correct wrong decisions made by

DNN , thus increasing its recognition rate. At the same time, it ensures that

each classified activity is consistent with the surrounding context of the user.

A drawback of this approach is that most ontology-based reasoning may encode

rigid constraints about the relationships between contexts and activities, resulting

in context refinement discarding activities that are occasionally performed in

unusual context scenarios (e.g., the knowledge engineer may explicitly exclude

that the activity running can be performed at the mall, as a semantic place).

In the following, we report a simplified running example of the context-

refinement approach:

Example 4.1 Consider an activity classifier trained offline in a supervised fash-

ion by a service provider using a labeled dataset. After training, the classifier

and a symbolic reasoner based on a standard ontology are deployed on Alice’s

smartphone to recognize her activities in real time. Suppose that Alice is sitting,

and the smartphone collects a window ⟨wR, Cw⟩ of raw sensor data and high-level

context data during the execution of this activity. Given this window, the classi-

fier outputs the following probability distribution: Walking: 50%, Sitting: 30%,

Standing: 15%, Running: 5%. We observe that the most likely activity is walk-

ing, which is not correct according to the ground truth. The high-level context Cw

encodes the information that Alice’s current speed is 0. By processing Cw, the

symbolic reasoner infers that the likelihood of Walking and Running is 0 (since

they can not be performed with null speed), while the likelihood of the other activ-

ities is 1. By multiplying each probability value with the corresponding likelihood

and normalizing the resulting values, a new probability distribution is obtained:

Sitting: 67%, Standing: 33%, Walking: 0%, Running: 0%. After refining the

probability distribution, the most likely activity is sitting which corresponds with
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the actual activity performed by Alice.

4.3 Knowledge infusion through symbolic fea-

tures

The concept of introducing a knowledge infusion layer in a DNN was originally

proposed in [53]. The objective of the symbolic features is to directly incorporate

the knowledge encoded in K into DNN , not only at the inference phase but

also during the learning process. Hence, the symbolic features method allows the

DNN also to learn the correlations between input data and context-consistent

activities. Compared to context refinement, this approach is more robust to

noisy input data or to an incomplete knowledge model since domain constraints

are directly learned by the DL model, while data uncertainty is handled thanks

to its data-driven learning process.

As depicted in Figure 4.3, the information about the context-consistency of

Figure 4.3: The symbolic features neuro-symbolic approach

activities provided by SR() is used to generate symbolic features that are infused
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within the hidden layers of DNN through a dedicated layer named knowledge

infusion layer. More formally, given an input tuple ⟨wR, Cw⟩, and the likelihood

values provided by SR(K,Cw), the symbolic features consist of a vector fs in

which the i-th element is l(ai). Similarly to context refinement, please note that

if symbolic reasoning is not probabilistic fs is a binary vector. Section 4.4 will

present the two alternative ontologies (i.e., a standard and a probabilistic) that

we considered to realize the symbolic reasoner module.

Given the sequence of DNN ’s layers ℓ1, . . . , ℓm, and the symbolic features fs

generated through SR(), the symbolic features method adds toDNN a knowledge

infusion layer ℓki. This layer receives as input the symbolic features fs and the

features automatically extracted by a DNN ’s hidden layer ℓj with 1 < j < m.

Then ℓki concatenates in the latent space the features received as input and

generates a novel feature vector that is provided to the next layer ℓj+1. Also in

this case, the DNN is trained through the cross-entropy loss function Lcross.

This methodology is less rigid than context refinement in excluding some

activities based on knowledge consistency since domain knowledge is infused into

the data-driven model instead of just being used afterward, to modify the result

of the neural network.

In the following, we report a simplified running example of the symbolic fea-

tures approach:

Example 4.2 A service provider trains, in a supervised way, an activity classi-

fier using a labeled dataset and a symbolic reasoner based on a standard ontology.

For each window ⟨wR, Cw⟩, the symbolic reasoner analyzes Cw to obtain the like-

lihood values for each activity, that are used to generate symbolic features. For

instance, when Cw includes home as semantic location, the symbolic feature cor-

responding to the driving activity is 0. The model is trained by providing windows

of raw sensor data and high-level context data in the input layer, while symbolic

features are given to the knowledge infusion layer. After training, the classifier

and the reasoner are deployed on Alice’s smartphone to recognize her activities

in real time. Suppose that Alice is sitting, and the smartphone collects a window

⟨wR, Cw⟩ of raw sensor data and high-level context data during the execution of

this activity. The high-level context Cw encodes the information that Alice’s cur-
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rent speed is 0. By processing Cw, the symbolic reasoner generates a symbolic

feature vector, where Walking and Running have value 0 (since they can not be

performed with null speed), while the remaining activities have value 1. In order

to perform classification, the window ⟨wR, Cw⟩ is provided to the input layer, and

the symbolic feature vector is provided to the knowledge infusion layer. Thanks to

the information encoded in the symbolic features, the classifier will assign a lower

probability value to Walking and Running, since it has learned during training

that these activities are inconsistent according to the symbolic features.

4.4 Ontological models

The symbolic reasoner is in charge of inferring the symbolic features that

will be infused within the DL classifier during both training and inference. To

achieve this goal, this module relies on a knowledge model (i.e., an ontology in

our implementation) that encodes the relationships between context information

and activities.

Ontologies are currently the most widely used formalism to represent and

reason about common knowledge and context data [45]. Compared to simple

rules, the ontology representation that we adopt has the advantage of enabling

hierarchical and relational reasoning; for example, the relationship between a

location context (e.g., a public park) and an activity class (e.g., static physical

activities) is inherited by more specialized activities in a subclass (e.g., sitting,

standing). This means that the ontology captures implicit rules and enables

reasoning based on rule chaining. Ontologies adopt an open-world assumption,

hence if a relationship or fact cannot be derived as false it may be true. However,

note that some strict constraints can be formulated, for example stating that

the activity sitting on transport can only take place while the user is following a

public transportation route. Hence, if location context data reveals that the user

is not following one of these routes, that activity is considered inconsistent.

Periodically, high-level context data are automatically translated into onto-

logical facts, which are then added to the ontology as a description of the current

surrounding context of the user. Hence, the symbolic reasoner uses the ontol-

ogy to infer, for each activity, a likelihood value about its consistency with respect
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to the observed context. In particular, in this thesis, we considered two different

ontologies: a standard ontology described in Section 4.4.2, and a probabilistic

ontology presented in Section 4.4.3.

4.4.1 Translating context data into ontological facts

The high-level context data provided by the context aggregator are auto-

matically mapped to ontological concepts by a specifically designed middleware.

This encodes the necessary rules to transform high-level context data into high-

level axioms. Most of the context data we considered have a one-to-one mapping

with ontological entities. For instance, the user’s semantic location obtained from

public web services is automatically mapped to the corresponding ontological fact.

On the other hand, raw context data available as scalar values are discretized

by the context aggregator. For instance, each user’s speed value is mapped

to one of the following ontological concepts: NullSpeed, LowSpeed, Medium-

Speed, and HighSpeed. The rules used to discretize scalar values rely on ranges

of values designed by knowledge engineers (e.g., speed values greater than 0 km/h

and lower than 4 km/h are mapped to LowSpeed).

4.4.2 Standard ontology

The standard ontology we considered in this thesis is an extension of the one

proposed in the paper where context refinement was introduced [1]. We took ad-

vantage of the Protégé tool1 to extend this ontology to better cover the taxonomy

of activities and their relationship with context data for the datasets that we will

describe in Section 4.5.1.

Standard ontology modeling

Our standard ontology considers several sources of context data: user’s semantic

place, user’s presence in an indoor or outdoor setting, user’s speed, user’s prox-

imity to public transportation stops and routes, user’s height variations, local

weather conditions, and temporal context (e.g., time of the day and day of the

1https://protege.stanford.edu/
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week). Figure 4.4a shows a portion of the context information modeled in our

standard ontology, while Figure 4.4b focuses on the set of considered semantic

locations.

(a) An excerpt of the context
hierarchy of our standard ontol-
ogy

(b) An excerpt of the symbolic loca-
tions hierarchy of our standard on-
tology

Figure 4.4: Excerpts of our standard ontology

Due to the intrinsic open-world assumption of ontologies, we explicitly state

the necessary conditions that make activities possible or not possible in a given

context. As we will explain later, such constraints are necessary to enable the

generation of symbolic features that are based on consistency reasoning. For in-

stance, as shown in Figure 4.5a, the activity taking stairs (or going stairs) should

take place when the user experiences a positive or negative height variation. An-

other example is the activity moving by car (Figure 4.5b): our standard ontology

enforces that it should take place when the user’s speed is positive.
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(a) Definition of the activity taking stairs
(or going stairs)

(b) Definition of the activity moving by car

Figure 4.5: Examples of activity definitions in our ontology

Standard symbolic reasoning

Considering a standard ontology, we use the ontology consistency checking as the

symbolic reasoner function SR() defined in our formalization. In particular, for

each activity, we evaluate if it is consistent considering the available context data.

For instance, the activity running is consistent only when the user is experiencing

a positive speed. Context-consistent activities are associated with 1 as likelihood,

while context-inconsistent activities are associated with 0.

To check whether an activity ai is context-consistent, our method adds to

the terminological part of the ontology an axiom representing an instance of

Person which identifies the user. Then, available context data are represented

as ontological concepts, as explained in Section 4.4.1. Hence, we add an axiom

stating that the user is performing the activity ai. Finally, we rely on ontological

reasoning (using the Pellet reasoner [153]) to check if ai is consistent with the

user’s context.

Example 4.3 Alice is using our system based on a standard ontology. When the

ontological reasoning task is triggered, Person(Alice) is added as a fact. Then,

context data are analyzed to expand the set of facts. Suppose that by interacting

with a web service, the context aggregator module derives that Alice is in a

park and that her current speed as obtained by the GPS of her smartphone is 10
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km/h. This context information is used to automatically instantiate the follow-

ing individuals in the ontology: Park(place) and MediumSpeed(speed). Then,

the following relationships between Alice and context data are added as facts:

hasCurrentSymbolicLocation(Alice, place) and hasCurrentSpeed(Alice,

speed). Finally, to check if the activity running is context-consistent, our sys-

tem adds the following axioms: Running(currentActivity) and

isPerforming(Alice, currentActivity). The consistency of this set of facts

with the domain constraints encoded in the standard ontology will determine if

running is consistent according to the current surrounding context of Alice.

4.4.3 Probabilistic ontology

Since our definition of symbolic reasoning on the knowledge model admits also

fuzzy or probabilistic methods, in this thesis, we also consider a probabilistic

ontology based on log-linear description logics [154]. In particular, we slightly

extended the knowledge model proposed in [64], which is an extension of the

model originally proposed in [1].

Probabilistic ontology modeling

Our probabilistic ontology combines hard constraints (i.e., rigid rules that are

always true) and soft constraints (i.e., rules associated with weights) to model

relationships between contexts and activities. Hard constraints capture context

conditions that should always be satisfied to consider a given activity as possible.

An example of a hard constraint is running implies a user positive speed. On

the other hand, soft constraints capture context conditions that can occur when

an activity is performed, but they are not required to be always verified. This

behavior can be obtained by associating a certain degree of confidence with the

ontological axiom. For instance, the soft constraint running can be performed

indoors has a lower weight than the soft constraint running can be performed

outdoors. Intuitively, the weight associated with a soft constraint expresses a

degree of compatibility between an activity and a specific context information.
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Axioms’ weights In log-linear description logics, the weight associated with

a soft axiom takes values in R. We associated with each axiom a probability

weight pw ∈ [0, 1] based on common-sense knowledge about HAR. For instance,

we associated the weight 0.1 to the soft axiom running can be performed indoors,

while 0.9 to the soft axiom running can be performed outdoors.

In order to approximate probability values for a log-linear model, as proposed

in other works [155], we use the logit function to map each weight pw to a real

number as follows:

logit (pw) = log (pw)− log (1− pw) = log

(
pw

1− pw

)
Note that logit is not defined at 0 and at 1. When pw = 1 or pw = 0 we consider

the axiom as a hard constraint. In the former case, it is a context condition that

is always required for the corresponding activity; in the latter case, it is a context

condition that should never occur.

Probabilistic symbolic reasoning

Once the probabilistic ontology has been extended with facts about the current

surrounding context of the user, we rely on the probabilistic reasoner ELOG [156]

to derive the consistency likelihood l(ai) of each activity ai according to the hard

and soft constraints included in the ontology. To build the symbolic features

vector infused into the DL-based activity classifier, we mapped l(ai) to [0, 1] in

order to be consistent with the formalization presented in Section 4.2.

4.5 Experimental evaluation

In this section, we describe the experimental evaluation that we carried out to as-

sess the quality of our method based on symbolic features compared to a baseline

and the state-of-the-art NeSy approach introduced in Section 4.2 (i.e., context

refinement). First, we introduce the two datasets that we considered for the

evaluation. Then we describe our experimental setup: how we pre-processed the

datasets, the models used and the evaluation methodology adopted. Finally, we

present the results of our evaluation.
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4.5.1 Datasets

The evaluation of context-aware HAR approaches requires datasets including

both inertial sensor data and contextual information. However, there are a few

publicly available datasets with such characteristics. Existing NeSy approaches

for context-aware HAR have been evaluated only on scripted and non-public

datasets [1]. In this thesis, we consider a scripted dataset that we collected and

published in a parallel work and a publicly available in-the-wild dataset, both

including sensor and context data.

DOMINO

DOMINO [24] is a HAR dataset we collected and recently published as parallel

research in our research lab. DOMINO includes several context-dependent activi-

ties monitored through mobile devices that collected both inertial sensor data and

high-level context data. In particular, DOMINO includes data from 25 subjects

wearing a smartwatch on their dominant hand’s wrist and a smartphone in their

pocket. Raw sensor data have been collected from the inertial sensors (accelerom-

eter, gyroscope, and magnetometer) installed on both these mobile devices. At

the same time, the dataset also includes high-level context data collected by

combining public web services and the smartphone’s built-in sensors. The mea-

surements of the barometer and the GPS of the smartphone were discretized to

provide information about the users’ height and speed variations. Moreover, the

dataset incorporates the output of the following web services: (1) Google’s Places

API provided the semantic places closest to the user; from this information, it was

also derived the presence of the user in an indoor or an outdoor environment; (2)

OpenWeatherMap provided current local weather conditions (e.g., sunny), while

(3) Transitland provided transportation routes and stops close to the user; the

combination of this information with location data was used to derive whether

the user was following a public transportation route. DOMINO was acquired

in a scripted fashion: the volunteers were asked to perform a sequence of in-

door/outdoor activities, but they were not told how to execute them. Also, the

volunteers were monitored by the research staff during data acquisition. As a

consequence, the variability of context situations is limited. Overall, DOMINO
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contains almost 9 hours of labeled data (≈ 350 activities instances), including 14

different types of activities: brushing teeth, cycling, elevator down, elevator up,

lying, moving by car, running, sitting, sitting on transport, stairs down, stairs up,

standing, standing on transport, and walking.

ExtraSensory

ExtraSensory [15] is a public dataset for context and activity recognition. It in-

cludes inertial and context data collected in the wild from mobile devices of up

to 60 users. Inertial data were collected through each user’s personal smartphone

(including both iOS and Android devices) and from a smartwatch provided by

the researchers. More specifically, the dataset includes raw data measured by

the accelerometer, the gyroscope, and the magnetometer of the smartphone, and

raw data collected by the accelerometer of the smartwatch. Besides providing

raw sensor data, ExtraSensory also provides data as handcrafted feature vectors

(138 features) extracted from the raw measurements collected through inertial

and other smartphone sensors (e.g., microphone, luminosity sensor) in 20-second

time windows. Overall, ExtraSensory contains about 300k minutes of labeled

data, including 51 different labels self-reported by the users and encoding both

high-level context information (e.g., at home, with friends, phone in bag, phone

is charging) and performed activities (e.g., sitting, bicycling). Since it has been

collected in the wild, different research groups in the HAR community used Ex-

traSensory to assess the generalization capabilities of activity recognition frame-

works in real-world scenarios [157, 158]. Due to the complexity of the dataset,

existing HAR methods evaluated on ExtraSensory achieved low recognition rates.

For instance, by considering as input the raw inertial measurements provided by

the accelerometer and the gyroscope of the smartphones, the CNN-based method

proposed in [157] reached an average macro F1 score of ≈ 0.53, only considering

4 target activity classes: idle (lying or sitting), walking, running, and cycling. In

another work, by considering the handcrafted features of ExtraSensory, an Ad-

aBoost classifier reaches ≈ 0.63 of average macro F1 score on 5 target activities

(i.e., walking, standing, sitting, exercise, and sleeping) [158]. Hence, this dataset

represents a challenging benchmark.
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4.5.2 Experimental setup

In the following, we describe our experimental setup.

Data pre-processing

Consistently with existing works proposing NeSy approaches for Context-Aware

HAR [1], for both datasets, we segmented sensor data into non-overlapping win-

dows of k = 4 seconds. For each raw data window w, we considered in the subset

wR only the data from inertial sensors, while part of the rest of the data would

be much more helpful in its aggregated high-level form (Cw).

In the following, we describe the specific pre-processing steps we adopted for

each dataset.

DOMINO Considering DOMINO, we planned to recognize all the 14 different

available activities, by considering the raw inertial measurements collected by the

accelerometer and the gyroscope of the smartphone and the smartwatch. More-

over, in our experiments, we considered 6 different context information types: the

presence of the user in indoor/outdoor locations, her semantic place (e.g., home,

workplace, gym, bar), her discretized speed (i.e., null, low, medium, high), her

proximity to public transportation routes, her discretized height variation (i.e.,

negative, null, positive), and the weather conditions (e.g., sunny, rainy). Ta-

ble 4.1 shows the number of samples involved during our experiments for each

activity class of DOMINO.

ExtraSensory Considering ExtraSensory, we planned to recognize 7 different

activities: bicycling, lying down, moving by car, on transport, sitting, standing,

and walking. Specifically, for the activity class walking we consider those samples

labeled as walking and/or strolling in the original dataset. For moving by car,

we consider samples labeled with in a car, car driver, and/or car passenger, even

when coupled with the label sitting. Finally, we labeled as on transport those

samples originally labeled with sitting or standing coupled with the label on a

bus.
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Table 4.1: Number of samples for each activity class in DOMINO

Activity Number of samples

Brushing teeth 163

Cycling 323

Elevator down 171

Elevator up 110

Lying 387

Moving by car 188

Running 334

Sitting 1764

Sitting on transport 213

Stairs down 266

Stairs up 187

Standing 1875

Standing on transport 297

Walking 1378

Total 7656
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Table 4.2: Number of samples for each activity class in ExtraSensory

Activity Number of samples

Bicycling 2920

Lying down 3055

Moving by car 2150

On transport 610

Sitting 23905

Standing 14280

Walking 11230

Total 58150

Before conducting our experiments, we performed some steps of data clean-

ing. First of all, we considered only those samples including inertial measure-

ments recorded from the accelerometer and the gyroscope of the smartphone and

from the accelerometer of the smartwatch. Indeed, for some users of ExtraSen-

sory, gyroscope data from smartphones are not available. Moreover, not all of

the dataset’s users wore the smartwatch during data collection. Then, based

on the available self-reported labels, we discarded the data collected while the

smartphone’s user was in a bag, or on a table. Indeed, we considered only phone

positions that have been commonly considered in the literature (i.e., in the pocket

and in hand). Finally, since the labels of ExtraSensory were self-reported by the

users involved in the data collection, we discarded samples that we considered

unreliable, due to the fact that they included self-reported labels not consistent

with the recorded data. For instance, we discard segmentation windows includ-

ing positive speed values but labeled with static physical activities like lying. As

another example, we discarded those samples simultaneously labeled with in a

car and at home. Table 4.2 shows the number of samples for each activity class

of ExtraSensory after data cleaning. Note that, after our data cleaning process,

we considered data overall from 31 subjects.

As inertial sensor data, we considered the raw data measured from the ac-

celerometer and the gyroscope of the smartphone and from the accelerometer of

the smartwatch.
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Regarding context data, we considered the ones that can be easily derived

from sensors of mobile/wearable devices. For instance, we considered the in-

formation about the user’s semantic place (e.g., at the beach) since it could be

derived by combining localization data and external web services, but not the

position of the user’s smartphone (i.e., in the pocket, in hand). In some cases, we

discretized available information: for instance, the speed values observed thanks

to the GPS were discretized into null/low/medium/high speed. Other high-level

context information was obtained by directly considering available data, like au-

dio level, light level, screen brightness, battery plugged AC/USB, battery charging,

on the phone, ringer mode normal/silent/vibrate, and the time of the day (e.g.,

Time 0-6, Time 18-24 ). Moreover, we relied on the self-reported label on a bus,

assuming that similar information could be derived by combining GPS data and

web services like Transitland, as we did in DOMINO. Finally, we considered the

semantic locations self-reported by the subjects (i.e., home, workplace, school,

gym, restaurant, shopping, bar, beach). As already mentioned, semantic location

information can be derived, for instance, by combining location coordinates data

with Google’s Places API.

DNN’s architecture

The DNN we used for our experiments receives as input three separate inputs

for each segmentation window: a) the smartphone’s inertial sensors data, b) the

smartwatch’s inertial sensors data, and c) the one-hot encoded high-level context

data2.

Similarly to existing works, we rely on convolutional neural networks to cap-

ture spatio-temporal dependencies of sensor data [159, 160, 161, 162]. Even

though more sophisticated networks have been proposed in the literature, in

this work we use a simple solution to focus on the contribution of knowledge.

The exact structure of our own CNN model has been determined empirically.

Specifically, inertial sensors’ data from the smartphone are processed by three

convolutional layers composed of 32, 64, and 96 filters with a kernel size equal to

2Note that, we did not include raw context data as input since it is intuitively easier to
learn correlations between activities and high-level context (e.g., semantic place) rather than
between activities and raw context (e.g., geographical coordinates).
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24, 16, and 8, respectively. These layers are separated by max pooling layers with

a pool size of 4. After the three convolutional layers, we add a global max pooling

layer, followed by a fully connected layer that includes 128 neurons. The smart-

watch inertial sensors’ data are provided to another component of DNN that

presents the same sequence of layers used to automatically extract features from

the smartphone’s inertial data. The only difference is that, in this case, the three

convolutional layers present a kernel size of 16, 8, and 4, respectively. Finally,

the high-level context data is provided to a single fully connected layer composed

of 8 neurons. The features extracted by these three independent flows are then

combined thanks to a concatenation layer, which is followed by a dropout layer

with a dropout rate of 0.1, and a fully connected layer with 256 neurons, useful

to extract meaningful correlations between the concatenated features. The last

layer of the network is a softmax layer that is in charge of providing a probability

distribution over the possible activities.

In our experiments, we use this DNN architecture in three different ways:

• As a purely data-driven baseline, without further modifications

• Enhanced by combining in the concatenation layer the symbolic features

and the features automatically extracted from input data (see Section 4.3)

• As the DNN module of the context refinement approach (see Section 4.2.3)

Cross-validation

We evaluated the approaches presented in Sections 4.2.3 and 4.3 by adopting the

leave-k-users-out cross-validation technique. At each fold, k users are used to

populate the test set, while the remaining users are used to populate training

(90%) and validation (10%) sets. We also simulated several data scarcity scenar-

ios by downsampling the available training data at each fold (e.g., 1%, 50%).

Considering the DOMINO dataset, we considered k = 1 (leave-one-user-out

cross-validation). On the other hand, as also done by other works in the litera-

ture [157], for the ExtraSensory dataset we choose k = 5. At each iteration, we

used the test set to evaluate the recognition rate of the different approaches in

terms of the F1 score.
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For the sake of robustness, we run each experiment 5 times, computing the

average F1 score and the 95% confidence interval. Overall, the training process

was based on a maximum of 200 epochs and a batch size of 32 samples. We

considered an early stopping strategy, stopping the learning process when the

loss computed on the validation set did not improve for 5 consecutive epochs.

4.5.3 Results

In the following, we show how our symbolic features approach outperforms a

purely data-driven classifier in terms of recognition rate both in scripted and

in-the-wild scenarios. We also compare our method with the context refinement

approach presented in Section 4.2.3. Although our method seems inferior to

context refinement in data-scarce scenarios, it is a more robust neuro-symbolic

solution in the presence of noisy context data.

Our main results consider the standard ontology presented in Section 4.4.2

as the knowledge model since it is a widely used knowledge and context repre-

sentation framework. The results using the probabilistic ontology introduced in

Section 4.4.3 are presented in Section 4.5.3.

Comparison with other approaches

Tables 4.3 and 4.4 compare our symbolic features method with: i) the purely

data-driven baseline, and ii) the context refinement strategy. More specifically,

we considered different percentages of available training data for each dataset,

thus comparing the approaches in different data scarcity scenarios.

Overall, on each dataset, the NeSy approaches outperform the baseline, con-

sidering all the data scarcity scenarios. This result suggests that traditional

symbolic AI approaches have the potential to enhance the predicting capabilities

of purely data-driven deep learning models.

Focusing on the scripted scenarios of DOMINO (Table 4.3), when the avail-

ability of labeled data is drastically low, symbolic features is worse than context

refinement (≈ +13% against ≈ +23%). These performance differences become

progressively smaller while increasing training data availability. Indeed, from 30%

of training data, symbolic features and context refinement reach similar results.
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Table 4.3: DOMINO: Results in terms of macro F1 score and 95% confidence
interval

Training set
percentage

Baseline
Symbolic
features

Context
refinement

10%
0.5946

(±0.008)
0.7268

(±0.008)
0.8192
(±0.009)

20%
0.7529

(±0.010)
0.8590

(±0.012)
0.8811
(±0.007)

30%
0.8268

(±0.006)
0.9107
(±0.011)

0.9078
(±0.009)

40%
0.8556

(±0.011)
0.9152

(±0.009)
0.9178
(±0.005)

50%
0.8835

(±0.011)
0.9198

(±0.011)
0.9281
(±0.012)

60%
0.8917

(±0.010)
0.9237

(±0.009)
0.9305
(±0.006)

70%
0.8915

(±0.006)
0.9265
(±0.004)

0.9225
(±0.004)

80%
0.9007

(±0.007)
0.9254

(±0.008)
0.9274
(±0.005)

90%
0.8965

(±0.002)
0.9277
(±0.007)

0.9232
(±0.002)

100% 0.9024 0.9408 0.9221
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Table 4.4: ExtraSensory: Results in terms of macro F1 score and 95% confidence
interval

Training set
percentage

Baseline
Symbolic
features

Context
refinement

1%
0.3127

(±0.023)
0.3418

(±0.010)
0.6324
(±0.014)

2.5%
0.4279

(±0.008)
0.4720

(±0.016)
0.6540
(±0.003)

5%
0.4867

(±0.013)
0.5877

(±0.025)
0.6797
(±0.003)

7.5%
0.5167

(±0.016)
0.6359

(±0.008)
0.6656
(±0.004)

10%
0.5199

(±0.011)
0.6534

(±0.012)
0.6622
(±0.007)

25%
0.5842

(±0.016)
0.6404

(±0.010)
0.6483
(±0.010)

50%
0.6096

(±0.007)
0.6216

(±0.007)
0.6258
(±0.007)

75%
0.5813

(±0.032)
0.6268
(±0.007)

0.6067
(±0.023)

100% 0.6053 0.6205 0.6190
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In particular, when all the available training data are considered (i.e., 100%),

symbolic features outperforms context refinement by ≈ +2%.

Similar insights are observed when focusing on the realistic scenarios of Ex-

traSensory (Table 4.4). Here, from 7.5% of training data, symbolic features and

context refinement reach similar recognition rates. Note that, due to the complex-

ity of the dataset, we achieved relatively low recognition rates on ExtraSensory

(e.g., the max F1 score is ≈ 0.68). As described in Section 4.5.1, our results are

in line with other works on the same dataset [157, 158].

Although context refinement seems better than symbolic features, in the next

section we will see how our method is a less rigid solution that is more robust

in the presence of noisy context data. Moreover, as we will discuss in Section

5.4, knowledge infusion methods like symbolic features seem to increase the in-

terpretability of deep learning activity classifiers.

Robustness to noise

In order to show that our symbolic features method is more robust to uncertainty

than context refinement even considering a standard ontology, we performed an-

other set of experiments by introducing noise in the test data. In particular, we

performed different experiments considering 5%, 10%, and 15% of noisy data in

the test set. More specifically, for each perturbed data sample, we modified the

semantic location context with another one (plausibly not too distant from the

real one) that the knowledge model considers inconsistent with the ground truth

activity. This perturbation simulates noise in GPS data acquired from mobile

devices, often impacting the actual semantic location where the user is located.

For instance, a subject at home may be wrongly located at a coffee shop that is

in a nearby building.

Table 4.5 shows the results of this experiment. We observe that noise has

the most negative impact on context refinement, thus confirming that it is the

most rigid approach. Indeed, by discarding activities that are not consistent with

the current context, this approach is the one suffering more from noisy context

data. On the other hand, symbolic features is a less rigid NeSy approach that is

able to mitigate this issue. Finally, we observed that the baseline method is the
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Table 4.5: Average results with 5 different runs in terms of macro F1 score,
considering 10% of training data and different percentages of dirty samples in
the test set

Original
test set

5% of dirty
test set
(delta)

10% of dirty
test set
(delta)

15% of dirty
test set
(delta)

Baseline 0.5199
0.5089

(- 0.0110)
0.4983

(- 0.0216)
0.4954

(- 0.0245)

Symbolic features 0.6534
0.5498

(- 0.1036)
0.5200

(- 0.1334)
0.5043

(- 0.1491)

Context refinement 0.6622
0.5430

(- 0.1192)
0.5057

(- 0.1565)
0.4801

(- 0.1821)

approach most robust to uncertainty, due to better generalization capabilities.

Nonetheless, our symbolic features method still outperforms the baseline in each

considered setting, hence confirming the advantage of infusing knowledge in deep

learning models.

Results with a probabilistic ontology

Table 4.6 summarizes the results that we obtained on both datasets by using a

probabilistic knowledge model slightly adapted from the one proposed in [64]. For

Table 4.6: Average results with 5 different runs in terms of macro F1 score,
considering a data scarcity scenario simulated by using 10% of training data

and the probabilistic version of each method

DOMINO ExtraSensory
Standard Probabilistic Standard Probabilistic

Baseline 0.5946 0.5946 0.5199 0.5199
Symbolic features 0.7268 0.7365 0.6534 0.6408
Context refinement 0.8192 0.8399 0.6622 0.6793

the sake of simplicity, we show the results considering the data scarcity scenario

where only 10% of labeled data are available. Our results indicate that, in general,

introducing fuzziness only slightly improves the recognition rate obtained by the

approach based on a standard ontology. The maximum improvement is ≈ +2%

on the DOMINO dataset. The only case where the probabilistic approach is
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slightly worse than the deterministic one is by using symbolic features on the

ExtraSensory dataset. This is likely due to the fact that, on this dataset, it

often happens that the ground truth activity is not always the one corresponding

to the symbolic feature with the highest likelihood. This aspect significantly

complicates the learning process since this method probably heavily relies on the

infused symbolic features during classification, which leads the model to predict

the activity with the highest likelihood in the symbolic features vector. On the

other hand, considering the deterministic case, consistent activities are always

associated with a symbolic feature with a value of 1, thus avoiding this problem.

We believe that the small improvement in the recognition rate does not justify

the effort of designing and managing probabilistic ontologies. Indeed, such models

require significant effort in deciding the weights associated with soft constraints,

that should capture general aspects of activities execution. Hence, we believe

that relying on standard ontologies to capture the most common situations is

an appropriate choice when coupled with knowledge infusion methods since they

reduce the modeling effort while maintaining good recognition rates.

4.6 Discussion

4.6.1 Context data collection

In this work, we assume that context data can be continuously collected and

that they are constantly available. However, considering real-world scenarios,

this assumption is not completely realistic.

Indeed, in order to be collected, several high-level context data (e.g., semantic

location) require interaction with external web services. Continuous network

communication may negatively impact the device’s resources and latency (i.e.,

context information is not perfect in real-time).

However, it is important to point out that such high-level contexts do not

change so rapidly, while activity recognition is continuously performed every few

seconds (e.g., in our experiments, the segmentation window is 4 seconds). Hence,

it is possible to design a strategy to obtain new information from web services with

a low number of web service calls. For instance, considering semantic location, it
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is possible to perform a query only when GPS data exhibit significant changes. As

another example, the weather web service could be queried with a low periodicity

(e.g., every hour).

Thanks to these strategies, it is also possible to run our method when the

user’s mobile devices are not connected to the internet for short periods. However,

if the mobile devices are offline for a long time period, the system would consider

a limited amount of context information, possibly impacting the recognition rate.

In future work, we will investigate in detail such practical aspects, also con-

sidering new strategies to adapt the model based on the Quality of Service.

4.6.2 Generalizability of the approach

In this chapter, we focused on the use of our symbolic features method for context-

aware HAR. However, we are also interested in understanding if our approach

could also be applied in different domains. In general, it could be applied to

domains where:

• a portion of input data does not directly reveal high-level context informa-

tion (e.g., inertial sensors in our domain).

• a portion of input data reveals high-level context information (e.g., GPS in

our domain).

• it is possible to use common-sense knowledge to define relationships between

context and the classification task.

For instance, considering the autonomous driving domain, reasoning on high-

level context data may help in improving the decisions made by analyzing the

sensors equipped in the smart car. As another domain example, risk assessment

and/or security applications may benefit from context reasoning to improve their

decisions.

4.7 Summary

In this chapter, we presented our novel knowledge infusion method for context-

aware HAR based on symbolic features. Our results have shown how this ap-
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proach addresses the research question Q2 presented in Section 2.5. Indeed, the

use of symbolic features mitigates data scarcity in context-aware HAR applica-

tions, while being more robust in the presence of noisy context data compared

to existing NeSy methods that rely on symbolic reasoning only after the training

process of the DL classifier. Moreover, we have shown how the improvements

led by probabilistic ontologies do not justify the significant effort required to

build them. Like context refinement, one of the main limitations of our knowl-

edge infusion approach based on symbolic features is that ontological reasoning

is required during classification. This setting may be not suitable for real-world

deployments on mobile devices due to the computational complexity of ontolo-

gies. In the next chapter, we introduce another knowledge infusion methodology

for context-aware HAR based on a semantic loss function that infuses knowledge

constraints in the DL classifier only during training, thus avoiding ontological

reasoning after deployment.
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Chapter 5

Knowledge infusion through a

semantic loss function for

context-aware HAR

5.1 Introduction

In Chapter 4, we have seen how our method based on the infusion of symbolic

features is able to handle data scarcity while being more robust in the presence of

noisy context data than context refinement, i.e., the state-of-the-art NeSy method

for context-aware HAR.

However, both NeSy methods require symbolic reasoning procedures each

time an activity prediction is required. In real-world deployments, where the DL

classifier can be deployed on resource-constrained machines like mobile/wearable

devices, the adoption of symbolic reasoning during classification is not desir-

able since it is computationally demanding. Indeed, experimental work in the

literature shows that running symbolic reasoning on Android mobile devices is

up to 150 times slower than on machines with higher resources (e.g., servers)

on the considered datasets [25]. In the HAR domain, the work in [1] reports

that context-aware ontological reasoning on mobile devices takes, on average, 1.3

seconds for each data sample. This is due to the computational complexity of

symbolic reasoners. Considering standard reasoners based on OWL2 ontologies
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(that is the most common approach considered in the HAR field [1]), reasoning

tasks have polynomial complexity [163]. Hence, even if theoretically considered

tractable, these methods do not scale linearly with the size of the knowledge

model (e.g., number of activities, context situations, and constraints) and may

not be adequate for resource-constrained devices. On the other hand, proba-

bilistic symbolic reasoners like the ones based on log-linear description logics

[154] have even higher complexity. While there are approximated methods to

reduce the complexity, probabilistic symbolic reasoning is still computationally

demanding. Since low-level activities are typically detected with high periodicity

(e.g., every few seconds), such approaches may be inefficient in terms of com-

putational resources and energy consumption. Indeed, running the recognition

model directly on mobile/wearable devices is a desirable aspect when real-time

recognition is a requirement for two main reasons: (1) continuously transmitting

sensor signals to a service provider can result in increased latency [164], and (2)

onboard sensor processing may be preferred for privacy concerns since such data

may reveal sensitive information like personal habits or health conditions [165].

Hence, we believe that removing symbolic reasoning from mobile applications is

beneficial.

For this reason, in this chapter we propose a novel Knowledge Infusion method

based on a semantic loss function that infuses knowledge constraints in the DL

model only during training, thus avoiding symbolic reasoning after deployment.

More specifically, we propose a custom loss function that combines a standard

classification loss with a novel semantic loss function. The semantic loss com-

ponent uses symbolic reasoning to drive the DL model in classifying activities

considering domain knowledge constraints. After training, the classifier inter-

nally encodes such constraints and exploits them at run-time to classify activities

without requiring symbolic reasoning.

Our results on the DOMINO [24] and the ExtraSensory [15] datasets show how

our semantic loss method outperforms in terms of recognition rates a purely data-

driven DL approach based on a standard classification loss. Moreover, semantic

loss often reaches recognition rates close (and sometimes better) to symbolic fea-

tures and context refinement, while avoiding the significant cost of performing
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symbolic reasoning during inference. Furthermore, our results demonstrate that

our semantic loss surpasses the other two NeSy approaches in addressing un-

certainty, showing significantly greater robustness in the presence of noisy data.

Hence, we believe that our semantic loss reaches a good trade-off between effi-

ciency and recognition rate.

The rest of the chapter is organized as follows. Section 5.2 presents our novel

knowledge infusion method based on a semantic loss. Section 5.3 describes the

experimental evaluation and the results obtained on DOMINO and ExtraSen-

sory. Finally, Section 5.4 compares the strengths and weaknesses of NeSy meth-

ods, discusses how to handle cases in which the knowledge model needs to be

revised/updated, and presents an initial investigation of the interpretability ben-

efits provided by our semantic loss.

5.2 Knowledge infusion through semantic loss

In this section, we present our novel approach named knowledge infusion through

semantic loss (or semantic loss for short) aimed to overcome the main drawbacks

of symbolic features and context refinement. Our method generates an activity

classifier encoding knowledge-based constraints without requiring symbolic rea-

soning during the inference phase. Hence, a model based on semantic loss can

be trained offline on a cloud-based server and then deployed on the users’ mo-

bile/wearable device to locally perform real-time activity recognition efficiently.

5.2.1 Methodology

In the following, we describe the mechanisms of our semantic loss approach,

based on the formalism introduced in Section 4.2. As depicted in Figure 5.1, the

goal of semantic loss is to exploit the knowledge model K to guide the learning

process of DNN through a specifically designed loss function. As in the symbolic

features method, DNN still learns the correlations between context-consistent

activities and input data. At the same time, since no additional features are

infused into DNN , the use of K and SR during classification is not required,
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Figure 5.1: Our neuro-symbolic approach based on semantic loss

thus solving one of the main limits of the existing NeSy solutions.

Specifically, the loss function L = Lcross + αLsemantic that guides the training

process of DNN is a combination of the cross-entropy loss function Lcross with

a semantic loss function Lsemantic.

We consider the standard formula for the cross-entropy loss:

Lcross = −
k∑

i=1

yi log(pi) (5.1)

where yi is 1 only when ai is the ground truth activity, while pi is the probability

of ai obtained by the DNN .

Consistently with other works in the DL literature [131, 166], α is a trade-off

parameter in charge of balancing the different loss terms. In particular, Lsemantic

determines the impact of the common-sense knowledge about context consistency

on the DNN ’s output.

More formally, let P = ⟨p1, . . . , pk⟩ be a probability distribution emitted

by DNN on a tuple ⟨wR, Cw⟩, and l(ai) be the likelihood value obtained by

SR(K,Cw) on the activity ai. We denote with p̂ ∈ P the maximum probability

value of P , and with â ∈ A its corresponding activity.

In the following, we describe five alternative semantic loss functions we de-

signed and tested for this thesis.

1. The AllConsistentActs (All) semantic loss focuses on the whole probability
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distribution P . Intuitively, given P , this semantic loss has the objective of

training the network to maximize the sum of the probability values in P that

correspond to the context-consistent activities according to SR() (i.e., the

ones with likelihood greater than zero). Hence, we would expect that DNN

learns to emit non-zero probabilities only for context-consistent activities

during classification. Equation 5.2 formally defines the All semantic loss:

LsemanticAll(P, SR) = 1−
∑
i

pi · l(ai) (5.2)

Since it aggregates probability values with a sum, a potential drawback of

this strategy is that different combinations of these values may lead to the

same penalty. Hence, the resulting penalties could be poorly informative

for DNN to properly learn knowledge constraints. For this reason, the

following alternative semantic losses only focus on the most likely activity

â.

2. The MinusProb-Prob (-PP) semantic loss aims at associating low probabil-

ity values with context-inconsistent activities and higher probability values

with context-consistent activities. In particular, context-inconsistent pre-

dictions are penalized by their probability value. On the other hand, the

penalty of context-consistent activities is inversely proportional to the prob-

ability p̂ of the most likely activity according to the DNN , scaled by the

likelihood l(ai) provided by SR. More formally,

Lsemantic−PP (P, SR) =

1− (p̂ · l(â)) if l(â) > 0

p̂ otherwise
(5.3)

However, a potential drawback of this strategy is that penalty values for

consistent activities with relatively low probability values are similar to

penalty values for context-inconsistent activities with relatively high prob-

ability values.

3. The goal of the Zero-One (01) semantic loss is to maximize the differences

between penalties of context-consistent and context-inconsistent activities.
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Specifically,

Lsemantic01(SR) =

0 if l(â) > 0

1 otherwise
(5.4)

The following strategies are refined versions of the 01 loss.

4. The MinusProb-One (-P1) semantic loss aims at improving the confidence

of DNN on context-consistent predictions. Indeed, while the penalty for

context-inconsistent activities is fixed, the penalty for context-consistent

activities is inversely proportional to the probability p̂ of the most likely

activity according to the DNN , scaled by the likelihood l(ai) provided

by SR. Hence, context-consistent activities with low probability and/or

likelihood values are penalized as well. More formally,

Lsemantic−P1(P, SR) =

1− (p̂ · l(â)) if l(â) > 0

1 otherwise
(5.5)

5. Finally, the idea of the Zero-Prob (0P) semantic loss is that context-consistent

activities should not be penalized, while context-inconsistent activities should

be penalized directly proportionally to their associated probability values.

Hence, DNN should better learn that the higher the probability values of

context-inconsistent activities, the higher the penalty. Therefore, 0P aims

at reducing the probability values on context-inconsistent activities. More

formally,

Lsemantic0P (P, SR) =

0 if l(â) > 0

p̂ otherwise
(5.6)

In the following, we report a simplified running example of our semantic loss

approach:

Example 5.1 A service provider trains, in a supervised way, an activity classi-

fier using a labeled dataset and a symbolic reasoner based on a standard ontol-

ogy. In particular, each window is fed-forward to the DNN. A loss function com-

bining cross-entropy and AllConsistentActs is used to adjust the weights of the
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DNN. Suppose that, when feed-forwarding a window ⟨wR, Cw⟩, the output prob-

ability distribution of the DNN is the following: Walking: 50%, Sitting: 30%,

Standing: 15%, Running: 5%. Consider that the ground truth activity is Sit-

ting and that the high-level context Cw encodes the information that the current

speed is 0. By processing Cw, the symbolic reasoner outputs the likelihood val-

ues for each activity, where Walking and Running have value 0 (since they can

not be performed with null speed), while the remaining activities have value 1.

Hence, by applying the formula in Equation 5.2, the value of the semantic loss is

1−(0.5·0+0.3·1+0.15·1+0.05·0) = 0.55. On the other hand, since the most likely

activity does not correspond with the ground truth, the cross-entropy will generate

≈ 1.73 as a value. Supposing that α = 5, the final value of the custom loss is

1.73+5 ·0.55 = 4.48, and it will be used to update the weights of the DNN. Hence,

the knowledge constraints have a significant impact on determining how to update

the weights of the DNN. After training, only the trained classifier is deployed on

Alice’s smartphone to recognize her activities in real time. Suppose that Alice is

sitting, and the smartphone collects a window ⟨wR, Cw⟩ of raw sensor data and

high-level context data during the execution of this activity. The high-level con-

text Cw encodes the information that Alice’s current speed is 0. By providing the

window as input to the activity classifier, it will rely on the knowledge infused

during training to assign a high probability to the sitting activity.

5.3 Experimental evaluation

In this section, we describe the experimental evaluation that we carried out to

assess the quality of our method based on a semantic loss. First, we introduce

the experimental setup: the datasets we considered, how we pre-processed them,

the models used, and the evaluation methodology adopted. Finally, we present

the results of our evaluation.

5.3.1 Experimental setup

To evaluate semantic loss, we used the same experimental setup considered to

evaluate symbolic features in Section 4.5.
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As datasets, we considered DOMINO [24] and ExtraSensory [15]. To these

datasets, we applied the same pre-processing steps already presented in Section

4.5.2. We considered the same DNN architecture used to evaluate symbolic

features. For the experiments of this chapter, we used the DNN architecture in

four different ways:

• As a purely data-driven baseline, without further modifications

• Enhanced with our semantic loss (see Section 5.2)

• Enhanced by combining in the concatenation layer the symbolic features

and the features automatically extracted from input data (see description

of our symbolic features method in Section 4.3)

• As the DNN module of the context refinement approach (see Section 4.2.3)

Also in this case, we consider both the standard ontology presented in Sec-

tion 4.4.2 and the probabilistic ontology described in Section 4.4.3. Finally, we

evaluated the different approaches by adopting the same leave-k-users-out cross-

validation technique presented in Section 4.5.2.

5.3.2 Results

In the following, we show how our semantic loss approach outperforms a purely

data-driven classifier in terms of recognition rate both in scripted and in-the-

wild scenarios. We also compare our method with symbolic features and context

refinement. Our main results consider the standard ontology as the knowledge

model since it is a widely used knowledge and context representation framework.

The results using an experimental probabilistic knowledge model are presented

in Section 5.3.2.

Although semantic loss does not include symbolic reasoning during classifi-

cation, it often reaches recognition rates that are close (and sometimes better)

to the ones of the other approaches, especially considering the more realistic

scenarios of ExtraSensory.
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Table 5.1: Comparison between the Semantic Loss types on the different datasets

Dataset
(training set percentage)
DOMINO
(100%)

ExtraSensory
(10%)

Baseline 0.9024 0.5199

MinusProb-Prob (-PP)
0.9139
α = 5

0.5402
α = 4

Zero-One (01)
0.9042
α = 1

0.5270
α = 7

Zero-Prob (0P)
0.9162
α = 3

0.5288
α = 9

AllConsistentActs (ALL)
0.9094
α = 1

0.5872
α = 30

MinusProb-One (-P1)
0.9261
α = 7

0.5298
α = 5

Semantic loss types comparison

Table 5.1 compares the recognition rates (in terms of overall macro F1 score)

of the five semantic loss functions presented in Section 5.2 on DOMINO and

ExtraSensory. To better emphasize the differences in the recognition rates, on

ExtraSensory we decided to show the results obtained by considering a data

scarcity scenario in which only 10% of the training data are available. Indeed, the

number of training samples in DOMINO is nearly equal to the number contained

in only 10% of the training samples in ExtraSensory. Moreover, Table 5.1 also

includes the best α value for each semantic loss type1 and the results obtained

by the purely data-driven baseline that is based on a standard classification loss.

Each semantic loss strategy leads to an improvement in the recognition rates

compared to the baseline, with -P1 achieving the best improvements on DOMINO

(≈ +2.5%) and All on ExtraSensory (≈ +6.5%). Before running the experiments,

we expected similar results for 01, -P1, and 0P since all these strategies aim at

maximizing the distance in penalties between consistent and not-consistent ac-

tivities. While this insight is confirmed on ExtraSensory, on DOMINO the 01

1α values have been determined empirically by performing a grid search in the range [1, 35]
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approach proved to be not very effective in improving the recognition rate. On

this dataset, we observed that, besides increasing the difference between the

penalties applied to context-consistent and context-inconsistent predictions, it is

also crucial to consider the probability values emitted by DNN , especially in

the case of a context-consistent prediction, as proved by the -P1 semantic loss.

Finally, the improvement of the All strategy on DOMINO is limited, probably

because learning knowledge constraints considering the whole probability distri-

bution is unnecessarily too hard on simple scripted scenarios. On the other hand,

this strategy significantly outperforms the others in the more realistic settings in-

cluded in ExtraSensory.

Comparison with other approaches

Tables 5.2 and 5.3 compare our best semantic loss method (i.e., -P1 on DOMINO

and All on ExtraSensory) with: i) the purely data-driven baseline, ii) the symbolic

features strategy, and iii) the context refinement strategy. More specifically, we

considered different percentages of available training data for each dataset, thus

comparing the approaches in different data scarcity scenarios. Note that, during

the experimental evaluation, we empirically determined the optimal α values of

the semantic loss for each training set percentage.

Overall, on each dataset, the NeSy approaches outperform the baseline, con-

sidering almost all the data scarcity scenarios. This result confirms that tra-

ditional symbolic AI approaches have the potential to enhance the predicting

capabilities of purely data-driven deep learning models.

Focusing on the scripted scenarios of DOMINO (Table 5.2), the improvement

of the semantic loss is lower than the other approaches, especially considering

data scarcity scenarios. For instance, considering 10% of training data, semantic

loss leads to a recognition rate boost over the baseline of≈ +2% on DOMINO. On

the other hand, symbolic features and context refinement lead to improvements

of ≈ +13% and ≈ +22%, respectively. These performance differences become

progressively smaller while increasing training data availability. Indeed, when

all the available training data are considered, both semantic loss and context

refinement outperform the baseline by ≈ +2%, while symbolic features leads to

124



Table 5.2: DOMINO: Results in terms of macro F1 score and 95% confidence
interval

Training set
percentage

Baseline
Semantic loss

-P1
Symbolic
features

Context
refinement

10%
0.5946

(±0.008)

0.6144
(±0.024)
α = 7

0.7268
(±0.008)

0.8192
(±0.009)

20%
0.7529

(±0.010)

0.7712
(±0.004)
α = 8

0.8590
(±0.012)

0.8811
(±0.007)

30%
0.8268

(±0.006)

0.8469
(±0.002)
α = 9

0.9107
(±0.011)

0.9078
(±0.009)

40%
0.8556

(±0.011)

0.8679
(±0.010)
α = 7

0.9152
(±0.009)

0.9178
(±0.005)

50%
0.8835

(±0.011)

0.8892
(±0.006)
α = 7

0.9198
(±0.011)

0.9281
(±0.012)

60%
0.8917

(±0.010)

0.8889
(±0.007)
α = 7

0.9237
(±0.009)

0.9305
(±0.006)

70%
0.8915

(±0.006)

0.9049
(±0.006)
α = 8

0.9265
(±0.004)

0.9225
(±0.004)

80%
0.9007

(±0.007)

0.8997
(±0.003)
α = 7

0.9254
(±0.008)

0.9274
(±0.005)

90%
0.8965

(±0.002)

0.9021
(±0.008)
α = 6

0.9277
(±0.007)

0.9232
(±0.002)

100% 0.9024
0.9261
α = 7

0.9408 0.9221
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Table 5.3: ExtraSensory: Results in terms of macro F1 score and 95% confidence
interval

Training set
percentage

Baseline
Semantic loss

All
Symbolic
features

Context
refinement

1%
0.3127

(±0.023)

0.3366
(±0.027)
α = 29

0.3418
(±0.010)

0.6324
(±0.014)

2.5%
0.4279

(±0.008)

0.4895
(±0.010)
α = 30

0.4720
(±0.016)

0.6540
(±0.003)

5%
0.4867

(±0.013)

0.5256
(±0.016)
α = 26

0.5877
(±0.025)

0.6797
(±0.003)

7.5%
0.5167

(±0.016)

0.5650
(±0.016)
α = 26

0.6359
(±0.008)

0.6656
(±0.004)

10%
0.5199

(±0.011)

0.5872
(±0.014)
α = 30

0.6534
(±0.012)

0.6622
(±0.007)

25%
0.5842

(±0.016)

0.6331
(±0.013)
α = 29

0.6404
(±0.010)

0.6483
(±0.010)

50%
0.6096

(±0.007)

0.6323
(±0.011)
α = 18

0.6216
(±0.007)

0.6258
(±0.007)

75%
0.5813

(±0.032)

0.6131
(±0.011)
α = 16

0.6268
(±0.007)

0.6067
(±0.023)

100% 0.6053 0.6244 0.6205 0.6190
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an improvement of ≈ +4%.

On the other hand, different insights are observed when focusing on the realis-

tic scenarios of ExtraSensory (Table 5.3). Indeed, on this dataset, the differences

between the three NeSy approaches are smaller. For instance, considering 10% of

training data, the recognition rate improvements of semantic loss, symbolic fea-

tures, and context refinement are ≈ +7%, ≈ +13%, and ≈ +14%, respectively.

In general, the semantic loss achieves improvements that lie between ≈ +2%

and ≈ +7%, sometimes outperforming the recognition rates of the other NeSy

techniques. Indeed, the semantic loss outperforms context refinement from 50%

to 100% of training data, and it also outperforms symbolic features on 100%

of training data. Overall, context refinement is more effective than methods

based on knowledge infusion (i.e., symbolic features and semantic loss) when

the availability of labeled data is drastically low. However, when slightly more

training data are available (e.g., 25% on ExtraSensory), all the NeSy approaches

lead to similar improvements.

Our results indicate that our semantic loss is effective in capturing relation-

ships between high-level context data and activities with respect to learning them

directly from the training set by using purely data-driven models. This is espe-

cially true on the ExtraSensory dataset, where the improvement of semantic loss

compared to the baseline is larger. Indeed, DOMINO covers a significantly lower

variability of context situations compared to ExtraSensory, and the relationships

between context and activities can be captured more easily by the DNN. On the

other hand, the in-the-wild nature of ExtraSensory implies a significantly more

complex learning task that can be partially lightened by knowledge reasoning.

Since the computational complexity of symbolic reasoning is not adequate

for real-world deployment on resource-constrained devices like smartphones and

smartwatches, the choice of the optimal solution should consider a trade-off be-

tween recognition rate and efficiency. We believe that our semantic loss method

is a much more promising approach since it still improves the baseline while not

requiring symbolic reasoning at all after training.
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Figure 5.2: Comparison between the confusion matrices of the baseline and the
three considered Neuro-Symbolic AI approaches trained with 10% of training
data on the ExtraSensory dataset

Activity-level results

Figure 5.2 compares the confusion matrices obtained by the three considered

NeSy approaches and the baseline on ExtraSensory, considering the data scarcity
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scenario where only 10% of training data are available2. From these confusion

matrices, it emerges the contribution of domain knowledge in improving the recog-

nition of different activities. For instance, the baseline often confuses on transport

with moving by car due to their similar patterns (in terms of inertial measure-

ments and speed), even though context information (e.g., whether the user is

following a public transportation route) should help in distinguishing them.

Indeed, even though high-level context data are provided as input to the base-

line, it is complex to learn from a small training set all the possible correlations

between all the possible context conditions and the performed activities. Hence,

enhancing the data-driven model with symbolic AI approaches based on domain

knowledge has a key role in enhancing the capabilities of the deep learning model

and mitigating this problem, thus significantly reducing the confusion between

these two activities.

Finally, we observed that each approach performed poorly on the lying down

activity, which was often confused with sitting. We noticed that it is consistent

with other papers in the literature that used the ExtraSensory dataset [157]. This

is likely due to the fact that both lying down and sitting are static activities with

similar sensor patterns, hence the exact posture is difficult to recognize. Moreover

sitting is over-represented in the dataset, while lying down is underrepresented.

For these reasons, the model often outputs sitting even if the correct activity is

lying down.

Robustness to noise

In order to show that our semantic loss is robust to uncertainty, also for this

chapter, we performed a set of experiments by introducing noise in the test data.

Like we did in Chapter 4, we performed different experiments considering 5%,

10%, and 15% of noisy data in the test set. For each perturbed data sample,

we simulated noise in GPS readings, by modifying the semantic location context

with another one (plausibly not too distant from the real one) that the knowledge

model considers inconsistent with the ground truth activity.

Table 5.4 shows the results of this experiment. We observe that our semantic

2We show a representative run among the 5 repetitions of the experiment.
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Table 5.4: Average results with 5 different runs in terms of macro f1 score,
considering 10% of training data and different percentages of dirty samples in
the test set

Original
test set

5% of dirty
test set
(delta)

10% of dirty
test set
(delta)

15% of dirty
test set
(delta)

Baseline 0.5199
0.5089

(- 1.10%)
0.4983

(- 2.16%)
0.4954

(- 2.45%)

Semantic loss 0.5872
0.5566
(- 3.06%)

0.5229
(- 6.43%)

0.5196
(- 6.76%)

Symbolic features 0.6534
0.5498

(- 10.36%)
0.5200

(- 13.34%)
0.5043

(- 14.91%)

Context refinement 0.6622
0.5430

(- 11.92%)
0.5057

(- 15.65%)
0.4801

(- 18.21%)

loss is significantly more robust to noise compared to the other NeSy methods

while outperforming the baseline in each considered setting. For instance, con-

sidering 5% of noisy data samples, semantic loss presents a decrease in the macro

F1 score of only −3.06% compared to the −10.36% of symbolic features and the

−11.92% of context refinement.

Results with a probabilistic knowledge ontology

Table 5.5 summarizes the results that we obtained on both datasets by using a

probabilistic knowledge model slightly adapted from the one proposed in [64]. For

Table 5.5: Average results with 5 different runs in terms of macro F1 score,
considering a data scarcity scenario simulated by using 10% of training data

and the probabilistic version of each method

DOMINO ExtraSensory
Standard Probabilistic Standard Probabilistic

Baseline 0.5946 0.5946 0.5199 0.5199
Semantic loss 0.6144 0.6372 0.5872 0.6013
Symbolic features 0.7268 0.7365 0.6534 0.6408
Context refinement 0.8192 0.8399 0.6622 0.6793

the sake of simplicity, we show the results considering the data scarcity scenario
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where only 10% of labeled data are available. Our results confirm that, also

for the semantic loss approach, introducing fuzziness only slightly improves the

recognition rates obtained with a standard ontology. We believe that this does

not justify the effort of designing and managing probabilistic ontologies.

5.4 Discussion

5.4.1 Strengths and weaknesses of Neuro-Symbolic ap-

proaches

In the following, we discuss the strengths and weaknesses of the three Neuro-

Symbolic AI (NeSy) approaches compared in this chapter: context refinement,

symbolic features, and semantic loss. This information is also summarized in

Table 5.6.

Table 5.6: Comparison of pros and cons of NeSy methods

context
refinement

symbolic
features

semantic
loss

improving recognition rate x x x

mitigating data scarcity x x x

retraining not required when knowledge is revised x

handling data uncertainty x

symbolic reasoning not required after deployment x

Compared to other methods, context refinement often reaches the highest

recognition rates, especially when the amount of available training data is limited.

However, this method may be less effective when based on an imperfect knowledge

model. Indeed, context refinement always discards activities only relying on the

user’s surrounding context considering rigid constraints. For instance, a user

could ride a bicycle even in unusual context scenarios (e.g., on a pedestrian-

only road). Hence, when the knowledge model does not cover all the possible

contexts in which an activity can be performed, combining the information from

inertial data with knowledge would be more convenient in refining the probability
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distribution. Moreover, our results show that context refinement performs poorly

in the presence of uncertainty in context data.

While the symbolic features method is less accurate than context refinement,

it is slightly better in capturing the intrinsic uncertainty in sensor data by learn-

ing correlations between features and contexts, as opposed to the latter’s direct

application of rigid rules.

However, both approaches require the use of the symbolic reasoning module

at each activity prediction, making them less suitable for deployment on mobile

devices. Moreover, both approaches are significantly less effective than semantic

loss in the presence of uncertainty in context data.

On the other hand, our semantic loss can be trained offline on a server with

high computational capabilities and then deployed and used on a mobile de-

vice without the need for computationally expensive symbolic reasoning tasks.

Indeed, semantic loss is still able to significantly improve the recognition rate.

Additionally, it is the most robust NeSy approach when context data is noisy.

5.4.2 Revising/updating the knowledge model

In this work, we assumed that the knowledge model is static and never updated.

However, this is not necessarily true in real-world settings. Indeed, we expect

that the model can be extended by including new knowledge and/or revised.

If the knowledge is extended by including new activities or new context sources,

all the NeSy models have to be modified to accommodate for new inputs and/or

new output classes. New representative training data are also required. On the

other hand, the knowledge can be revised to refine existing constraints between

contexts and activities. For instance, domain experts may realize that the existing

constraints are not adequate and should be improved. In this scenario, an advan-

tage of context-refinement is that it does not require retraining the DNN , since

symbolic reasoning is applied only during classification. However, re-training is

required for the approaches based on knowledge infusion.

In our scenario, the model is pre-trained offline by a service provider with

storage and computational capabilities and then deployed on mobile devices for

inference. Hence, we believe that in this scenario, the service provider could
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easily re-train the model from scratch by taking into account the new knowledge

model and possibly new representative data points.

When this is not possible or convenient, we believe that continual learning

approaches (e.g., based on the teacher-student paradigm) could be adopted to

incrementally train the underlying deep learning model to retain previous knowl-

edge and learn new constraints, without the need for re-training from scratch.

We believe that existing continual learning approaches could be effective when

the knowledge model is extended, while it is more challenging when it is revised

since incremental learning should allow the model to select which constraints to

retain and which to update.

A more in-depth investigation on how to incrementally train neuro-symbolic

approaches upon changes in the knowledge model is the subject of future work.

5.4.3 Interpretability

In the literature, Neuro-Symbolic AI methods are well-known for improving the

interpretability of deep learning models [52]. Indeed, considering Knowledge

Infusion, the decisions of a NeSy model are driven by the infused knowledge.

Hence, the knowledge model itself can be used to interpret the output of the

classifier. Moreover, eXplainable AI methods (XAI) such as the model induction

(e.g., LIME [123]) or the saliency-based ones (e.g., GradCAM [128]) can be used

to further inspect how the deep learning model reaches each decision.

In this paper, the knowledge infused into the model is about the relation-

ships between high-level context data and activities. To better inspect the inter-

pretability aspects of our model, we applied an XAI model induction approach

named RISE [167] to visualize the importance of high-level context features on

the supervised baseline (i.e., without knowledge infusion) and on our semantic

loss model3. As an example, Figure 5.3 shows the average importance of high-

level context features on the ExtraSensory dataset for the activity on transport

on the baseline model. Figure 5.4 shows the same result for the semantic loss

model.

3For this evaluation, we randomly split the dataset into 70% for train, 10% for validation,
and 20% for test; the models were trained on the train set and feature importance was computed
on the predictions made on the test set.
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Figure 5.3: Average feature importance for the on transport activity obtained
using XAI methods on the baseline model. The brighter the color, the more
important the corresponding feature was for classification.

Figure 5.4: Average feature importance for the on transport activity obtained
using XAI methods on the semantic loss model. The brighter the color, the
more important the corresponding feature was for classification.

We observe that the baseline model considers important many features that

are not directly related to the activity, like screen brightness. On the other

hand, the semantic loss model, consistently with the infused knowledge, considers

particularly important only the context on a bus. Taking into account our results

in Figure 5.2, it is clear that this improvement led the classifier to achieve better

results since it focuses on context features that are actually relevant considering

the knowledge model.

However, in this work, the classifier’s decision is not based only on context

data, but also on inertial sensor data that are inherently challenging to explain.
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Figure 5.5: Example explanation for a sample of the walking activity based on
the x-axis measurements from the smartwatch’s accelerometer. The brightness of
the color indicates the level of importance of each measurement for classification.

While it is possible to highlight the portion of the signal that was important for

the classifier (e.g., see Figure 5.5), this is difficult for humans to interpret and our

knowledge model does not affect the interpretability of such signals. Therefore,

our knowledge infusion approach leads to a deep learning model that is partially

interpretable.

5.5 Summary

In this chapter, we presented a novel Neuro-Symbolic AI approach for context-

aware HAR based on a combination of a standard loss function for classification

with a semantic loss. This approach addresses the research questionQ3 presented

in Section 2.5. Indeed, the use of semantic loss avoids symbolic reasoning during

classification, thus making the model deployment feasible even on devices with

limited computational resources. Overall, our results have shown how our method

improves the recognition rates of a purely data-driven model. The advantage of

our approach is particularly evident in the realistic in-the-wild settings included

in the ExtraSensory dataset [15]. Moreover, compared to context refinement and

symbolic features, our semantic loss is particularly promising in coping with un-

certainty in context data. At the end of this chapter, we have also made an initial

qualitative analysis of possible interpretability benefits provided by Knowledge

Infusion methods. Unfortunately, in the current sensor-based HAR literature,

no quantitative metric has been introduced to measure the interpretability level

of DL models. In the next chapter, we propose a novel methodology to apply

to sensor data existing eXplainable AI (XAI) methods originally designed for

computer vision tasks. In this context, we also introduce an innovative metric
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that we designed to measure the coherence of the explanations generated through

XAI methods with human knowledge about the HAR domain. This metric can

be considered in the future to quantify the interpretability benefits provided by

NeSy methods for sensor-based HAR.
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Chapter 6

Explainable deep learning

classifiers for sensor-based HAR

6.1 Introduction

As we have already discussed in the introduction of this thesis, in the last few

years, sensor-based HAR has been mainly tackled with data-driven activity clas-

sifiers based on Deep Learning (DL). However, one of the major problems of

DL models is their opacity: it is challenging to understand the rationale be-

hind their predictions [116]. Explainable Artificial Intelligence (XAI) approaches

recently emerged to address this problem [117]. XAI aims to provide a human-

understandable explanation associated with each model’s prediction. Applica-

tions based on HAR heavily rely on the output of activity recognition frameworks.

Hence, inferring why a classifier predicted a specific user’s activity is essential to

provide solutions that are understandable, trusted, and transparent [118]. For

instance, consider a healthcare system that analyzes the daily routines of elderly

subjects. The detection of Activities of Daily Living (ADLs) is one of the fun-

damental steps to detect higher-level behaviors to support clinicians’ diagnoses

(e.g., cognitive decline) and interventions [119]. XAI would allow clinicians to

increase their trust in decision support systems that rely on ADL recognition.

Explanations are also useful to data scientists who need to refine the recognition

system by introducing, removing, or re-positioning sensors, modifying algorithms
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and system parameters, or revising/extending the training set. An explainable

system would also make it possible to include residents and caregivers in the

loop, by showing them which ADLs are released to clinicians and how the system

inferred their execution.

The sensor-based HAR literature has only investigated XAI solutions based on

interpretable standard machine learning classifiers [141]. While those models can

inherently explain their predictions, they usually provide lower recognition rates

than DL, and they require manual feature extraction and selection. Moreover,

existing works do not tackle the problem of making explanations understandable

by non-expert users (e.g., clinicians and caregivers). Hence, it is still an open

problem to understand if and how XAI can be combined with DL-based activity

recognition.

In Chapter 5, we made a first step toward analyzing possible interpretability

benefits provided by Neuro-Symbolic AI methods for sensor-based HAR with DL

models. However, we have just qualitatively observed that Knowledge Infusion

may lead to models that are partially interpretable. Hence, our initial analysis

presents three main limitations. Firstly, it focused on interpreting the model’s

predictions according only to high-level context data (i.e., input data with a clear

semantic). However, DL-based activity classifiers typically make their decisions

also relying on raw sensor measurements, which existing XAI methods struggle

to take into account since they have been mainly designed for computer vision

tasks. Secondly, our analysis was based on explanations generated as heat maps.

These explanations can be adequate for data scientists and machine learning ex-

perts, but not for non-expert end users. Finally, the use of a quantitative metric

could give additional insights into the interpretability benefits of Neuro-Symbolic

AI. Unfortunately, in the current sensor-based HAR literature, no quantitative

metric has been introduced to measure the interpretability level of DL models.

In this chapter, we try to address these three limitations by considering the recog-

nition of ADLs as the application domain. More specifically, we propose DeXAR:

a novel methodology for explainable sensor-based ADL recognition exploiting DL

models. DeXAR extracts high-level semantic information from raw sensor data

and ADLs previously performed by the resident of a smart home in real-time.
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From this information, DeXAR generates semantic images that are processed by

a DL classifier providing a prediction about the activity currently performed by

the resident. DeXAR obtains an explanation for each prediction generating a

heat map that associates a relevance value to each pixel of the input semantic

image. Intuitively, the heat map reveals the rationale behind the classification of

a semantic image based on what the DL model actually learned during training.

We considered three candidate XAI approaches: Grad-CAM as a saliency-based

deep explanation approach [128], LIME as a model induction approach [123],

and Model Prototypes as a novel white-box deep explanation approach that we

adapted from the one proposed in [130]. While a heat map may be very informa-

tive for data scientists, it is poorly understandable by non-expert users. Hence,

DeXAR also includes a module to transform heat maps into sentences in natural

language.

We performed an extensive evaluation of DeXAR on two public datasets of

ADLs. We first show that the DL classifiers used by DeXAR reach satisfactory

recognition rates. We then evaluate the explanations generated with the three

XAI methods through two separate studies. The former adopts a quantitative

measure we designed (i.e., the Explanation Score) to evaluate the coherence of the

explanations with common-sense knowledge. The latter is composed of two user-

centered studies that involved 84, and 63 participants, respectively. Our results on

both datasets indicate that our white-box approach based on prototypes provides

the best explanations. Moreover, the results indicate that evaluations based on

the Explanation Score are aligned and consistent with user-based scores obtained

through surveys. This suggests that our metric can be used to quantify how DL

models for sensor-based HAR are interpretable for humans.

To the best of our knowledge, this is the first framework that includes XAI

approaches based on DL for sensor-based HAR, generating natural language ex-

planations. Moreover, we believe that the Explanation Score introduced in this

chapter can be used in the future to evaluate the interpretability benefits of

Neuro-Symbolic AI methods for HAR.

The rest of the chapter is organized as follows. Sections 6.2 and 6.3 present

DeXAR and describe the experimental setup we considered to evaluate it, re-
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spectively. Finally, Section 6.4 discusses the main limitations of DeXAR.

6.2 Methodology

In this section, we describe DeXAR: our approach to take advantage of deep

learning and XAI methods to enable explainable ADL recognition. Figure 6.1

shows the overall data flow of DeXAR. For the sake of this chapter, we consider

a sensorized smart home with a single resident. Several environmental sensors

are deployed in the environment to capture the resident’s interaction with the

surrounding infrastructure and her location in the home. The resident also wears

a wearable device (e.g., a smartwatch) in charge of collecting inertial sensor data

to capture her physical movements. In order to enable explainability, we derive

a high-level representation of raw sensor data that we call semantic states. We

perform temporal segmentation on semantic states and we generate a semantic

image from each segment. A semantic image encodes the semantic states observed

within the time span of the corresponding segment, as well as the latest K ADLs

that the resident performed before the current one. The image is processed by an

ADL classifier based on deep learning. By applying XAI methods, we associate

the output of the classifier with a heat map that indicates the features of the image

that were important for classification. Finally, we apply a method that maps the

heat map to a semantic explanation in natural language that is prompted to the

end-user. In parallel, as we will see in Section 6.3, symbolic reasoning can be

used to quantitatively evaluate (through our Explanation Score) the consistency

of each explanation with common-sense knowledge about HAR. In the following,

we explain each step of DeXAR in detail.

6.2.1 Deriving semantic states from sensor data

In general, XAI makes sense if it is possible to understand the semantics of each

explanation. However, sensor-based ADL recognition usually relies on raw data

that are difficult to explain. This is especially true considering, for example,

inertial sensors that generate continuous values about the physical movements of

the user on three axes. Hence, we pre-process the stream of raw sensor data to
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Figure 6.1: The overall data flow of DeXAR

derive a stream of semantic states : high-level information with a clear semantic

that describes what happened within a time interval. For each sensor si, we

denote with Si the set of types of semantic states that it is possible to derive

from raw measurements of si. We denote with S[ts, te] a semantic state of type

S occurred within an interval [ts, te] with ts and te timestamps and ts < te. The

ending timestamp of a semantic state may be undefined (in this case we represent
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the interval [ts,−]) indicating that the semantic state is currently active. As we

describe in the following, the method used to derive semantic states from sensor

data depends on the specific type of sensor.

Environmental sensors

Environmental sensor data capture the resident’s interaction with the surround-

ing home infrastructure. These sensors usually have a binary output: they gen-

erate the value ON or the value OFF at specific time instants. For instance,

magnetic sensors can detect when doors/drawers are opened and closed. Pres-

sure mat sensors on the chairs can detect when someone is sitting. Plug sensors

can detect the usage of home appliances. Raw data from environmental sensors

can be easily mapped into semantic states. An environmental binary sensor gen-

erates semantic states when it is activated (i.e., when it outputs the ON value).

Example 6.1 Suppose that the smart home is equipped with a pressure mat sen-

sor identified as P2 on the kitchen chair. When the resident sits on that chair, the

sensor will output the value ON at time t. When our method processes this value,

based on the knowledge about the events that P2 is monitoring, it generates the

semantic state Using kitchen chair[t,−]. Note that the end time of this semantic

state is undefined (i.e., the state is currently active). Suppose that subsequently,

at a time instant t′, the same sensor P2 outputs the value OFF . In this case,

our method, based on the knowledge that this measurement implies that the per-

son who was sitting on the kitchen chair is now standing, updates the state as

Using kitchen chair[t, t′].

Some environmental sensors (e.g., PIR, BLE beacons) may also reveal the

semantic location of the resident in the home during a time interval, hence gen-

erating a semantic state like In The LivingRoom[ti, tj].

Note that we assume that, for each environmental sensor deployed in the

home environment, it is possible to know the corresponding objects, actions, and

location. We believe that this assumption is realistic since it is possible to obtain

this information during the deployment of the sensors in the smart home.

142



Inertial sensors

Mapping raw inertial sensor data to semantic states requires a more sophisticated

approach. Consider, for instance, an accelerometer that continuously generates

values on three axes at a high frequency. Clearly, it is not possible to directly

associate semantics with those values.

Nonetheless, it is possible to use machine learning methods to infer higher-

level information from those sensor data. For instance, inertial sensor measure-

ments generated by the sensors equipped on a wristband can be processed by

machine learning classifiers to reliably derive simple gestures (e.g., the resident

is raising her arm, the arm is still, the resident is performing some manipula-

tion, etc) [168]. Deriving simple physical activities, postures, and gestures from

inertial sensors using machine learning is a well-established methodology in the

literature [3]. Existing works suggest that the sequences of low-level physical

activities, postures, and gestures can reveal higher-level activities [169]. DeXAR

relies on such types of machine learning algorithms to reliably derive simple low-

level activities from the stream of inertial sensors, mapping the output to semantic

states. Note that the specific method being used strictly depends on the avail-

able devices (e.g., smartwatches, smartphones) and the low-level activities that

are required for the specific application (e.g., postures, hand gestures, physical

activities)1. We generate a new semantic state when a user switches from a low-

level activity a1 to a low-level activity a2. For the sake of this chapter, we only

consider simple actions that can be reliably classified by existing techniques.

Example 6.2 Suppose that at time tj, the user switched its low-level posture from

standing to sitting and this is captured by a machine learning classifier from the

inertial sensors data of the user’s smartphone. Given this situation, our method

updates the semantic state related to standing to Standing[ti, tj−1] and generates

a new semantic state related to sitting as Sitting[tj,−].
1In our experiments, we exploit smartwatches’ inertial data to derive simple hand gestures.

Details about the specific method are reported in the experimental section.
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Global stream of semantic states

Each stream of measurements from a sensor si generates a stream of states

whose type is in Si: State Stream(si) = ⟨Si
1[ts1, te1], S

i
2[ts2, te2], . . . , ⟩, where

Si
1, S

i
2, . . . ,∈ Si and te1 < ts2. Note that the same state type can appear multi-

ple times in the stream. For instance, a magnetic sensor on the medicine drawer

generates a state stream like ⟨Medicine drawer open[t1, t2],

Medicine drawer open[t5, t6], . . .⟩. On the other hand, a posture detection classi-

fier on wearable sensors data may generate a state stream like ⟨Standing[t1, t2],
Sitting[t3, t4], Standing[t5, t6], . . .⟩. By joining the state streams from all the sen-

sors we obtain a global state stream: Global State Stream = ⟨S1[ts1, te1],

S2[ts2, te2], . . . , ⟩, where S1, S2, . . . ∈
⋃

Si. Please, note that the intervals in this

stream, corresponding to states derived from different sensors, can have non-

empty intersections. An example of a global state stream is: ⟨Standing[1, 6],
Moving arm[2, 5],Fridge door open[2, 3], . . .⟩

6.2.2 Segmentation

We use a fixed-length sliding window approach to segment the global stream of

semantic states. Each segment only captures what actually happened within its

time span. Indeed, each segment only includes the sub-intervals of the semantic

states that overlap with the time interval of the segment. More formally, each

segment spans n seconds with a factor ov of overlap. Given a segment whose

time-span is [ti, tj] and a semantic state S[ts, te], let [ta, tb] = [ts, te]
⋂
[ti, tj] be

the intersection of the time-intervals. S[ta, tb] is associated with the segment if

and only if [ta, tb] ̸= ∅ (i.e., the intersection is non-empty).

Example 6.3 Consider a segment that spans over the interval [10, 16]. Suppose

that the current stream of semantic states is the following: ⟨Standing[8, 13],
Fridge open[11, 14],PantryDrawer Open[15,−]⟩. In this case, our segment will

consider semantic states as follows: ⟨Standing[10, 13],Fridge open[11, 14],

PantryDrawer Open[15, 16]⟩.
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6.2.3 Information about past activities

The current activity of the resident may be semantically related to her preceding

activities. Consider, for example, the activity eating. This ADL often occurs

after cooking and setting up the table. For this reason, considering the information

about past activities may contribute both to the recognition of the current activity

as well as to generate a more sophisticated explanation.

In the following, we propose a heuristic-based approach to derive reliable

information about past activities. We process in real-time the output of the

classifier to keep track of stable activities predictions. When the system observes

a sequence of consecutive segments that are classified with the same ADL A, we

generate a stable prediction of the activity A if and only if at least t times the

prediction confidence on A is higher than a threshold c. We assume that the

most recent stable prediction is the current activity of the resident.

In order to classify a segment, we consider the most recent past K stable

predictions that the resident performed before the current activity. We combine

the segment of semantic states and these K stable predictions to generate the

input for the classifier.

In order to reduce overfitting problems, we train our classifier with and with-

out information about past activities. This makes it possible to generate an

activity model capable of generalizing independently from specific sequences of

activities.

6.2.4 Image generation

In the following, we describe how we obtain an image representation starting from

a segment of semantic states and past ADLs. Our image generation approach is

inspired by the work proposed in [170], which we adapted to encode our semantic

states and the information of past ADLs. Figure 6.2 depicts an example of an

image2 generated by DeXAR. The image has a black background, and white

pixels encode information about semantic states and past ADLs. In particular,

our image is a binary matrix with shape (S, n +K + 1), where S is the overall

2As we will see later, this is actually a binary matrix that can be seen as an image for
visualization purposes
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Figure 6.2: An example of an image generated from the MARBLE dataset [2]
(more details will be presented in Section 6.3) related to the eating activity. The
sub-matrix on the left encodes the temporal relationships of semantic states. For
instance, in this temporal window of 16 seconds, the user was mostly in the dining
room sitting on the dining room chair. Also, he performed some dynamic hand
gestures, probably to eat. The sub-matrix on the right shows information about
past activities. In this case, there is only one previous activity: cooking a hot
meal

number of semantic state types, n is the segment’s length (in seconds), and

K is the number of past ADLs. The matrix is actually a combination of two

sub-matrices: the former, with shape (S, n), encodes the temporal dependencies

between semantic states. The latter, with shape (C,K), encodes information

about past ADLs. Here, C is the overall number of activity classes. We assume

that C ≤ S. Note that there is one empty column between the first n columns

and the last K columns, to clearly separate semantic states from past activities

information.

Considering the semantic states matrix, each row represents a semantic state

type and each column represents a specific second within the segment (e.g., col-

umn 3 is the third second inside the segment). The value of this matrix at row i

and column j is 1 if the semantic state of type Si (e.g., Fridge open) was active
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at second j, 0 otherwise.

Considering the past ADLs matrix, each row represents an activity class. The

value of this matrix at row i and column j is 1 if the (K − j)-th past ADL was

an instance of the activity i. Hence, the temporal order is from left to right (i.e.,

the right-most column is related to the most recent past activity).

Example 6.4 Suppose K = 2 is the number of past ADLs considered to generate

the semantic image and a segment of 16 seconds. This segment includes the

following semantic states:

⟨In The Kitchen[0, 2], In The Dining Room[2, 16],

Dynamic Manipulation[3, 14], Using Dining Room Chair[7, 16]⟩

The method proposed in Section 6.2.3 derives cooking a hot meal as the only

stable past activity. Hence, our image generation algorithm would output the

semantic image depicted in Figure 6.2.

To sum up, the semantic states matrix encodes temporal properties of the se-

mantic states including the duration, while the past ADLs matrix simply reports

the temporal order of ADLs detected by the classifier in the recent past without

any information about their duration.

6.2.5 Deep XAI approaches

As we described above, each pixel of an image generated by DeXAR has a well-

defined semantic. Hence, we apply XAI methods to derive which pixels are im-

portant for a DL model during classification. We investigated three different

categories of XAI approaches: Grad-CAM [128] as a saliency-based deep expla-

nation approach, LIME [123] as a model induction approach, and Model Proto-

types [130] as a white-box deep explanation approach. These methods generate a

heat map that indicates the influence of each pixel on the classification of a par-

ticular semantic image. The higher the intensity, the more important the pixel.

Since the original version of the Model Prototypes approach does not actually

generate a heat map, we extended it as we will describe in Section 6.2.5.
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Grad-CAM

Gradient-weighted Class Activation Mapping (Grad-CAM) [128] is an XAI ap-

proach that works on any DL model based on convolutional layers, without re-

quiring architectural changes or re-training. The rationale behind this approach

is that the last convolutional layers encode the semantic class-specific information

in the image. Grad-CAM analyzes the gradients of the network to derive the im-

portance of each neuron during classification. Based on the features extracted by

the convolutional layers, Grad-CAM computes the global average pooling of the

gradients that are associated with the predicted class. The output is a heat map

where the convolutional features that have a positive influence on the predicted

class result in pixels with high intensity.

More formally, given an input img, let F = {F 1, . . . , Fm} be the set of feature
maps extracted from the last convolutional layer of the network when classifying

img. Moreover, let A be the predicted activity, and yA the score that the network

associates with the activity A just before the softmax layer. For each feature map

F k ∈ F , Grad-CAM derives the neuron importance weights αA
k as follows:

αA
k =

1

Z

∑
i

∑
j

∂yA

∂F k
ij

(6.1)

Here, ∂yA

∂Fk
ij
is the gradient of the score yA with respect to the feature map F k

based on back-propagation, Z is a normalization factor, and i and j represent

the row and column indices. Finally, the heat map hm corresponding to img is

generated as the output of the ReLU function applied to a weighted combination

of the feature maps:

hm = ReLU(
∑
k

αA
k F

k) (6.2)

Note that the ReLU function excludes from the heat map the pixels with negative

intensity, since we are only interested in features that have a positive influence

on the class of interest.

Figure 6.3 shows an explanation generated by Grad-CAM on the example

image depicted in Figure 6.2 that was classified as eating.
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Figure 6.3: Grad-CAM: An example of an explanation for an input related to
the eating activity. The most important aspects (in yellow) are the location in
the dining room and the fact that the user previously performed cooking a hot
meal. Grad-CAM also finds out that is relatively important (light green) that
the subject was previously in the kitchen and that he was sitting on the chair of
the dining room. Even though the resident performed hand manipulations, these
are associated with low importance

LIME

The Local Interpretable Model-Agnostic Explanations (LIME) [123] approach is

based on model induction. LIME can be used to explain the predictions of any

classifier, that is considered a black-box. In order to produce an explanation,

LIME generates l perturbations of the input to train a sparse linear model using

the output of the classifier on these perturbations. The linear model associates

a coefficient to each feature of the input. The features (in our case, the pixels of

the image) associated with large coefficients in the linear model are considered to

be important in explaining the prediction. We apply LIME to obtain a heat map

where large coefficients in the linear model result in pixels with high intensity.

More formally, given a black-box model h and an input image img to be

explained, LIME generates an interpretable linear model g by solving:

argming = L(h, g, πimg) + Ω(g) (6.3)

where πimg is a proximity function that relies on an exponential kernel based

on the L2 distance, L is a locality-aware loss (i.e., how unfaithful g approximates

h in the locality πimg), and Ω(g) is the complexity of the linear model. Note

that πimg is used to measure the distance between img and another image img′.
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LIME approximates L by generating l perturbed image samples of img weighted

by πimg. Each perturbed instance img′ is obtained by drawing nonzero elements

of img uniformly at random. For each perturbed image img′, the corresponding

label h(img′) is computed. Using the perturbed images and the corresponding

labels, Eq. 6.3 is minimized to obtain the coefficients wg of a sparse linear model.

Hence, the heat map is computed by weighting the input image img with wg:

hm = wg · img (6.4)

Figure 6.4 shows an explanation generated by LIME on the example image

depicted in Figure 6.2 that was classified as eating.

Figure 6.4: LIME: An example of an explanation for an input related to the
eating activity. LIME deduced that the most important feature for classification
was that the resident previously performed the activity cooking a hot meal

Model Prototypes

Finally, we considered the white-box deep explanation XAI method proposed

in [130], which we will refer to as Model Prototypes. Differently from Grad-CAM

and LIME that do not impose constraints on the specific DL model being used,

Model Prototypes requires an autoencoder and a specifically designed neural net-

work that is called prototype classifier. Given an input image img, the autoen-

coder reduces its dimensionality to derive low-level features that are effective for

classification. The encoded image is provided as input to the prototype classifier.

The prototype classifier is composed of three layers: a prototype layer, a fully-

connected layer, and a softmax layer. During training, the prototype classifier
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learns a set of p prototypes in the latent space. The prototypes are representa-

tives of the training set data. During classification, the prototype layer computes

the proximity in the latent space of the input image with the prototypes (using

the squared distance). Hence, classification relies on the distance between the

input and the learned prototypes.

In the original version of Model Prototypes, an explanation for an input image

img is generated by showing its top m prototypes in terms of minimal distance

to img in the latent space. For the sake of visualization, the prototypes are

translated from the latent space to the original feature space using the decoder.

In this work, in order to obtain explanations that are comparable to the ones

generated by Grad-CAM and LIME, we specifically designed a novel algorithm to

generate a heat map by combining the input image with itsm−closest prototypes.
This process is described in Algorithm 2. Intuitively, for each white pixel in

the input, its intensity in the heat map depends on how many of the m-closest

prototypes have a non-zero value in the same pixel. In order to exclude noisy

pixels from the prototypes, we only consider the ones with an intensity higher

than a threshold pt.

Figure 6.5 shows an example of an explanation generated by Model Proto-

types on the example image depicted in Figure 6.2 that was classified as eating,

as well as the closest prototypes used to generate the explanation. Note that

some prototypes may only exhibit slight differences between them. This is due

to the fact that each prototype encodes a frequent pattern of activity segments,

and different frequent patterns may have small differences that are crucial for

classification. For instance, considering Figure 6.5, prototypes 1, 2, and 5 are

very similar. Prototype 1 represents segments of the eating activity with con-

tinuous dynamic manipulations (e.g., the resident is using fork and knife) while

sitting in the dining room. Prototype 2 represents segments of the eating activity

performed while sitting in the dining room, without dynamic manipulations (e.g.,

the resident is not using fork and knife but just chewing). Finally, prototype 5

represents segments of the eating activity performed with discontinuous dynamic

manipulation (e.g., the resident is drinking) while sitting in the dining room.
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Algorithm 2 Generating a heatmap from prototypes

1: Input: The input image img, the m closest prototypes P = {p1, p2, . . . , pm}
to img, a threshold pt

2: Output: A heatmap h
3: h← empty heat map
4: for each row i of img do
5: for each column j of img do
6: if img[i, j] > 0 then
7: τ ← 0
8: for p ∈ P do
9: if p[i, j] > pt then
10: τ ← τ + 1
11: end if
12: end for
13: h[i, j]← τ

m

14: end if
15: end for
16: end for
17: return h

Figure 6.5: Model Prototypes: An example of an explanation for an input related
to the eating activity, and the m-closest prototypes learned by the DL classifier.
By comparing the prototypes and the input, the most important feature in the
explanation is the presence of the resident in the dining room. Also, Model
Prototypes deduced that sitting on the dining room chair was also relatively
important

6.2.6 Generating semantic explanations in natural lan-

guage

Each heat map generated by one of the XAI approaches described above can

be analyzed to understand the rationale behind the corresponding classification

instance. However, while these heat maps may be useful for data scientists,

non-expert users (e.g., clinicians, caregivers, or the residents themselves) would
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struggle to interpret them. Hence, we transform each heat map into a sentence

in natural language. This process is divided into two steps: a) extracting the

most relevant semantic features from the heat map, and b) using those semantic

features to generate a sentence. In the following, we describe this process in

detail.

Extracting relevant semantic features

From each heat map h generated as an explanation for an input image img

classified as A, we extract a set of relevant semantic features F ⋆, that is the

union of the semantic states and the past activities that were relevant for the

classification according to h. For each semantic feature f ∈ F ⋆, we also compute

its relevance rel(f, img) based on the intensity of the corresponding pixels in h.

In the following, we explain how we compute F ⋆ and rel(f, img).

Given a heat map h, we find the pixel px⋆ associated with the highest intensity.

If the intensity level of px⋆ is over an explainable threshold et, we consider its

belonging segment of pixels (i.e., the sequence of consecutive non-zero pixels on

the same row where the pixel is located) as a relevant semantic feature f that we

add to F ⋆.3 We assign to rel(f, img) the intensity level of px⋆. We iterate this

process until the intensity level of px⋆ (ignoring the ones belonging to segments

of pixels that were previously included in F ⋆) is lower than et. Note that the

threshold et should be determined empirically for each method.

Generating the natural language sentence from the relevant semantic

features

After we compute the relevance of each f ∈ F ⋆ given an input image img, we

generate a single natural language sentence including all the semantic features

in F ⋆ ordered by relevance. Note the relevance metric does not capture the

temporal order of the features, but the importance that each feature has in the

classification. We divide semantic features into four categories: home objects

usage, resident’s position, low-level activities, and past activities. We keep the

3Considering semantic states, a segment of pixels represents the occurrence of a specific type
of semantic state within a time interval. The segments of pixels related to past activities only
contain one pixel, and they indicate that a specific activity type is a past ADL.

153



semantic features of the same category close to each other in the sentence for the

sake of user experience. We describe the temporal relationships between semantic

features of the same category in natural language using temporal adverbs (e.g.,

then, after, while, ...). Algorithm 3 shows how this process works.

Algorithm 3 Generating a sentence in natural language

1: Input: An input image img, the classified activity A, the set of relevant
semantic features F ⋆, and rel(f, img)∀f ∈ F ⋆

2: Output: A sentence in natural language sen
3: sen← “The activity is A”
4: while F ⋆ ̸= ∅ do
5: f ⋆ = argmaxf∈F ⋆rel(f, img)
6: FC ← {f ∈ F ⋆|f is of the same category of f ⋆}
7: sen ← sen extended with a description of the semantic features in FC

ordered by rel(f, img)
8: F ⋆ ← F ⋆ \ FC

9: end while

In the following, for the sake of simplicity, we start showing examples of natu-

ral language explanations obtained by Algorithm 3 considering semantic features

from the same category.

Example 6.5 Consider the following home objects usage semantic features {f1 =
Turned on cooker[1, 3], f2 = Pantry drawer opened[4, 6]}, where rel(f1, img) =

0.8 and rel(f2, img) = 0.6. DeXAR would generate the following description:

Alice turned the cooker on and then opened the pantry.

Example 6.6 Consider the following resident’s position semantic features {f1 =
In the Office[2, 5], f2 = In the DiningRoom[7, 9]}, where rel(f1, img) = 0.7

and rel(f2, img) = 0.9. DeXAR would generate the following description: Bob

has been in the dining room after being in the office.

Example 6.7 Consider the following low-level activities semantic features {f1 =
Sitting[2, 10], f2 = Moving Arm[5, 8]}, where rel(f1, img) = 0.84 and rel(f2, img) =

0.74. DeXAR would generate the following description: Carl was sitting while

moving his arm.
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Example 6.8 Consider the following past activities semantic features {f1 =

Performed Set up table[1], f2 = Performed Cooking Hot Meal[2]}, where
rel(f1, img) = 0.79 and rel(f2, img) = 0.634. DeXAR would generate the follow-

ing description: Dave has just set up the table after cooking a hot meal.

In the following, we show an application of Algorithm 3 considering semantic

states from multiple categories.

Example 6.9 Let Watching TV be the predicted activity, associated with a set of

relevant semantic features F ⋆ = {f1 = Sitting[1, 12], f2 = Television ON [4, 12]},
where rel(f1, img) = 0.82 and rel(f2, img) = 0.78. DeXAR would generate the

following description: The activity is Watching TV mainly because Eric was sit-

ting while the television was on.

Finally, we show how Algorithm 3 generates an explanation starting from the

input image depicted in Figure 6.2 using GradCAM, LIME, andModel Prototypes.

Example 6.10 Consider the image in Figure 6.2 that was classified as Eating.

The application of our approach on the heat map in Figure 6.5 generated by Model

Prototypes with et = 0.6 would result in the following sentence: The activity is

Eating mainly because Bob has been in the dining room, and he was sitting on

a chair of the dining room table. The same process applied on the heat map in

Figure 6.3 generated by Grad-CAM with et = 0.8 would result in the following

sentence: The activity is Eating mainly because Bob has been in the dining room,

and he has just cooked a hot meal. Finally, the one obtained by LIME with

et = 0.95 in Figure 6.4 would result in the following sentence: The activity is

Eating mainly because Bob has just cooked a hot meal.

6.3 Experimental evaluation

In this section, we describe our experimental evaluation to assess the quality of

the explanations generated by DeXAR with the different XAI approaches. First,

4Note that the number associated with the past activities indicates their temporal order,
from the most recent to the oldest.
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we describe the datasets that we used in this research. Then, we explain the

evaluation methodologies that we adopted to perform a quantitative evaluation.

Finally, we show our main results.

6.3.1 Datasets

MARBLE

We first evaluate DeXAR on MARBLE [2], a dataset we collected in a controlled

smart-home environment that we already introduced in Section 3.5.1. The smart-

home environment was equipped with several environmental sensors: magnetic

sensors on some doors and drawers (e.g., fridge, medicine drawer), pressure mat

sensors on the chairs, and smart-plug sensors to detect the usage of home ap-

pliances (e.g., electrical cooker, TV). Each subject was carrying in the pocket

a smartphone with an app in charge of detecting incoming and outgoing phone

calls. The participants were also wearing a smartwatch in charge of collecting in-

ertial sensor data (i.e., accelerometer, gyroscope, and magnetometer). The smart-

home environment was divided into several semantic locations: dining room, hall,

kitchen, living room, medicine area, and office. MARBLE includes data related

to 13 ADLs: answering phone, clearing table, cooking/cooking a hot meal, eating,

getting in/entering Home, getting out/leaving home, making a phone call, prepar-

ing/cooking a cold meal, setting up table, taking medicines, working/using PC,

washing dishes, and watching TV. More details about the MARBLE dataset are

described in Section 3.5.1.

While MARBLE includes inertial sensor data gathered from smartwatches, it

does not contain annotations about low-level activities. In order to obtain such

annotations, we decided to apply clustering methods on unlabeled inertial sensor

data to infer meaningful arm manipulations that can be mapped to a semantic.

After an accurate analysis based on PCA and K-Means (using the Silhouette score

to compare different solutions), we derived two reliable clusters. The data points

in the first cluster exhibit low variance, while the ones in the second cluster have

higher variance. By correlating those clusters with ADLs, we observed that the

first cluster was related to activities with limited arm movements (e.g., watching

TV), while the second was related to activities with significant arm movements
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(e.g., washing dishes). Then, we used a binary artificial neural network to classify

static and dynamic manipulations using the labels derived from clustering. The

classifier is a feed-forward fully connected network, with a dense layer of 64

neurons, and a softmax layer. Figure 6.6 shows the recognition rate using a

leave-one-subject-out cross-validation.

Figure 6.6: Recognition rate of the low-level activities classifier (leave-one-
subject-out cross-validation)

The overall F1-score is around 0.99, hence our binary classifier is reliable in

distinguishing static and dynamic manipulations. When a dynamic manipulation

is classified from inertial sensors data, it is translated into a semantic state as

explained in Section 6.2.1. For instance, a dynamic manipulation that occurred

from t1 to t2 generates the semantic state DynamicManipulation[t1, t2].

CASAS

We also evaluate DeXAR considering one of the CASAS datasets (i.e., the one

named Milan) [171] since it has been extensively adopted for evaluation in the

smart-home ADLs recognition literature [172]. The CASAS dataset includes an-

notated environmental sensor data collected in the home of a single resident.

The smart home was mainly equipped with motion sensors that monitored the

presence of the resident in the different home locations. The home was also

equipped with two temperature sensors and a few magnetic sensors on doors and

drawers. Unfortunately, CASAS does not contain inertial sensor data. For the

sake of this work, we grouped ADLs as recently proposed in [172], excluding

the ones that were poorly represented. Hence, we consider the following activi-

ties: personal hygiene, dressing/undressing, kitchen activity, eating, watching TV,

sleeping, reading, leaving home, and working.
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6.3.2 Evaluation methodologies

Evaluation based on common-sense knowledge

As a first assessment, we compared the different XAI approaches by evaluating

the consistency of their explanations with respect to common-sense knowledge

about the relationships between ADLs and semantic features5. The common-

sense knowledge encodes high-level properties of the ADLs domain on which

there is a general agreement by human beings. We typically acquire this knowl-

edge during our life experiences. For instance, the cooking activity is commonly

performed in the kitchen, interacting with cooking instruments like the stove and

the oven. In the ADLs recognition literature, this knowledge has been often used

in knowledge-based approaches [173].

In this chapter, knowledge is represented as a semantic model that defines,

for each ADL, its partially explaining semantic features. A semantic feature f

partially explains an activity A if f explains (even if partially) A according to

common-sense knowledge. Our semantic model resembles a knowledge graph

focused on a particular relationship.

For instance, the semantic state fridge opened partially explains both the

cooking a hot meal and taking medicines activities, while it does not partially

explain the activity watching TV even if it may actually occur while watching

TV. We also model groups of semantic features that together partially explain

activities. For instance, the semantic states using kitchen chair and manipulating

a fork together partially explain the eating activity. Also, the past activities

cooking a cold meal and setting up table partially explain the eating activity.

Figure 6.7 depicts a small sample of our semantic model.

We quantitatively evaluate the quality of the automatically generated expla-

nations according to our semantic model. Given A as the output of the classifier

from an input image img, and F ⋆ as the most relevant semantic features derived

by an XAI approach, we compute the common-sense relevance cr() for each se-

mantic feature f ∈ F ⋆:

5As we described in Section 6.2.6, a semantic feature is a semantic state or a past ADL.
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Figure 6.7: A small portion of our semantic model based on common-sense knowl-
edge. Cooking devices (like the cooker, the microwave, and the oven) partially
explain only the preparing a hot meal activity. On the other hand, kitchen reposi-
tories (that may also include the refrigerated ones), partially explain both prepar-
ing a hot meal and preparing a cold meal activities

cr(f, A) =

rel(f, img) if f partially explains A

−rel(f, img) otherwise
(6.5)

Hence, semantic features that do not partially explain the predicted activities

are associated with a negative relevance, while the partially explaining ones are

associated with a positive relevance. Based on the common-sense relevance, we

compute the Explanation Score that takes values in the range [−1, 1]:

ExplanationScore(F ⋆, A) =


∑

f∈F⋆ cr(f,A)∑
f∈F⋆ |cr(f,A)| if F ⋆ ̸= ∅

−1 otherwise
(6.6)

The common-sense relevance of each feature determines its impact on the final

explanation score. If there are no semantic features in F ⋆ that partially explain

A, the explanation score is −1, while if every semantic feature partially explains

A, the explanation score is 1.
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User-based evaluation

In order to assess the effectiveness of explanations, we also wanted to understand

how non-expert users would perceive them. First, we conducted a survey on the

MARBLE dataset to obtain a user-based evaluation of the explanations generated

by the three different approaches. Since we decided to evaluate DeXAR also on

the CASAS dataset only after the first survey was completed, we conducted a

second survey on CASAS a few months after the first one.

Overall, we recruited 84 subjects for the first survey (MARBLE dataset), and

63 for the second one (CASAS dataset). Participants were recruited through

word-of-mouth, university mailing lists, and social media channels. These sub-

jects have no experience in activity recognition and their age ranged from 20 to

60. In particular, the majority of participants (≈ 78%) were younger adults with

ages ranging from 18 to 30, while the remaining ones represented older subjects

(≈ 15% with ages ranging from 31 to 50, and ≈ 7% older than 50). The collected

data are anonymous.

In order to achieve robust results, we generated different sets of system predic-

tions randomly sampled from the test set. Each set includes a prediction for each

activity with three explanations, each one obtained by one of the three considered

methods. Each participant is first informed about the goal of our experiments,

the home environment (with no mention about sensors and their positioning), and

the considered activities. Then, the system randomly assigns to the participant

one of the generated sets of system predictions. For the sake of this work, we only

consider explanations associated with correct activity classifications and a high

classifier’s confidence. We asked the participants to vote for each explanation

with a grade from 1 (absolutely not satisfying) to 5 (completely satisfying). The

users were not aware of the method that generated each explanation. Figure 6.8

shows a partial screenshot of our survey.

6.3.3 Results

We performed a standard 70/10/20 partition of each dataset into training, valida-

tion, and test sets. For each XAI method, we produce explanations by providing

the images generated from the test set as input to an XAI model trained on
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Figure 6.8: A screenshot from our survey

images generated from the training set.

In the following, we show the values for each hyper-parameter of DeXAR, the

recognition rates of our classification models based on a Convolutional Neural

Network (CNN), and the assessment of the quality of our explanations both with

the knowledge- and user-based evaluation methodologies.

Choice of Hyper-Parameters

In Section 6.2 we introduced several hyper-parameters. Some of those are re-

lated to the input pre-processing, while others are related to the generation of

explanations. We performed a grid search to find the best parameters in order to

optimize the overall F1 score as well as the knowledge-based explanation score.

We observed some significant differences in the hyper-parameters considering the

two datasets, as shown in Table 6.1.

In general, we observed that the most impacting factors are the average du-

ration of ADLs and the number of participating users. Indeed, the segmentation

window size n on MARBLE is 16 seconds, while it is 360 seconds for CASAS. This

is due to the fact that CASAS considers a real deployment, while MARBLE was

collected in controlled experiments where the activity duration was artificially

reduced. Indeed, in MARBLE, the average duration of an activity instance is 50

seconds, while in CASAS is 30 minutes. Since longer segmentation windows lead

to larger input images, the number of m-closest prototypes is higher in CASAS

compared to MARBLE. This is due to the fact that Model Prototypes is based

on a pixel-by-pixel match of the input with the prototypes, and larger images

require more prototypes to generate reliable explanations. For the same reason,
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Table 6.1: Hyperparameters in DeXAR

Hyperparameter Description MARBLE CASAS

n Length of semantic states segment 16s 360s
ov Segmentation overlap 80% 80%
t Consecutive predictions considered to de-

rive past activities
3 2

c Confidence threshold to derive past activi-
ties

0.75 0.60

K Number of stable predictions considered in
the input

2 2

p Number of prototypes in Model Prototypes 500 100
pt Threshold to exclude noisy pixels in proto-

types
0.8 0.01

m Number of prototypes closest to the input
considered in Model Prototypes

6 33

l Number of input perturbations created by
LIME

1500 4000

et (LIME) Explainability threshold for LIME 0.95 0.85
et (Grad-CAM) Explainability threshold for Grad-CAM 0.8 0.03
et (Model Prototypes) Explainability threshold for Model Proto-

types
0.6 0.6

LIME required 4000 perturbations on CASAS compared to the 1000 required

by MARBLE. Another significant difference between the two datasets is that

MARBLE required 500 prototypes, while CASAS only 100. This is motivated

by the fact that MARBLE involves 12 different subjects, each one with personal

ADL patterns. On the other hand, CASAS includes data from only one subject

performing repetitive patterns.

Hence, we believe that the type of the dataset (i.e., realistic vs controlled

setting) and the number of involved subjects are strong indicators of the hyper-

parameters to choose when applying DeXAR in different domains.

Accuracy on ADL recognition

In the following, we describe the recognition rate obtained by our CNN mod-

els. We will refer as CNN-GL to the model used for Grad-CAM and LIME, and

CNN-MP to the one used for Model Prototypes. We empirically determined the

network structure of CNN-GL: a convolutional layer composed of 8 2x2 filters,

followed by a flatten layer, and a softmax layer for classification. The simplicity
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of this network is due to the fact that our images are small and the pixels are

always positioned in well-defined positions based on their semantics. Hence, we

experimentally observed that more complex models do not improve the recogni-

tion rate. Since Model Prototypes requires a specifically designed neural network

to learn the prototypes, our CNN-MP is a slight adaptation of the network pro-

posed in [130]. In particular, the minor changes are: 1) we reduced the number

of convolutional layers both in the encoder and in the decoder (from 4 to 1) to

extract features that are similar to the ones derived by CNN-GL, and 2) we em-

pirically determined the number of generated prototypes. Figures 6.9 and 6.10

show the results of both models on both datasets.

(a) CNN-GL (b) CNN-MP

Figure 6.9: MARBLE: Comparison of the recognition rates obtained by the differ-
ent CNNs. CNN-GL is the model used for Grad-CAM and LIME, while CNN-MP
is the one used for Model Prototypes with 500 learned prototypes.

We observed that both classifiers reach an overall weighted F1 of ≈ 90% on

MARBLE and ≈ 80% on CASAS. The difference in recognition rate between the

datasets is due to the fact that CASAS includes long-term data in a realistic de-

ployment, hence the classification task is more difficult. Indeed, the annotations
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(a) CNN-GL (b) CNN-MP

Figure 6.10: CASAS: Comparison of the recognition rates obtained by the differ-
ent CNNs. CNN-GL is the model used for Grad-CAM and LIME, while CNN-MP
is the one used for Model Prototypes with 100 learned prototypes.

of CASAS are less accurate compared to MARBLE, and it also includes several

noisy sensor measurements.

Considering both datasets, we observed a small difference in the F1 score

between CNN-MP and CNN-GL. Hence, we consider these two models very sim-

ilar since they are close in recognition rates, even if with minor differences in

some activities. The similarity between CNN-MP and CNN-GL is crucial for a

fair comparison of the different XAI techniques. In general, ADLs are reliably

recognized, except for a few cases. For example, in MARBLE, the precision for

taking medicines is low. This is due to the fact that this activity is performed

in several locations of the home and it is poorly characterized by the deployed

sensors (e.g., the resident can take medicines in the kitchen, taking water from

the fridge, similarly to other kitchen-related activities). Other classification mis-

takes in MARBLE are related to setting up/clearing table activities. Those ADLs

are monitored by a few sensors that also capture other kitchen-related activities.

Those ADLs are often confused with each other due to their very similar patterns.

Considering CASAS, the ADLs associated with the lowest recognition rates are

leaving home, eating, and dressing/undressing. The low F1 score of leaving home
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and eating is likely due to the fact that those activities are poorly represented

in the dataset compared to the other ones. At the same time, both eating and

dressing/undressing present a low recall value (i.e., they involve a high number

of false negatives) since they are often confused with other activities that can

be performed in the same locations of the considered smart-home (i.e., kitchen

activity for eating, reading and sleeping for dressing/undressing).

We also compared these results with an approach based on a classic Deep feed-

forward Neural Network (DNN) and raw sensor data, observing that it would be

only ≈ 4% better than CNN-GL in terms of overall macro F1 score. However,

raw sensor data are poorly explainable. Hence, we sacrifice a bit of accuracy to

take advantage of input data that encode semantics.

Explainability evaluation based on common-sense knowledge

In the following, we show the results of the evaluation based on common-sense

knowledge. For the sake of visualization, we normalized the explanation score in

the range [0, 1]. Figure 6.11 shows the explanation score reached by the different

XAI approaches on both datasets. For each sample in the test set, we computed

(a) MARBLE (b) CASAS

Figure 6.11: Overall explanation score obtained by the different XAI approaches
based on the common-sense knowledge evaluation

the explanation score using Equation 6.6. The figure shows the overall explana-

tion score for correct and wrong classification instances separately. As expected,

we observed a higher explanation score on correct predictions and a lower score
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on wrong predictions. This is due to the fact that wrong predictions are often

associated with semantic features that are not consistent with the predicted activ-

ity according to common-sense knowledge. The only exception is Grad-CAM on

MARBLE, which reaches similar explanation scores both for correct and wrong

predictions.

On MARBLE, we observed that Model Prototypes outperforms the other ap-

proaches. This is mainly due to the fact that the classifier is specifically designed

to be explainable. Indeed, this method learns reliable prototypes that lead to

good explanations. On the other hand, LIME and Grad-CAM aim to obtain ex-

planations from existing CNNs. The bad performances of Grad-CAM are proba-

bly due to the fact that it often happens that the observed neurons are activated

even if the corresponding features are not completely relevant for classification.

This behavior of saliency-based approaches like Grad-CAM is well-known in the

literature [129].

Considering CASAS, we observed a lower explanation score for all the XAI

approaches. This is likely correlated with the lower recognition rate obtained by

the underlying CNN-based models. On this dataset, LIME reaches a slightly

higher explanation score compared to Model Prototypes. This is due to the fact

that, since the input images consider a larger segmentation window, the genera-

tion of reliable prototypes is more challenging for those activities that are poorly

represented. Indeed, looking closely at Figure 6.13, LIME is particularly better

than Model Prototypes mainly for those activities that have few instances in the

dataset (e.g., eating and working).

However, a significant advantage of Model Prototypes on this dataset is that

it reaches a significantly low explanation score considering wrong predictions.

Hence, when the classification is incorrect, the corresponding explanation would

likely be unconvincing for the end-users, hence possibly pointing out to the users

the miss-predictions of the system. On CASAS, Grad-CAM is still the approach

associated with the lowest explanation score on correct predictions, even if not

too distant from the other approaches.

Figures 6.12 and 6.13 show the overall explanation score (i.e. considering

both correct and wrong predictions) at the ADL granularity on both datasets.

On MARBLE, Model Prototypes outperforms the other approaches on the
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Figure 6.12: MARBLE: Explanation score for each activity obtained by the dif-
ferent XAI approaches based on the common-sense knowledge evaluation.

Figure 6.13: CASAS: Explanation score for each activity obtained by the different
XAI approaches based on the common-sense knowledge evaluation.

majority of the activities. LIME performs better than Model Prototypes only

on the phone-related activities. This is due to the fact that the only semantic

features that partially explain those activities according to our common-sense

knowledge are the ones related to phone usage. However, activities like mak-

ing a phone call can be performed in every location of the home, standing or

sitting. Hence, Model Prototypes generated noisy prototypes for this activity,

while LIME better captures the important semantic features for classification.

Due to the high variability of phone activities, Grad-CAM is not able to deter-

mine the important features only considering neuron activation, hence leading to

167



very poor explanation scores. Considering CASAS, LIME outperforms the other

approaches regarding the activities that are poorly represented since the corre-

sponding prototypes are less reliable. The higher explanation score on kitchen

activity is due to the fact that (similarly to making a phone call on MARBLE)

it can be performed in multiple home locations with different patterns. Indeed,

kitchen activity includes different activities such as cooking, setting up and clear-

ing the dining table, and drinking a glass of water in the kitchen. Hence, the

prototypes related to this activity are less reliable.

An interesting insight is that poorly recognized activities are likely associ-

ated with bad explanations, independently from the XAI approach being used.

This phenomenon occurs for taking medicines in MARBLE, and leaving home in

CASAS. However, in MARBLE, clearing table has a high explanation score even

if the recognition rate is low. This is due to the fact that this ADL is often con-

fused with setting up table, and these activities share similar explanations (i.e.,

they involve the same sensors and the patterns are very similar).

Explainability evaluation based on the survey

In the following, we show the main results of our user-based survey. For the

sake of fairness, we want to mention that we performed this evaluation only once

the knowledge-based ones were completed. Hence, we did not adapt the semantic

model based on data collected from the users. Figure 6.14 depicts the distribution

of the average score for each explanation for each method on both datasets.

Considering both datasets, Model Prototypes is the most appreciated XAI ap-

proach by the participating users. On MARBLE, Model Prototypes has a higher

average and lower variance compared to LIME. Considering CASAS, the differ-

ence is still clear since Model Prototypes statistically received higher rates. The

results also confirm that Grad-CAM is the approach that generated significantly

worse explanations, even from the participants’ point of view. In order to sum-

marize, Figure 6.15 directly compares the results of the survey (with explanation

marks normalized in the interval [0, 1]) with the average explanation scores of the

evaluation based on common-sense knowledge on both datasets. From the figure,

it is interesting to notice how the evaluations based on the Explanation Score
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(a) MARBLE (b) CASAS

Figure 6.14: Distribution of the scores provided by the participants for each
method

(i.e., common-sense score) are overall proportional to the ones obtained through

the surveys.

(a) MARBLE (b) CASAS

Figure 6.15: Comparison between common-sense knowledge evaluation and user-
based evaluation
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6.3.4 Impact of pre-processing hyper-parameters

In the following, we discuss how the main hyper-parameters that influence the

generation of the input (i.e., the semantic images) impact the recognition rate on

both datasets.

First, we show in Figure 6.16 how the length n of the segmentation window

impacts the recognition rates. As we previously discussed, the optimal value

(a) MARBLE (b) CASAS

Figure 6.16: Impact of the segmentation window dimension (in seconds) on the
recognition rates

of n is 16s for MARBLE and 360s for CASAS. Consistently with the activity

recognition literature [3], we found that when n is lower than the best value, the

input does not cover enough information to recognize ADLs. On the other hand,

when n is higher than the best value, each window may consider sensor data from

multiple activities, thus degrading the recognition rate.

Figure 6.17 shows the impact of the number of the past ADLs (K) and the

number of consecutive predictions to consider past ADLs reliable (t). On both

datasets, the optimal value of K is 2, while t = 3 in MARBLE and t = 2 in

CASAS. We observed that high values of K negatively affect the recognition

rate, since (as expected) only the most recently performed ADLs are informa-

tive to classify the current one (e.g., cooking and eating before washing dishes).

Considering t, using low values leads to taking into account wrong classification

instances as reliable past ADLs. On the other hand, high values introduce a delay

in considering past ADLs in the input images, with a consequent slight negative

impact on the recognition rate.

Figure 6.18 depicts how the confidence in past predictions (c) influences the
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(a) MARBLE (b) CASAS

Figure 6.17: Impact of K (number of past activities) and t (consecutive reliable
predictions) on the recognition rates

recognition rate. The optimal value of c is 0.75 on MARBLE and 0.60 for CASAS.

(a) MARBLE (b) CASAS

Figure 6.18: Impact of c (confidence threshold for past activities) on the recog-
nition rates

Low values of c lead to consider a high number of miss-predictions as reliable

past ADLs, with a negative impact on the recognition rate. On the other hand,

high values significantly limit the number of considered past ADLs, negatively

impacting the overall accuracy.

6.4 Discussion

In the following, we discuss the main limitations of DeXAR, pointing to possible

future research directions to address them.
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6.4.1 Over-reliance in explanations

The user study that we performed evaluates how explanations are rated by the

users, mainly based on whether they were convincing or not. However, this type

of evaluation may require extensions in higher-stakes domains, like ADL recog-

nition for healthcare applications. Indeed, it is important not only to evaluate if

an explanation is intuitive to the user but also if it is helpful for the specific ap-

plication in a real-world scenario [174]. Explanations should provide information

also to identify situations when the classifier is incorrect [175]. Otherwise, the

end-users may wrongly build trust in the system.

In future work, we will investigate how to improve the user-based evaluation

and how to mitigate the over-reliance problem. First, we will include additional

information in the explanations. For instance, the classifier’s confidence may

help in indicating whether a specific ADL prediction is reliable or not. Another

possibility is to link the explanation with the input of the classifier. However,

differently from the image classification task, the input in our case are semantic

images that are not easy to understand by non-expert users. Note that our images

not only capture sensors’ activations and semantic states but also their temporal

relationships. Based on preliminary experiments, we observed that showing these

images as the classifier input together with the explanation would only confuse

the users. In future work, we will investigate how to represent the classifier’s

input in a user-friendly way, and how to include confidence. This task includes

the design of specific user studies both for user-friendliness and for reliance.

6.4.2 Limitations of the Model Prototypes approach

In this work, we designed our own variant of the Model Protoytpes approach as

presented in Section 6.2.5. While the achieved results are promising, this novel

method still has some limitations that we plan to address in future work.

First, when considering the CASAS dataset, we observed that semantic states

that happened to be active independently from the performed ADL (e.g., a drawer

that is left open for a long time) are encoded in several prototypes, and, conse-

quently, they appear as relevant features in many explanations. Clearly, this

phenomenon has a negative impact on the quality of the explanations. We will
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investigate alternative semantic image representations to mitigate this problem.

Another limitation is that each explanation is generated by computing a

match pixel by pixel between the input and the m-closest prototypes. This

approach may be too rigid. Indeed, a sequence of semantic states that occur

at specific instants in the input may not be temporally aligned to the ones in

the prototypes. We will investigate more sophisticated approaches considering

temporal tolerance.

Finally, we generate an explanation by considering only semantic features that

are both in the prototypes and in the input. However, prototypes may also include

additional semantic features compared to the input. In future work, we will

study how to include such information to enrich the explanations. This additional

information may be useful to help the end-users in spotting classification mistakes,

thus reducing the over-reliance problem described above. We illustrate this case

with an example.

Example 6.11 Alice is in the office, sitting at the desk while reading a book.

However, the model wrongly classifies her current activity as working. The closest

prototype, besides including the semantic states activated by Alice, also includes

the semantic state Personal Computer ON that is not part of the input. This is

due to the fact that, considering training data, Alice usually sits at the desk using

the PC. The explanation produced by the system may use the additional semantic

state in the prototype as follows: “The activity is Working mainly because Alice

was sitting at the office’s desk. However, the PC is off while this activity usually

also includes using the PC”.

6.5 Summary

In this chapter, we presented DeXAR: a methodology for explainable sensor-based

ADL recognition relying on the classification through deep learning of semantic

images derived from raw sensor data. We quantitatively evaluated through the

Explanation Score the effectiveness of the explanations generated by DeXAR. Our

experiments showed how the results obtained through the Explanation Score are

aligned with user-based scores obtained through surveys. Hence, our Explanation
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Score addresses the research question Q4 presented in Section 2.5 since it can

be used to measure the degree of interpretability of DL models for sensor-based

HAR.

However, due to time constraints, one of the main limitations of the work

described in this chapter is that we used the Explanation Score only to evaluate

purely data-driven approaches based on deep learning. As we will discuss in

Chapter 7, we plan to exploit the Explanation Score to quantitatively evaluate the

interpretability benefits provided by the Knowledge Infusion methods presented

in this thesis, i.e., symbolic features and semantic loss.

Finally, another limitation of DeXAR is the transformation of raw sensor data

into understandable semantic information. This transformation is crucial in order

to take advantage of XAI methods and to evaluate their explanations through

the Explanation Score. In essence, DeXAR relies on the conversion of raw sensor

measurements into meaningful semantic states (e.g., hand gestures). This ensures

that the generated explanations are comprehensible to end-users. For instance,

when dealing with data from wearable devices, raw sensor measurements can

be mapped to postures (e.g., the user is sitting) to produce better explanations

about high-level activities (e.g., eating at the dining room table). However, this

mapping can be challenging in certain scenarios. For instance, consider a sce-

nario where a HAR application needs to recognize low-level physical activities

like sitting, as discussed in chapters 4 and 5. In such cases, raw sensor measure-

ments must be transformed into semantic states with an abstraction level that

lies between the raw measurements and the physical activities. For instance, a

repeated oscillatory hand movement can be derived from raw sensor data to rec-

ognize and explain activities like running. However, it remains an open question

whether the end-users can easily understand this information when presented in

an explanation. Consequently, when raw sensor data cannot be easily mapped

to clear semantics, the Explanation Score can only partially evaluate the inter-

pretability of a model: it can evaluate model interpretability according to the

subset of input data encoding a clear semantic (e.g., the high-level context data

in chapters 4 and 5). In the future, we plan to explore the use of more recent

XAI methods specifically designed for multivariate time series and to extend our

Explanation Score accordingly. In doing so, it will be also necessary to under-
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stand how to translate explanations about raw sensor measurements into more

accessible information that end-users can readily understand.
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Chapter 7

Conclusion

7.1 Summary

In this thesis, we proposed novel Neuro-Symbolic AI (NeSy) methodologies to

mitigate the labeled data scarcity issue of state-of-the-art approaches for sensor-

based HAR. In particular, we introduced a NeSy framework for HAR in multi-

subject smart environments and two NeSy approaches that implement the Knowl-

edge Infusion paradigm for context-aware HAR. Moreover, we presented an initial

investigation of interpretability aspects, by introducing a metric that quantita-

tively evaluates, according to domain knowledge, the explanations obtained from

activity classifiers based on Deep Learning (DL). In the following, we summarize

the specific contributions presented in this thesis.

Neuro-symbolic HAR in multi-subject smart-home environments

Our first contribution is the NeSy framework for HAR we presented in Chapter

3 to address data scarcity in multi-subject smart environments. This approach

relies on symbolic reasoning to perform data association by combining sensor

events with users’ contextual information (e.g., their location in the environ-

ment). In this way, data association is performed without labeled data samples,

thus mitigating data scarcity compared to existing state-of-the-art approaches in

the field that perform data association in a data-driven fashion. More specifically,

to further mitigate data scarcity, we implemented a semi-supervised DL classifier
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that receives as input the streams of sensor events separated for each user after

performing data association. This semi-supervised model was initialized with a

limited amount of training data and then continuously updated and improved

through a novel cache-based active learning strategy. Finally, symbolic reason-

ing is also considered to refine the classifier’s predictions, by discarding those

activities that are not consistent with the users’ contextual information.

Our experimental evaluation on the MARBLE dataset revealed how the imple-

mented classifier reliably recognized users’ activities, without requiring labeled

data to perform data association. In particular, the semi-supervised classifier

reached similar recognition rates compared to a fully-supervised one, while re-

quiring significantly lower labeled data and triggering a limited number of active

learning queries. Moreover, prediction refinement improved the recognition rates

of the activity classifier, while also reducing the number of active learning queries

prompted to the user.

Among the limitations of this work, domain knowledge is exploited only be-

fore (i.e., to perform data association) and after (i.e., to perform prediction re-

finement) the learning process of the DL classifier. This does not allow the model

to actually learn domain knowledge during training, thus limiting the potential

benefits of NeSy solutions.

Knowledge infusion through symbolic features for context-aware HAR

Labeled data scarcity affects also other HAR application domains, like the context-

aware recognition of low-level (physical) activities. In this scenario, contextual

information about the user’s surroundings (e.g., her semantic location) can be

used to better discriminate activities with similar motion patterns. NeSy ap-

proaches have already been considered to mitigate data scarcity in these applica-

tions that would require training sets containing every possible context condition

in which activities can be performed. One of the main issues of existing NeSy

approaches for context-aware HAR is that they consider domain knowledge about

users’ contextual information only after the training process of the DL classifier.

This limits the ability of deep learning to handle data uncertainty and could

hence lead to wrong decisions in case of incomplete knowledge models or noisy

context data. For this reason, in Chapter 4 we presented a NeSy framework that
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implements the Knowledge Infusion paradigm. Here, symbolic reasoning is used

to infer additional knowledge-based features that are infused into the DL classi-

fier. These features guide the model to learn domain knowledge in a less rigid

way compared to state-of-the-art NeSy methods for context-aware HAR. More

specifically, we implemented two versions of this NeSy approach. In the first

case, symbolic reasoning relied on a standard ontology encoding hard domain

constraints. In the second case, we instead considered a probabilistic ontology

composed of both hard and soft constraints.

Our results on DOMINO and on a real-world dataset demonstrated that the

use of symbolic features mitigates data scarcity while being more robust in the

presence of noisy context data compared to more rigid NeSy approaches. More-

over, we showed how the improvements led by probabilistic ontologies do not

justify the significant efforts required to build them.

Despite the promising results obtained thanks to the infusion of symbolic

features into DL classifiers, a limitation of this approach is that such features

must be inferred through computationally demanding symbolic reasoning proce-

dures also during classification. This complicates the deployment of the proposed

method on resource-constrained devices like smartphones.

Knowledge infusion through a semantic loss function for context-aware

HAR

In Chapter 5 we address the limitation of the NeSy approach presented in Chapter

4, where symbolic reasoning is required also during classification, thus complicat-

ing the deployment of such a method on resource-constrained devices. Hence, we

presented a Knowledge Infusion method based on a semantic loss function that in-

fuses domain constraints into the DL classifier only during training, thus avoiding

symbolic reasoning after deployment. In particular, this semantic loss penalizes

those predictions that are not consistent with the users’ surrounding context. In

this way, after training, the DL model internally encodes domain knowledge that

is exploited to classify context-consistent activities without requiring symbolic

reasoning at run-time.

Our experiments analyzed the impact of different semantic loss functions that

relied on both a standard and a probabilistic ontology. The results revealed how
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our semantic loss approach outperformed a purely data-driven model. Moreover,

it is the only NeSy method that can be deployed without the need for symbolic

reasoning, reaching recognition rates that are close (or even better) to existing

NeSy approaches. In addition, the use of a semantic loss is significantly more

robust than the other considered NeSy approaches in the presence of noisy data.

Finally, we inspect interpretability aspects, qualitatively showing how our seman-

tic loss method makes decisions following the domain constraints encoded into

the infused knowledge. This is a first step indicating how NeSy approaches based

on Knowledge Infusion can lead to more interpretable DL classifiers.

One of the main problems of the work presented in Chapter 5 is that inter-

pretability is analyzed briefly and only in a qualitative manner.

Explainable deep learning classifiers for sensor-based HAR

One of the potential benefits of NeSy solutions is to improve the interpretabil-

ity of DL activity classifiers. However, eXplainable AI (XAI) methods for deep

learning models are challenging to apply when input data are raw sensor mea-

surements. Moreover, in the current HAR literature, no quantitative metric has

been introduced to measure the interpretability level of DL models. Thus, in

Chapter 6, we proposed a novel methodology to (i) transform raw sensor data in

order to take advantage of existing XAI methods, (ii) use their output to generate

explanations in natural language, and (iii) quantitatively evaluate such explana-

tions through a novel metric called the Explanation Score. This metric measures

the coherence of an explanation with human knowledge about the HAR domain.

Our experiments showed how evaluations based on the Explanation Score are

aligned and consistent with user-based scores obtained through surveys. Hence,

we believe that our metric can be used to quantify how DL models for sensor-

based HAR are interpretable for humans.

However, due to time constraints, one of the main limitations of the framework

presented in Chapter 6 is that we used the Explanation Score only to evaluate

purely data-driven approaches based on deep learning. As we will discuss later,

among the future research directions, we plan to exploit the Explanation Score

also to evaluate the interpretability benefits provided by the NeSy methods de-

scribed in this thesis.
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7.2 Future work

Despite the encouraging results presented in this thesis, we believe that Neuro-

Symbolic AI can further mitigate the labeled data scarcity and the lack of inter-

pretability issues of sensor-based HAR. In the following, we outline some inter-

esting and promising research directions that we plan to investigate in the future

to improve our methods.

Including the explanation score into neuro-symbolic AI frameworks

In this thesis, we proposed the Explanation Score to quantitatively evaluate,

based on domain knowledge, the consistency of explanations obtained through

XAI methods from DL activity classifiers. However, we just exploited this score

to evaluate the interpretability of purely data-driven classifiers. We believe that

the Explanation Score can be integrated into NeSy frameworks for sensor-based

HAR in several interesting ways.

To begin, this score can be used to evaluate if infusing domain knowledge

into DL models during training increases their interpretability levels. This would

confirm one of the main benefits of Neuro-Symbolic AI compared to approaches

only based on deep learning, as also highlighted by the preliminary investigations

on interpretability presented in Chapter 5.

In addition, in Chapter 6, we have seen how, when using specific XAI tech-

niques (e.g., Model Prototypes), the Explanation Score tends to be higher for

correct predictions and lower for wrong decisions. Hence, the metric can be po-

tentially used to spot classification errors made by an activity classifier in real

time when a relatively low Explanation Score is being computed.

Another interesting research direction consists of considering the Explanation

Score to provide feedback to the DL model during its learning process in order

to make it more interpretable. For instance, similarly to an existing approach

proposed for monument facade image classification [176], the Explanation Score

could be included in a custom training process that aligns the explanations of

the DL model’s predictions with the ones provided by human experts (encoded

into a knowledge model). This would guide the activity classifier to intrinsically

make predictions whose explanations are more interpretable for humans.
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Finally, another limitation of the framework we proposed in Chapter 6 is that

the Explanation Score can only be applied to high-level semantic data and not

directly to raw sensor measurements. This leads to two possible alternative lim-

itations. When both types of data are given as input to the DL classifier, the

Explanation Score can only be used to evaluate the model’s interpretability with

respect to high-level semantic data. On the other hand, to avoid this problem,

raw sensor data must be mapped to high-level semantic information before be-

ing provided as input to the classifier. In the first case, the Explanation Score

can only be used to understand if the model is partially interpretable, i.e., it is

interpretable only with respect to high-level semantic data. In the second case,

mapping raw sensor measurements to a higher level of abstraction could lead to

a loss of information (i.e., the fine-grained sensor patterns). In the future, it will

be important to take into account more recent XAI methods specifically designed

for multivariate time series. Hence, the Explanation Score should be extended to

also consider these kinds of explanations.

Symbolic reasoning through Large Language Models

In chapters 3, 4 and 5, we introduced NeSy methods for HAR in multi-subject

smart homes and for the context-aware recognition of low-level physical activities.

These approaches include symbolic reasoning modules that rely on knowledge

models (i.e., ontologies). However, building comprehensive and robust knowl-

edge models (especially when probabilistic) is a challenging task that requires

significant human effort and domain expertise. In the literature, some works al-

ready attempted to mitigate this problem by semi-automatically obtaining com-

mon sense knowledge from external sources (e.g., web [177], text sources [178],

images [179]). However, these solutions mainly focused on the detection of users’

activities in smart-home settings and the resulting models are still not sufficient

for accurate recognition. In the future, we will investigate the possibility of re-

placing ontologies with Large Language Models (LLMs). Indeed, we believe that

pre-trained LLMs inherently encode common sense knowledge about HAR (e.g.,

walking can be performed only with a positive speed). This knowledge can be

hence infused into DL models. Proper experiments should be designed to eval-

uate (i) whether LLMs-based reasoning can serve as a good approximation of
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ontological reasoning in HAR applications, (ii) whether the prompt engineering

efforts required to build pipelines based on LLMs are more efficient compared to

the intensive process required to build reliable ontologies, and (iii) whether solu-

tions including LLMs are more flexible than the ones based on ontologies when,

for example, new contextual information or additional activity classes need to be

incorporated in the framework.

Neuro-symbolic self-supervised learning

In this thesis, we mainly focus on Neuro-Symbolic AI methods that mitigate the

labeled data scarcity issue in the sensor-based HAR field. Self-Supervised Learn-

ing (SSL) is another technique that has been considered in the literature to tackle

the same problem. This learning paradigm leverages large amounts of unlabeled

data to pre-train a model capable of extracting reliable feature representation

of sensor data. Hence, this pre-trained model is fine-tuned only using a limited

amount of labeled data [113, 115]. Neuro-Symbolic AI can be potentially cou-

pled with such techniques in different ways. For instance, symbolic reasoning can

be involved during pre-training to make the model learn features that also take

into account domain knowledge. At the same time, it could be possible to infuse

domain constraints into the classifier during fine-tuning to further minimize the

amounts of required labeled data.

Revising and updating the knowledge model through continual learn-

ing

In the Knowledge Infusion methods presented in chapters 4 and 5, we assumed

that the knowledge model (i.e., the ontology) is static and never updated, even

if this is not necessarily true in real-world deployments. Indeed, the knowledge

model can be revised or extended with new knowledge over time. For instance,

knowledge can be expanded by including new activities or context sources (in

these cases, additional representative training samples are also required), or by

refining and improving existing domain constraints. In this scenario, the pre-

sented NeSy methods based on Knowledge Infusion should re-train the DL model

to infuse the updated knowledge. However, re-training the model from scratch

is not always feasible (e.g., it is too expensive). Hence, continual learning ap-
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proaches (e.g., based on knowledge distillation techniques) [180] could be adopted

to incrementally update the classifier so that it can retain previous knowledge

while learning new constraints. Applying existing continual learning approaches

is presumably effective when the knowledge model is extended (e.g., with new

activities), while it is more challenging when knowledge is revised. Indeed, in this

case, the incremental learning paradigm should allow the model to retain some

constraints while updating other ones. In the future, we plan to in-depth investi-

gate how to incrementally train NeSy approaches upon changes in the knowledge

model.
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