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Abstract. Process simulation is an analysis tool in process mining that
allows users to measure the impact of changes, prevent losses, and update
the process without risks or costs. In the literature, several process sim-
ulation techniques are available and they are usually built upon process
models discovered from a given event log or learned via deep learning.
Each group of approaches has its own strengths and limitations. The for-
mer is usually restricted to the control-flow but it is more interpretable,
whereas the latter is not interpretable by nature but has a greater gen-
eralization capability on large event logs. Despite the great performance
achieved by deep learning approaches, they are still not suitable to be
applied to real scenarios and generate value for users. This issue is mainly
due to fact their stochasticity is hard to control. To address this problem,
we propose the CoSMo framework for implementing process simulation
models fully based on deep learning. This framework enables simulating
event logs that satisfy a constraint by conditioning the learning phase of
a deep neural network. Throughout experiments, the simulation is vali-
dated from both control-flow and data-flow perspectives, demonstrating
the proposed framework’s capability of simulating cases while satisfying
imposed conditions.

Keywords: Process Mining · Business Process Simulation · Deep learn-
ing · What-if Analysis

1 Introduction

Process mining refers to a set of tools used for analyzing recorded data col-
lected over time from information systems. The overall goal is to obtain in-
sights that allow users to improve their business processes or support them in
decision-making. Among the existing techniques devoted to this, process simula-
tion models have gained renewed attention in recent research papers [12, 6, 11].
Simulating processes allows researchers and practitioners to improve and sup-
port their processes in various ways, such as validating processes before imple-
mentation or diagnosing ongoing processes [1]. In general, the current solutions
? Supported by Università degli Studi di Milano
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stochastically simulate traces based on assumptions from the probability distri-
butions obtained or learned from the event logs. Most of the current simulation
models available in the literature are either implemented upon process models
discovered from event logs [23, 5, 6] or learned from event logs via deep learning
techniques [8, 11]. The former group of methods usually requires first discovering
a process model, extracting information from it, and then generating simulated
traces [18]. This step might introduce limitations and lead to suboptimal solu-
tions since selecting the suitable process discovery algorithm according to the
event log characteristics can be challenging [28]. Traditionally, these methods
are also restricted to the control-flow and temporal behavior, which means they
are not able to take into consideration extra event attributes such as resources
and costs. In this sense, deep learning present more flexibility when modeling
a solution since these approaches are able to include as many event attributes
as available [14, 15, 20]. Moreover, Camargo et al. [10] have demonstrated that
simulation models based on deep learning outperform simulation models based
on process models for larger event logs and perform similarly for smaller event
logs. Despite these promising results, deep learning models still suffer from a lack
of interpretability, which can be a major limitation for decision-makers. How-
ever, we believe that exploring innovative deep learning design ideas in process
mining can help to mitigate this issue and advance the state-of-the-art of process
simulation.

Recently, Camargo et al. [11] have proposed a hybrid solution based on pro-
cess mining and deep learning techniques to overcome the limitations of both
groups of methods. Although hybrid solutions tend to be more powerful since
they leverage the strengths of different techniques, approaches fully based on
deep learning have not been widely and properly explored so far regarding the
process simulation problem. To the best of our knowledge, the only contribution
in the literature is the DeepGenerator [10], which has been proposed for the
generation of event logs from scratch. However, simply generating data via deep
learning might not be so beneficial due to the stochasticity introduced by the
learned models. Process simulation models should be able to answer questions
in order to compare possible changes with respect to key performance indica-
tors [1]. For example, teaching models how to satisfy conditions imposed by
users. Although stochasticity is an intrinsic property of many simulation meth-
ods, it is possible to constrain the output of a deep neural network by providing
additional information during training. By incorporating auxiliary data into the
training process, it is possible to limit the randomness of the network’s output
by conducting them into desired directions guided by conditions. This can effec-
tively reduce the stochastic nature of the output and increase the control over
the model’s behavior, which can be valuable when performing what-if analysis.

Thus, considering the recent successful deep learning applications in process
mining and the lack of alternative solutions derived from it, in this paper we
propose CoSMo: a framework for developing COnditioned Simulation MOdels.
CoSMo is capable of learning how to simulate processes by satisfying constraints.
An example of a constraint that can be taught to condition the simulation model
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is resource usage. We study in this work how to simulate processes that make
usage (or not) of a specific resource, which basically consists of teaching neu-
ral networks how to perform simulation considering this condition of resource
availability. Moreover, we take into consideration the existing deep neural ar-
chitecture designs in the literature of process mining in order to develop our
proposal. This way, we demonstrate through experiments that CoSMo is capa-
ble of learning how to satisfy conditions regardless of the underlying architecture.
More specifically, we instantiate the DeepGenerator and a simpler architecture
with fewer parameters to serve as baselines. Results show that our framework
instantiations are capable of generating reasonable event logs from scratch by
satisfying the imposed conditions and performing what-if analysis by simulating
desired scenarios on ongoing cases.

The paper is organized as follows. Section 2 introduces the basic concepts for
the understanding of this work along with a discussion on the related works. Sub-
sequently, in Section 3 we discuss the limitations of existing process simulation
models, and in Section 4 we introduce our proposed solution. Section 5 describes
the employed experimental setup and the experimental evaluation. Finally, we
conclude our work and discuss future directions in Section 6.

2 Background and Related Works

An event log consists of a set of cases (a.k.a. process executions) [2]. Each case is
composed of an ordered sequence of events, where each event refers to the execu-
tion of a system activity and is characterized by a set of attributes. A sequence
of events related to a given case is called a trace. The most common attributes
that can be found in an event are the activity label and the timestamp denoting,
for instance, when the activity started. Moreover, an event might present other
attributes, such as a resource needed to execute the activity or the cost of this
execution.

Process simulation models aim at abstracting details from the event logs in
order to simulate reality [1]. They are employed as a tool by the process mining
community for several applications, such as conformance checking [24], event log
generation [5, 10], purposed-oriented event log generation [6], what-if analysis
[12], and predictive process monitoring [26, 14, 8]. The existing simulation solu-
tions in the literature can be mainly divided into two groups: simulation models
built upon a discovered process model or models learned from event logs via deep
learning. For the sake of simplicity, in this work, we shorten the process simula-
tion based on process models term as PSPM approaches and process simulation
based on deep learning as PSDL approaches.

In general, the PSPM approaches discover a process model and extract sta-
tistical characteristics from a given event log [23]. Thus, the simulation is usually
performed by replaying a process model (e.g. Colored Petri Net [21] or BPMN
[6]) in a stochastic fashion to make simulations more realistic [1]. Moreover, the
obtained statistics are usually managed according to each scenario’s specifica-
tions and user requirements, although guidelines and automated solutions have
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been proposed [18, 7]. This group of simulation models is the most popular in
the current literature and includes several proposals such as the PGL2 [5] and
SIMOD [9]. These methods are usually designed to simulate different control-flow
patterns by manipulating user-based requirements, such as the number of gates
and the amount of noise. A weakness of this group of methods is the restriction
of capturing only the control-flow and temporal behavior, whereas the strengths
consist of higher interpretability since they rely on white-box representations
(i.e., the discovered process model).

On the other hand, PSDL solutions are very recent in the process mining
literature. These methods can be seen as extensions of the wide range of ap-
plications related to the predictive process monitoring field. Predictive process
monitoring consists of a set of process mining techniques that aim mostly at
solving the problems of the next activities, remaining time, and outcome predic-
tions [22]. Thus, the simulation might be thought of as the problem of iteratively
predicting the next activities or the whole remaining trace (a.k.a. suffix) of an
ongoing execution [26]. Leveraging the recent achievements in this field, the first
simulation model fully based on deep learning, named DeepGenerator, was pro-
posed by Camargo et al. [8]. This process simulator differs from the traditional
PSPM approaches since it learns directly from an event log instead of relying
on discovering a process model and extracting additional information. Later, the
same authors demonstrated that this group of simulation models is capable of
outperforming PSPM approaches for larger event logs while performing similarly
for smaller event logs in the event log generation task [10]. Furthermore, deep
learning provides more flexibility for multi-dimensional modeling, i.e., including
extra event attributes such as resources and costs.

In order to mitigate or overcome the mentioned limitations of both groups
of simulation models, hybrid approaches have been proposed recently. For ex-
ample, Pourbafrani and van der Aalst [21] combined process mining and system
dynamics techniques, which in a nutshell leverages the details captured by pro-
cess mining with higher-level information extracted by system dynamics. On the
other hand, Camargo et al. [11] proposed the DeepSimulator, which employs
a process model for simulating the control-flow and a deep learning model for
estimating the remaining time of activities.

3 Motivation

We stress the motivation of our work by considering the current limitations of ex-
isting process simulation solutions. The PSPM approaches might be influenced
by the underlying process model [28] and they are restricted to control-flow
aspects and temporal behaviors. This means they are affected by the bias intro-
duced by the discovery algorithms. Indeed, there is no common sense for selecting
the optimal discovery algorithm according to the given event log characteristics,
which may lead to suboptimal performances [28].

A common characteristic among process simulation models is the stochas-
ticity inserted during simulation. For example, simulations by replaying process
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models are supported by statistical information extracted from the event logs,
such as branches’ probabilities and activity duration time distributions. On the
other hand, PSDL approaches consist of learning the underlying data distribu-
tions and drawing event attributes from the probability distributions returned
by the learned model. Although this stochastic approach makes simulations more
realistic [1, 8], fully depending on randomness limits the users’ flexibility to con-
trol the simulated behaviors based on desired conditions. To the best of our
knowledge, the first deep learning application in process mining was proposed
in 2017 by Evermann et al. [13] to introduce a solution for the problem of next
activity prediction. Since then, many variations have been proposed and ex-
tended for other tasks [22], but a very small effort has been dedicated to process
simulation exclusively.

Conditioning the simulation of a process is relevant since it provides more
flexibility to users by allowing them to restrict the simulation according to the
desired scenario. The idea of this approach is to be more adaptable by learning
how processes might behave under possible changes or desired constraints. The
most related solution to ours in the literature is the Purple framework, recently
introduced by [6]. The authors proposed a purpose-guided solution capable of
simulating entire event logs by following a given purpose. For instance, Purple is
capable of generating synthetic event logs specifically designed to evaluate and
possibly benchmark process discovery algorithms. However, it is still harmed
by the greatest limitation of PMPS approaches since it focuses mainly on the
control-flow aspects.

In order to clarify the problem of control-flow restriction and fully rely on
the stochasticity nature of simulation models, consider the following example.
Consider an activity A which might be followed by one out of two possible
activities: activity B, if A is executed by the resource R1; or activity C, if A is
executed by a resource R2. A stochastic process simulation model will randomly
associate a resource to A based on the learned probability distributions from
the given event log. However, the intuitive idea of CoSMo is providing the user
an alternative for restricting the simulations based on the condition that only
R1 can be employed at that moment, i.e., A should always be followed by B.
More examples of naive and intuitive conditions in the process mining context
might include the usage of given resources (e.g. if a resource is available or not
for the process execution), time-based constraints (e.g. restricting allowed time
for a process execution), or process outcomes (e.g. conditioning the simulation
of a process that fails or succeeds w.r.t. a key process indicator).

Now, consider the abstraction of a neural network as p(y|x) = ŷ with some
abuse of notation, where ŷ is a probability distribution returned by the neural
network p [3]. Hence, a naive neural network is naturally a conditioned probabil-
ity function that aims at estimating y given a random variable x. In probability
theory, we are allowed to jointly measure the probability of the intersection of
multiple random variables. For instance, functions that learn the underlying re-
lation of sequential data (e.g. recurrent networks, see [26] for a formal definition
in the context of process mining) are interested in knowing the probability dis-
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tribution p(xt|xt−1, ..., x1) where t indicates, for instance, the position or time
of the random variable x. Thus, the conditional learning of neural nets in the
context of this work can be performed by introducing customized conditions C
in the form of auxiliary information, such that p(y|x, c) = ŷ.

Therefore, in this work, we propose a conditioned process simulation model.
The overall idea consists of providing the model with some extra information
during the training phase so that at the testing phase (simulation) the outputs
might be restricted or manipulated according to the provided extra informa-
tion. Such extra information can be provided in the form of class labels [19],
for instance. However, conditional learning is very popular nowadays in the
multi-modal learning context, for example, generation of text conditioned by
images [16] or by short text prompts [4].

4 CoSMo: A Framework for Conditioned Simulation
Models

In this section, we introduce CoSMo, our proposed framework for implementing
process simulation models based on conditioned deep neural nets. We propose
a methodology that leverages a basic deep learning technique to mitigate the
stochastic nature of process simulation models. Although stochasticity will be
always present in simulations, following this conditioned design allows users and
practitioners to have more control over the outputs.

Conditioning

n-gramPreprocessing
(optional)

Conditioned
prefixes

Event log

Conditioned
simulations

Conditioned
network training

Fig. 1. Implementation pipeline for instantiating a process simulator based on the
CoSMo framework.

Figure 1 summarizes the pipeline for instantiating CoSMo. The red blocks
refer to data preprocessing steps, the yellow block refers to the training of a con-
ditioned network, and the green block refers to the final conditioned simulation
model. Given an event log, there are three preprocessing steps, and one of them
is optional. The conditioning step regards the labeling of cases based on a con-
straint. Nevertheless, in this step users are free to design any condition according
to their interests. The obtained conditions in form of labels serve as auxiliary
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information when training a deep neural net. Moreover, alternative preprocess-
ing procedures are included as an optional step. Finally, the n-gram method is
applied to transform the preprocessed event log into a dataset of conditioned
prefixes.

Given the dataset of conditioned prefixes, we can train a conditioned network.
A generic design of conditioned networks for process simulation is proposed in
Figure 2. We take into consideration two important aspects to propose this
abstraction. First, we consider several design ideas of conditional learning from
the deep learning community as briefly discussed in Section 3. Second, we also
consider all the mentioned related works in predictive process monitoring since
they follow a similar neural architecture design in general. Usually, the overall
architectures employ a block for learning a representation of input features (a.k.a.
encoding), e.g. RNNs to represent temporal dependencies [26] or CNNs to extract
new features [29], followed by a linear (a.k.a. dense or fully connected) layer.
Therefore, the overall idea of designing generic conditioned networks is first to
learn feature representations of the input prefix and concatenate the outputs
with the provided condition label. The next blocks are hence responsible for
performing non-linear transformations in order to learn how to solve downstream
tasks, for instance, the next activity prediction or remaining time estimation.

Feature
representation block

Other network
blocks

Prefix Condition

+ Concat

Fig. 2. Generic design of conditioned
networks for training process simula-
tion models.

Due to the n-gram nature of data,
CoSMo allows users to perform (i) simu-
lations from scratch, i.e., given a zero-like
prefix and a desired condition as input,
and (ii) simulations from ongoing cases,
i.e., simulating the remaining events from
a real start point. The former allows users,
for example, to simulate synthetic event
logs with desired characteristics, e.g., a set
of traces executed under the specified con-
dition. The latter is intended for perform-
ing what-if analysis. For instance, how a
current process execution will behave if a
specific resource is not available. The simulation of an ongoing case leverages
the provided information to predict the next events, unlike the simulation from
scratch which starts from a zero-like prefix and takes into consideration only the
desired condition to be satisfied.

5 Experiments

In this section, we aim at demonstrating how process simulation models based
on deep learning can learn to satisfy conditions imposed by the user. Thus, we
first describe our experimental setup to evaluate the CoSMo pipeline and we
conclude by discussing the performance evaluation.
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5.1 CoSMo Pipeline

Datasets. We employ almost all datasets benchmarked1 byWeytjens andWeerdt
[30], which are detailed in the Table 12. We disregard the BPI15 and BPI12 event
logs since the former has never been considered (to the best of our knowledge)
by papers related to predictive process monitoring or process simulation based
on deep learning and the latter has numerical resources, which does not fit the
scope of this work aiming at the usage of categorical resources. For training, we
include the following event attributes: activity, resource, and remaining time3.
Since we aim at evaluating several datasets from a more generic perspective, we
consider them since they represent the maximum common set in the employed
datasets.

Event Log #traces #evts #acts #res #vars Avg act
per trace

Avg trace
length

BPI13_Closed 652 4025 6 540 283 2.64±0.72 6.17±4.66
BPI13_Incidents 5796 88587 4 1432 1963 2.74±0.5 15.28±14.52

BPI17 31497 1210807 26 149 16441 15.43±2.4 38.44±17.96
BPI19 148218 843195 40 471 6434 5.15±1.16 5.69±5.02

BPI20_PL 6831 82190 50 2 1547 10.66±3.29 12.03±5.44
BPI20_PTC 1781 15233 29 2 194 8.36±1.98 8.55±2.26
BPI20_RFP 5692 29887 17 2 73 5.13±1.0 5.25±1.29

Table 1. Statistics extracted from each event log: number of traces, number of events,
number of activities, number of resources, number of variants, the average number of
activities per trace, and average trace length.

Preprocessing. First, we encode traces to be processed by our framework.
Similarly to [8], we generate prefixes using the n-gram approach to handle multi-
dimensional inputs and demark the end of sequences by including a special to-
ken “<eos>” for categorical attributes or a zero value for numerical attributes.
Further, we apply right-padding to the prefixes by also adding a special token
“<pad>”.

Conditioning. The encoding procedure is completed by introducing the
resource usage condition. In order to provide the neural net with such a condition,
we first label each case as a binary class if it uses a specific resource at any point
of its execution or not. For each event log, we select the second most used
resource to be employed as the condition. The reason for choosing the second
most frequent one is that for some datasets (e.g. BPI20 - RequestForPayment)
1 https://github.com/hansweytjens/predictive-process-monitoring-benchmarks/
2 Note that it might slightly differ from the original event logs due to the preprocessing
steps proposed by the authors. Moreover, we shorten the BPI20 logs: Permit Log
(PL), Prepaid Travel Cost (PTC), and Request For Payment (RFP).

3 The benchmarked versions of the event logs contain the remaining time information.
See [30].
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the most frequent is present in all cases, which would result in one label for all
cases. Thus, a conditioned prefix takes the form of a tuple cp = (prefix, cond),
where prefix ∈ Rl,d, with l being the sequence length and d the number of event
attributes, and cond is a scalar.

CoSMo instantiations. We instantiate the DeepGenerator architecture
(see [8]) using our proposed framework, i.e. encoding traces using conditions.
We designed the architecture following the descriptions provided in the paper
and included an extra concatenation operation (see Figure 2) before feeding the
last linear layers. Moreover, we also include a smaller baseline with fewer learn-
able parameters for comparison. The baseline architecture (Figure 3) contains
an embedding layer of categorical features, an LSTM block for encoding the in-
put data, a concatenation operation for conditioning the encoded data, followed
by an MLP block (stack of linear layers), and individual linear layers to output
each event attribute. The final number of learnable parameters varies for each
dataset since the size of the set of activities also varies, and they are summa-
rized in Table 2. As we are concerned specifically about the conditional learning
of process simulation models, we attempt to simplify the experimental setup
and focus on the methodology by demonstrating how well models are capable of
learning how to satisfy user-based conditions. Therefore, we fixed hyperparame-
ters related to the design of both architectures (e.g. number of layers) to reduce
the hyperparameter search space for tuning. All details regarding the settings for
architecture design and also for reproducibility are available in our repository4.

Training phase. We used the bayesian optimization from WandB5 with a
4-dimensional hyperparameter search space to tune both architectures. Fixed
hyperparameters include the number of epochs as 50, n = 5 regarding the n-
gram, and the remaining architecture hyperparameters (e.g. number of layers).
Subsequently, the optimization method ran for 10 iterations. The evaluated range
and set of hyperparameters are described in Table 2.

The architectures share the same loss functions: cross entropy for activity
and resource predictions and mean squared error for remaining time prediction.
The training is performed in a multi-task fashion, where all loss functions are
minimized together. Moreover, we use the He initialization to initialize the neu-
ral network parameters and employ a scheduler to decay the learning rate at
epochs 25 and 35 by a factor of 0.1. We implemented everything in Python
using Pytorch6.

Testing phase (Simulation). We employ multinomial sampling to draw the
next categorical event attributes from the probability distributions returned by
the neural net. This sampling method has shown better results since it presents
more diversity in the trace simulation despite the injected randomness [8]. The
simulation is performed in two different ways: (i) we simulate traces from scratch,
starting from a zero-like array; and (ii) we simulate the remaining trace by
starting from different positions given an ongoing case. For instance, considering

4 https://github.com/raseidi/cosmo
5 https://docs.wandb.ai/guides/sweeps
6 https://pytorch.org/
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LSTM

Prefix Condition

+

MLP

Concat

Linear Linear Linear

Fig. 3. Baseline architecture design. Each
output linear layer outputs a different
event attribute (i.e., in the sense of this
work, activity, resource, and remaining
time).

Hyperparam Values

Batch size {64, 256, 512}

Learning rate [1e-3, 1e-6]

Optmizer {Adam, SGD}

Weight decay {0.0, 1e-2, 1e-3}

Architecture Avg. number
of parameters

Baseline 1.71E+06

DeepGenerator 2.39E+06

Table 2. Description of hyperparameters
values considered for tuning and the av-
erage number of learnable parameters for
each architecture.

a case of length n, we can simulate remaining traces starting from any position
i, where 0 < i < n. However, to save computational resources and accelerate the
experiments, we iterate i considering a step of 2. Regarding simulations from
scratch, we simulate n traces where n is equal to the testing set size. Since we
consider a binary condition in this work, half of these traces are simulated under
one condition and the other half is simulated under the other condition. The
remaining trace simulation is performed for each case from the testing set.

Evaluation. We organize our evaluation into three steps. First, we consider
event-level metrics to validate the predictive performance of simulations regard-
ing the next event attribute predictions. Thus, we employ the accuracy for cat-
egorical attributes and the mean absolute error for the remaining time. Second,
we consider trace-level metrics to evaluate the quality of the simulated event
logs. We employ the Earth Mover’s Distance (EMD) to measure the similar-
ity between the distributions of real and simulated remaining time predictions;
the Control-Flow Log Similarity (CFLS), which considers the optimal similarity
measures between paired traces; and the fitness of the simulated log w.r.t. the
process model discovered from the original log7. The first two metrics are also
employed by Camargo et al. [10] to measure the quality w.r.t the data-flow and
control-flow, whereas the latter metric has never been considered as a strategy
to evaluate simulated logs.

Finally, we simulated a what-if scenario and we measure the percentage of
traces that were correctly simulated by satisfying the imposed constraint. As
previously mentioned, we establish in this work the resource usage condition.
7 This is performed by discovering a model from the original log (using inductive
miner [17]) and measuring the simulated log fitness via token replay. We do not use
the alignment-based fitness algorithm due to computational resource limitations.
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Although simple, the main goal of this work is to demonstrate how to learn
conditioned process simulation models and how processes might be simulated by
satisfying user-based conditions. Therefore, in the scope of this work, the what-if
analysis consists of simulating how the processes behave by allowing or not the
usage of a given resource.

Although the overall idea of our work is slightly similar to the Purple frame-
work [6], their solution focuses on the control-flow simulation only. Since we are
not able to instantiate the proposal by guiding the generation based on resource
usage, we are not employing it as a baseline in this work.

5.2 Performance evaluation

We organize this section in three steps. First, we discuss the event-level metrics
employed to measure the predictive performances of the architectures instanti-
ated by our CoSMo framework. Second, we present the trace-level metrics that
measure the quality of logs simulated by each architecture. Finally, we introduce
our what-if scenario and evaluate how well the proposed framework performs by
simulating traces under imposed conditions.

Event Log Architecture Acc-ACT Acc-RES MAE-RT

Baseline 0.6275 0.1838 0.0002BPI13_Closed DG 0.6455 0.2087 0.0003

Baseline 0.7956 0.6485 0.0001BPI13_Incidents DG 0.7823 0.6041 0.000

Baseline 0.9026 0.7474 0.000BPI17 DG 0.8969 0.7469 0.000

Baseline 0.823 0.5047 0.0001BPI19 DG 0.8244 0.5078 0.0001

Baseline 0.8227 0.9716 0.000BPI20_PL DG 0.8121 0.9663 0.000

Baseline 0.8666 0.9976 0.000BPI20_PTC DG 0.6943 0.944 0.000

Baseline 0.9277 0.9996 0.000BPI20_RFP DG 0.913 0.9949 0.000

Table 3. Event-level evaluation metrics achieved by each architecture for each event
log. Acc-ACT stands for the accuracy of the next activity prediction, Acc-RES for
accuracy of the next resource prediction, and MAE-RT for the mean absolute error of
the remaining time prediction (in days).

Event-level metrics. Table 3 shows the performances achieved by each ar-
chitecture. The employed metrics are, respectively, the accuracy for the next
activity and resource predictions and the mean absolute error for the next re-
maining time prediction. We can notice there is no significant difference between
the employed architectures for most processes. This shows that the proposed
baseline architecture performs as well as the DeepGenerator using about 30%



12 Oyamada et al.

fewer parameters. An exception occurs for the dataset BPI20 - Prepaid Travel
Cost, where the DeepGenerator performs poorly. A reason for that might be that
the bayesian optimization method was not able to find the best hyperparameters
in the defined amount of iterations. On the other hand, we see lower predictive
performances for BPI13 - Closed and BPI13 - Incidents. Crossing these results
with the information from Table 1, we see that there is a certain correlation
between the predictive performances and the average number of activities per
trace. For the mentioned datasets, although we have traces as long as in other
event logs, there is a very low variation of unique activities in the traces.

Trace-level metrics. Figure 4 illustrates the performances of each archi-
tecture for each dataset. The lower the EMD the better, whereas the higher the
CFLS and fitness the better. Notice that these metrics are measured using the
logs simulated from scratch. Both architectures perform similarly again, except
for BPI19 and BPI20 - Request For Payment regarding the EMD score. How-
ever, the performance can still be considered good since in both cases the score
is close to zero. This result matches and complements the event-level metric
regarding the remaining time prediction. Furthermore, the variation measured
across the optimally paired traces regarding the CFLS score is also similar for
both architectures. For BPI13 - Closed and BPI20 - Prepaid Travel Cost both
architectures present higher variations, whereas for the remaining datasets the
architectures present lower variations. In some cases, the baseline architecture
presented CFLS scores slightly better, whereas the DeepGenerator achieved pro-
cess model fitness scores slightly better in most cases.
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Fig. 4. Trace-level evaluation metrics from the employed architectures in this work.
Lower values for EMD are better, whereas the higher the better regarding the remaining
metrics.
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What-if analysis. We now describe how our framework can be employed
to perform what-if analysis and demonstrate the effectiveness of our proposal.
As mentioned in the previous sections, we simulate traces that make the usage
or not of specific resources. Thus, we simulate traces from scratch and from
different positions of an ongoing case. The simulations from scratch start from
a zero-like array, whereas the ongoing simulations take into consideration the
information available so far.
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Fig. 5. The percentage of traces that were correctly simulated by satisfying each im-
posed condition. This score is measured by starting the simulation from different po-
sitions in the cases. Case at position zero means simulation from scratch of the entire
trace.

Figure 5 illustrates the percentage of traces correctly simulated under each
condition. In this Figure, case position equals 0 means simulation from scratch.
BPI13 - Closed simulates traces that satisfy the conditions almost perfectly.
Despite the low predictive performances, both this dataset and the BPI13 - In-
cidents perform considerably well in this analysis. Although their characteristics
(low number of activities and the low average number of activities per trace) af-
fect the learning phase, both architectures are still able to learn how to satisfy the
imposed conditions. Overall, all models learned more effectively how to simulate
traces that do not make use of the specified resources (i.e. red line). Furthermore,
the BPI13 - Incidents, BPI17, BPI20 - Permit Log, and BPI20 - Request For
Payment show the expected behavior of improvement in performances as long
as more information on the ongoing trace is provided. In this case, we only see
an exception for the DeepGenerator for the latter event log, which performed
poorly considering the condition of ensuring resource usage. The drastic drop in
performance considering the baseline architecture on the BPI20 - Request For
Payment is due to the fact this log has fewer longer cases. In this example,
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there are only two ongoing cases being simulated from position 12, which means
only one of them has not satisfied the condition and dropped the performance
by 50%. Similar behavior can be seen for the same event log simulated by the
DeepGenerator. BPI19 was able to learn the simulation of traces without us-
ing the given resource, but on the other hand, the performances achieved by
both architectures were arbitrary when complying with the condition. Consid-
ering the usage of the resource, the baseline architecture performed reasonably
well for simulations from scratch and from the beginning of traces, but both
architectures performed quite poorly for all the other cases.

6 Conclusion and Future Work

In this work, we introduced the CoSMo framework, which can adapt existing
neural network architectures in order to make them learn how to simulate traces
that satisfy different conditions. We introduced a very simple and naive condi-
tion to serve as an example and demonstrate how models can learn to satisfy
this condition when performing simulations. Two instantiations of our proposal
were considered using different neural architectures, where one is our proposed
baseline and the other refers to the DeepGenerator [10]. Subsequently, we first
validate the quality of simulated data through metrics specific to the event- and
trace-level evaluation. Finally, we demonstrate the effectiveness of the condi-
tioned simulation models for learning to simulate traces by satisfying an imposed
condition. We believe this research introduces in the process mining community
a new modeling approach to mitigate the complete stochasticity of current ex-
isting simulation models by guiding the simulation based on constraints.

In future directions, we intend to investigate alternative conditions that might
be more valuable for real scenarios and stakeholders. Furthermore, the current
binary nature of conditions is also a limitation, so future research will also inves-
tigate how to perform the simulation based on multiple conditions. The current
approach considers a “global” condition w.r.t. a case instance, i.e. it provides one
single label for the entire case. However, a more valuable application could rely
on “local” conditions, which might change throughout the process cycle time.
Finally, although we opted for focusing on the methodology of our proposal,
several approaches from the predictive process monitoring community might be
leveraged to enhance the final process simulation model. Such techniques include
feature engineering based on process mining algorithms [8], robustness enhance-
ment [27, 25], representation learning [20], and hybrid solutions [11].
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