ANDREA CITRINI, CORRADO CAMERA, SAMUELE BERTOCCHI, AND GIOVANNI PIETRO BERETTA

The exploitation of the middle Valseriana springs (northern Italy): current situation, studies undertaken, and next challenges.

Achieving Sustainable Groundwater Management: Promising Directions and Unresolved Challenges

Valencia · October 6-8, 2022

UNIVERSITÀ DEGLI STUDI DI MILANO

DIPARTIMENTO DI SCIENZE DELLA TERRA "ARDITO DESIO"

The Valseriana case study (Northern Italy)

- Evaluate the current qualitativequantitative status of Valseriana spring waters
- Assess the possible threats to water quality (identification of vulnerable areas)

GOALS

Quantify possible threats to water availability due to climate change.

All data used in these investigations were collected during the **2018-2019 biennium** with a special focus on the Nossana and Ponte del Costone springs.

- groundwater

UNIVERSITÀ **DEGLI STUDI DI MILANO**

OUTPU

 Water chemical-physical monitoring and resident time dating of

 New index-based approach to assess the vulnerability of karst springs

 Estimation of the effects of Climate Change on springs discharge until 2100

Study Area

- The springs are located in Northern Italy, in the Central Pre-Alps within the Province of Bergamo, Lombardy Region
- Nossana catchment: 80 km²
- Ponte del Costone
 catchment: 10 km²
- High differences in altitude. Nossana: from 447 m a.s.l. to 2512 m a.s.l.
 Ponte del Costone: from 427 m a.s.l. to 1161 m a.s.l.

Study Area

- The whole environment is dominated by calcareousdolomitic carbonate series
- The Nossana aquifer is set in the Calcare di Esino formation (Ladin -Carnic age)
- The water system of **Ponte del Costone** is formed by 13 springs distributed in about 1 km along the Serio river and it has the **Dolomia Principale Formation** (Noric age) as reservoir rock
- The average **precipitation** is close to 2000 mm/year with peaks of about 3000 mm/year (Ceriani et al., 2000)

Study Area Nossana spring

- The springs are managed by the public company UniAcque S.p.A. and feed more than 315,000 people
- Characterized by a dominant drainage system
- Nossana spring discharge 0.5 18 m³s⁻¹

- The Ponte del Costone cumulative discharge 0.15 0.45 m³s⁻¹
- System with dispersive circulation
- Three main groups distribuited along Serio river: Galleria del Costone, Merlo, and Bosco (from South to North)

Images from Vigna & Banzato, 2015

Valencia · October 6, 2022

Water chemical-physical monitoring

1 - Sampling Campaign (May 2018 - July 2019)

34 sampling sampling points

2 - Hydrochemical And Isotopic Analysis

Chemical analyses, **Stable isotopes analyses** (¹⁸O, ²H, and ¹³C), and the ³H/³He dating analyses

3 - Hydrochemical Characterization

Hierarchical Cluster analysis was performed considering major cations and anions

	C(1) 8 samples	C(2) 4 samples	C(3) 11 samples	
Ca ²⁺	37.7	63.5	58.7	
Mg ²⁺	9.0	19.9	9.6	
Na+	0.6	4.9	1.6	
K+	0.3	1.3	0.8	
HCO ₃ ⁻	150.2	240.6	207.7	
Cl⁻	1.0	9.4	2.8	
NO ₃ ⁻	3.9	5.1	5.4	
SO4 ²⁻	3.6	48.9	7.8	

Valencia · October 6, 2022

Isotopic features and **Resident time estimation**

• Study area Meteoric Water Line:

 $\delta^{2}H = 7.71^{18}O + 9.40$

 Deuterium enrichment given by re-evaporation due to effect of secondary valleys (Riso Valley)

• Tritium decays by emitting electrons (β -) into Helium-3, so it can be used for dating. (half-life of 12.32 y, total decay in 246 y)

\cdot \cdot \cdot								
	Sar	npling 2015	Sampling 2019					
Spring name	Age (years)	Recharge year	Age (years)	Recharge year				
Camplano	1.50	2014	0.96	2018				
Valle Rogno	8.10	2007	5.24	2014				
Nossana	7.90	2008	13.10	2006				
Costone 2	29.30	1986	32.48	1987				

Valencia · October 6, 2022

• 10 years for Nossana, 30 years for Ponte del Costone • For the main springs cyclical renewal of the resource is not clear

Vulnerability assessment of karst aquifers

Geological data

Karst network

development

Isotopic data

Meteorological data

- (Northern Italy);
- method;
- through isotopic data.

DAT.

 define an integrative methodology that represent the conditions of intrinsic vulnerability of the middle Valseriana

 delineate an approach that does not require a lot of data and expensive investigations available in order to make it applicable in mountain contexts: COPA+K

GOALS

validate this new proposed approach

A factor

Association between discontinuities and their distance to spring

Distances to spring

Buffer 200 m around main discontinuities

35.6% to 23.6%

CONSIDERING THE MOST VULNERABLE CLASSES (VH AND H), THE VALUES MOVE FROM 35.6% (COP) TO 23.6% (COPA+K) OVER THE WHOLE STUDY AREA.

The COPA+K method allows the identification of more restricted areas than COP.

THE PERCENTAGE DIFFERENCE INCREASED BY 12.3%, EMPHASIZING THE GREATER SUSCEPTIBILITY OF THE NOSSANA SYSTEM

COPA+K made possible to better differentiate the areas of greatest vulnerability in the two considered catchments

Valencia · October 6, 2022

Validation map process

- from the relationship given by the local isotopic line, it was possible to estimate the mean elevation of recharge areas of the Nossana and Ponte del Costone springs;
- Mean annual precipitation data from 10 ARPA meteorological stations were interpolated to obtain a gridded (50x50 m) altitude-dependent precipitation distribution --> TPS and IDW;
- The elevation values of the high vulnerability areas and related precipitation amounts were extrapolated from the DTM and the precipitation distribution maps;
- After performing a weighted average, the mean elevations of the high vulnerability areas were obtained for the Nossana and Ponte del Costone catchments to be compared with the results of isotopic correlation.

Catchment
Nosso
Ponte del (

water A

t (masl)	СОР		СОРА+К		isotopic		;
t (111 0.5.1. <i>)</i>	TPS	IDW	TPS	IDW	correlatio		on
ana	1494	1513	1670	1856		1776	
Costone	736	736	923	923	1561		
-9.4	δ ¹⁸ -9.2	0 ‰ vs SMOV -9	V -8.8		-8.6	-8	3.4 -55
\rightarrow t	the 1000 m sotopic cc	n elevatio prrelation	n by exp	oloiting	j loca	l	
						water A	-56
		10	D-3	******			-57
	ID-1	• • · · ·	0-2				-59
ID-4	•				s ¹⁸ O	s ² H	-60
	···		Nossana (ID-1) Costone 1 (ID-2)		-9.24 -8.96	-59.43	-61
~ ID-6			Merlo (ID-3) Sottoplatea (ID-4)			-58.04	-62
Serio River (upstream) (ID-5) -9.68 Serio River (downstream) (ID-6) -9.51 water A -8.46					-9.68 -9.51 -8.46	-63.65 -62.08 -55.17	-63
prings • Noss	ana spring •	River waters	• Hypothe	etical wate	r (1000	m a.s.l.)	-64

Projections of Future Discharges under Climate Change

- Quantification of the expected changes in (reference period 1998-2017)
- parameter model based on observed data

- DATA
- Daily discharge of Nossana spring from 1998 to 2017 (UniAcque S.p.A);
- Daily precipitation and temperature from 1998 to 2017 (ARPA Lombardia);
- Temperature and precipitation data from 9 RCMs runs including 3 IPCC different scenarios based on greenhouse gasses emission*.

*Coordinated Regional Climate Downscaling Experiment (CORDEX) - www.euro-cordex.net

precipitation and temperature in the study area Calibration and validation of a hydrological lumped -• Recognition of possible limits in the future utilization of the spring as a drinking supply (2021-2100)

GOALS

Method

RCP 2.6> 3 models	pl 2021-2040	Warning threholds:	ا _Mod
RCP 4.5> 3 models	p2 2041-2060	Q 1.32 mc/s for winter	Mod_ Mod
RCP 8.5> 3 models	p3 2061-2080	Q 1.52 mc/s for summer	Mod_
	p4 2081-2100		Mod_

Reference period 1998-2017

	Precipitation			Tmin			Tmax		
Model	NSE	MAE (mm)	%MAE	NSE	MAE (°C)	%MAE	NSE	MAE (°C)	%MAE
Mod_1 RCP 2.6	0.79	12.35	10.71	0.96	1.10	17.69	0.97	1.18	7.09
Mod_1 RCP 4.5	0.66	14.97	12.97	0.97	1.00	17.19	0.97	1.08	6.48
Mod_1 RCP 8.5	0.76	12.71	11.20	0.97	1.00	15.96	0.98	0.90	5.43
Mod_2 RCP 2.6	0.31	19.81	17.16	0.97	0.90	14.20	0.97	0.99	5.95
Mod_2 RCP 4.5	0.52	17.44	15.12	0.97	1.00	16.13	0.96	1.27	7.65
Mod_2 RCP 8.5	0.31	22.90	19.85	0.97	0.90	15.42	0.96	1.28	7.66
Mod_3 RCP 2.6	0.23	20.53	17.79	0.97	1.00	15.96	0.96	1.19	7.14
Mod_3 RCP 4.5	0.37	17.17	14.88	0.98	0.80	12.79	0.97	0.99	5.95
Mod_3 RCP 8.5	0.52	17.78	15.41	0.98	0.80	12.69	0.97	0.98	5.88

Step 1 - Climate model evaluation

Precipitation --> NSE > 0.0; MAE < 20% Temperature --> NSE > 0.8; MAE < 20%

Step 2 - Statistical downscaling

Performed using Change Farctors and Weather simulator

(RainSim V3.0 - Burton et al., 2008)

- Not all models agree regarding mean annual precipitation trends in different periods
- General summer precipitation decrease (Jul-Sep) and autumn increase (Oct-Nov) for all periods
- Temperature increases up to $\approx 5 \ ^{\circ}C (RCP \ 8.5 -$

Step 3 - Hydrologic Model Calibration

with 4 parameters - Perrin et al., 2003), extended with the **CemaNeige**

snow accounting routine (Valéry et al., 2014)

Random generation of 10,000 model parameter sets

Criteria 1: KGE > 0.70; INSE > 0.5

Criteria 2: number of days and consecutive with discharge below warning thresholds

thresholds is expected to increase.

Valencia · October 6, 2022

Step 4 - Future discharges

• Longest period below the 1.32 m^3/s warning threshold 36 extra days • Longest period below the 1.52 m^3/s warning threshold 64 extra days.

Take home message

Nossana and Ponte del Costone can be simplified with hierarchical models (Asante et al., 2018, White, 2002):

- Piston effect controlled by the amount of precipitation
- Diffuse infiltration in very different timing due to the different response to karst dissolution of the encasing rocks

The work has enabled the company to:

- water.

→ Request to expand the investigation to neighboring catchments to understand the real potential of all spring water resources in the region.

Valencia · October 6-8, 2022

• Ensure the good qualitative-quantitative status of the resource;

Identify vulnerable areas to preserve the

• Have advantage in terms of time to start investigating new additional water resources to meet water demand after 2060, as demonstrated by hydrological modeling.

Thank you for attention!

ANDREA CITRINI, CORRADO CAMERA, SAMUELE BERTOCCHI, AND GIOVANNI PIETRO BERETTA

andrea.citrini@unimi.it

Citrini, A., Camera, C., & Beretta, G. P. (2020). Nossana spring (northern Italy) under climate change: Projections of future discharge rates and water availability. Water, 12(2), 387.

Citrini, A., Camera, C. A., Alborghetti, F., & Beretta, G. P. (2021). Karst groundwater vulnerability assessment: application of an integrative indexbased approach to main catchments of middle Valseriana springs (Northern Italy). Environmental Earth Sciences, 80(17), 1–20.

Sustain Valencia 2022

Achieving Sustainable Groundwater Management: Promising Directions and Unresolved Challenges

Valencia · October 6-8, 2022

UNIVERSITÀ DEGLI STUDI DI MILANO

DIPARTIMENTO DI SCIENZE DELLA TERRA "ARDITO DESIO"

References

Asante, J., Dotson, S., Hart, E., & Kreamer, D. K. (2018). Water circulation in karst systems: Comparing physicochemical and environmental isotopic data interpretation. Environmental Earth Sciences, 77(11), 421. https://doi.org/10.1007/s12665-018-7596-y Burton, A.; Kilsby, C.; Fowler, H.; Cowpertwait, P.; O'Connell, P. RainSim: A spatial-temporal stochastic rainfall modelling system. Environ. Model. Softw. 2008, 23, 1356–1369. Castro, M. C., Goblet, P., Ledoux, E., Violette, S., & de Marsily, G. (1998). Noble gases as natural tracers of water circulation in the Paris Basin: 2. Calibration of a groundwater flow model using noble gas isotope data. Water Resources Research, 34(10), 2467–2483. https://doi.org/10.1029/98WR01957 Ceriani, M., Carelli, M., Agnelli, U., Bodio, N., Colombo, S., Lauzi, S., & Martelli, M. (2000). Carta delle precipitazioni medie, massime e minime annue del territorio alpino della Regione Lombardia (registrate nel periodo 1891 – 1990). Professione geologo, 10, 12-27 Doerfliger N, Jeannin P-Y, Zwahlen F (1999) Water vulnerability assessment in karst environments: a new method of defining protection areas using a multi-attribute approach and GIS tools (EPIK method). Environmental Geology 39(2):165–176. https://doi.org/10.1007/s002540050446 Longinelli, A., & Selmo, E. (2003). Isotopic composition of precipitation in Italy: A first overall map. Journal of Hydrology, 270(1-2), 75-88. https://doi.org/10.1016/S0022-1694(02)00281-0 Perrin, C.; Michel, C.; Andréassian, V. Improvement of a parsimonious model for streamflow simulation. J. Hydrol. 2003, 279, 275–289. Valéry, A.; Andréassian, V.; Perrin, C. 'As simple as possible but not simpler': What is useful in a temperature-based snow-accounting routine? Part 1–Comparison of six snow accounting routines on 380catchments. J. Hydrol. 2014, 517, 1166–1175 Vías JM, Andreo B, Perles MJ, Carrasco F, Vadillo I, Jiménez P (2006) Proposed method for groundwater vulnerability mapping in carbonate (karstic) aquifers: the COP method: Application in two pilot sites in Southern Spain. Hydrogeol J 14(6):912–925. https://doi.org/10.1007/s10040-006-0023-6 Vigna, B., & Banzato, C. (2015). The hydrogeology of high-mountain carbonate areas: An example of some Alpine systems in southern Piedmont (Italy). Environmental Earth Sciences, 74(1), 267–280. https://doi.org/10.1007/s12665-015-4308-8 White, W. B. (2002). Karst hydrology: Recent developments and open questions. Engineering Geology, 65(2–3), 85–105. https://doi.org/10.1016/S0013-7952(01)00116-8

