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Stressful events, similar to abused drugs, significantly affect the homeostatic balance of
the catecholamine brain systems while activating compensation mechanisms to restore
balance. In detail, norepinephrine (NE)- and dopamine (DA)-containing neurons within the
locus coeruleus (LC) and ventral tegmental area (VTA), are readily and similarly activated
by psychostimulants and stressful events involving neural processes related to
perception, reward, cognitive evaluation, appraisal, and stress-dependent hormonal
factors. Brain catecholamine response to stress results in time-dependent regulatory
processes involving mesocorticolimbic circuits and networks, where LC-NE neurons
respond more readily than VTA-DA neurons. LC-NE projections are dominant in
controlling the forebrain DA-targeted areas, such as the nucleus accumbens (NAc) and
medial pre-frontal cortex (mPFC). Heavy and persistent coping demand could lead to
sustained LC-NE and VTA-DA neuronal activity, that, when persisting chronically, is
supposed to alter LC-VTA synaptic connections. Increasing evidence has been provided
indicating a role of autophagy in modulating DA neurotransmission and synaptic plasticity.
This alters behavior, and emotional/cognitive experience in response to drug abuse and
occasionally, to psychological stress. Thus, relevant information to address the role of
stress and autophagy can be drawn from psychostimulants research. In the present mini-
review we discuss the role of autophagy in brain catecholamine response to stress and its
dysregulation. The findings here discussed suggest a crucial role of regulated autophagy
in the response and adaptation of LC-NE and VTA-DA systems to stress.

Keywords: locus coeruleus, ventral tegmental area, dopamine, norepinephrine, drug addiction, sensitization,
corticotrophin-releasing factor, brain-derived neurotrophic factor
INTRODUCTION

Stress is one consequence of challenges to the organism produced by events known as stressors that
are usually identified with stimuli (or conditions) that, by definition, need to be unpredictable,
uncontrollable and of forecasting uncertainty. These external or internal stimuli promote classic
stress responses aimed at adaptation according to physiological and/or psychological compensation
(1). Stress-associated adaptive changes may increase the resistance to pathological outcomes, thus
g September 2020 | Volume 11 | Article 5692481

https://www.frontiersin.org/articles/10.3389/fpsyt.2020.569248/full
https://www.frontiersin.org/articles/10.3389/fpsyt.2020.569248/full
https://www.frontiersin.org/articles/10.3389/fpsyt.2020.569248/full
https://www.frontiersin.org/journals/psychiatry
http://www.frontiersin.org/
https://www.frontiersin.org/journals/psychiatry#articles
http://creativecommons.org/licenses/by/4.0/
mailto:francesco.fornai@neuromed.it
mailto:francesco.fornai@med.unipi.it
mailto:stefano.puglisiallegra@neuromed.it
mailto:stefano.puglisi-allegra@uniroma1.it
https://doi.org/10.3389/fpsyt.2020.569248
https://www.frontiersin.org/journals/psychiatry#editorial-board
https://www.frontiersin.org/journals/psychiatry#editorial-board
https://doi.org/10.3389/fpsyt.2020.569248
https://www.frontiersin.org/journals/psychiatry
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyt.2020.569248&domain=pdf&date_stamp=2020-09-17


Limanaqi et al. Autophagy, Stress, and LC-VTA Connection
favoring resilience, at best, or, at worst, causing dysfunctional
coping that increases “allostatic load” (1, 2), leading to a disease
state instead. In mammals, including humans, the brain
norepinephrine (NE) and dopamine (DA) systems, originating
from the locus coeruleus (LC) and the ventral tegmental area
(VTA) respectively, produce spread brain networks with cortical
and subcortical projections (3). Both NE and DA brainstem
neurons are targeted by stress hormones of the hypothalamus-
pituitary axis (HPA) (4, 5). NE-LC and DA-VTA neurons are
readily activated by stressful events involving neural processes
related to perception, cognitive evaluation, appraisal, and stress-
dependent hormonal factors. These systems operate in parallel
and in synergism, allowing to implement neural adaptations and
behavioral strategies aimed at supporting resilience and
overcoming stressful events (6–9). In fact, both systems are
crucially involved in reward and in efforts to support motivation
and coping (3, 10–12).

Brain catecholamine response to stress results in time-
dependent regulatory processes involving mesocorticolimbic
circuits and networks (13–16). In this context, LC-NE neurons
and their projections to the cortical, thalamic, basal forebrain,
and brainstem regions, including the VTA, as well as forebrain
DA-targeted areas, such as the medial prefrontal cortex (mpFC)
and the nucleus accumbens (NAc), appear dominant in
controlling DA-dependent responses to stress (2, 17–23). In
fact, stressful stimuli activate LC-NE more readily than VTA-
DA neurons, which is evident by the powerful release of NE
within the mPFC surpassing at large that of DA, and by the
increase in tyrosine hydroxylase (TH) and Fos expression
occurring within LC but not VTA neurons (13, 14, 18, 24–28).

In detail, NE in the medial pre-frontal cortex (mPFC) may
produce opposite effects on DA responses, inhibiting cortical DA
transmission while increasing the accumbal DA outflow being
induced by first exposure to motivationally salient stimuli (17,
18). Fluctuations of accumbal DA during novel uncontrollable/
unavoidable stressful experiences are tightly controlled by the
opposing influences of mPFC DA and NE. Enhanced DA release
in the NAc is determined by NE release on pre-frontal cortical
alpha 1-adrenoceptors (a1-ARs) in a condition of low
mesocortical DA activation. Instead, inhibition of NAc DA
release is promoted by the return of NE to basal levels and by
a sustained increase of mesocortical DA release (18, 19), as
occurs in long-lasting acute or in repeated/chronic stress (2,
29, 30). mPFC NE and DA might activate two different pathways
to regulate mesoaccumbens DA release in opposite ways; an
‘‘activating pathway’’ provided by indirect glutamatergic (GLUT)
projections onto VTA-DA cells (31) and an ‘‘inhibitory
pathway’’ provided by prefrontal GLUT efferents to VTA-
GABAergic interneurons or striato-mesencephalic neurons
(32–34).

Again, stress-induced LC-NE over-activation, by potentiating
DA outflow in the midline thalamus, leads to rapid and persistent
decrease of GABAA-mediated inhibitory transmission within the
NAc-projecting neurons of the posterior paraventricular nucleus
of the thalamus (pPVT) (23). This, in turn, promotes disinhibition
of NAc-projecting neurons of the pPVT, which increases
Frontiers in Psychiatry | www.frontiersin.org 2
sensitivity to stress while potentiating DA efflux in the NAc shell
(23, 35).

Sustained activity of LC neurons may directly potentiate the
firing rate of VTA-DA neurons, mostly through a1-ARs (36–
40). In addition to this direct excitation of VTA-DA neurons by
LC-NE transmission acting on post-synaptic a1-ARs (36–40), an
indirect stimulation is provided by inhibiting or stimulating
VTA-GABA and VTA- GLUT terminals, respectively (41, 42).
In fact, LC-NE may indirectly activate VTA-DA neurons by
acting on pre-synaptic a1-ARs within VTA-GABA and VTA-
GLUT terminals, and also on DA and GLUT terminals within
the NAc (41–43). The regulation of VTA-DA neuronal activity
by LC-NE inputs is quite complex. In fact, NE-induced excitation
of VTA-DA neurons is followed by a long-lasting inhibition (36).
This is in line with studies showing that selective lesion of LC
may paradoxically increase the firing of VTA-DA neurons,
though the underpinning mechanisms remain to be clarified
(44). This may explain the apparent discrepancy which is present
in experimental studies suggesting that stress-induced over-
activity of LC-NE may exert either inhibitory or excitatory
control of VTA-DA neurons (6, 45). In fact, LC-NE activity
may reduce the vulnerability to emotional stress through
opposite effects on VTA-DA neurons (6, 45), which may
depend on the brain region and the time window of a1-AR
stimulation. Such an issue remains under debate and needs
experimental clarifications.

Noteworthy, stress is likely to affect catecholamine
metabolism and neuroplasticity in a way which is reminiscent
of the effects produced by abused substances (7, 46–48). In fact,
stressful events are often reported to cause neuropsychiatric
disorders going from depression to substance abuse, up to
neurodegenerative insults where brain catecholamine-
containing neurons and/or their projections are involved (4, 5).
Chronic or heavy stress, similar to substance abuse, produces
catecholamine-driven behavioral effects ranging from depression
to addiction, and schizophrenia-like phenotypes. Such
behavioral outcomes involving catecholamine systems are due
to plastic phenomena underlying “neuronal sensitization” which
in turn, is bound to alterations in the responsivity of type 1- or 2-
like DA receptors (D1/D2-like DRs), and alpha/beta adrenergic
receptors (a/b-ARs) (6, 16, 19, 49, 50). The occurrence of neural
adaptation/maladaptation leads to specific stress-induced
alterations of emotion, motivation, cognitive ability and coping.

In the latter decades, substantial attention has been paid to the
role of the autophagy machinery in the physiology of
catecholamine brain systems when insulted by pharmacological
and neurotoxic agents (51–54). Autophagy has been recently
connected with stress- and substance abuse-related disorders
such as depression and addiction (51, 53, 55, 56). In keeping with
this, the beneficial effects of several antidepressants and mood
stabilizers are bound to autophagy activation (57–60) and
autophagy inducers counteract behavioral sensitization induced
by abused drugs (51, 56, 61). This wide and prolific research
produced results that strongly suggest a crucial role of autophagy
in response and adaptation of LC-NE and VTA-DA systems to
stress. This enlightens the mechanisms by which the functional
September 2020 | Volume 11 | Article 569248
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balance of the nervous system and the related behavioral and
cognitive capacities are guaranteed. A few studies directly
explored the connection between stress and autophagy (62–
64); most information can be drawn indirectly from
psychostimulants research. In the present review we discuss
the role of autophagy in brain catecholamine response to stress
and those factors which may lead to dysregulation.
A BRIEF VIEW OF THE AUTOPHAGY
MACHINERY: FROM DEGRADATION OF
ALTERED INTRACELLULAR SUBSTRATES
TO MODULATION OF SYNAPTIC
PLASTICITY

Autophagy is a phylogenetically conserved eukaryotic cell-
clearing system that plays a primordial role in cell homeostasis
(65). It is generally distinguished into macroautophagy (hereafter
referred to as “autophagy”), microautophagy, and chaperone-
mediated autophagy, which all promote lysosome-dependent
substrate degradation (66). Beyond removing altered protein
substrates, autophagy targets mitochondria, pathogens,
ribosomes, portions of endoplasmic reticulum or synaptic
vesicles, which are conventionally designated as “mitophagy”,
“xenophagy”, “ribophagy”, “reticulophagy”, and “vesiculophagy”,
respectively (66, 67). Moreover, autophagy modulates key cell
functions ranging from synapse development to neurotransmitter
release, and synaptic plasticity, as well as neuro-inflammation and
–immunity (68, 69). A complex machinery including more than
30 autophagy-related-gene (Atg) products governs autophagy
progression, starting from the biogenesis and maturation of
autophagosomes up to their fusion with lysosomes. In
particular, conversion of Atg8 (LC3 in mammals) into LC3-I,
its ubiquitination-like enzymatic lipidation into LC3-II isoform,
and eventually the incorporation of LC3-II into the phagophore
membrane are critical for autophagosome assembly (59). In line
with this, LC3-II is widely employed as a marker for monitoring
autophagy at the morphological, ultrastructural, and biochemical
level (52). However, since increased LC3-II levels may witness for
either an increase or a decrease of the autophagy flux due to
accumulation of stagnant vacuoles, assessment of LC3-II levels
through semi-quantitative techniques can lead to results
misinterpretation unless it is coupled with other autophagy
markers or ultrastructural immune-labeling (52). Various
additional Atg proteins ranging from Atg3 to Atg16 participate
in autophagy progression via the processing and conjugation of
Atg8/LC3 to the growing autophagosome membrane lipids (65).
For instance, during Atg8 lipidation, Atg7 directly binds to and
activates Atg8 fostering its transfer to the E2 enzyme Atg3. At the
same time, Atg7 binds to Atg12 fostering its binding to Atg5. This
leads to the formation of the Atg12-Atg5 conjugate complex,
which then recruits Atg16 (65). The Atg12-Atg5/Atg16 complex
localizes to the expanding phagopore where its acts as an E3 ligase
mediating the final transfer of Atg8 to its lipid target
phosphotidylethanolamine (PE).
Frontiers in Psychiatry | www.frontiersin.org 3
The best-known autophagy-modulating pathway consists of
the mTOR complex1 (mTORC1), a downstream substrate of the
phosphatidylinositol-3-kinase (PI3K)/phosphatase and tensin
homolog (PTEN)/AKT axis, which conveys extracellular and
environmental stimuli to control cell growth, proliferation,
protein synthesis and metabolism in response to bioenergetics
and nutritional requests (70). Other well-known pathways that
foster autophagy initiation consist of the activation of 5′ AMP-
activated Protein Kinase (AMPK), and transcription factor EB
(TFEB) or inhibition of glycogen synthase kinase 3 beta (GSK3-
b) (58, 71).

A number of CNS disorders are characterized by dysregulated
autophagy and related synaptic alterations, and/or oxidative and
inflammatory processes connected with neuronal loss (51, 69). In
line with this, autophagy provides neuroprotection in general,
and for catecholamine neurons, which are mostly susceptible to
oxidative-related alterations, in particular (49, 52, 53, 68). In fact,
autophagy grants the survival of both DA- and NE-containing
neurons during a variety of stressful conditions (49, 51, 52, 68,
70). Autophagy alterations are associated with the effects of
abused substances (amphetamine, methamphetamine, cocaine,
ethanol) on brain catecholamine neurons concerning their
morphology, neuroplasticity, as well as neurotoxic and
behavioral effects (51, 52, 56, 61). This is evident by a variety
of behavioral effects produced by psychostimulants based on
autophagy-dependent alterations (56, 61). Psychostimulants
alter neuroplasticity of DA and NE neurons through receptor
sensitization/desensitization while affecting their activity and
metabolism (7, 49). In keeping with this, autophagy orchestrates
the turnover and responsivity of various neurotransmitter
receptors by intermingling with the proteasome system and
intracellular trafficking and secretory pathways (66, 67). This is
key to modulate neurotransmitter release while promoting either
desensitization or recycling of neurotransmitter receptors to the
plasma membrane. In this context it is worth noting that
alterations in autophagy-dependent modulation of vesicular DA
trafficking and amount of DA release contribute to maladaptive
plastic changes underlying various behavioral disorders (51, 68).
Conversely, autophagy induction via mTOR or GSK3b inhibition
improves early psychomotor and cognitive alterations by rescuing
neurotransmission defects in various DA-related disorders (50,
51, 59, 61, 68, 72–74).

This is not surprising since behavioral alterations are related
to intracellular pathways being placed downstream of
neurotransmitter receptors, which are bound to the autophagy
machinery. For instance, D1/D2-like DRs, including D1DR and
D5DR act as negative regulators of autophagy via mTOR
activation (75). In detail, D1/5-DR silencing in cells lines
increases LC3-II levels while attenuating mTOR activity as
evident by the decrease in the levels of its downstream
substrate phospho-p70-S6K, indicating activation of autophagy
(75). Opposite results are obtained following D1/5-DR
overexpression (75). Remarkably, when D1/5-DR silencing is
combined with administration of the autophagy flux blockers
bafilomycin/chloroquine, the latter are less effective in inhibiting
autophagy compared with negative controls, as shown by higher
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https://www.frontiersin.org/journals/psychiatry
http://www.frontiersin.org/
https://www.frontiersin.org/journals/psychiatry#articles


Limanaqi et al. Autophagy, Stress, and LC-VTA Connection
LC3-II and lower phospho-p70-S6K levels (75). This suggests
that D1/D5-DRs may exert a powerful negative control on the
autophagy machinery. Opposite results were obtained for D2-
likeDRs, indicating that they act as autophagy stimulators
through AMPK activation and mTOR inhibition (75). This
was confirmed in several cells lines, including TH-positive
primary midbrain neurons, where DRD2 and DRD3 activation
by pramipexole and quinpirole promotes beclin 1-depedent
autophagy activat ion (76). This is associated with
neuroprotection and inhibition of alpha-synuclein/SNCA
accumulation both in rotenone-treated catecholamine-
containing cells that overexpress wild-type or mutant alpha-
synuclein and in SNCA transgenic mice (76). More recently,
D3DRs were shown to be specifically responsible for autophagy
activation via AMPK stimulation and mTOR inhibition (77).

Despite such an evidence suggesting that D1-likeDRs may
block while D2-likeDRs may promote the autophagy flux, further
in vivo confirmatory studies are needed.

Autophagy is also variously altered by the signaling pathways
cyclic AMP (cAMP)/protein kinase A (PKA)/protein kinase C
(PKC) and TFEB/peroxisome proliferator-activated receptor
gamma coactivator 1-alpha (PCG-a) which are triggered
downstream of ARs (78–83). In particular, b2-ARs may induce
autophagy, which is associated with NE-related protection (79,
82, 83). For instance, agonist-induced b2‐ARs activation prevents
disruption of autophagy flux in skeletal muscle of mice with
neurogenic myopathy, which is associated with improved
skeletal muscle proteostasis and contractility properties (83).
Autophagy blockade through either chloroquine or skeletal
muscle‐specific deletion of Atg7 abolishes the beneficial effects
of b2‐ARs activation. Similarly, administration of the b2-agonist
clenbuterol stimulates the autophagy flux in hepatic cells, while
the b2-antagonist propranolol produces opposite effects (79).
These effects were confirmed by co-administering chloroquine
and through both biochemical (LC3II and p62 quantification)
and ultrastructural analyses (79). Nonetheless, the potentially
beneficial effects of NE-induced autophagy remain to
be confirmed.
STRESS AND BIDIRECTIONAL LC-VTA
COMMUNICATION: POTENTIAL ROLE OF
AUTOPHAGY

Abused psychoactive substances and stress engage shared DA
and NE neural mechanisms, as shown for instance by numerous
studies pointing to a reciprocal cross-sensitization (84, 85).
Stress, similar to abused substances, strongly stimulates LC-NE
and VTA-DA transmission, producing an activity overload that
brings into play adaptation mechanisms based on feedback
circuits between connected neural systems and molecular
adjustments in the cells. When stress persists, these compensatory
mechanisms fail to restore an ante-stress balance and foster
neurodegeneration (6, 82, 86). In fact, during chronic/prolonged
stress or drug abuse, a dysregulation of LC-VTA connectivity may
Frontiers in Psychiatry | www.frontiersin.org 4
occur, decreasing catecholamine release due to diminished LC and
VTA activities (9, 86–92). While early being associated with apathy
and depression, stress- or drug-induced alterations within LC and
VTA may predispose to cognitive decline and neurodegeneration
(86, 93). Here we consider available evidence to cast the hypotheses
that (i) stress or drug-induced LC-NE overload may alter VTA-DA
neurons activity, plasticity and metabolism; (ii) DA overload may in
turn lead to a progressive reduction of LC activity that occurs during
chronic stress; (iii) a reduction of LC activity may occlude the
neurotrophic and neuroprotective effects of NE in LC projecting
areas, including the VTA. These functional links between DA and
NE brain systems suggest a crucial role for the catecholamine
network in adaptive behavior and in stress demands to which the
organism has to cope with. At the same time, some contradictory
findings may be explained by the double-faceted effects of NE in the
brain. While at physiological levels NE exerts neuro-protection,
abnormally increased NE levels may induce apoptosis and
neurodegeneration (94). In this frame, the autophagy machinery,
as a major pathway that regulates both neuronal proteostasis and
synaptic plasticity, may be involved in various steps of
catecholamine systems ’ response to stress and drug
intake/administration.
LC-NE and VTA-DA Transmission
Overload
Brain DA and NE systems are connected through cortical-
subcortical circuitry as well as through direct bidirectional LC–
VTA pathways. The two-way communication between LC and
VTA is key for drug-induced reward and reinforcement
underlying maladaptive synaptic plasticity in striatal, limbic
and cortical brain areas (7, 95). In detail, NE from the LC
potently regulates drug-induced reward and reinforcement by
stimulating DA release mostly within the ventral striatum (96).
This may occur either directly or indirectly since NE-
containing axons of the LC project to both VTA, and likely,
the NAc shell (97). While DRD1-expressing medium spiny
neurons of the NAc medial shell directly inhibit mesolimbic
VTA-DA neurons, NAc lateral shell neurons mainly project to
the VTA-GABA neurons to disinhibit VTA-DA neurons (98–
100). These in turn, fire back to both the NAc lateral shell (98)
and the LC (101). Selective stimulation of NAc lateral terminals
in the VTA induces a potent reward phenotype, which is likely
caused by a disinhibition of VTA-DA neurons (98). Acute
exposure to stress, similar to drugs of abuse, alters inhibitory
plasticity which may increase VTA excitability (42, 84, 100,
102). This occurs by blocking the induction of long-term
potentiation at GABAA synapses while increasing GLUT
release on VTA neurons (42, 43, 84, 100, 102).

In this scenario, autophagy is a key by acting at the level of
both GABA and DA systems (103–106). Conditional deletion of
Atg7 in GABA inhibitory or excitatory neurons, similar to what
observed in Unc-51 Like Autophagy Activating Kinase 2
heterozygous (Ulk2+/-) mice, leads to autistic-like behavioral
abnormalities including social deficits, increased distress and
anxiety along with cognitive alterations (103, 104). In detail,
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https://www.frontiersin.org/journals/psychiatry
http://www.frontiersin.org/
https://www.frontiersin.org/journals/psychiatry#articles


Limanaqi et al. Autophagy, Stress, and LC-VTA Connection
autophagy deficiency within GABA neurons brings to hyper-
excitability due to reduced membrane expression of GABAA

receptors. In fact, these receptors are entrapped within SQSTM1/
p62-positive aggregates (103, 104). Autophagy activation
replaces GABAA receptors on the plasma membrane thus
reducing abnormal hyperexcitability (104). At behavioral level
this is evident by rescuing behavioral deficits in Ulk2+/- mice
(104). Again, mice lacking Atg7 specifically within DA neurons
display increased evoked striatal DA secretion along with
decreased DA re-uptake (105, 106). In line with this, activation
of mTOR-dependent autophagy decreases evoked DA release in
wild-type but not in transgenic mice (105). Thus, an impairment
of mTOR-dependent autophagy at the synapse fosters
unrestrained DA release (105). Consistently with this, abused
substances activate mTOR signaling in the mesolimbic reward
circuit while administration of the mTORC1 inhibitor and
autophagy activator rapamycin reverses drug-induced relapse
and reinforcement (61, 107–110). For instance, systemic
treatment with rapamycin, similar to the infusion of lentivirus-
expressing mTOR-shRNA into the NAc shell, suppresses the
induction of methamphetamine-induced sensitization while
rescuing morphological alterations in the NAc’s dendritic
spines (61). Again, selective deletion of mTOR within mouse
VTA counteracts drug addiction by decreasing DA release in the
NAc through potentiation of VTA-GABAergic neuron firing
(110). Thus, mTOR-dependent autophagy regulates drug action
by modulating both DA and GABA signaling within the VTA
and subsequent DA release within target brain areas. This
indicates that an autophagy impairment within the VTA may
strengthen the feedback loop in which the VTA fires to the NAc,
and back to the LC. In this way, the LC would then feedback into
the VTA via a1-ARs to further evoke DA release in the NAc,
potentially sustaining behavioral sensitization (7, 39).

Sustained LC-NE Transmission
Predisposing to Oxidative-Related
Neuronal Alterations Within VTA
When dealing with the multiple effects of a1-ARs, we may
summarize that LC-NE transmission increases VTA-DA
neurons activity both directly and indirectly by acting on a1-
ARs within i) VTA-DA neurons, ii) GABA and GLUT terminals
within the VTA, iii) DA and GLUT terminals in the NAc and
mPFC (36–63). A crucial role of a1-ARs stimulation in the VTA
by LC-NE is documented for the neurochemical and reward
processes of abused substances, which leads to an increase in DA
release through LC projections to VTA and NAc shell (7, 39, 47,
97). Overlapping with the effects of acute stress and drug
exposure, activation of presynaptic a1-AR within the VTA
depresses GABA while enhancing GLUT release and increasing
AMPAR/NMDAR ratios within VTA-DA neurons (41, 42, 84,
111). Although different brain nuclei being targeted by LC-NE
are known to serve as a source of GLUT to the VTA (including
the prefrontal cortex and the bed nucleus of stria terminalis), a1-
AR -induced GLUT inputs into the VTA seems to derive mostly
from local GLUT neurons (41, 112, 113). While contributing to
stress- and/or drug-induced behavioral alterations (41, 84, 111–
Frontiers in Psychiatry | www.frontiersin.org 5
113), an excess of a1-ARs-induced GLUT release onto VTA may
increase its vulnerability to Ca2+-related excitotoxicity. In fact,
stress- and drug-induced GLUT release onto VTA neurons is
coupled to the calcium (Ca2+)-related PKC signaling pathway
(41), which produces amphetamine-related oxidative damage
going along with autophagy impairment (114, 115). In this
context, autophagy is implicated in both GLUT-dependent
synaptic plasticity and excitotoxicity. Transient exposure to
low doses of NMDA induces autophagy through PI3K/AKT/
mTOR pathway inhibition, which is key to promote AMPAR
degradation in cultured rat hippocampal neurons and in rodent
models of auditory fear reconsolidation (116, 117). On the other
hand, neuroprotection against GLUT excitotoxicity is achieved
by administering either mTOR-dependent or -independent
autophagy inducers rapamycin or trehalose (118). This is in
line with evidence showing that NMDAR antagonists may rescue
autophagy flux and mitophagy to confer neuroprotection (119).
These findings suggest that an autophagy failure being bound to
either impaired degradation of plasma membrane AMPA
receptors or NMDAR-mediated Ca2+ signaling, may be
implicated in the responsivity of VTA neurons to a1-AR-
induced GLUT release.

Again, the coupling of a1-AR signaling and the stress
hormone corticotrophin-releasing factor (CRF) produces social
stress enhancement of drug conditioning via NMDAR-mediated
GLUT transmission within the VTA (8). Intriguingly, this is
coupled to an amplification of IP3-Ca

2+signaling, which is
known to impinge on the autophagy pathway (57, 59). Within
LC neurons, constitutive overexpression of CRF increases NE
activity and redistributes beta-amyloid (Ab) peptides from
synapses to somato-dendritic processes, which occurs along
with altered distribution and morphology of autophagy-related
vacuoles (120). Again, CRF was recently shown to inhibit the
autophagy pathway in vitro (121), suggesting that a1-AR and
CRF stimulation following abnormal NE release may synergize
to alter autophagy within VTA.

These findings are also in line with evidence on a deleterious
role of high NE levels, which similar to stress/drug exposure, do
occur in REM sleep deprivation (94, 122–124). In ex vivo and in
vivomodels of REM sleep deprivation, high NE levels lead to iron
and calcium-related oxidative damage within neurons and glia
via a1-ARs, which is accompanied by mitochondrial failure and
altered levels of AKT (94, 122–124). This occurs in various brain
regions including the LC itself, though the VTA remains to be
examined. In this frame, it is likely that stress- and drug-induced
catecholamine alterations may increase the susceptibility of LC
and VTA to neuronal damage by increasing the formation of
highly oxidative DA- and NE-derived metabolites, which are
known to impair neuronal proteostasis (125, 126). This would
explain why catecholamine-containing neurons are particularly
susceptible to degeneration associated with an autophagy failure
(127–129).

These findings support a correlation between early
potentiation of NE-DA activity and autophagy-related
alterations within the LC-VTA network following stressful
stimuli or exposure to addictive substances (Figure 1).
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CHRONIC STRESS AND DRUG
EXPOSURE BRIDGING REDUCTION OF
NE-LC AND VTA-DA ACTIVITY AND
AUTOPHAGY-DEPENDENT
NEUROPROTECTION

Reduction of NE-LC Activity May Occur
Due to DA Overload
Dysregulations of NE activity during exposure to prolonged/
chronic stress or abused drugs may include either an increase or
a decrease of LC activity. In fact, cumulative cocaine self-
administration in rats leads to functional reductions in the LC
(92), and a decrease in baseline LC neuron activity and NE
release occurs in rodent models of post-traumatic stress
disorder - single prolonged stress (SPS), chronic unpredictable
mild stress (CUMS), as well as chronic social defeat stress
(CSDS) (9, 86, 92). The activation state of VTA-projecting
LC-NE neurons, and the amount of NE released into the VTA
are critical for determining the vulnerability to emotional stress
(45). The loss of NE neurons projecting to the VTA leads to a
Frontiers in Psychiatry | www.frontiersin.org 6
potentiation of VTA-DA firing conferring an increased
susceptibility to stress induced by social defeat compared with
resilient mice (45). This is in line with evidence showing that
selective lesion of LC increases the firing activity VTA-DA
neurons (44). Since VTA-DA excites LC-NE neurons (101), it
is expected that exaggerated firing of VTA neurons occurring
during acute/repeated stress or abused substance intake/
administration, may progressively impinge on LC thus
altering this nucleus. In this context it would be worth
investigating whether LC alterations are bound to VTA-DA-
induced stimulation of D1DRs within the LC, which is essential
for ethanol-triggered reinforcement behavior (48). This would
be key in the light of evidence indicating that D1DRs that occur
within LC neurons (48), may impair autophagy (75). Thus,
similar to NE-dependent alterations affecting the VTA
discussed in 3.2, autophagy may be implicated in DA-
dependent alterations within the LC. In this scenario, a
protective role for NE, which may act as an autophagy
inducer (79, 82, 83), is substantiated by evidence showing that
LC-NE dysfunction may predispose to degenerative phenomena
involving various LC-NE-targeted brain areas (82, 86). Here we
FIGURE 1 | Acute stress- or drug-induced potentiation of locus coeruleus–norepinephrine (LC-NE) and ventral tegmental area–dopamine (VTA-DA) activity and
potential role of autophagy. Stress, similar to abused drugs, readily activates LC-NE and VTA-DA neurons, leading to a sustained NE transmission and increased NE
release in the hypothalamic CRF-producing neurons, in the forebrain DA-targeted areas pre-frontal cortex (PFC) and nucleus accumbens (NAc) and also directly on
VTA neurons. In fact, LC-NE excites VTA-DA neurons either directly through post-synaptic a1-ARs, or indirectly, through inhibition of VTA-GABA neurons and
activation of VTA-GLUT neurons via stimulation of pre-synaptic a1-ARs. Again, NE in the PFC, through a1-ARs stimulation, might activate DA release on the NAc
through GLUT cortical projections to VTA-DA cells. While altering the excitatory-inhibitory balance and increasing the metabolic rates within VTA-DA neurons, these
NE-mediated events may predispose to oxidative stress, and glutamate-related alterations, which may in turn contribute to overwhelming autophagy. While
increasing VTA neurons susceptibility to oxidative and Ca2+-related alterations, autophagy impairment within VTA neurons promotes an empowering of DA release
to the NAc and likely, also back to the LC. In this way, through stimulation of post-synaptic D1DRs, which is known to promote mTOR activation, DA overload may
in turn impair autophagy within the NAc, where it alters dendritic spine density while contributing to drug-induced behavioral sensitization and likely, altered
motivational salience attribution to stress-related stimuli. VTA-DA overload, through stimulation of post-synaptic D1DRs, may also impair autophagy within the LC.
This may lead to either potentiation of NE release or a progressive impairment of proteostasis impinging on LC neuronal integrity, which remains to be investigated.
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hypothesize that these may include DA-containing neurons,
where reduction of LC-NE release could contribute to
undermining intracellular protection mechanisms.

Impairment of LC-NE to VTA-DA Neurons
May Occlude NE-Induced Protective
Autophagy
Neuroprotective effects of the LC-NE on DA neurons in vivo and
in vitro have been documented emphasizing the effects of NE as a
neurotrophic factor and its ability to stimulate the expression of
other neurotrophic factors (28, 130–134). This is the case of
brain-derived neurotrophic factor (BDNF), which is synthesized
within glial cells or neurons mainly through b1/b2-ARs (133,
134). In fact, b2AR agonists reverse DA neurotoxicity in vitro
and in vivo (130, 133). As shown in mice models, this occurs
through the inhibition of microglial activation rather than
exerting a direct effect on VTA-DA neurons, which in fact lack
b2-ARs (133). NE-induced neuroprotection of DA neurons
depends on the presence of b2AR complexed to b-arrestin
(133), which intriguingly, mediates neuroprotection in
experimental cerebral ischemia through coordination of
BECN1-dependent autophagy (135).

In line with this, there is evidence indicating that NE induces
protective autophagy mostly through b2-AR stimulation (79, 82,
83), and again, the protective effects of BDNF are bound to
autophagy activation. In detail, BDNF works through inhibition
of either mTOR (136) or GSK3b pathway (137), which are main
upstream regulators of autophagy. In vivo, BDNF enhances
autophagy flux and promotes mitophagy through the HIF-1a/
BNIP3 pathway (138). BDNF and related autophagy ameliorate
stress-induced behavioral and emotional alterations, suggesting
that a direct association exists between autophagy impairment
and BDNF deficiency (136, 138). This is not surprising since
autophagy has been implicated in the regulation of neurogenesis,
which is altered by psychological stress and represents a risk
factor for the development of mood/neuropsychiatric disorders
(63). In line with this, the administration of either antidepressant
drugs or the naturally occurring autophagy inducer resveratrol
alleviates depressive-like behavior in mice models of CUMS or
post-partum depression by increasing BDNF and autophagy-
associated proteins (136, 138). This goes along with reduced
HPA axis hyperactivity, CRF and pro-inflammatory cytokines
levels (136, 138). In line with this, blockade of autophagy by
chloroquine abrogates whereas the autophagy inducer
rapamycin protects against the pro-inflammatory effects of
CRH in other mice tissues besides the brain (139). These
findings suggest that VTA-DA neurons may benefit from glial
b2-AR stimulation and BDNF/autophagy induction through
reduction of CRF and microglial-mediated inflammation.
Autophagy failure is expected to occlude the neurotrophic and
anti-inflammatory effects of NE. In fact, microglia-specific Atg5-
deficient mice show higher inflammation levels, reduced BDNF
expression, and exacerbated depressive-like behavior compared
with wild-type mice (138). However, the link between autophagy,
NE levels and stress/drug-related behavior remains to
be investigated.
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VTA-DA Activity Decline in Chronic Stress
and Drug Abuse: Potential Role of
Autophagy and Future Issues to Address
As discussed above, an impairment of autophagy within VTA-DA
neurons is expected to occlude neurotrophic and neuroprotective
mechanisms depending in part on LC-NE activity. Remarkably, an
early loss of VTA-DA neurons, which precedes LC neuronal
degeneration, has been documented in models of Alzheimer’s
disease (93). The potential mechanisms underlying such a
temporal dissociation between LC and VTA degeneration will
not be dealt herewith. Here, we wish to point out that different
patterns of stress exposure might induce hypo-DAergic states (88–
90). In detail, acute stress readily activates whereas chronic stress
exposure may lead to a compensatory downregulation of the DA
system (88–90). In this context, also the timing of stress is critical
since contrarily to adolescent stress, adult stress induces a
depression-like hypo-DAergic state (140). Similarly, chronic
drug intake/administration is associated with a decrease in DA
release mostly within the striatum, which may explain the
decreased sensitivity to natural rewards and the compulsive drug
use as a means to temporarily compensate for this deficit (87).
Such an effect is associated with reduced striatal levels of D2-/D3-
DRs (87, 141, 142). In the light of an interdependency between
autophagy, substance abuse, and D2-/D3-Rs activity discussed in
section 3, a potential link deserves to be investigated in stress-
related disorders. A reduction of DA activity may be the outcome
of either abnormally increased LC-NE release predisposing VTA-
DA cells to excitotoxicity, or LC neuronal loss occluding the
protective effects of NE upon VTA-DA neurons, as discussed in
sections 3.2 and 4.2, respectively. This may be explained by the
double-faceted effects of NE in the brain, exerting neuro-
protection at physiological levels, while inducing apoptosis at
high concentrations (94, 122–124).

Chronic exposure to psychosocial stressors in adults seems to
be associated with reduced striatal DA synthesis, mostly within
the ventral striatum (90). Autophagy and stress-related VTA-DA
alterations may be reminiscent of the molecular effects produced
by psychostimulants, which alter autophagy vacuoles (50, 143).
This hypothesis remains to be confirmed and may represent the
starting point to explore the effect of stress at subcellular level
within VTA-DA cells. Despite appearing in contrast with
evidence indicating that autophagy blunts DA transmission,
these findings suggest that autophagy regulation may be a
finely-tuned and context-dependent process, depending on
specific patterns of neuronal activity and metabolic demands.
In fact, an autophagy impairment within different cell
compartments may have different effects, for instance, driving
neuropathological changes at the soma while producing striatal-
driven behavioral changes by increasing the extracellular
availability of DA at the synapse (106).
CONCLUSIONS

The evidence here discussed points to the remarkable action of
autophagy in NE-LC and VTA-DA connections and its role in
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NE-dependent neuroprotection, which is crucial for the
organism adaptive response to stress and allostatic load. In
fact, heavy and/or chronic stress is known to induce or foster
neurodegeneration in brain catecholamine neurons involved in a
number of psychiatric and neurodegenerative diseases. We
proposed here the autophagy machinery as a relevant
mechanism of regulation and dysregulation of catecholamine
neurons. As for NE-containing neurons, autophagy is seminal
for the survival of DA neurons and remarkably, it plays a central
role in DA release. The role of autophagy in brainstem NE
and DA neurons and their projections in response to
psychostimulants indicates adaptive mechanisms that can be
activated by stress following its impact on neurotransmission. LC
and VTA are both crucial in the response of the organism to
stressors and both orchestrate brain systems involved in the
appraisal and in the management of psychological stress. Lessons
from the effects of abused substances suggest that autophagy,
with its role in catecholamine synapse and in neuronal
protection, is crucial in modulating the effects of psychological
stress on emotional and cognitive driven behavior to foster
adaptive emotional outcomes aimed to wellbeing.

At cellular level, psychological stress may translate into
intracellular stress-responsive events, such as ER- and oxidative-
stress and inflammation (144), which are known to promptly
recruit autophagy in the attempt to restore homeostasis. However,
under conditions of chronic/persistent stress, when alterations in
neurotransmitter activity translate into maladaptive neuronal
changes, autophagy may be consistently affected, fostering
Frontiers in Psychiatry | www.frontiersin.org 8
progressive synaptic deterioration up to neurodegeneration. In
the light of an interdependency between autophagy and the
mechanisms governing neurotransmission and neuronal
homeostasis, we strongly believe that the role of autophagy
deserves to be further investigated in the context of
catecholamine response to psychological stress specifically.

The possibility of relating stress-related emotional and
cognitive experiences to functional aspects through molecular
pathways, may facilitate the discovery of potential biomarkers
identifying an early risk. Individual differences in the response to
stress and autophagy activity, which can make some individuals
more or less susceptible than others, should also be addressed by
future studies.
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