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Abstract: In the context of categories equipped with a structure of nullhomotopies, we
introduce the notion of homotopy torsion theory. As special cases, we recover pretor-
sion theories as well as torsion theories in multi-pointed categories and in pre-pointed
categories. Using the structure of nullhomotopies induced by the canonical string of ad-
junctions between a category A and the category Arr(A) of arrows, we give a new proof of
the correspondence between orthogonal factorization systems in A and homotopy torsion
theories in Arr(A), avoiding the request on the existence of pullbacks and pushouts in A.
Moreover, such a correspondence is extended to weakly orthogonal factorization systems
and weak homotopy torsion theories.
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1 Introduction

There is a striking analogy between orthogonal factorization systems and torsion theories.
If you have an orthogonal factorization system in a category, from each arrow you get
a pair of composable arrows, and the two arrows lie in two assigned classes of arrows
whose intersection is reduced to the class of isomorphisms. If you have a torsion theory
in an abelian category, from each object you get a pair of objects connected by a short
exact sequence, and the two objects lie in two assigned subcategories whose intersection
is reduced to the zero object. This analogy becomes even more strict considering notions
of torsion theory adapted to general (not necessarily abelian) categories.

Since the category Arr(A) of arrows of a category A is the standard way to turn
arrows into objects, one expects that a precise relation between orthogonal factorization
systems in A and torsion theories in Arr(A) exists. A new direction to establish and
describe such a relation has been indicated in the unpublished talk [14]. More recently,
and independently from [14], the correspondence between orthogonal factorization systems
in A and a certain kind of torsion theories in Arr(A) has been established in [9]. The
proof of the main result in [9] depends on previous results on (co)monads from [10] and
on the reformulation of the definition of orthogonal factorization system given in [12].

The notion of torsion theory used in [9] is based on the notion of pre-pointed category
and, more precisely, on pre-(co)kernels (not to be confused with the prekernels studied
in [6, 7]: pre-kernels from [9] are weak prekernels). Pre-kernels are not defined in terms
of a universal property, they are defined via an ad-hoc construction which depends on
the reflective and coreflective character of the subcategory of trivial objects. Nevertheless,
pre-kernels have a universal property: they are a special instance of the so-called homotopy
kernels, as pointed out in [18] in the special case of Arr(A).

Any adjunction (in fact, any pre-radical and any pre-coradical) induces a structure of
nullhomotopies (see Definition 2.1), and any structure of nullhomotopies carries with it a
notion of homotopy kernel. Therefore, the idea developed in the present paper will allow
us to gather in the same framework various notions of pretorsion and torsion theory (in
pointed categories, in multi-pointed categories, in pre-pointed categories) appearing in the
literature. We will show that the latter are all special cases of a general notion based on
homotopy kernels. We call such a notion homotopy torsion theory and we formulate its
definition in any category equipped with a structure of nullhomotopies. The main test
for our definition is to get a revisited version of the result in [9] cited above: we give a
self-contained proof that orthogonal factorization systems in a category A correspond to
homotopy torsion theories in Arr(A) with respect to the nullhomotopy structure induced
by the canonical string of adjunctions between A and Arr(A). Moreover, basically the
same proof allows us to extend this result to a correspondence between weakly orthogonal
factorization systems and weak homotopy torsion theories.

The layout of the paper is as follows. In order to express the notion of homotopy torsion
theory, in Section 2 we recall the notion of category with nullhomotopies. We give a method
to construct examples from pre-(co)radicals and we compare structure of nullhomotopies
with ideals of arrows. The case of pre-pointed categories and, in particular, the example
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of Arr(A), are considered in Section 3. In Section 4 and in Section 5 we discuss the
standard notion of homotopy kernel: definition, main properties and conditions for the
existence. In Section 6 we characterize pre-pointed categories among categories equipped
with a structure of nullhomotopies. In Section 7 we define homotopy torsion theories with
respect to a given structure of nullhomotopies and, in Section 8, we compare them with
pretorsion theories. It turns out that pretorsion theories coincide with homotopy torsion
theories when the structure of nullhomotopies is reduced to a closed ideal of arrows.
The correspondence between various types of factorization systems in a category A and
homotopy torsion theories in Arr(A) is developed in the rest of the paper: the case of
(weakly) orthogonal factorization systems in Section 9, the case of quasi-proper and proper
orthogonal factorization systems in Section 10 and in Section 11, and finally the pointed
case in Section 12. In order to help the reader, Section 13 gives a global view of the
correspondences studied in Sections 9, 10 and 11.

Finally, let us mention that large portions of this paper also appear in the Master
Thesis [15] of the second author, written under the supervision of the first author.

2 Nullhomotopies, ideals and pre-radicals

For the notion of structure of nullhomotopies on a category, we follow [18, 11] and adopt
a definition a bit stronger than the original one in [8].

Definition 2.1. A structure of nullhomotopies Θ on a category B is given by:

1) For every arrow g in B, a set Θ(g) whose elements are called nullhomotopies on g.

2) For every triple of composable arrows W
f // X

g // Y
h // Z , a map

h ◦ − ◦ f : Θ(g) → Θ(h · g · f)

such that, for every ϕ ∈ Θ(g), one has

(a) (h′ · h) ◦ ϕ ◦ (f · f ′) = h′ ◦ (h ◦ ϕ ◦ f) ◦ f ′ whenever the compositions h′ · h and
f · f ′ are defined,

(b) idY ◦ ϕ ◦ idX = ϕ.

Notation 2.2. To visualize a nullhomotopy λ ∈ Θ(g) in a diagram, we will sometimes
use the notation

X

g

&&
88◆

❚
❴ ❥ ♣
λ ⇑ Y

This notation comes from the fact that, in a 2-category with a zero object, we get a
structure of nullhomotopies by taking as nullhomotopies on an arrow g all the 2-cells from
the zero arrow to g (or from g to the zero arrow).

Remark 2.3. When, in Definition 2.1, f = idX or h = idY , we write h ◦ ϕ and ϕ ◦ f
instead of h ◦ ϕ ◦ idX and idY ◦ ϕ ◦ f. It is possible to restate Definition 2.1 using h ◦ ϕ
and ϕ ◦ f as primitive operations and asking that h ◦ (ϕ ◦ f) = (h ◦ ϕ) ◦ f, h′ ◦ (h ◦ ϕ) =
(h′ · h) ◦ ϕ, (ϕ ◦ f) ◦ f ′ = ϕ ◦ (f · f ′), idY ◦ ϕ = ϕ = ϕ ◦ idX .

There is an obvious notion of morphism between structures of nullhomotopies. It is a
special case of the notion of morphism between categories with nullhomotopies from [19].
(If B is a category, we denote by ar(B) the possibly large set of its arrows, and by ob(B)
the possibly large set of its objects.)
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Definition 2.4. Let Θ and Θ′ be two structures of nullhomotopies on the same category
B. A morphism I : Θ → Θ′ is given by a family of maps indexed by the arrows of B

{Ig : Θ(g) → Θ′(g)}g∈ar(B)

such that, for every triple of composable arrows W
f // X

g // Y
h // Z , the following

diagram commutes

Θ(g)
Ig //

h◦−◦f
��

Θ′(g)

h◦−◦f
��

Θ(h · g · f)
Ih·g·f

// Θ′(h · g · f)

The structures of nullhomotopies on B together with their morphisms constitute a category
denoted by Null(B).

Pretorsion theories, considered in Section 8, are based on the notion of ideal of arrows,
which provides (via Lemma 2.8) our first example of structure of nullhomotopies. We
start recalling from [9] the notion of (closed) ideal of arrows together with some basic
facts about it.

Definition 2.5. Let B be a category.

1. A subset Z1 ⊆ ar(B) is an ideal if it satisfies the following condition: if g : X → Y is
in Z1, then for any pair of arrows f : W → X and h : Y → Z, the composite arrow
h · g · f : W → Z is still in Z1.

2. If Z1 is an ideal, an object N is Z1-trivial if idN : N → N is in Z1.

3. An ideal Z1 is closed when an arrow g is in Z1 (if and) only if it factors through
some Z1-trivial objects.

2.6. Consider the following constructions (P(X) denotes the poset of subsets of a set X):

- i : P(ob(B)) → P(ar(B)), i(Z0) = {g ∈ ar(B) | g factors through some objects in Z0}

- t : P(ar(B)) → P(ob(B)), t(Z1) = {Z1-trivial objects} = {N ∈ ob(B) | idN ∈ Z1}

Plainly, we have:

1. If Z0 ⊆ Z ′
0, then i(Z0) ⊆ i(Z ′

0). If Z1 ⊆ Z ′
1, then t(Z1) ⊆ t(Z ′

1).

2. For any Z0 ⊆ ob(B), i(Z0) is a closed ideal and Z0 ⊆ t(i(Z0)).

3. If Z1 is an ideal, then t(Z1) is closed under retracts and i(t(Z1)) ⊆ Z1.

4. The set t(i(Z0)) of i(Z0)-trivial objects is the smallest subset of ob(B) containing
Z0 and closed under retracts.

5. If Z1 is an ideal, the set i(t(Z1)) is the largest closed ideal contained in Z1.

Moreover, the constructions i : P(ob(B)) → P(ar(B)) and t : P(ar(B)) → P(ob(B)) restrict
to an isomorphism

Retr(B) ≃ ClId(B)

where Retr(B) ⊆ P(ob(B)) is the poset of the subsets of ob(B) closed under retracts, and
ClId(B) ⊆ P(ar(B)) is the poset of closed ideals.
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2.7. Now we compare ideals and structures of nullhomotopies: structures of nullhomo-
topies are a wide generalization of ideals which correspond to discrete structures. We call
a structure of nullhomotopies Θ discrete when, for every arrow g, the set Θ(g) is either
the singleton or the empty set.

Lemma 2.8. Let B be a category and Idl(B) the poset of ideals of arrows in B. Then Idl(B)
is equivalent to the reflective subcategory of Null(B) spanned by the discrete structures.

Proof. The full and faithful functor Idl(B) → Null(B) is realized by associating with an
ideal Z1 the discrete structure on Z1 :

ΘZ1(g) =

{

∗ if g ∈ Z1

∅ if g /∈ Z1

The reflection Null(B) → Idl(B) associates with a structure of nullhomotopies Θ the ideal
Z1(Θ) of the arrows g ∈ ar(B) such that Θ(g) is non-empty.

Example 2.9. Here there is another easy way to construct structures of nullhomotopies.
Let U : A → B be a full and faithful functor. We get a structure of nullhomotopies ΘA on

B by putting, for arrows W
f // X

g // Y
h // Z ,

ΘA(g) = {(g1, A, g2) | g = g2 ·g1 : X → UA→ Y,A ∈ A}, h◦(g1, A, g2)◦f = (g1 ·f,A, h·g2)

2.10. Usually, a pre-radical in a category B is defined as a subfunctor R of the identity
functor Id : B → B.We extend the terminology to any natural transformation β : R ⇒ Id
on any endofunctor R : B → B. We use pre-radicals and pre-coradicals in B to construct
structures of nullhomotopies.

1. If β : R ⇒ Id : B → B is a pre-radical, we get a structure of nullhomotopies on B by
putting Θβ(g) = {ψ : X → RY | βY · ψ = g} and h ◦ ψ ◦ f = R(h) · ψ · f

RY
βY

!!❈
❈❈

❈❈
❈❈

❈

X

ψ
==③③③③③③③③

g
// Y

2. If γ : Id ⇒ S : B → B is a pre-coradical, we get a structure of nullhomotopies on B
by putting Θγ(g) = {ϕ : SX → Y | ϕ · γX = g} and h ◦ ϕ ◦ f = h · ϕ · S(f)

SX
ϕ

!!❈
❈❈

❈❈
❈❈

❈

X

γX

==③③③③③③③③

g
// Y

3. If β : R ⇒ Id is a pre-radical and γ : Id ⇒ S is a pre-coradical, we get a structure
of nullhomotopies on B by putting Θγ,β(g) = {λ : SX → RY | βY · λ · γX = g} and
h ◦ λ ◦ f = R(h) · λ · S(f)

SX
λ // RY

βY

!!❈
❈❈

❈❈
❈❈

❈

X

γX

==③③③③③③③③

g
// Y
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Remark 2.11. Two comments on the constructions in 2.10.

1. Observe that, if β in 2.10.1 is an isomorphism, then the structure Θβ is the terminal
object of Null(B). This means that, for any arrow g in B, the set Θβ(g) is reduced
to a singleton. Indeed, the condition βY · ψ = g is equivalent to ψ = β−1

Y · g. The
same happens if γ in 2.10.2 is an isomorphism and if both β and γ in 2.10.3 are
isomorphisms.

2. More in general, the structure Θβ of 2.10.1 is discrete if and only if, for every Y ∈ B,
the arrow βY is a monomorphism. The structure Θγ of 2.10.2 is discrete if and only
if, for every X ∈ B, the arrow γX is an epimorphism.

3 Pre-pointed categories and the category of arrows

A string of adjunctions like the one involved in the next proposition is called a pre-pointed
category in [9].

Proposition 3.1. Consider the following string of adjunctions

A U // B
Coo

D
oo C ⊣ U ⊣ D

with units and counits given by

γB : B → UCB, δA : CUA→ A, αA : A→ DUA, βB : UDB → B.

If U : A → B is full and faithful, then:

1. The three structures of nullhomotopies on A induced by the pre-radical δ and by the
pre-coradical α are the terminal ones.

2. The three structures of nullhomotopies on B induced by the pre-radical β and by the
pre-coradical γ are isomorphic in Null(B).

Proof. 1. This follows from Remark 2.11.1 because δ and α are isomorphisms.
2. We check the isomorphism Θγ,β ≃ Θγ . Fix an arrow g : X → Y in B and define
Ig : Θγ,β(g) → Θγ(g) by

Ig(λ : UCX → UDY ) = (βY · λ : UCX → UDY → Y )

The fact that Ig is well-defined is obvious and the fact that I is a morphism of null-
homotopy structures comes from the naturality of β. In the opposite direction, define
I−1
g : Θγ(g) → Θγ,β(g) by

I−1
g (ϕ : UCX → Y ) = (UD(ϕ) · U(αCX) : UCX → UDUCX → UDY )

The fact that I−1
g is well-defined comes from the naturality of β and the fact that I−1

is a morphism of nullhomotopy structures comes from the naturality of α. The fact that
Ig(I

−1
g (ϕ)) = ϕ is attested by the commutativity of the following diagram, where the

triangle on the left commutes by one of the triangular identities and the triangle on the
right commutes by naturality of β :

UCX
U(αCX ) //

id ))❘❘
❘❘

❘❘❘
❘❘

❘❘❘
❘❘

UDUCX
UD(ϕ) //

βUCX

��

UDY
βY // Y

UCX

ϕ

33❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢
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The fact that I−1
g (Ig(λ)) = λ is attested by the commutativity of the following diagram:

UCX
U(αCX) //

id ))❘❘
❘❘

❘❘❘
❘❘❘

❘❘❘
❘ UDUCX

UD(λ) //

βUCX

��

UDUDY

βUDY

��

UD(βY ) // UDY

UCX
λ

// UDY
id

55❧❧❧❧❧❧❧❧❧❧❧❧❧❧

The triangle on the left commutes by one of the triangular identities, the square commutes
by naturality of β. Finally, the triangle on the right commutes since, by the triangular
identities, UD(βY ) and βUDY are both right-inverses of U(αDY ), which is an isomorphism
because U is full and faithful.
Concerning the isomorphism Θγ,β ≃ Θβ, we just recall the constructions. Fix an arrow
g : X → Y in B and define Ig : Θγ,β(g) → Θβ(g) by

Ig(λ : UCX → UDY ) = (λ · γX : X → UCX → UDY )

In the opposite direction, define I−1
g : Θβ(g) → Θγ,β(g) by

I−1
g (ψ : X → UDY ) = (U(δDY ) · UC(ψ) : UCX → UCUDY → UDY )

The proof of the isomorphism Θγ,β ≃ Θβ is dual to the previous case.

3.2. Putting together Remark 2.11.2 and Proposition 3.1.2, we get that, in the situation
of Proposition 3.1, the unit γB of C ⊣ U is an epimorphism for all B ∈ B if and only if the
counit βB of U ⊣ D is a monomorphism for all B ∈ B.

Remark 3.3. We can complete Proposition 3.1 by observing that the three isomorphic
structures of nullhomotopies Θβ,Θγ and Θγ,β are retracts, in Null(B), of the structure
ΘA of Example 2.9. Moreover, the induced ideals of arrows Z1(Θβ),Z1(Θγ),Z1(Θγ,β) and
Z1(ΘA) are equal. In particular, the equality Z1(Θβ) = Z1(Θγ) means that Proposition
3.1 is the non-discrete generalization of the annihilation property stated in Lemma 1.2(c)
in [9].

Proof. Let us check that Θγ is a retract of ΘA. For an arrow g : X → Y in B, put

Ig : Θγ(g) → ΘA(g) , Ig(ϕ : UCX → Y ) = (γX , CX,ϕ)

I∗
g : ΘA(g) → Θγ(g) , I

∗
g (g1, A, g2) = g2 · g

′
1

where g′1 : UCX → UA is the unique arrow such that g′1 · γX = g1. The condition
I∗
g (Ig(ϕ)) = ϕ is easy to check.

It remains to prove that Z1(Θγ) = Z1(ΘA). We have to show that, for any arrow g in
B, one has that Θγ(g) 6= ∅ if and only if ΘA(g) 6= ∅ : this is obvious because Θγ(g) is a
retract of ΘA(g).

The rest of this section is devoted to two examples. Both are special cases of the
situation described in Proposition 3.1.

Example 3.4. For a given category A, we denote by Arr(A) the category whose objects
are the arrows x : X → X0 of A and whose arrows are pairs of arrows (g, g0) in A such
that the following diagram commutes

X
g //

x

��

Y

y

��
X0 g0

// Y0

We will use the notation (g, g0) : (X,x,X0) → (Y, y, Y0). There are three functors:

7



- the domain functor D : Arr(A) → A defined by

D((g, g0) : (X,x,X0) → (Y, y, Y0)) = (g : X → Y )

- the codomain functor C : Arr(A) → A defined by

C((g, g0) : (X,x,X0) → (Y, y, Y0)) = (g0 : X0 → Y0)

- the unit functor U : A → Arr(A) defined by

U(g : X → Y ) = ((g, g) : (X, idX ,X) → (Y, idY , Y ))

The functor U is full and faithful. Moreover, these three functors form a string of adjunc-
tions

A U // Arr(A)
Coo

D
oo C ⊣ U ⊣ D

The unit γ(X,x,X0) : (X,x,X0) → UC(X,x,X0) of C ⊣ U is X
x //

x

��

X0

id
��

X0
id

// X0

The counit β(Y,y,Y0) : UD(Y, y, Y0) → (Y, y, Y0) of U ⊣ D is Y
id //

id
��

Y

y

��
Y

y
// Y0

The three isomorphic structures of nullhomotopies on Arr(A) induced by the adjunctions
C ⊣ U ⊣ D as in Proposition 3.1 will be denoted by H(A). Explicitly, for an arrow
(g, g0) : (X,x,X0) → (Y, y, Y0), we have:

H(A)(g, g0) = {λ : X0 → Y | λ · x = g and y · λ = g0}

Indeed, the commutativity of both triangles in

X
g //

x

��

Y

y

��
X0 g0

//

λ

==⑤⑤⑤⑤⑤⑤⑤⑤
Y0

is clearly equivalent to the equation β(Y,y,Y0) · U(λ) · γ(X,x,X0) = (g, g0) in Arr(A), that is

X
x //

x

��

X0

id
��

λ // Y

id
��

id // Y

y

��
=

X

x

��

g // Y

y

��
X0

id
// X0

λ
// Y

y
// Y0 X0 g0

// Y0

Finally, in the situation

W
f //

w

��

X
g //

x

��

Y
h //

y

��

Z

z

��
W0

f0

// X0 g0
//

λ

==⑤⑤⑤⑤⑤⑤⑤⑤
Y0

h0

// Z0

we have (h, h0) ◦ λ ◦ (f, f0) = h · λ · f0.
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Example 3.5. The second main example is in fact a variant of the first one. We take as
category A the category Grp of groups and as category B the category XMod of crossed
modules (see [20]). We will denote an object in XMod by (X,x,X0, ∗), where x : X → X0

is the group morphism and ∗ : X0 ×X → X is the action. The string of adjunctions

Grp U // XMod

Coo

D
oo C ⊣ U ⊣ D

is essentially as in Example 3.4. In short, D(X,x,X0, ∗) = X, C(X,x,X0, ∗) = X0, and
U(X) = (X, idX ,X, conj), where conj : X × X → X is the conjugation action of X on
itself. The unit γ(X,x,X0,∗) of C ⊣ U and the counit β(X,x,X0,∗) of U ⊣ D are as in Example
3.4, just check that they are crossed module morphisms and that the universal properties
restrict from Arr(Grp) to XMod. It follows that the structure of nullhomotopies induced
on XMod by the string of adjunctions C ⊣ U ⊣ D is the same as in Example 3.4.

4 Homotopy kernels

The natural notion of “higher dimensional limit” in a category equipped with a structure
of nullhomotopies is the one of (strong) homotopy kernel. As far as we know, the first
place where (a variant of) this notion has been introduced is [13].

Definition 4.1. Let g : X → Y be an arrow in a category with nullhomotopies (B,Θ).

1. A homotopy kernel of g with respect to Θ is a triple

N (g) ∈ B, ng : N (g) → X, νg ∈ Θ(ng · g)

such that, for any other triple of the form

W ∈ B, f : W → X,ϕ ∈ Θ(f · g)

there exists a unique arrow f ′ : W → N (g) such that ng · f
′ = f and νg ◦ f

′ = ϕ

N (g)

ng
""❊

❊❊
❊❊

❊❊
❊

��

❨ ❯
◗

❑
❋
❄

⇓νg

X
g // Y

W

f ′

OO

f
<<①①①①①①①①

@@

❵ ❞ ❤ ♠
r

①
⑦

ϕ⇑

2. A homotopy kernel (N (g), ng, νg) is strong if, for any triple of the form

W ∈ B, f : W → N (g), ϕ ∈ Θ(ng · f)

such that g ◦ ϕ = νg ◦ f, there exists a unique nullhomotopy ϕ′ ∈ Θ(f) such that
ng ◦ ϕ

′ = ϕ

W
f //

ϕ′ ⇑
::■

P
❳ ❴ ❢ ♥

ϕ ⇓
''♦

❧
❥ ❤ ❢ ❝ ❛ ❴ ❪ ❬ ❳ ❱ ❚ ❘

❖
N (g)

ng //
νg ⇑

66❙ ❯ ❲ ❨ ❬ ❪ ❴ ❛ ❝ ❡ ❣ ✐ ❦ ♠X
g // Y
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4.2. The notion of (strong) homotopy cokernel with respect to Θ is dual of the notion
of (strong) homotopy kernel and it will be needed later in this paper. For the homotopy
cokernel of an arrow g : X → Y, we adopt the notation

X
g

//

θg ⇓
''

♣
♠
❦ ✐ ❢ ❞ ❛ ❴ ❪ ❩ ❳ ❱ ❙ ◗

Y
qg

// Q(g)

We will often write Θ-kernel and Θ-cokernel instead of homotopy kernel and homotopy
cokernel with respect to the structure Θ. In this section (in fact, throughout all the paper
with the only exception of Section 7), we develop the theory for Θ-kernels, but everything
can be obviously dualized to Θ-cokernels.

4.3. The homotopy kernel of an arrow is determined by its universal property uniquely
up to a unique isomorphism. Moreover, if an arrow has two (necessarily isomorphic)
homotopy kernels and one of them is strong, the other one also is strong.

Remark 4.4. Homotopy kernels satisfy a cancellation property.

1. In the situation depicted by the following diagram, if ng ·h = ng ·k and νg ◦h = νg◦k,
then h = k.

Z
k

//
h // N (g)

ng

//

νg ⇓
&&♠

❦ ❤ ❢ ❞ ❛ ❴ ❪ ❩ ❳ ❱ ❙ ◗
❖

X
g

// Y

2. When the structure of nullhomotopies is discrete, the condition νg ◦h = νg ◦k follows
from the condition ng · h = ng · k, so that the cancellation property above reduces
to the fact that ng : N (g) → X is a monomorphism.

4.5. In the very general context of categories with nullhomotopies, homotopy kernels do
not have strong classification properties as, for example, usual kernels have in abelian
categories. Nevertheless, in Lemma 4.8 we list some simple facts which will be useful
in the rest of this paper. We start with two points of terminology in a category with
nullhomotopies (B,Θ):

- An object X ∈ B is Θ-trivial if Θ(idX) 6= ∅.

- Given an ordered pair of objects (T, F ) ∈ B × B, we say that T is Θ-orthogonal to
F, and write T ⊥ F, if Θ(h) = {∗} for every arrow h : T → F.

Observe that

1. any retract of a Θ-trivial object is Θ-trivial,

2. if an arrow g factorizes through a Θ-trivial object, then Θ(g) 6= ∅,

3. if T is isomorphic to T ′ and F is isomorphic to F ′ and T ⊥ F, then T ′ ⊥ F ′,

4. if X ⊥ X, then X is Θ-trivial.

Proof. 2. Consider two arrows a : A → X and b : X → B with X a Θ-trivial object. If
λ ∈ Θ(idX), then b ◦ λ ◦ a ∈ Θ(b · a).

4.6. Observe that the terminology in Definition 2.5.2 is coherent with the one in 4.5: if
Z1(Θ) is the ideal associated with Θ, to be Θ-trivial is the same as to be Z1(Θ)-trivial.
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4.7. Observe also that, using the notion of closed ideal, we can partially invert the impli-
cation in 4.5.2: if the ideal Z1(Θ) is closed and if Θ(g) 6= ∅, then g ∈ Z1(Θ) and therefore
it factorizes through some Θ-trivial object.

Lemma 4.8. Consider a homotopy kernel in a category with nullhomotopies (B,Θ):

N (g)
ng

//

νg ⇓
&&♠

❦ ❤ ❢ ❞ ❛ ❴ ❪ ❩ ❳ ❱ ❙ ◗
❖

X
g

// Y

1. Θ(g) 6= ∅ if and only if ng is a split epimorphism. If, moreover, N (g) ⊥ Y, then ng
is an isomorphism.

2. If N (g) is a strong Θ-kernel and if g is an isomorphism, then N (g) is Θ-trivial.

3. If X is Θ-trivial and if N (g) ⊥ Y, then ng is an isomorphism and N (g) is Θ-trivial.

4. If Y is Θ-trivial and if N (g) ⊥ Y, then ng is an isomorphism.

Proof. 1. If λ ∈ Θ(g) = Θ(idX · g), then, by the universal property of the Θ-kernel, there
exists a unique a : X → N (g) such that ng · a = idX and νg ◦ a = λ. The first condition on
a already gives that ng is a split epimorphism. Moreover, ng ·a ·ng = idX ·ng = ng · idN (g).
If N (g) ⊥ Y, we also have νg ◦ a · ng = νg ◦ idN (g), because both nullhomotopies are
in Θ(g · ng) which is a singleton. By Remark 4.4, we get a · ng = idN (g) and we are
done. Conversely, if there exists an arrow i : X → N (g) such that ng · i = idX , then
νg ◦ i ∈ Θ(g · ng · i) = Θ(g · idX) = Θ(g).
2. If g is an isomorphism, then g−1 ◦ νg ∈ Θ(g−1 · g · ng) = Θ(ng · idN (g)). Moreover,
g ◦ (g−1 ◦ νg) = νg ◦ idN (g). Since N (g) is a strong Θ-kernel, we get a unique λ ∈ Θ(idN (g))
such that ng ◦ λ = g−1 ◦ νg. Therefore, Θ(idN (g)) 6= ∅.
3. If there is a nullhomotopy λ ∈ Θ(idX), then g ◦ λ ∈ Θ(g) and, by point 1, ng is an
isomorphism. This implies that N (g) is Θ-trivial because X is Θ-trivial.
4. If there is a nullhomotopy λ ∈ Θ(idY ), then λ ◦ g ∈ Θ(g) and we can apply point 1.

Corollary 4.9. Let (B,Θ) be a category with a structure of nullhomotopies. Assume that
Θ is discrete and that the ideal Z1(Θ) is closed.

1. If an isomorphism has a Θ-kernel, then the object part of the Θ-kernel is Θ-trivial.

2. If Θ-kernels exist in B, then they are strong.

Proof. 1. Consider a Θ-kernel of an isomorphism g

N (g)
ng // X

g // Y

Since g · ng ∈ Z1(Θ), then ng = g−1 · g · ng ∈ Z1(Θ). Since Z1(Θ) is closed, there exists
a factorization ng = b · a : N (g) → Z → X, where Z is a Θ-trivial object. This means
that idZ ∈ Z1(Θ). and then g · b = g · b · idZ ∈ Z1(Θ). By the universal property of
the Θ-kernel, there exists a unique arrow b′ : Z → N (g) such that ng · b

′ = b. Therefore,
ng · b

′ · a = b · a = ng. This implies that b′ · a = idN (g), because ng is a monomorphism (see
Remark 4.4.2). We have proved that N (g) is a retract of Z and, by 4.5.1, we can conclude
that N (g) is Θ-trivial.
2. Consider the following diagram

W
f // N (h)

nh // X
h // Y

11



Since Θ is discrete, to prove that the Θ-kernel is strong amounts to proving the following
implication: if nh·f ∈ Z1(Θ) then f ∈ Z1(Θ). Let nX : N (idX) → X be the Θ-kernel of the
identity arrow on X. Since nX = idX · nX ∈ Z1(Θ), also h · nX ∈ Z1(Θ). By the universal
property of N (h), we get a unique arrow h′ : N (idX) → N (h) such that nh · h′ = nX .
On the other hand, idX · nh · f = nh · f ∈ Z1(Θ), so that, by the universal property of
N (idX), there exists a unique arrow f ′ : W → N (idX) such that nX ·f ′ = nh ·f. Therefore,
nh · h

′ · f ′ = nX · f ′ = nh · f. This implies that h′ · f ′ = f because nh is a monomorphism
(see Remark 4.4.2). Finally, f = h′ ·f ′ = h′ · idN (idX) ·f

′ ∈ Z1(Θ) because, by the previous
point, the Θ-kernel N (idX) is Θ-trivial, that is, idN (idX) ∈ Z1(Θ).

Remark 4.10. In the situation of Lemma 4.8, if the structure Θ is discrete, then the first
point can be improved using Remark 4.4.2 and gives that Θ(g) 6= ∅ if and only if ng is
an isomorphism. This result appears also as Lemma 2.4 in [7], where it is expressed using
kernels relative to an ideal of arrows (see Definition 8.1).

5 Existence of homotopy kernels

The main result of this section is to establish a sufficient condition for the existence of
homotopy kernels in a category equipped with a structure of nullhomotopies (Proposition
5.3). This result is then specialized to pre-pointed categories and, in particular, to cate-
gories of arrows. We follow the same lines as done in [11] for homotopy pullbacks and refine
some results from [9]. We recall from [19] an auxiliary definition about nullhomotopies
and (categorical) pullbacks.

Notation 5.1. The factorizations of a commutative square x · f = y · g through the
pullback will be written as

A g

%%

〈f,g〉

((PP
PP

PP
PP

PP
PP

PP

f

--

B ×x,y C
x′

//

y′

��

C

y

��
B

x
// D

Definition 5.2. (Using notation 5.1.) Let (B,Θ) be a category with nullhomotopies. A
pullback B ×x,y C in B is strong with respect to the structure Θ (or Θ-strong) if, given
two nullhomotopies ϕ ∈ Θ(f) and ψ ∈ Θ(g) such that x ◦ϕ = y ◦ ψ, there exists a unique
nullhomotopy 〈ϕ,ψ〉 ∈ Θ(〈f, g〉) such that y′ ◦ 〈ϕ,ψ〉 = ϕ and x′ ◦ 〈ϕ,ψ〉 = ψ.

Proposition 5.3. Let (B,Θ) be a category with nullhomotopies. If B has (strong) Θ-
kernels of identity arrows and (Θ-strong) pullbacks, then B has all Θ-kernels (and they
are strong).

Proof. Consider the following diagrams, the one on the left being a Θ-kernel (where we
write n instead of nid and ν instead of νid) and the one on the right being a pullback

N (id)
n

//

ν ⇓
''♠

❦ ❤ ❢ ❞ ❛ ❴ ❪ ❩ ❳ ❱ ❙ ◗
❖

Y
id

// Y N (id)×n,g X
n′

//

g′

��

X

g

��
N (id)

n
// Y
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Observe that ν ◦ g′ ∈ Θ(n · g′) = Θ(g · n′). We are going to prove that the Θ-kernel of g is

N (id)×n,g X
n′

//
ν◦g′ ⇓

''❦
✐ ❣ ❡ ❝ ❛ ❴ ❪ ❬ ❨ ❲ ❯ ❙

P
X

g
// Y

For this, consider the following situation

W
f

//

ϕ ⇓
&&♥

❦ ✐
❞ ❴ ❩

❯ ❙ P
◆

X g
// Y

Since ϕ ∈ Θ(g · f) = Θ(idY · g · f), the universal property of the Θ-kernel of idY produces
a unique arrow f̄ : W → N (id) such that n · f̄ = g · f and ν ◦ f̄ = ϕ. Because of the
first condition on f̄ , we can apply the universal property of the pullback and we get a
unique arrow f ′ : W → N (id) ×n,g X such that g′ · f ′ = f̄ and n′ · f ′ = f. It follows that
ν ◦ g′ · f ′ = ν ◦ f̄ = ϕ, so that f ′ is a factorization of (f, ϕ) through (n′, ν ◦ g′). In order
to prove the uniqueness of such a factorization, consider an arrow h : W → N (id)×n,g X
such that n′ · h = f and ν ◦ g′ · h = ϕ. To check that h = f ′ it is enough to check that
g′ · h = f̄ . This is true because n · g′ · h = g · n′ = g · f.
Now we move on to the strong case. Consider the following situation

W
f //

ϕ ⇓
))❦

❥
❤ ❢ ❞ ❝ ❛ ❴ ❪ ❬ ❩ ❳ ❱ ❚

❙
N (id)×n,g X

n′
//

ν◦g′ ⇑

55
❱ ❳ ❩ ❭ ❪ ❴ ❛ ❜ ❞ ❢ ❤ ✐ ❦X

g // Y

where the nullhomotopy ϕ is such that g ◦ϕ = ν ◦g′ ·f. Observe that g ◦ϕ ∈ Θ(g ·n′ ·f) =
Θ(n · g′ · f) and idY · g ◦ϕ = ν ◦ g′ · f. Therefore, since the Θ-kernel of idY is strong, there
exists a unique nullhomotopy ϕ̄ ∈ Θ(f · g′) such that n ◦ ϕ̄ = g ◦ ϕ. Since the pullback
N (id)×n,g X is Θ-strong, we get a unique nullhomotopy ϕ′ ∈ Θ(f) such that g′ ◦ ϕ′ = ϕ̄
and n′ ◦ϕ′ = ϕ. As far as the uniqueness of the factorization ϕ′ is concerned, let ψ ∈ Θ(f)
be a nullhomotopy such that n′ ◦ ψ = ϕ. To check that ψ = ϕ′, it is enough to check that
g′ ◦ ψ = ϕ̄. This is true because n · g′ ◦ ψ = g · n′ ◦ ψ = g ◦ ϕ.

Lemma 5.4. Let β : R ⇒ Id : B → B be a pre-radical in a category B and Θβ the
associated structure of nullhomotopies as in 2.10.1. For any object X ∈ B, the following
diagram is a Θβ-kernel of idX

RX
βX

//

idRX ⇓
&&♠

❦ ✐ ❢ ❞ ❛ ❴ ❪ ❩ ❳ ❯ ❙ ◗
◆

X
idX

// X

Moreover, if R is an idempotent comonad and β is its counit, then the Θβ-kernel described
above is strong.

Proof. Explicitly, we assert that the Θβ-kernel of idX is

RX
βX

""❉
❉❉

❉❉
❉❉

❉

RX

id
;;✇✇✇✇✇✇✇✇

βX

// X
id

// X
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Indeed, a nullhomotopy

W
f

//

ψ ⇓
&&♥

❦ ✐ ❢ ❞ ❴ ❩ ❳ ❯ ❙ P
◆

X
idX

// X

amounts to an arrow ψ : W → RX such that βX · ψ = f. As factorization f ′ : W → RX
of (f, ψ) through the Θβ-kernel we can take ψ itself. This is the unique possible choice
because the condition νidX ◦ f ′ = ψ precisely means f ′ = ψ.
Assume now that R is an idempotent comonad and β is its counit, and consider a nullho-
motopy ψ compatible with the nullhomotopy idRX as in the following diagram

W
f //

ψ ⇑

77❖
◗
❚ ❱ ❳ ❩ ❪ ❴ ❛ ❞ ❢ ❤ ❦ ♠

♦RX
βX

//

idRX ⇓
&&♠

❦ ✐ ❢ ❞ ❛ ❴ ❪ ❩ ❳ ❯ ❙ ◗
◆

X
idX

// X

Therefore, the arrow ψ : W → RX is such that βX ·ψ = βX · f and R(idX) ·ψ = idRX · f.
We get ψ = f and we have to find a unique arrow ψ′ : W → RRX such that βRX ·ψ′ = f
and R(βX) · ψ

′ = ψ. If we put ψ′ = σX · f, where σ : R ⇒ RR is the comultiplication
of the comonad, both conditions are satisfied. Indeed, βRX · σX · f = idRX · f = f and
R(βX) · σX · g = idRX · f = f = ψ. It remains to prove the uniqueness of ψ′. For this,
assume that βRX · ψ′ = f. Since the comonad is idempotent, the comultiplication σX is
an isomorphism and then βRX , being a one-side inverse of σX , is also an isomorphism.
Finally, from βRX · ψ′ = f we get ψ′ = β−1

RX · f = σX · f.

Lemma 5.5. Let γ : Id ⇒ S : B → B be a pre-coradical in a category B and Θγ the
associated structure of nullhomotopies as in 2.10.2. If B has pullbacks, they are Θγ-strong.

Proof. Consider a pullback in B

B ×x,y C
x′ //

y′

��

C

y

��
B

x
// D

and an arrow h : W → B ×x,y C. Consider also two nullhomotopies ϕ ∈ Θγ(y
′ · h) and

ψ ∈ Θγ(x
′ · h) such that x ◦ ϕ = y ◦ ψ. This means that we have arrows ϕ : SW → B

and ψ : SW → C such that ϕ · γW = y′ · h, ψ · γW = x′ · h and x · ϕ = y · ψ. From the
universal property of the pullback, we get a unique arrow 〈ϕ,ψ〉 : SW → B ×x,y C such
that y′ · 〈ϕ,ψ〉 = ϕ and x′ · 〈ϕ,ψ〉 = ψ. The arrow 〈ϕ,ψ〉 is in fact a nullhomotopy on h
because, by composing with the pullback projections, we can check that 〈ϕ,ψ〉 · γW = h.
Moreover, y′ ◦ 〈ϕ,ψ〉 = y′ · 〈ϕ,ψ〉 = ϕ and x′ ◦ 〈ϕ,ψ〉 = x′ · 〈ϕ,ψ〉 = ψ, as required. The
uniqueness of such a nullhomotopy is clear: if λ ∈ Θγ(h) is such that y′ ◦ λ = ϕ and
x′ ◦ λ = ψ, we have y′ · λ = ϕ and x′ · λ = ψ, so that λ = 〈ϕ,ψ〉.

Corollary 5.6. Consider the following string of adjunctions

A U // B
Coo

D
oo C ⊣ U ⊣ D

with U full and faithful. Put on B one of the three isomorphic structures of nullhomotopies
as in Proposition 3.1. If B has pullbacks, then it has strong homotopy kernels.
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Proof. Write, as usual, γ for the unit of the adjunction C ⊣ U and β for the counit of
the adjunction U ⊣ D. If we apply Lemma 5.4 to the idempotent comonad R = U · D
with counit β, we deduce that B has strong homotopy kernels of the identity arrows with
respect to the structure Θβ. If, moreover, we apply Lemma 5.5 to the pre-coradical γ on
S = U · C, we deduce that pullbacks in B are strong with respect to the structure Θγ .
Since, by Proposition 3.1, Θβ and Θγ are isomorphic structures, we can apply Proposition
5.3 to conclude that B has strong homotopy kernels.

Remark 5.7. Consider the situation of Corollary 5.6.

1. Explicitly, the strong homotopy kernel of an arrow g : X → Y in B can be described
as follows: write β for the counit of the adjunction U ⊣ D and consider the pullback

UDY
βY

""❉
❉❉

❉❉
❉❉

❉❉

X ×g,βY UDY
β′
Y

//

g′
77♦♦♦♦♦♦♦♦♦♦♦♦
X g

// Y

then N (g) = X ×g,βY UDY, ng = β′Y and νg = g′.

2. The above construction already appears in [9] but, since nullhomotopies are not
taken into account, what is shown in [9] is that

X ×g,βY UDY
β′
Y

// X
g

// Y

is a weak Z1(Θ)-kernel of g (see Definition 8.1 for the notion of Z1-kernel).

Example 5.8. Consider the structure of nullhomotopies H(A) in Arr(A) induced by
the string of adjunctions C ⊣ U ⊣ D as in Example 3.4. Since Arr(A) is a category of
presheaves with values in A, we can improve Corollary 5.6 and we get the following fact,
proved directly in [19]:

- if A has pullbacks, then Arr(A) has strong H(A)-kernels.

More precisely, since pullbacks in Arr(A) are constructed level-wise from those in A, we
obtain the following explicit description of H(A)-kernels (use the description of units from
Example 3.4 and the construction of homotopy kernels from the proof of Proposition 5.3).
Let

X
g //

x

��

Y

y

��
X0 g0

// Y0

be an arrow in Arr(A). If the pullback of g0 and y exists, then a H(A)-kernel of (g, g0) is
given by

X
id //

〈x,g〉
��

X
x

��

g // Y

y

��
X0 ×g0,y Y

g′0

33❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣

y′
// X0 g0

// Y0

This description already appears in [18, 19], with its universal property as homotopy limit,
as well as in [9], with the weak universal property recalled in Remark 5.7.2.
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Example 5.9. Consider, in a category A, any pair of composable arrows

X
g // Y

h // Z

The following diagram is a H(A)-extension in Arr(A), that is, ((X, g, Y ), (idX , h), idY ) is
the H(A)-kernel of (g, idZ) and ((Y, h, Z), (g, idZ), idY ) is the H(A)-cokernel of (idX , h)

X
id //

g

��

X
g //

h·g

��

Y

h
��

Y
h

//
id

33❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤ Z
id

// Z

In fact, every H(A)-extension in Arr(A) is, up to isomorphism, of this form. This fact,
needed in Section 10, will be explained in more detail in Remark 9.9.

6 A characterization of pre-pointed categories

The aim of this section is to give a characterization of pre-pointed categories among
categories with a structure of nullhomotopies. We start by observing that, if the structure
of nullhomotopies Θ comes from a monad or a comonad, then the ideal Z1(Θ) is closed.
We state the case of a monad, the situation for a comonad is dual.

Proposition 6.1. Let γ : Id⇒ S : B → B be a pre-coradical in B.

1. An object X ∈ B is Θγ-trivial iff γX is a split mono.

2. In particular, if S : B → B is a monad with unit γ, then:

(a) If (A, a : SA→ A) is an S-algebra, then A is a Θγ-trivial object.

(b) For any object X, the object SX is Θγ-trivial.

(c) The ideal Z1(Θγ) is closed: Z1(Θγ) = i{SB | B ∈ B}.

3. In particular, if the monad S : B → B is induced by an adjunction

A
U

// B
Coo C ⊣ U γB : B → UCB , δA : CUA→ A

with U full and faithful, then:

(a) Z1(Θγ) = i{UA | A ∈ A}.

(b) The set of Θγ-trivial objects coincides with the closure in B of {UA | A ∈ A}
under isomorphisms.

(c) If X is a Θγ-trivial object, then X ⊥ Y for every object Y ∈ B.

Proof. 1. The commutativity of the following diagram expresses at the same time that
γX is a split mono and that ϕ ∈ Θγ(idX), so that X is Θγ-trivial

SX
ϕ

!!❉
❉❉

❉❉
❉❉

❉

X

γX

==③③③③③③③③

id
// X
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2(a) If (A, a : SA→ A) is a S-algebra, then a · γA = idA and we apply the previous point.
2(b) This follows from 2(a) because (SX,µX : SSX → SX) is a S-algebra, µ being the
multiplication of the monad.
2(c) The inclusion Z1(Θγ) ⊆ i{SB | B ∈ B} is obvious: if an arrow g : X → Y is in
Z1(Θγ), then Θγ(g) is non-empty, so that there exists an arrow ϕ : SX → Y such that
g = ϕ · γX : X → SX → Y. (By 2(b), the object SX is Θγ-trivial, so that we can already
conclude that Z1(Θγ) is closed.)
Conversely, if an arrow g : X → Y can be factorized as g = b · a : X → SB → Y, we get

b · µB · S(a) · γX = b · µB · γSB · a = b · a = g

so that b · µB · S(a) ∈ Θγ(g) and then g ∈ Z1(Θγ).
3(a) Obvious because SB = UCB and UA ≃ UCUA.
3(b) This is a consequence of 2.6.4 and of the following standard fact: if an object B ∈ B
is a retract of an object coming from A, say idB = y · x : B → UA → B, then the unit
γB : B → UCB is an isomorphism with inverse given by y · U(δA) · UC(x).
3(c) It is enough to prove the statement when X = UA for A ∈ A. Consider an arrow
g : UA → Y. Then Θγ(g) = {ϕ : UCUA → Y | ϕ · γUA = g}. But γUA is an isomorphism,
so that Θγ(g) is reduced to the element ϕ = g · γ−1

UA.

Corollary 6.2. Consider a string of adjunctions

A U // B
Coo

D
oo C ⊣ U ⊣ D γB : B → UCB , βB : UDB → B

with U full and faithful. Let Θ be the induced structure of nullhomotopies on B. The
Θ-trivial objects are orthogonal, on both sides, to any object of B.

Proof. Thanks to Proposition 6.1.3(b), it is enough to check the statement for the Θ-trivial
objects of the form UA, with A varying in A.We use the isomorphisms of Proposition 3.1.
- If g : UA→ Y, then Θ(g) ≃ Θγ(g) = {∗} by Proposition 6.1.3(c).
- If g : X → UA, then Θ(g) ≃ Θβ(g) = {∗} by the dual of Proposition 6.1.3(c).

Example 6.3. Consider the structure of nullhomotopies H(A) in Arr(A) induced by
the string of adjunctions C ⊣ U ⊣ D as in Example 3.4. Write Z1(A) for the associated
ideal of arrows in Arr(A), as in Lemma 2.8. The previous analysis shows that Z1(A) is
closed: there exists a nullhomotopy λ : X0 → Y on an arrow (g, g0) : (X,x,X0) → (Y, y, Y0)
iff (g, g0) factors through some Z1(A)-trivial objects. Following 6.1.3, the Z1(A)-trivial
objects are precisely the objects (N,n,N0) such that n : N → N0 is an isomorphism.
Clearly, such an object (N,n,N0) is orthogonal, on both sides, to any object of Arr(A).

6.4. With the next results, we show that, up to identifying a full and faithful functor with
its replete image, pre-pointed categories as in Proposition 3.1 can be detected, among
categories with nullhomotopies, by the existence of some strong homotopy kernels and
homotopy cokernels and by the behavior of trivial objects. Keep in mind Lemma 5.4 and
Proposition 6.1.3(c), which show that the assumptions in Lemma 6.5 and in Proposition
6.6 are indeed necessary conditions.

Lemma 6.5. Let (B,Θ) be a category with nullhomotopies. If, for every object X ∈ B,
there exists a Θ-kernel

N (idX) nX

//

νX ⇓
''♠

❥ ❤ ❢ ❞ ❛ ❴ ❪ ❬ ❳ ❱ ❚ ◗
❖

X
id

// X
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then n : N ⇒ Id: B → B is a pre-radical and the induced structure of nullhomotopies Θn

(see 2.10.2) coincides with Θ.

Proof. The functor N : B → B of the statement sends an object X ∈ B to the object part
of the Θ-kernel of the identity on X. To extend it to arrows, consider an arrow g : X → Y.
Since νX ∈ Θ(idX · nX) = Θ(nX), then g ◦ νX ∈ Θ(g · nX) = Θ(idY · g · nX). By the
universal property of N (idY ), we get a unique arrow Ng : N (idX) → N (idY ) such that
g · nX = nY · Ng. This gives at once the definition of the functor N on arrows and the
naturality of n : N ⇒ Id.
In order to construct the isomorphism Θn ≃ Θ, recall that, for an arrow g : X → Y, we
have Θn(g) = {ψ : X → N (idY ) | nY · ψ = g}. Now we put:
- Θn(g) → Θ(g) : ψ 7→ νY ◦ ψ
- Θ(g) → Θn(g) : λ 7→ λ′, where λ′ : X → N (idY ) is the unique arrow such that nY ·λ′ = g
and νY ◦ λ′ = λ.
To check that these maps realize an isomorphism of nullhomotopy structures is easy.

Proposition 6.6. Let (B,Θ) be a category with nullhomotopies and let A be the full
subcategory of Θ-trivial objects. Assume that

1. For every object X ∈ B there exist a strong Θ-kernel and a strong Θ-cokernel of idX

N (idX) nX

//

νX ⇓
''♠

❥ ❤ ❢ ❞ ❛ ❴ ❪ ❬ ❳ ❱ ❚ ◗
❖

X
id

//

⇓ θX ((
♦
♠
❥ ❤ ❢ ❞ ❛ ❴ ❪ ❩ ❳ ❱ ❚ ◗

X
qX

// Q(idX)

2. For all A ∈ A and for all X ∈ B, we have A ⊥ X and X ⊥ A.

Then A is reflective and coreflective in B and the induced structure of nullhomotopies on
B (see Proposition 3.1) coincides with Θ.

Proof. Since idX : X → X is an isomorphism and since its Θ-kernel is strong, by Lemma
4.8.2 we have that the object N (idX) is Θ-trivial. Therefore, the functor N : B → B of
Lemma 6.5 factorizes through the subcategory A. The same holds also for the functor
Q : B → B dual of the one of Lemma 6.5. It remains to prove that qX : X → Q(idX)
provides a unit for the adjunction Q ⊣ U and nX : N (idX) → X provides a counit for the
adjunction U ⊣ N , where U : A → B is the full inclusion. We do the job for the unit qX .
Let g : X → A be an arrow with A ∈ A. Since A is Θ-trivial, there exists λ ∈ Θ(idA) and
then λ ◦ g ∈ Θ(idA · g) = Θ(g · idX). By the universal property of the Θ-cokernel, there
exists a unique arrow g′ : Q(idX) → A such that g′ · qX = g and g′ ◦ θX = λ. Consider
now another arrow g′′ : Q(idX) → A such that g′′ · qX = g. To show that g′′ = g′, we have
to prove that g′′ ◦ θX = λ, but g′′ ◦ θX and λ are elements of Θ(g), which is reduced to a
singleton because X ⊥ A. Finally, the fact that the structure of nullhomotopies induced
on B by the string of adjunctions Q ⊣ U ⊣ N coincides with the original structure Θ comes
directly from Lemma 6.5.

7 Homotopy torsion theories

Torsion theories have been originally introduced in the context of abelian categories by
Dickson, see [5]. We refer to Chapter 1 in [2] for the classical theory.

Definition 7.1. Let (B,Θ) be a category with nullhomotopies. A homotopy torsion theory
in B relative to the structure Θ (or Θ-torsion theory) is given by two full subcategories

T ⊆ B , F ⊆ B
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such that

1) Both subcategories are replete, that is, closed under isomorphisms. (Note that this
condition does not depend on the structure Θ.)

2) For any object X ∈ B, there exists a Θ-exact (T ,F)-presentation, that is, a diagram

T (X)
tX

//

ξX ⇓ ((❧
❥ ❤ ❢ ❝ ❛ ❴ ❪ ❬ ❳ ❱ ❚ ❘

X
fX

// F (X)

such that

(a) T (X) ∈ T and the triple (T (X), tX , ξX) is a Θ-kernel of fX .

(b) F (X) ∈ F and the triple (F (X), fX , ξX) is a Θ-cokernel of tX .

3) For all T ∈ T and for all F ∈ F , we have that T is Θ-orthogonal to F (see 4.5).

Here there are some test properties for our definition of homotopy torsion theory.

Proposition 7.2. Let (B,Θ) be a category with nullhomotopies and (T ,F) a Θ-torsion
theory. The Θ-exact (T ,F)-presentation of an object is essentially unique.

Proof. In the situation of Definition 7.1, consider two Θ-exact (T ,F)-presentations of an
object X :

T (X)
tX

//

ξX ⇓ ((❧
❥ ❤ ❢ ❝ ❛ ❴ ❪ ❬ ❳ ❱ ❚ ❘

X
fX

// F (X) T
t

//

ξ ⇓
&&q

♥
❧ ✐

❞ ❴ ❩
❯ ❙ P

◆
X

f
// F

Since T ∈ T and F (X) ∈ F , there exists a unique τ ∈ Θ(fX · t). By the universal
property of the Θ-kernel (T (X), tX , ξX), there exists a unique arrow a : T → T (X) such
that tX · a = t and ξX ◦ a = τ. Since T (X) ∈ T and F ∈ F , there exists a unique
τ ′ ∈ Θ(f · tX). By the universal property of the Θ-kernel (T, t, ξ), there exists a unique
arrow a′ : T (X) → T such that t ·a′ = tX and ξ ◦a′ = τ ′. Observe that τ ◦a′ = ξX because
they are in Θ(fX · t · a′) = Θ(fX · tX), which is reduced to a singleton. Now we have

tX · a · a′ = t · a′ = tX = tX · idT (X) and ξX ◦ a · a′ = τ ◦ a′ = ξX = ξX ◦ idT (X)

By Remark 4.4, we can conclude that a · a′ = idT (X). Similarly, we have a′ · a = idT . The
construction of an isomorphism F (X) ≃ F commuting with fX and f is dual.

Proposition 7.3. Let (B,Θ) be a category with nullhomotopies and (T ,F) a Θ-torsion
theory. Fix an object X ∈ B and a Θ-exact (T ,F)-presentation of X as in Definition 7.1.

1. The following conditions are equivalent:

(a) X ∈ F ,

(b) fX : X → F (X) is an isomorphism,

(c) Θ(tX) 6= ∅,

(d) T ⊥ X for all T ∈ T .

2. The following conditions are equivalent:

(a) X ∈ T ,
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(b) tX : T (X) → X is an isomorphism,

(c) Θ(fX) 6= ∅,

(d) X ⊥ F for all F ∈ F .

Proof. 1. (a) ⇒ (d): This is point 3 in Definition 7.1.
(d) ⇒ (c): If condition (d) holds, in particular T (X) ⊥ X, so that Θ(tX) = {∗} 6= ∅.
(c) ⇒ (b): Since T (X) ⊥ F (X) and since condition (c) holds, we can apply the dual of
Lemma 4.8.1 to conclude that fX is an isomorphism.
(b) ⇒ (a): This follows from the fact that F is replete.

Proposition 7.4. Let (B,Θ) be a category with nullhomotopies and (T ,F) a Θ-torsion
theory. Fix an object X ∈ B and a Θ-exact (T ,F)-presentation of X as in Definition 7.1.

1. If T (X) is Θ-trivial, then X ∈ F . The converse holds

(a) if the Θ-kernel (T (X), tX , ξX) is strong, or

(b) if the ideal Z1(Θ) is closed.

2. If F (X) is Θ-trivial, then X ∈ T . The converse holds

(a) if the Θ-cokernel (F (X), fX , ξX) is strong, or

(b) if the ideal Z1(Θ) is closed.

Proof. 2. Assume that F (X) is Θ-trivial and let ϕ ∈ Θ(idF (X)). It follows that ϕ ◦ fX ∈
Θ(fX). We can apply point 2(c) of Proposition 7.3 to conclude that X ∈ T .
Conversely, assume first condition (a): if X ∈ T , then tX : T (X) → X is an isomorphism
by 7.3.2. Since we assume that the Θ-cokernel F (X) is strong, we can apply the dual of
Lemma 4.8.2 to conclude that F (X) is Θ-trivial.
Assume now condition (b): if X ∈ T , then tX : T (X) → X is an isomorphism by 7.3.2.
We have ξX ◦ t−1

X ∈ Θ(fX), so that fX ∈ Z1(Θ). Since Z1(Θ) is closed, there exists a
factorization fX = v ·u : X → Z → F (X) through some Θ-trivial object Z (see 4.7). Since
idZ ∈ Z1(Θ), then also u = idZ ·u ∈ Z1(Θ) and then there exists a nullhomotopy λ ∈ Θ(u).
From the nullhomotopy λ ◦ tX ∈ Θ(u · tX) and the universal property of the Θ-cokernel
F (X), we get a unique arrow u′ : F (X) → Z such that u′ · fX = u and u′ ◦ ξX = λ ◦ tX .
Observe that v · u′ · fX = v · u = fX . The condition v ◦ u

′ · ξX = ξX comes for free because
T (X) ⊥ F (X), so that we can apply Remark 4.4.1 and we get v · u′ = idF (X). We have
proved that F (X) is a retract of Z, so that F (X) is Θ-trivial.

Corollary 7.5. Let (B,Θ) be a category with nullhomotopies and (T ,F) a Θ-torsion
theory. The subcategories T and F are closed under retracts.

Proof. Let F ∈ F and consider a retract X of F, with a : X → F and b : F → X such
that b · a = idX . We have to prove that X ∈ F . By Proposition 7.3.1, it suffices to show
that Θ(tX) 6= ∅. Since T (X) ⊥ F, there exists a (unique) nullhomotopy λ ∈ Θ(a · tX).
Therefore, b ◦λ ∈ Θ(b · a · tX) = Θ(tX), and we are done. The argument for T is dual.

Corollary 7.6. Let (B,Θ) be a category with nullhomotopies and (T ,F) a Θ-torsion
theory. The following conditions on an object X ∈ B are equivalent:

(a) X ∈ T ∩ F ,

(b) Θ(idX) = {∗},
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(c) X is Θ-trivial.

Proof. If X ∈ T ∩F , then X ⊥ X and the orthogonality condition gives Θ(idX) = {∗}. If
X is Θ-trivial, we can apply Lemma 4.8.3 and its dual to the Θ-exact (T ,F)-presentation
of X. We get that tX : T (X) → X and fX : X → F (X) are isomorphisms. Since T and F
are replete, we are done. The implication (b) ⇒ (c) is obvious.

Corollary 7.7. Let (B,Θ) be a category with nullhomotopies and (T ,F) a Θ-torsion
theory.

1. For any object X ∈ F , it can be chosen a Θ-exact (T ,F)-presentation of the form

T (X)
tX // X

id // X

In particular, the arrow idX has a Θ-kernel whose object part lies in T .

2. For any object X ∈ T , it can be chosen a Θ-exact (T ,F)-presentation of the form

X
id // X

fX // F (X)

In particular, the arrow idX has a Θ-cokernel whose object part lies in F .

Proof. 1. Since the Θ-cokernel is defined up to isomorphism and since F is replete, in the
Θ-exact (T ,F)-presentation of X we can replace the F-part fX , which is an isomorphism
by Proposition 7.3, with f−1

X · fX .

If we allow us to choose an object in an isomorphism class of objects, from Proposition
7.2 we get the following corollary.

Corollary 7.8. Let (B,Θ) be a category with nullhomotopies and (T ,F) a Θ-torsion
theory. Then T is coreflective in B and F is reflective in B.

Proof. For any object X ∈ B, just choose a Θ-exact (T ,F)-presentation

T (X)
tX

//

ξX ⇓ ((❧
❥ ❤ ❢ ❝ ❛ ❴ ❪ ❬ ❳ ❱ ❚ ❘

X
fX

// F (X)

Then tX : T (X) → X is the counit of the coreflection of B on T . Dually, fX : X → F (X) is
the unit of the reflection of B on F . To extend to arrows, use the universal properties of the
Θ-kernel and of the Θ-cokernel involved in the Θ-exact (T ,F)-presentations. For example,
given an arrow g : X → Y, we get an arrow fY ·g ·tX : T (X) → F (Y ). Since T (X) ⊥ F (Y ),
there exists a unique nullhomotopy λg ∈ Θ(fY · g · tX). Now, the universal property of the
Θ-cokernel of tX gives a unique arrow F (g) : F (X) → F (Y ) such that F (g) · fX = fY · g
and F (g) ◦ ξX = λg. The needed functoriality and naturality come from uniqueness. As
far as the universal properties of the unit and of the counit are concerned, let us check the
one of the unit. Consider an arrow h : X → F with F ∈ F . Since T (X) ⊥ F, there exists
a unique λ ∈ Θ(h · tX). The universal property of the Θ-cokernel gives a unique arrow
h′ : F (X) → F such that h′ · fX = h and h′ ◦ ξX = λ. If another arrow h′′ : F (X) → F is
such that h′′ ·fX = h, then h′′ ◦ξX ∈ Θ(h ·tX), which is a singleton. Therefore, h′′ ◦ξX = λ
and, finally, h′′ = h′.
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Example 7.9. To end this section, we go back to the structure of nullhomotopies H(Grp)
in the category XMod introduced in Example 3.5. Given a crossed module (X,x,X0, ∗),
we can consider the factorization of x through its image I(x) as in the following diagram

X
x //

ex !!❈
❈❈

❈❈
❈❈

❈ X0

I(x)

mx

==③③③③③③③③

It is well-known thatmx : I(x) → X0 is a normal subgroup, so that we get a crossed module
(I(x),mx,X0, conj) with X0 acting on I(x) by conjugation. Moreover, ex : X → I(x) is
a central extension, that is, a surjective morphism with central kernel. We get another
crossed module (X, ex, I(x), ∗) with I(x) acting on X with action a ∗ b = c · b · c−1, where
c is any element of X such that ex(c) = a. We are ready to produce our first example of
homotopy torsion theory. It is given by the following full subcategories of XMod :

T = the full subcategory of central extensions, i.e., surjective crossed modules

F = the full subcategory of normal subgroups, i.e., injective crossed modules

For a crossed module (X,x,X0, ∗), its H(Grp)-exact (T ,F)-presentation is given by

X
id //

ex

��

X
ex //

x

��

I(x)

mx

��
I(x)

mx

//

id

33❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤
X0

id
// X0

Note that the H(Grp)-exactness is as in Examples 5.8 and 5.9.

8 Comparison with pretorsion theories

The aim of this section is to establish a complete comparison between pretorsion theories
and homotopy torsion theories. The first step is to compare kernels and cokernels rela-
tive to an ideal (called prekernels and precokernels in [6, 7]) with homotopy kernels and
homotopy cokernels. (We do the job for kernels and we leave to the reader to dualize
Definition 8.1, Lemma 8.2 and Remark 8.3.) Then, we will compare pretorsion theories
and homotopy torsion theories in Corollary 8.7 and Corollary 8.8. We recall from [9, 6]
the following definition.

Definition 8.1. Let Z1 be an ideal of arrows in a category B. Fix an arrow g : X → Y.
A Z1-kernel of g is an arrow kg : K(g) → X such that g · kg ∈ Z1 and which is universal
with respect to this condition: if f : W → X satisfies g ·f ∈ Z1, then there exists a unique
f ′ : W → K(g) such that kg · f

′ = f.

Here is the expected result, whose proof is straightforward.

Lemma 8.2. Let (B,Θ) be a category with nullhomotopies. If Θ is discrete, then Θ-kernels
in the sense of 4.1 coincide with Z1(Θ)-kernels in the sense of 8.1,

Remark 8.3. Observe that the above fact is no longer true if we start with a structure
of nullhomotopies Θ on B which is not discrete: if we assume that the Θ-kernel and the
Z1(Θ)-kernel of an arrow exist, then the Z1(Θ)-kernel is a retract of the Θ-kernel, but in
general they do not coincide.
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8.4. To make easier the comparison between homotopy torsion theories and pretorsion
theories, we write down explicitly the intermediate notion of Z1-torsion theory for Z1 an
ideal of arrows. In fact, a pair (T ,F) of full subcategories of a category B is a pretorsion
theory in the sense of [6, 7] precisely when it is a Z1-torsion theory for the closed ideal
Z1 = i(ob(T ∩ F)). Let us observe also that, if Z1 is closed, then Z1-torsion theories
precisely are torsion theories in multi-pointed categories in the sense of [9].

Definition 8.5. Let Z1 be an ideal of arrows in a category B. A Z1-torsion theory in B
is given by two full replete subcategories T and F of B such that

1. For any object X ∈ B, there exists a diagram of the form

T (X)
tX // X

fX // F (X)

where T (X) ∈ T , F (X) ∈ F , tX is a Z1-kernel of fX and fx is a Z1-cokernel of tX .

2. For any object T ∈ T and F ∈ F , any arrow h : T → F belongs to Z1.

Remark 8.6. If the category B has a zero object 0 and if we consider the ideal Z1(0) of zero
arrows (that is, the arrows which factorize through the zero object), then Z1(0)-kernels and
Z1(0)-cokernels coincide with kernels and cokernels in the usual sense. Moreover, Z1(0)-
torsion theories are nothing but the classical (not necessarily abelian) torsion theories as
in Chapter 1 of [2].

With the next two corollaries, we complete the comparison between homotopy torsion
theories and pretorsion theories. The first one follows easily from Lemma 8.2.

Corollary 8.7. Let (B,Θ) be a category with nullhomotopies. Consider two full subcat-
egories T and F of B. If Θ is discrete, then (T ,F) is a Θ-torsion theory in the sense of
7.1 if and only if it is a Z1(Θ)-torsion theory in the sense of 8.5.

Corollary 8.8. Let Z1 be a closed ideal of arrows in a category B. If a pair of full
subcategories (T ,F) of B is a Z1-torsion theory, then i(ob(T ∩ F)) = Z1, so that (T ,F)
is also a pretorsion theory.

Proof. The arrows in Z1 are precisely the arrows which factorize through some Z1-trivial
object. The arrows in i(ob(T ∩ F)) are precisely the arrows which factorize through
some object in T ∩ F . But being Z1-trivial is the same thing as being ΘZ1-trivial, and
being ΘZ1-trivial is, by Corollary 7.6, the same thing as being in T ∩ F . This shows that
i(ob(T ∩F)) = Z1, so that (T ,F) is a i(ob(T ∩F))-torsion theory. By 8.4, we can conclude
that (T ,F) is a pretorsion theory.

8.9. Thanks to Lemma 2.8 and Lemma 8.2, we can identify the discrete structures of
nullhomotopies with the corresponding ideals of arrows. We can now resume the analysis
developed in this section saying that pretorsion theories are exactly homotopy torsion
theories with respect to structures which are discrete and closed.

9 Factorization systems are homotopy torsion theories

Factorization systems have a long history in category theory. We refer to Chapter 5 in [1]
for the classical theory, and to [4] and the references therein for a more recent update. We
adopt the name of orthogonal factorization system (the word orthogonal does not appear
in the name used in [1]) to underline the presence of the orthogonality condition in the
definition.
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Definition 9.1. Let A be a category. An orthogonal factorization system in A is given
by two classes of arrows

E ⊆ ar(A) , M ⊆ ar(A)

such that

1) Both classes are stable under composition with isomorphisms.

2) Each arrow of A can be factorized as an arrow in E followed by an arrow in M.

3) (Orthogonality) For each solid commutative diagram with e ∈ E and m ∈ M

E
h //

e

��

M

m

��
E0

h0

//

λ

==④
④

④
④

M0

there exists a unique arrow λ such that λ · e = h and m · λ = h0. (Sometimes, the
notation e ⊥ m is used to express this condition.)

9.2. Observe that Definition 9.1, which appears in [10], seems weaker than the one in [1],
where it is required that E and M contain isomorphisms and are closed under composition.
If, in Definition 9.1, we add that E andM contain identities, we get precisely the definition
of orthogonal factorization system given in [3], and it is known that the definitions in [1]
and [3] are equivalent. The fact that Definition 9.1 is in fact equivalent to the one given
in [3] can be checked directly, but can also be seen as an obvious consequence of the
correspondence between orthogonal factorization systems in A and H(A)-torsion theories
in Arr(A), see Corollary 9.5.

The following lemma (and its dual), inspired by the description of homotopy (co)kernels
in Arr(A) given in Example 5.8, will allow us to state one of our main results, Proposition
9.4, without assuming the existence of pullbacks or pushouts in A.

Lemma 9.3. Consider an adjunction

A
U

// B
Coo , C ⊣ U

with unit γB : B → UCB and counit δA : CUA→ A and assume that U is full and faithful.
Put on B the structure of nullhomotopies Θγ as in 2.10.2. If

X
g

//

θg ⇓
''

♣
♠
❦ ✐ ❢ ❞ ❛ ❴ ❪ ❩ ❳ ❱ ❙ ◗

Y
qg

// Q(g)

is a Θγ-cokernel, then the arrow C(qg) : CY → CQ(g) is an isomorphism.

Proof. Since, by naturality of γ, we have γY · g = UC(g) · γX , we can look at the arrow
UC(g) : UCX → UCY as a nullhomotopy on γY · g. By the universal property of the
Θγ-cokernel of g, we get a unique arrow h : Q(g) → UCY such that h · qg = γY and
h ◦ θg = UC(g), that is, h · θg = UC(g). From the first condition on h, and using one of the
triangular identities, it follows that C(qg) is a split mono:

δCY · C(h) · C(qg) = δCY · C(γY ) = idCY
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Consider now the diagram

X g
//

θg ⇓ ''
♣
♠
❦ ✐ ❢ ❞ ❛ ❴ ❪ ❩ ❳ ❱ ❙ ◗

Y qg
// Q(g)

h
//

γQ(g)

))
UCY

UC(qg)
// UCQ(g)

and observe that
UC(qg) · h · qg = UC(qg) · γY = γQ(g) · qg

UC(qg) · h · θg = UC(qg) · UC(g) = UC(θg) · UC(γX) = UC(θg) · γUCX = γQ(g) · θg

(Note that UC(γX) = γUCX because, by the triangular identities, both are left-inverse
of U(δCX) which is an isomorphism since U is full and faithful.) Therefore, we can use
Remark 4.4 to deduce that UC(qg) · h = γQ(g). If we apply now the functor C, we obtain
that CUC(qg) · C(h) = C(γQ(g)). Since C(γQ(g)) is an isomorphism (it is left-inverse of the
isomorphism δCQ(g)), this equation implies that CUC(qg) is a split epi. But it is also a
split mono (because C(qg) is a split mono) and then it is an isomorphism. Finally, in the
commutative diagram

CUCY
CUC(qg) //

δCY

��

CUCQ(g)

δCQ(g)

��
CY

C(qg)
// CQ(g)

CUC(qg), δY and δQ(g) are isomorphisms, so that C(qg) also is an isomorphism.

Proposition 9.4. Let A be a category. Consider the category Arr(A) equipped with the
structure of nullhomotopies H(A) induced by the adjunctions C ⊣ U ⊣ D as in Example 3.4.
Orthogonal factorization systems in A correspond to H(A)-torsion theories in Arr(A).

Proof. Let (E ,M) be an orthogonal factorization system in A. We put

- T = the full subcategory of Arr(A) spanned by the objects (E, e,E0) with e ∈ E ,

- F = the full subcategory ofArr(A) spanned by the objects (M,m,M0) withm ∈ M.

Conversely, let (T ,F) be a H(A)-torsion theory in Arr(A). We put

- E = the class of arrows in A of the form t : T → T0, for (T, t, T0) in T ,

- M = the class of arrows in A of the form f : F → F0, for (F, f, F0) in F .

We have to prove that the three conditions on E and M of Definition 9.1 correspond to
their homologous conditions on T and F of Definition 7.1.
1) Obviously, T is replete iff E is closed under composition with isomorphisms. The same
holds for F and M.
2) Let (X,x,X0) be an object in Arr(A). Using its (E ,M)-factorization in A

X
x //

ex !!❈
❈❈

❈❈
❈❈

❈ X0

I(x)

mx

==③③③③③③③③
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we can construct the following diagram in Arr(A) :

X
id //

ex

��

X
ex //

x

��

I(x)

mx

��
I(x)

id

66♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠
mx

// X0
id

// X0

As already observed in Example 5.9, if we compare the previous diagram with the descrip-
tion of H(A)-kernels in Arr(A) given in Example 5.8 (and with the dual description of
H(A)-cokernels), we immediately see that the triple ((X, ex, I(x)), (idX ,mx), idI(x)) is a
H(A)-kernel of (ex, idX0) and that the triple ((I(x),mx,X0), (ex, idX0), idI(x)) is a H(A)-
cokernel of (idX ,mx). Moreover, the object (X, ex, I(x)) is in T because ex ∈ E and the
object (I(x),mx,X0) is in F because mx ∈ M. We can conclude that the above diagram
is a H(A)-exact (T ,F)-presentation in Arr(A) of the object (X,x,X0).
Conversely, we are going to construct the (E ,M)-factorization of an arrow in A. Fix an
arrow x : X → X0 in A, look at it as an object in Arr(A) and consider the H(A)-exact
(T ,F)-presentation

T (x)
t //

tx
��

X
f //

x

��

F (x)

fx
��

T0(x)

ξx

66❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧

t0
// X0

f0

// F0(x)

Following Lemma 9.3, we know that f0 : X0 → F0(x) is an isomorphism. Therefore, using
the description established in Example 5.8, the H(A)-kernel of (f, f0) is given by the
following diagram

X
id //

f

��

X
f //

x

��

F (x)

fx
��

F (x)

id

44✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐

f−1
0 ·fx

// X0
f0

// F0(x)

Since the H(A)-kernel of (f, f0) is essentially unique, there exists a unique isomorphism
(i, i0) : (T (x), tx, T0(x)) → (X, f, F (x)) in Arr(A) such that

(idX , f
−1
0 · fx) · (i, i0) = (t, t0) and idF (x) ◦ (i, i0) = ξx

The first component of the first condition gives idX · i = t, so that t is an isomorphism.
The second condition is an equation between nullhomotopies which can be rewritten as
idF (x) · i0 = ξx, so that ξx also is an isomorphism. Finally, the (E ,M)-factorization of
x : X → X0 is depicted by the following commutative diagram, where tx ∈ M and fx ∈ E ,

X
x //

t−1 ≃
��

X0

T (x)

tx
��

F0(x)

f−1
0

≃

OO

T0(x)
ξx

≃ // F (x)

fx

OO

Indeed, f−1
0 · fx · ξx · tx · t

−1 = f−1
0 · fx · f · t · t−1 = f−1

0 · fx · f = f−1
0 · f0 · x = x.

3) Since nullhomotopies in H(A) are diagonals, the fact that H(A)(h, h0) is reduced to
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a singleton if the domain of (h, h0) is in T and the codomain is in F , is precisely the
orthogonality condition between arrows in E and arrows in M.

Corollary 9.5. Let (E ,M) be an orthogonal factorization system in a category A. Then
E and M contain the identity arrows.

Proof. Via Proposition 9.4, we have to prove that the identity arrows of A, seen as objects
of Arr(A), are in T ∩F , where (T ,F) is theH(A)-torsion theory corresponding to (E ,M).
By Corollary 7.6, this amounts to showing that H(A)(id(X,idX ,X)) = {∗}, which is obvious.

9.6. There are weaker notions than the one of orthogonal factorization system which are
relevant for example in the context of abstract homotopy theory. Here we consider the
one obtained simply dropping the uniqueness in the condition of orthogonality. Some
other intermediate notions, especially functorial factorizations and algebraic functorial
factorizations as in [16, 10, 17, 9] and the corresponding notions of torsion operators, will
be revisited from the point of view of homotopy torsion theories in a further work.

Definition 9.7.

1. Let (B,Θ) be a category with nullhomotopies. A weak Θ-torsion theory (T ,F) is
defined in the same way as a Θ-torsion theory (see Definition 7.1) but asking that,
for every arrow h : T → F, with T ∈ T and F ∈ F , the set Θ(h) is non-empty
(instead of being a singleton, as in 7.1.3).

2. Let A be a category. A weakly orthogonal factorization system is defined in the
same way as an orthogonal factorization system (see Definition 9.1) but without the
uniqueness of the diagonal in the orthogonality condition 9.1.3.

Proposition 9.8. Let A be a category. Consider the category Arr(A) equipped with the
structure of nullhomotopies H(A). Weakly orthogonal factorization systems in A corre-
spond to weak H(A)-torsion theories in Arr(A).

Proof. This follows from a simple inspection of the proof of Proposition 9.4.

Remark 9.9. In the proof of Proposition 9.4, we construct a H(A)-exact presentation
starting from a factorization and vice-versa, as summarized hereunder:

X
x //

ex !!❈
❈❈

❈❈
❈❈

❈ X0

I(x)

mx

==③③③③③③③③

⇒ X
id //

ex

��

X
ex //

x

��

I(x)

mx

��
I(x)

id

66♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠
mx

// X0
id

// X0

T (x)
t //

tx
��

X
f //

x

��

F (x)

fx
��

T0(x)

ξx

66❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧

t0
// X0

f0

// F0(x)

⇒ X
x //

t−1 ≃
��

X0

T (x)

tx
��

F0(x)

f−1
0

≃

OO

T0(x)
ξx

≃ // F (x)

fx

OO

Let us point out that in the weak case, despite the fact that the factorization of an
arrow and the exact presentation of an object are no longer essentially unique, the above
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constructions still realize an essential bijection between the factorizations of an arrow
x : X → X0 and the exact presentations of the object (X,x,X0). In fact:

- If we start with a factorization, construct an exact presentation and go back to
factorizations, we precisely get the factorization we started with.

- If we start with an exact presentation, we construct a factorization and go back to
exact presentations, we get a new exact presentation which is isomorphic to the one
we started with. The new exact presentation is

X
id //

ξx·tx·t−1

��

X
ξx·tx·t−1

//

x

��

F (x)

f−1
0 ·fx

��
F (x)

id

33❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣

f−1
0 ·fx

// X0
id

// X0

and the isomorphism between the old presentation and the new one is realized by

X
t−1

//

ξx·tx·t−1

��

T (x)

tx
��

F (x)
ξ−1
x

// T0(x)

F (x)
id //

f−1
0 ·fx

��

F (x)

fx
��

X0
f0

// F0(x)

10 The quasi-proper case

As a step towards the case of proper orthogonal factorization systems, which will be
treated in Section 11, we find useful to consider the intermediate notion of quasi-proper
orthogonal factorization systems.

Definition 10.1. Let A be a category.

1. A (weakly) orthogonal factorization system (E ,M) is quasi-proper if:

(a) for every arrow e : E → E0 in E , the unit

γ(E,e,E0) = (e, idE0) : (E, e,E0) → (E0, idE0 , E0)

of the adjunction C ⊣ U is an epimorphism in Arr(A),

(b) for every arrow m : M →M0 in M, the counit

β(M,m,M0) = (idM ,m) : (M, idM ,M) → (M,m,M0)

of the adjunction U ⊣ D is a monomorphism in Arr(A).

2. An orthogonal factorization system (E ,M) is proper if:

(a) every arrow in E is an epimorphism,

(b) every arrow in M is a monomorphism.

10.2. Observe that the notion of proper weakly orthogonal factorization system is irrel-
evant because, if the arrows in E are epimorphisms or if the arrows in M are monomor-
phisms, then weakly orthogonal implies orthogonal.
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10.3. In the next lemma, we will use the following simple facts:

1. If a category A has a terminal object ∗, then the functor D : Arr(A) → A has a
right adjoint defined by Λ(X) = (X, ! : X → ∗, ∗).

2. If a category A has an initial object ∅, then the functor C : Arr(A) → A as a left
adjoint defined by Γ(X) = (∅, ! : ∅ → X,X).

Lemma 10.4. Let A be a category.

1. Every proper orthogonal factorization system in A is quasi-proper.

2. If the category A has a terminal object or an initial object, then every quasi-proper
weakly orthogonal factorization system is orthogonal.

3. If the category A has a terminal object and an initial object, then every quasi-proper
weakly orthogonal factorization system is proper and orthogonal.

Proof. 1. If e : E → E0 is an epimorphism in A, then (e, idE0) is an epimorphism in
Arr(A). If m : M → M0 is a monomorphism in A, then (idM ,m) is a monomorphism in
Arr(A).
2 and 3. By assumption, (e, idE0) is an epimorphism for every e : E → E0 in E . If A has a
terminal object, then D : Arr(A) → A has a right adjoint (see 10.3) and then it preserves
epimorphisms. Therefore, e is an epimorphism, which implies that the diagonal in the
orthogonality condition of Definition 9.1 is necessarily unique. The argument if A has an
initial object is dual.

We have formulated the definition of quasi-proper factorization system in such a way to
make easy the comparison with proper factorization systems. Here we give an equivalent
definition which has the advantage to be transposable to homotopy torsion theories.

Lemma 10.5. Let (E ,M) be a weakly orthogonal factorization system in a category A.
For every arrow x : X → X0 and for any of its (E ,M)-factorization x = mx · ex, consider
the diagram

X
id //

ex

��

X
ex //

x

��

I(x)

mx

��
I(x)

mx

// X0
id

// X0

Then (E ,M) is quasi-proper if and only if, in the above diagram, the square on the left is
a monomorphism in Arr(A) and the square on the right is an epimorphism in Arr(A).

Proof. Assume that the above condition is satisfied. If you take x in E , then the square
on the right is γ(X,x,X0); if you take x in M, then the square on the left is β(X,x,X0).
Conversely, if (E ,M) is quasi-proper, use that the diagram

(X, ex, I(x))
γ(X,ex,I(x))=(ex,idI(x)) //

(idX ,mx)

��

(I(x), idI(x), I(x))

β(I(x),mx,X0)
=(idI(x),mx)

��
(X,x,X0)

(ex,idX0
)

// (I(x),mx,X0)

is a pullback and a pushout in Arr(A).
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We now move on to homotopy torsion theories.

Definition 10.6. Let (B,Θ) be a category with nullhomotopies. A (weak) Θ-torsion
theory (T ,F) is quasi-proper if, in each Θ-exact (T ,F)-presentation of an object X

T (X)
tX

//

ξX ⇓ ((❧
❥ ❤ ❢ ❝ ❛ ❴ ❪ ❬ ❳ ❱ ❚ ❘

X
fX

// F (X)

the arrow tX is a monomorphism and the arrow fX is an epimorphism.

10.7. Some comments on the previous definition.

1. As already observed, for a weak homotopy torsion theory, the exact presentation of
an object is no longer essentially unique. This is the reason way, in Definition 10.6,
we require the condition for any exact presentation of an object. If two exact pre-
sentations of the same object are isomorphic and one of them satisfies the condition
of quasi-properness, the other one also satisfies the same condition.

2. If the structure of nullhomotopies Θ is discrete, then any Θ-torsion theory is quasi-
proper. Indeed, we know from Lemma 8.2 that Θ-kernels and Θ-cokernels coincide
with Z1(Θ)-kernels and Z1(Θ)-cokernels which are, respectively, monomorphisms
and epimorphisms, as proved in [6] (see also Remark 4.4.2).

Now we can adapt Proposition 9.4 to the quasi-proper case.

Proposition 10.8. Let A be a category. Consider the category Arr(A) equipped with the
structure of nullhomotopies H(A). Quasi-proper weakly orthogonal factorization systems
in A correspond to quasi-proper weak H(A)-torsion theories in Arr(A).

Proof. The additional point to prove here is that, for a fixed arrow x : X → X0 in A, all
the (E ,M)-factorizations of x satisfy the quasi-properness condition of Definition 10.1 if
and only if all the H(A)-exact (T ,F)-presentations of the object (X,x,X0) satisfy the
quasi-properness condition of Definition 10.6. Everything follows easily from Lemma 10.5,
the first point in 10.7 and Remark 9.9.

Corollary 10.9. Let A be a category. Consider the category Arr(A) equipped with the
structure of nullhomotopies H(A). Quasi-proper orthogonal factorization systems in A
correspond to quasi-proper H(A)-torsion theories in Arr(A).

Proof. This follows combining Proposition 9.4 and Proposition 10.8.

11 The proper case

The final output of this section (Corollary 11.5) will be that, under mild assumptions on
the category A, proper orthogonal factorization systems in A correspond to homotopy
torsion theories in Arr(A) with respect to the discrete structure Z1(A). First, we study
how homotopy torsion theories react passing from a structure of nullhomotopies to the
associated discrete structure. We start with a simple general fact.

Proposition 11.1. Let (B,Θ) be a category with nullhomotopies. If (T ,F) is a quasi-
proper weak Θ-torsion theory, then it is also a Z1(Θ)-torsion theory.
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Proof. Consider an object X in B and one of its Θ-exact (T ,F)-presentations

T (X)
tX

//

ξX ⇓ ((❧
❥ ❤ ❢ ❝ ❛ ❴ ❪ ❬ ❳ ❱ ❚ ❘

X
fX

// F (X)

We are going to prove that, forgetting the nullhomotopy ξX , the same diagram provides
a presentation which is Z1(Θ)-exact. We check the universal property of the Z1(Θ)-
kernel, the one for the Z1(Θ)-cokernel is dual. Let f : W → X be an arrow such that
fX · f ∈ Z1(Θ). This means that there exists a nullhomotopy ϕ ∈ Θ(fX · f). Therefore,
there exists a unique arrow f ′ : W → T (X) such that tX · f ′ = f and ξX ◦ f ′ = ϕ. If
f ′′ : W → T (X) is such that tX · f ′′ = f, then f ′ = f ′′ because, by assumption, tX is a
monomorphism.

In order to invert Proposition 11.1 when B = Arr(A), we need the discrete version of
Lemma 9.3.

Lemma 11.2. Consider an adjunction

A
U

// B
Coo , C ⊣ U

with unit γB : B → UCB and counit δA : CUA→ A and assume that U is full and faithful.
Consider the structure of nullhomotopies Θγ on B and the ideal Z1(Θγ). If

X
g // Y

qg // Q(g)

is a Z1(Θγ)-cokernel, then the arrow C(qg) : CY → CQ(g) is an isomorphism.

Proof. We follow the same lines of the proof of Lemma 9.3. Since, by naturality of γ, we
have γY · g = UC(g) · γX , the arrow γY · g : X → Y → UCY is in Z1(Θγ). By the universal
property of the Z1(Θγ)-cokernel of g, we get a unique arrow h : Q(g) → UCY such that
h · qg = γY . Using one of the triangular identities, it follows from the previous equation
that C(qg) is a split mono as in the proof of 9.3. But C(qg) is also an epimorphism because
qg is an epimorphism (see 10.7.2) and C is a left adjoint.

Proposition 11.3. Let A be a category. Consider in Arr(A) the structure of nullho-
motopies H(A) and the associated discrete structure Z1(A). If (T ,F) is a Z1(A)-torsion
theory, then it is also a quasi-proper weak H(A)-torsion theory.

Proof. Fix an arrow x : X → X0 in A and consider a Z1(A)-exact (T ,F)-presentation of
the object (X,x,X0) :

T (x)
t //

tx
��

X
f //

x

��

F (x)

fx
��

T0(x) t0
// X0

f0

// F0(x)

By Lemma 11.2 and its dual, t and f0 are isomorphisms. Moreover, (t, t0) is a monomor-
phism (because it is a Z1(A)-kernel) and (f, f0) is an epimorphism (because it is a Z1(A)-
cokernel). Since (f, f0) · (t, t0) ∈ Z1(A), there exists an arrow ξx : T0(x) → F (x) such that
f · t = ξx · tx and f0 · t0 = fx · ξx. We are going to prove that the above diagram, completed
with the arrow ξx, is a H(A)-exact (T ,F)-presentation of (X,x,X0). We follow as far as
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possible the proof of Proposition 9.4.
First, observe that, since f0 is an isomorphism, we can use 5.8 and the H(A)-kernel of
(f, f0) : (X,x,X0) → (F (x), fx, F0(x)) is

X
id //

f

��

X
f //

x

��

F (x)

fx
��

F (x)

id

44✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐

f−1
0 ·fx

// X0
f0

// F0(x)

By its universal property, we get a unique arrow (i, i0) : (T (x), tx, T0(x)) → (X, f, F (x))
such that (idX , f

−1
0 · fx) · (i, i0) = (t, t0) and idF (x) ◦ (i, i0) = ξx. This implies that i = t,

so that i is an isomorphism, and i0 = ξx. Moreover, by the universal property of the
Z1(A)-kernel of (f, f0), we get a unique arrow (j, j0) : (X, f, F (x)) → (T (x), tx, T0(x))
such that (t, t0) · (j, j0) = (idX , f

−1
0 · fx). Since (t, t0) · (j, j0) · (i, i0) = (t, t0) and (t, t0) is

a monomorphism, we have (j, j0) · (i, i0) = (idT (x), idT0(x)). This implies that i0 is a split
monomorphism, that is, ξx is a split monomorphism.
Second, observe that, since t is an isomorphism, we can use the dual of 5.8 and the H(A)-
cokernel of (t, t0) : (T (x), tx, T0(x)) → (X,x,X0) is

T (x)
t //

tx
��

X
tx·t−1

//

x

��

T0(x)

t0

��
T0(x) t0

//

id

44✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐
X0

id
// X0

By its universal property, we get a unique arrow (m,m0) : (T0(x), t0,X0) → (F (x), fx, F0(x))
such that (m,m0)·(tx ·t

−1, idX0) = (f, f0) and (m,m0)◦idT0(x) = ξx. This impliesm0 = f0,
so that m0 is an isomorphism, and m = ξx. Moreover, by the universal property of the
Z1(A)-cokernel of (t, t0), we get a unique arrow (n, n0) : (F (x), fx, F0(x)) → (T0(x), t0,X0)
such that (n, n0) · (f, f0) = (tx · t−1, idX0). Since (m,m0) · (n, n0) · (f, f0) = (f, f0) and
(f, f0) is an epimorphism, we have (m,m0) · (n, n0) = (idF (x), idF0(x)). This implies that
m is a split epimorphism, that is, ξx is a split epimorphism.
We can conclude that ξx, being a split monomorphism and a split epimorphism, is an
isomorphism. This implies that both (i, i0) and (m,m0) are isomorphisms and, therefore,

T (x)
t //

tx
��

X
f //

x

��

F (x)

fx
��

T0(x)

ξx

66❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧

t0
// X0

f0

// F0(x)

is aH(A)-exact (T ,F)-presentation of (X,x,X0), and it is also quasi-proper because (t, t0)
is a monomorphism and (f, f0) is an epimorphism.
As far as the weak version of condition 3 in Definition 7.1 is concerned, observe that, if
(h, h0) : (T, t, T0) → (F, f, F0) is an arrow in Arr(A) with (T, t, T0) ∈ T and (F, f, F0) ∈ F ,
then (h, h0) ∈ Z1(A), so that H(A)(h, h0) 6= ∅.

If we assume that the category A has an initial object or a terminal object, then
Proposition 11.3 can be slightly improved.

Proposition 11.4. Let A be a category with an initial or a terminal object. Consider in
Arr(A) the structure of nullhomotopies H(A) and the associated discrete structure Z1(A).
If (T ,F) is a Z1(A)-torsion theory, then it is also a quasi-proper H(A)-torsion theory.
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Proof. We proceed as in the proof of Proposition 11.3, so that it remains to check the
uniqueness of the nullhomotopy in condition 3 of Definition 7.1. Assume that the category
A has a terminal object (if the category A has an initial object, the argument is dual).
This implies that the functor D : Arr(A) → A preserves epimorphisms (see 10.3) so that,
in the H(A)-exact (T ,F)-presentation

T (x)
t //

tx
��

X
f //

x

��

F (x)

fx
��

T0(x)

ξx

66❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧

t0
// X0

f0

// F0(x)

the arrow f = D(f, f0) is an epimorphism. Now in the commutative square

T (x)
t //

tx
��

X

f

��
T0(x)

ξx

// F (x)

t and ξx are isomorphisms and f is an epimorphism, so that tx is an epimorphism.
Consider now an object (X,x,X0) ∈ T . As Z1(A)-exact (T ,F)-presentation we can choose
one of the form

X
id //

x

��

X
f //

x

��

F (x)

fx
��

X0
id

// X0
f0

// F0(x)

(see Corollary 7.7). If we apply the previous argument to this presentation, we can deduce
that such an arrow x : X → X0 is an epimorphism.
Finally, consider an arrow (h, h0) : (T, t, T0) → (F, f, F0) with domain (T, t, T0) ∈ T and
codomain (F, f, F0) ∈ F . Since (T ,F) is a Z1(A)-torsion theory, we necessarily have that
(h, h0) ∈ Z1(A). This means that there exists a nullhomotopy λ ∈ H(A)(h, h0), that is,
an arrow λ : T0 → F such that the diagram

T
h //

t
��

F

f

��
T0

λ

88♣♣♣♣♣♣♣♣♣♣♣♣♣

h0

// F0

commutes in each part. Since, by the previous argument, t is an epimorphism, such an
arrow λ is unique.

Corollary 11.5. Let A be a category with an initial object and a terminal object. Consider
the category Arr(A) equipped with the discrete structure of nullhomotopies Z1(A). Proper
orthogonal factorization systems in A correspond to Z1(A)-torsion theories in Arr(A).

Proof. By Propositions 11.1 and 11.3, Z1(A)-torsion theories correspond to quasi-proper
weak H(A)-torsion theories which, by 9.8, correspond to quasi-proper weakly orthogonal
factorization systems. Finally, ifA has an initial object and a terminal object, quasi-proper
weakly orthogonal factorization systems coincide with proper orthogonal factorization sys-
tems by Lemma 10.4.
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12 Some remarks on the pointed case

In this section, we will denote the kernel and the cokernel (in the usual sense) of an arrow
g : X → Y in a category A with a zero object as

K(g)
kg // X

g // Y
cg // C(g)

This notation is coherent with the one in 8.1, because kernels coincide with Z1(0)-kernels
(and cokernels with Z1(0)-cokernels), where Z1(0) is the ideal of zero arrows in A, as
already pointed out in Remark 8.6.

12.1. If we assume that a category A has a zero object and kernels, we obtain a new
string of adjunctions

A Λ // Arr(A)
Doo

Ker
oo D ⊣ Λ ⊣ Ker

The functor D : Arr(A) → A is the one of Example 3.4. The full and faithful functor
Λ: A → Arr(A), defined by Λ(X) = (X, !, 0), is the one introduced in 10.3 (we have
changed notation writing 0 for the zero object, whereas in 10.3 we used ∗ for the terminal
object). The functor Ker : Arr(A) → A is defined on objects by Ker(X,x,X0) = K(x)
and is extended to arrows in the obvious way.

The unit γ(X,x,X0) : (X,x,X0) → ΛD(X,x,X0) of D ⊣ Λ is X
id //

x

��

X

!
��

X0
!

// 0

The counit β(Y,y,Y0) : ΛKer(Y, y, Y0) → (Y, y, Y0) of Λ ⊣ Ker is K(y)
ky //

!
��

Y

y

��
0

!
// Y0

Following the constructions explained in 2.10 and applying Proposition 3.1, it turns out
that the three isomorphic structures of nullhomotopies induced on Arr(A) by these ad-
junctions are discrete (this follows from the fact that the unit γ(X,x,X0) is an epimorphism
or, equivalently, by the fact that the counit β(Y,y,Y0) is a monomorphism, cf. Remark
2.11.2) and the corresponding ideal of arrows is

Z1(Λ) = {(g, g0) : (X,x,X0) → (Y, y, Y0) | g0 = 0: X0 → Y0}

Following Proposition 5.3 and Lemma 5.4, we can describe Z1(Λ)-kernels and, if we assume
also the existence of cokernels in A, Z1(Λ)-cokernels in Arr(A) :

K(y · g)
ky·g //

x′

��

X
g //

x

��

Y

y

��
K(g0)

kg0

// X0 g0
// Y0

X
g //

x

��

Y
id //

y

��

Y

cg0 ·y

��
X0 g0

// Y0 cg0
// C(g0)

where x′ is the unique arrow such that the first square on the left commutes.

Recall, from Remark 8.6, that Z1(0)-torsion theories are the usual torsion theories in
a category with zero object.
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Proposition 12.2. Let A be a category with zero object, kernels and cokernels. Every
Z1(0)-torsion theory in A induces a Z1(Λ)-torsion theory in Arr(A).

Proof. Let (T ,F) be a Z1(0)-torsion theory in A. We put:

- TΛ = the full subcategory of Arr(A) spanned by the objects (X,x,X0) with X0 ∈ T ,

- FΛ = the full subcategory of Arr(A) spanned by the objects (Y, y, Y0) with Y0 ∈ F .

1) TΛ and FΛ are replete because T and F are replete.
2) Consider an object (A, a,A0) in Arr(A). Its Z1(Λ)-exact (FΛ,TΛ)-presentation is com-
pletely determined by the Z1(0)-exact (T ,F)-presentation of A0

T (A0)
tA0 // A0

fA0 // F (A0)

and by the description of Z1(Λ)-kernels and Z1(Λ)-cokernels given in 12.1. The resulting
diagram in Arr(A) is

K(fA0 · a)
kfA0

·a
//

a′

��

A
id //

a

��

A

fA0
·a

��
T (A0) tA0

// A0
fA0

// F (A0)

where a′ is the unique arrow such that the first square commutes. To check that this is
the needed presentation of (A, a,A0) is easy, keeping in mind that tA0 is the kernel of fA0

and fA0 is the cokernel of tA0 .
3) Consider an arrow (g, g0) : (X,x,X0) → (Y, y, Y0) with domain in TΛ and codomain in
FΛ. The arrow g0 : X0 → Y0 has domain in T and codomain in F , so that g0 is a zero
arrow and then (g, g0) is in Z1(Λ).

Remark 12.3. Observe that a Z1(Λ)-torsion theory (TΛ,FΛ) in Arr(A) is induced by a
Z1(0)-torsion theory inA as in Proposition 12.2 if and only if, given objects (X,x,X0) ∈ TΛ
and (Y, y, Y0) ∈ FΛ, the unique arrow X0 → Y0 is the zero arrow.

13 A panoramic view

Sections 9, 10 and 11 have been devoted to compare various types of factorization systems
in a category A to various types of homotopy torsion theories in Arr(A). If the reader
may be confused by all the variants involved, he/she can refer to the following panoramic
view.

The acronyms are as follows: Q = quasi, P = proper, W = weak or weakly, O =
orthogonal, FS = factorization system, HTT = homotopy torsion theory. The unlabelled
arrows are obvious implications. The name of the other arrows are internal references.
Recall that items 10.4.2 and 11.4 require that A has an initial object or a terminal object,
whereas items 10.4.3 and 11.5 require that A has an initial object and a terminal object.
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1. Synopsis for factorization systems:

WOFS

OFS

66♠♠♠♠♠♠♠♠♠♠♠♠♠♠
QPWOFS

ii❙❙❙❙❙❙❙❙❙❙❙❙❙❙❙

10.4.2uu❦❦❦❦
❦❦❦

❦❦❦
❦❦❦

❦

10.4.3

ss

QPOFS

hh◗◗◗◗◗◗◗◗◗◗◗◗◗

55❦❦❦❦❦❦❦❦❦❦❦❦❦❦

POFS

10.4.1

OO

2. Synopsis for homotopy torsion theories:

H(A)-WHTT

H(A)-HTT

66♠♠♠♠♠♠♠♠♠♠♠♠
H(A)-QPWHTT

ii❙❙❙❙❙❙❙❙❙❙❙❙❙❙

11.1

uu

H(A)-QPHTT

55❦❦❦❦❦❦❦❦❦❦❦❦❦❦

hh◗◗◗◗◗◗◗◗◗◗◗◗

11.1
��

Z1(A)-HTT

11.4

OO
11.3

GG

3. Comparison between factorization systems and homotopy torsion theories:

WOFS oo 9.8 // H(A)-WHTT

OFS oo 9.4 // H(A)-HTT QPWOFS oo 10.8 // H(A)-QPWHTT

QPOFS oo 10.9 // H(A)-QPHTT

POFS oo 11.5 // Z1(A)-HTT
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tion for factorization systems, Applied Categorical Structures 5 (1997) 1–58.
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