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Abstract: This paper models the formation of R&D networks in an oligopolistic industry. 

In particular, it focuses on the coevolutionary process involving firms’ technological 

capabilities, market structure and the network of interfirm technological agreements. 

The main result of the paper is that the R&D network can work as a strong selection 

mechanism in the industry, creating ex post asymmetries among ex ante similar firms. 

This is due to a self-reinforcing, path-dependent process, in which events in the early 

stages of the industry affect firms’ survival in the long run. In this framework, both market 

and technological externalities created by the formation of cooperative agreements play 

a role. Although the R&D network creates profound differences at the beginning, which 

are reflected by an unequal distribution of links, it tends to eliminate them as it becomes 

denser and denser. The nature of the technological environment affects the speed of the 

transition and some of the characteristics of the industry in the long run. 
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1. Introduction 

 

Interfirm technological agreements play an important role in the innovative activity of 

high-tech industries (Hagedoorn, 2002). More and more innovation is the result of joint 

R&D efforts and information sharing among firms, in a way that has led some authors to 

talk about “the network (of collaborating firms) as the locus of innovation” (Powell et al., 

1996). The shortening of the product life cycle, the increased competition and the 

complexity of the knowledge base required for innovation force firms to cooperate even 

in one of the fundamental source of competitive advantage (Caloghirou et al., 2003; 

Gulati et al., 2000; Hagedoorn et al. 2000; Powell and Grodal, 2004, Vonortas and 

Zirulia, 2015).  

Both in the economics and management field, scholars are more and more interested in 

the dynamics of networks, i.e. how networks emerge, evolve and change (Ahuja et al., 

2012; Hanaki et al., 2010; Tomasello et al, 2017). Dynamics is important both to 

understand how structural properties of networks, such as “smallwordliness”, degree 

distribution and core-periphery structures emerge (Rosenkopf and Shilling, 2007; Gulati 

et al, 2012), and to analyze the role of different factors, such as history and chance, on 

firms’ networking strategy, and their consequences on firms’ performance (Rosenkopf 

and Padula, 2008; Baum et al., 2014).  

In that respect, this paper aims at providing a model of dynamic network formation which 

includes i) market competition among firms; ii) a micro-foundation for link formation 

based on profit comparison; iii) firms that are technologically heterogeneous both in a 

vertical and horizontal dimension; iv) feedback mechanisms between the evolution of 

networks, technological capabilities and market structure.  

The main result of the paper is that the R&D network can work as a strong selection 

mechanism in the industry, creating ex post asymmetries in ex ante similar firms. Both 

the selection process and the evolution of the network structure are driven by a self-

reinforcing, path-dependent process, in which events in the early stages of industry affect 

firms’ centrality in the initial network with long term consequences in terms of survival. 

At the same time, in the long run the network levels out the differences among the 

surviving firms, through a process of “densification” of the network that leads to the 

emergence of a complete or almost complete network in the phase of industry maturity. 
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Also, the paper shows that the rate of technical progress, in the form of high technological 

opportunities or availability of partners, can affect the industry structure in the long run, 

and points out the detrimental effect on innovation generated by a slow process of 

technological convergence among firms. 

When compared to the empirical evidence on R&D networks and industry evolution, the 

paper provides a number of insights. First, the model provides an economic (incentive-

based), micro-founded rationale for the “preferential attachment mechanism” (i.e. highly 

central firms becoming more central in the subsequent periods), which is a recurrent 

feature in networks of technological agreements (Powell et al., 1996). In my model, more 

technologically advanced firms are at the same time larger (which raises their incentive 

to invest in process innovation) and better technological partners, with these two 

conditions further increasing the convenience of forming new links. Second, my model 

leads to network properties such as the core of networked firms and a rise and fall 

dynamics for the network, which is consistent with what we observe in the data 

(Delapierre and Mytelka, 1998; Crespo et al., 2016; Tomasello et al., 2017). Finally, my 

model suggests that R&D networks can play a role in generating an industry shake-out, 

i.e. a sudden decrease in the number of firms, which is often observed (Klepper, 1997).    

 

The model is based on two streams of literature. More directly, the model connects to the 

papers considering the formation of R&D networks and relying on the tools of network 

games tools of network games (Jackson and Wolisnki, 1996). These include, among 

others, Goyal and Moraga-Gonzalez (2001), Goyal and Joshi (2003), Deroïan (2008), 

Westbrock (2010), Konig et al. (2019), which adopt a static approach; and, particularly 

close to my paper, Dawid and Hellmann (2014), who develop a dynamic model with 

Cournot competition, but with technologically homogenous firms and an ergodic process 

of network evolution. My emphasis on heterogenous technological capabilities speaks 

instead to the literature on self-organising innovation networks (Cowan et al., 2003; 

Cowan and Jonard, 2004; Morone and Taylor, 2004; Ozman, 2006; Cowan and Jonard, 

2009, Baum et al., 2010; Savin and Egbetokun, 2016;  Vaccario et al., 2018). While these 

papers are rich in the representation of technology, they do not include explicit models of 

market competition.  
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The rest of the paper is organized as follows. Section 2 describes the model, whose 

analytical properties are derived in section 3. Section 4 presents results from numerical 

simulations. Finally, section 5 concludes. 

 

2. The model 

 

2.1 An informal description  

 

Informally, the model can be summarized as follows. I consider the evolution of an 

industry where firms can introduce process innovations only through bilateral 

collaborations in an R&D activity, while remaining competitors in the market side. Firms 

produce a homogenous product, but they are different from the technological point of 

view: they have different levels of efficiency, which result in different levels of 

production costs, and different technological specializations, which allow 

complementarities to be exploited when firms collaborate.  

 

I consider a discrete sequence of periods t=0,1,2… Each period can be divided in two 

sub-periods (Goyal and Joshi, 2003; Dawid and Hellmann, 2014): the networking phase, 

where firms can modify the network structure according to a procedure described below, 

and a market competition phase, where firms, given the network structure, compete in the 

product market. Competition is à la Cournot, so that firms’ different production costs are 

reflected in firms’ different performances. Firms’ efficiency level is the result of the 

history of R&D collaborations for each firm. R&D collaborative projects are modeled as 

pairwise relationships: for each pair of firms involved in a collaborative agreement, the 

cost of the project is assumed to be fixed, while its effect (a deterministic reduction in the 

production cost) depends upon the technological profiles of the two firms. 

 

In the networking phase of each period, two firms are randomly drawn to change the 

current state of their pairwise relationship, leaving the state of the remaining R&D 

network unaltered, as in Jackson and Watts (2002) and Dawid and Hellmann (2014). Two 

firms that are not collaborating can start a collaboration; two firms that are collaborating 

can decide to interrupt it. Capturing the bounded rationality of agents facing a complex 
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evolution of network and technological capabilities, firms’ decisions are based on the 

short run consequences on their profits. The resulting network for that period determines 

firms’ level of efficiency, firms’ technological specializations and firms’ performance, 

which will constitute the new initial conditions for the subsequent period. 

 

2.2 Firms and market competition 

 

I consider a market where n firms produce a homogenous product. However, firms are 

heterogeneous from the technological point of view.  They are located in a bi-dimensional 

technological space, and they are identified by the vector ),( itit  . )1,[ 0   is a 

parameter measuring the productive efficiency of a firm. It determines the unit cost of 

production according to: 

 

)1( itit cc                                                                                                                   (1) 

 

)1,0(it  characterizes the technological position of a firm, to be intended as its 

technological specialization. I assume that  does not affect directly the level of unit cost 

of production, but it is crucial in determining the value of collaborations. 

I will term ),( itit   as firm i’s technological capabilities. Firms move over time in the 

technological space, and this is the effect of the network structure. Furthermore, I define   

t
n)1,[ 0  as the n-dimensional vector of variable  at time t for all the firms; similarly, 

t n)1,0(  is the vector of all technological positions at t. 

Inverse demand is assumed to be linear: 

 

QAp                                                                                                                         (2) 

 

where Q is the total quantity produced by firms.  
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Firms are characterized by zero fixed costs of production. Given itc , gross profits1 are 

given by 𝛱𝑖𝑡 = (𝑝 − 𝑐𝑖𝑡)𝑞𝑖𝑡. Competition is à la Cournot, and it is assumed that firms 

play the (unique) Nash equilibrium in the one-stage game.2  This means that the quantity 

produced by each firm at time t is: 

 

1

*








t

ij
jtitt

it

n

ccna

q                                                                                                     (3) 

 

where nnt  is the number of active firms (i.e. firms producing a strictly positive 

quantity) at t. I define tN  as the subset of such firms. 

For sake of simplicity, firms that are inactive at time t are supposed to exit the market, 

never to reappear. This in particular implies that at the beginning of period t+1 all their 

existing links with other firms are severed, and since period t+1 onward they are no longer 

considered in the algorithm for network evolution. The discussion below on such an 

algorithm will make this point clearer. In equilibrium, gross profits are given by 

2** )( itit q . 

 

2.3 The effects of the R&D network  

 

In each period t, following the networking phase, the industry is characterized by an R&D 

network tg . I define a binary variable }1,0{ijtg : when 1ijtg , a collaborative link 

exists between firm i and j at time t. The network   2

)1(

1,0



nn

tg  is then a collection of 

states for the pairwise relationships among firms. I indicate with ijgg   the network 

obtained by replacing 0ijg  in a generic network g with 1ijg , and similarly with 

ijgg   I denote the network obtained by replacing 1ijg  with 0ijg . Furthermore, I 

                                                 
1 Gross is referred to the cost of R&D. See below. 
2 The assumed functional forms of demand and cost function, together with )1( 0 cA , assure the existence and 

uniqueness of equilibrium in the Cournot game (Wolfstetter, 2000). 
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define  1:}{\)(  ijttt giNjiN , that is the set of firms that have a collaboration with 

firm i at time t. 

 

Innovation is modeled as a deterministic reduction in the unit cost of production. A 

network structure corresponds to a list of collaborators for each firm. Suppose to take a 

generic firm i: for i, collaboration with firm j at time t has a specific value ijtv . The 

economic interpretation is as follows: whenever 1ijtg , firms i and j start a new R&D 

project together at time t, which allows them to reduce their unit cost of production to an 

extent that is function of ijtv . Therefore, such a value captures the opportunities for firm i 

to “learn” as a consequence of collaboration with firm j. In this framework, I refer to the 

process of learning as a process of knowledge “recombination”, an idea that dates back 

to Schumpeter and has been recently rediscovered also in formal models (Weitzman, 

1998; Olsson, 2000). According to this interpretation, the creation of new knowledge 

relies on pre-existing knowledge (of the pair) as major inputs. In the model, firm i’s 

knowledge (i.e. its technological capabilities) is completely described by the vector

),( itit  . Being exposed to firm j’s knowledge in the collaboration, firm i recombines its 

knowledge and improves upon it to an extent that is increasing in firm j level of efficiency 

(which is taken as a proxy for learning opportunities) decreasing in firm i ’s level of 

efficiency (capturing decreasing returns in learning) and depending on firms’ relative 

technological positions according to a well specified function. Firm’s technological 

positions are modified after collaboration, too.3  

This representation of the learning process has the big advantage of parsimony, since the 

distribution of technological capabilities in the industry identifies both the outcome of 

market competition and the effects of technological collaboration. 

More specifically, the value from collaboration is given by 1)),((  jttijt jidfv  . It is 

increasing in jt , since the higher is the level of efficiency of the collaborator (the more 

it is “knowledgeable”), the more the firm can learn from it. It is also increasing in the 

                                                 
3 A similar representation of knowledge, in the context of knowledge creation as knowledge recombination, can be 

found in Cowan et al. (2003). See also Carminati (2016) for a model where R&D collaborations depend upon on size 

and composition of technological knowledge portfolios.  
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value assumed by a function f, whose argument is given by the technological distance 

between firms, as defined by ||),( 11   jtitt jid  . Some authors have argued that firms 

need to be technologically “not too distant, nor too near” for effective collaboration to 

take place (Nooteboom, 1999). This is because there are two opposing forces: if firms are 

distant, their different technological specializations can create opportunities for 

complementarities and synergies; but if they are too distant, they lack the “absorptive 

capacity” (Cohen and Levinthal, 1989) to learn from their collaborator and cognitive 

distance can harm effective communication. This conjecture has found empirical support 

(Mowery et al., 1998; Sampson, 2007) and it is reflected in the particular functional form 

chosen for f, which is assumed to be a concave parabola (Savin and Egbetokun, 2016): 

 

2

32

3

2

2
1 ),(),(

4
)),(( jidajida

a

a
ajidf ttt                                                                (4)            

 1,0),(  0)),((

0,, 321





jidjidf

aaa

tt

 

 

The vector ),,( 321 aaa  identifies the technological characteristics of the industry. 
3

2

2a

a
 is 

the optimal technological distance, as the result of the counterbalancing forces of 

absorptive capacity and search for complementarities.4 1a  is a measure of “technological 

opportunities”, being )(max1 dfa
d

 . 

Given the total value of collaboration 



)(

)(
iNj

ijttit

t

vgV , it  is determined by 

 itL

it e
 

1                                                                                                                   (5) 

where 

)(1 tititit gVLL    and 0                                                         

                                                                                                                                                                                                                                                                                         

Equation (5) captures the decreasing returns in the innovative process. 

 

                                                 
4 Parameters are assumed to be chosen such that the maximum point lays in the appropriate interval. 
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Finally, I assume that through collaboration firms modify their technological position. 

Formally: 

1

)( 1

1

1 )1( 

 



 


 jt

iNj it

jt

itit

t




        if }Ø{)( iN t                                                  (6)               

1 itit                                                  otherwise 

 

where  



)(

11
iNj

jtit
t

  and  1;0 . 

 

The final technological position of a firm at time t is a linear combination of its old 

technological position and a weighted average of technological positions of collaborating 

firms. A collaborator is weighted more if it has a high efficiency level (which implies 

more opportunities of learning). When 1 , firms become technologically more 

“similar” to their collaborators. When 1  (so that technological positions are time-

invariant), firms maintain their technological specialization in the process of learning 

(when they recombine their knowledge). 

 

2.4 The evolution of the network 

 

Network dynamics is based on a process line with Jackson and Watts (2002) and Dawid 

and Hellmann (2014). Each period two firms among the ones still in the market are 

randomly chosen to possibly change their network state. Firms that are not currently 

collaborating can decide to form a collaborative link, firms that are already collaborating 

can severe the existing link. Each link has the same probability to be revised. 

I assume that maintaining a collaborative link costs each firm a fixed amount E>0 in each 

period. E has to be interpreted as the firm’s contribution to the joint R&D project. For a 

firm involved at time t in |)(| iN t collaborations, net profits are equal to EiN tit |)(| . 

The proposed algorithm can be reformulated as follows: each period, two firms are 

allowed to modify their portfolio of collaborations, starting a new collaboration between 

each other if it does not exist, or interrupting it if exists. The state of the remaining 

network is unaltered: all the other collaborations in which these firms are involved, and 
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the collaborations of all the remaining firms are automatically confirmed. In other words, 

network at time t-1 and time t may differ only for the state of one link. 

Suppose that at period t, the link ij (i.e. the potential or existing link involving firms i and 

j) is randomly chosen to be updated. Define ),;( git  as the profit for i resulting from 

market competition when the network is g and the initial technological capabilities are 

given by ),(  .  

If 11 ijtg , the link is severed if Eggg tttitttijtit   ),;(),;( 111111   or 

Eggg tttjtttijtjt   ),;(),;( 111111  , while in the opposite case it is 

maintained. This means that a firm wants to sever an existing link if profits without the 

link and the saving on the R&D cost are higher than the profits with the link. If 0ijtg , 

the link is formed if ),;(),;( 111111   tttitttijtit gEgg   and 

),;(),;( 111111   tttjtttijtjt gEgg  . If a link does not exist, it is formed 

when for both players the gain stemming from forming the link is higher than the R&D 

cost they have to sustain. 

To avoid that with probability 1 no link is profitable at t=0, I assume that *EE  , where 

2

0

2

0

max

1*

1

)1(

1

)1()2()1()1(



























n

cA

n

cncnA
E


and 

)(max

1
101

aL
e




 . 

 

In terms of behavioral assumptions, the proposed rule implies that agents are myopic, 

since they decide only on the basis of their current pay-off, but at the same time they have 

rational expectations within a given period, since during the networking phase at time t 

are able to predict correctly the marginal cost of their rivals at time t and the Nash 

equilibrium that will be played in the market phase. This assumption of myopic behavior 

aims at the representing the bounded rationality of agents who face a highly complex and 

uncertain future evolution of the R&D network and of the technological capabilities of 

firms in the industry. 

I can also note how, differently from Jackson and Watts (2002) and Dawid and Hellmann 

(2014), I exclude mistakes in the process of link revision, i.e. links that are interrupted 

when they are profitable, or formed when they not. In Dawid and Hellmann (2014), in 

particular, perturbations are required to make the process ergodic and look for 
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stochastically stable networks. Mistakes would not have such a role in the present setting, 

and for sake of simplicity are not considered. 

 

3. Analytical results 

 

In this section I provide some analytical results. First, I consider the incentives to form 

collaborative links at the level of the single pair of firms. I will also show two numerical 

examples, for the set of parameters I will consider in the simulations. Then I will turn to 

the long run properties of the system. Although the stochastic process generated in the 

model is rather complex, a clear and intuitive result holds for the network state in the long 

run.  

 

3.1 Firms’ cooperative strategies 

 

I introduce the following function: 

 

2

,

2

,

)),(()),(((

1

)1()1(

_
1

)1())(1(

)),(|,(
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































n

ccncA

n

cecencA

F

jik

kji

jik

k

jidf

j

jidf

i

jjji

ij









(7) 

 

Suppose to take a generic pair of firms i and j. Fix the technological capabilities of the 

other (n-2) firms, and from },/{, jiNkk   derive the unit cost of such firms. Studying 

)(F  I can answer to the following question: how does the gross gain (i.e. the variation in 

profits excluding R&D costs) for i of forming a link with firm j vary, as a function of j’s 

and i’s  technological capabilities?5 

                                                 
5 Notice that implicitly I restrict my attention to the cases where the formation of the link does not lead to the exit of 

any firms. 
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In order to make computation easier, I write F as: 

 )()(

1

)1)(1()1)(1(
)),(|,(

)),(()),((

ijqijq

n

encec
F

ii

jidf

i

jidf

j

jjji

ji


























 


         (8) 

 

where )( ijqi  and )( ijqi  represent the quantities produced by firm i with and without the 

link with firm j respectively. The first factor represents a necessary condition for 

collaboration: the net effect of counterbalancing forces on firm i’s profits given by the 

reduction in its costs and in firm j costs must be positive, i.e. firms must increase the 

quantity they produce (and consequently their profits). Consistent with the existence of 

an interior solution, firms i and j are assumed to be close enough in efficiency levels so 

that the necessary condition is always satisfied. 

I can show that the following propositions hold (the proofs can be found in the appendix): 

 

Proposition 1 Ceteris paribus, gains from the collaboration increase when firms’ 

technological distance move towards the “optimal technological distance”, and decrease 

otherwise. 

Proposition 2 Ceteris paribus, the effect of an increase of j on the gains from the 

collaboration is ambiguous. Possibly, an inverse U relation holds between j  and gains 

from collaboration. 

Proposition 3 Ceteris paribus, the effect of an increase of i  on the gains from the 

collaboration is ambiguous. Possibly, an inverse U relation holds between i  and gains 

from collaboration. 

Proposition 4 Ceteris paribus, gains from the collaboration decrease when the remaining 

firms’ average efficiency increases. 

 

The first proposition is unsurprising. Proposition 2 is more interesting. The rationale for 

the possibly non-monotonic relationship is straightforward, however. High efficiency of 

a collaborator is good for a firm since the opportunities of learning increase and the extent 
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the collaborator can learn from you is limited, but at the same time it is bad since 

efficiency is correlated with size. If a firm i’s potential collaborator is highly efficient, 

then it is “large”. This makes i a “small” firm, in relative terms. Since I consider process 

innovation, smaller firms have lower total gains per unit of cost reduction, and their 

incentive to collaborate and innovate, ceteris paribus, is smaller. This is the so-called 

“cost spreading” argument, which has been claimed to be one of the advantages in 

innovation by large firms and it has found empirical support (Cohen and Klepper, 1996). 

The nature of the opposing forces is symmetric in Proposition 3. If firm i is highly 

efficient, it assures great opportunities of learning to its potential collaborator, and the 

reduction in its unit cost is smaller in absolute value. At the same time firm i is “large”: 

so that reduction in unit cost of production can be spread over a larger quantity. 

Finally, the average efficiency of other firms (Proposition 4) comes into play through the 

usual channel: its effect on firm’s size. Its increase decreases the gains from collaboration, 

since it makes the firm “smaller” in relative terms.  

The results show the complex nature of the interaction between the technological and 

markets aspects concerning firms’ incentives to collaborate. Furthermore, they stress the 

feedbacks between firms’ incentives and the evolution of the network. Network evolution 

affects firms’ incentive to collaborate through market competition and opportunities for 

learning. In turn, the network changes according to firms’ decision. Firms’ strategies and 

the network coevolve, a point that has already been raised by business scholars (e.g. Koza 

and Lewin, 1998). 

Figure 1 and Figure 2 show the behavior of )(F  under the parameterization of the 

“Standard Simulation” discussed in the next session. In the first case (Figure 1), 35.0i  

and 35.0
2,





 jik

k

n


. Firm i is sufficiently small so that the inverse U relationship 

between gains from collaboration and j emerges. When j  is large enough 

(approximately 0.5), the negative effect on size prevails on the positive effect of 

technological opportunities. If instead 5.0i  (Figure 2), firm i’s size guarantees that an 

increase of j  monotonically increases the gains from collaborations. 
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Figure 1: Gains from collaboration-1 

 

 

 

Figure 2- Gains from collaboration-2 

 

 

 

3.2 The long run properties of the system 
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Although the stochastic process describing the evolution of the R&D occurs on a rather 

complicated state space, it is possible to derive clear results about the limit behavior of 

the network structure.  

The industry at time t is completely characterized by the state },,{ tttg  . Then, it is easy 

to verify that the underlying stochastic process satisfies the Markov property. Proposition 

5, whose proof can be found in the appendix, concerns the long run properties of such a 

process. 

 

Proposition 5 As t , each link is absent with probability 1. The absorbing states of 

the process are characterized by the empty network, and the set of these states is reached 

almost surely in the long run. 

 

The intuition behind this result is simple and comes directly from the existence of 

marginal decreasing returns in the outcome of collaboration. Since innovative 

opportunities become smaller and smaller as firms continuously invest in R&D, while its 

cost is constant and strictly positive, it will come a time where forming or maintaining 

collaborative links is not convenient, irrespectively of other firms’ technological 

positions. Loosely speaking, when (“almost”6) everything that could be discovered has 

been discovered, investing in R&D becomes unprofitable. Nevertheless, I am mainly 

interested in the transition phase of the system, per se and for the way it affects the final 

equilibrium is reached. This will be the subject of next section, where numerical 

simulations of the model are reported. 

 

4. Simulation results  

 

In this section I discuss the results emerging from a series of numerical experiments 

performed with the model. Although several exercises are possible, the ones reported here 

are illustrative of the basic mechanisms underlying the model.  

 

                                                 
6 As the simulation will make clear, the precise quantification of “almost” is endogenous to the model. 
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In the “Standard Simulation”, I consider a situation where competition is tough at the 

beginning. Market size is A=65, 16 firms populate the industry at time 0, and their initial 

unit cost is about 47.56 (c=50, NiLi   50 ). The initial network is empty. The 

“optimal” technological distance is 0.25, and technological parameters are chosen in a 

way that the expected value of f(d) is 0.5, ( 1  ,5.0 ,56.0 321  aaa ), under the 

assumption of technological positions that are uniformously distributed along the interval 

(0,1). The R&D cost is “high”, E=0.0230, and corresponds to 0.975* *E , where *E  is the 

largest R&D cost for which firms at optimal distance will form a link given their initial 

costs. 1 , so that technological positions are time-invariant. I run the experiments for 

1000 periods, by which a steady state is reached. 

Figure 3 and 4 reports the results for the average of 40 replications. As for all the figures 

in the paper, bars indicate the 95% confidence interval for the true population statistics. 

 

 

Figure 3 
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Figure 4 

 

 

Figure 3 reports the number of active firms over time.7 The number of active firms has a 

sudden drop around period 45: a shakeout occurs. In the steady state, less than 8 firms on 

average are in the market, then slightly less than half of the initial number of firms. The 

shakeout (defined as a significant and rapid reduction in the number of firms active in the 

market) is a typical feature of the evolution of industries in early stages, as represented 

by the theory of industry life cycles (Klepper, 1997). In the model, it is the process of 

network formation that creates the shakeout among firms that are symmetric at the 

beginning. In other words, the existence of a R&D network (i.e. the possibility for firms 

to form cost-reducing links) operates as a strong selection mechanism. 

Figure 4 further elaborates on this point, and shows an interesting dynamic involving 

market structure and the network of collaborating firms. 

The figure reports the dynamics of three variables: total output produced in the market, 

normalized by market size (
A

Q
); market concentration, measured by the Herfindahl index; 

and network density, which is the fraction of existing links over the total number of 

                                                 
7 Figure 3 reports the average number of firms active in each period across simulations. For this reason, I observe 

fraction of firms. 
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possible links (considering only the firms still in the market). The scales of these variables 

are different. For preserving readability and comparison of behavior over time, total 

quantity and density are to be read along the left axis, while the right axis is for the 

Herfindahl index. 

The evolution of the industry can be described as follows. At the beginning the density 

of the network is growing relatively slowly. Since R&D costs are relatively high, market 

relatively small and the average level of efficiency in the industry low, firms need to find 

partners located almost at the optimal technological distance, and this process is assumed 

not be instantaneous. This creates differences in the relative competitiveness of firms, 

expressed by a sharp increase in the concentration index. However, given the low average 

level of efficiency in the market, the process of “knowledge recombination” is reflected 

by a limited growth rate for total output, which, given the assumptions, is only depending 

on the average efficiency of firms.   

 

When the shakeout occurs, the time series for the network density has a break: this is due 

to the fact that the firms exiting the market have typically no links, and then they lowered 

the average number of links. However, the process of links formation continues, until a 

complete network (density 1) emerges for around 100 periods. Concentration continues 

to grow, but then it starts declining when the density reaches a sufficiently high level: the 

network operates first as a mechanism creating different efficiency levels and then as a 

mechanism favoring the “catching-up” of relatively less efficient firms8. 

For around 100 periods, therefore, I can observe a sort of “equilibrium”, where almost 

equal size firms operate in a complete network. 

 

The behavior of total output, reflecting the behavior of average efficiency, follows an S-

shaped curve. The growth rate of total output is the highest during the formation of the 

network after the shakeout. The increasing density of the network, the increase in the 

average level of efficiency (which creates more opportunities for recombination) and the 

fact that marginal decreasing returns are not limiting innovative opportunities yet, 

generate a high rate of growth in the average efficiency level. Interestingly, the inflection 

                                                 
8 This result is clearly associated to the asymptotic behaviour of the cost function: knowledge is always created, if a 

firm is connected, but at a decreasing rate. 
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point in the output series roughly corresponds to the time in which a complete network is 

formed. Then, the “equilibrium” in market structure and network dynamics is 

accompanied by a low growth of the average efficiency level. 

Since I model innovation as a process in which knowledge is both an input and an output, 

I interpret the results in the following ways: in the early phases network formation mainly 

drives the creation of knowledge, in the late stage it is existence of a large pool of 

knowledge which preserves the incentive for firms to form new links (i.e. the cause-effect 

relation between network formation and knowledge creation is reversed while time 

elapses). 

The final period occurs when technological opportunities have substantially been 

depleted. Total output and market shares stabilize, and firms start to remove all their links.  

The final long run equilibrium is then reached when the empty network is finally obtained. 

It is also interesting to look at the evolution of the network structure over time, especially 

for the phase immediately preceding and following the shakeout. 

Figure 5 reports the behavior of the group degree centralization index over the simulation 

time. This index takes a firm’s degree (its number of links) as its centrality measure, and 

it basically summarizes how the links are distributed across firms. It takes value 0 when 

all the firms have the same number of links (as it happens in a regular network, like the 

complete network), and value 1 in a star, where there is one firm connected to all the 

others, and no other links exist (Wasserman and Faust, 1994). 

Formally, define as itn the number of links that firm i has at time t, and it
i

t nn max*  . The 

group centralization index is defined as follows: 
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Figure 5 

 

 

The index shows a marked growth until the shakeout period: this implies that in this phase 

links are more and more unequally distributed across firms. Then, the value of the index 

falls down in a similar way, to reach the value of zero when the network becomes 

complete. Then it naturally grows again, when firms start removing their links, and comes 

back to zero, when the network is empty. 

 

4.1 Discussion  

 

Two results deserve further explanations. The first point is that, even if firms are 

symmetric ex ante, the opportunity of forming R&D links can generate profound 

asymmetries ex post:  in the long run, these are reflected in firms’ survival. 

Table 1 reports the statistics concerning the number of links for firms at period 40 (just 

before the shakeout) and their survival in the long run. The variable link40 takes value 1 

if the firm has at least one link at period 40; the variable surviving has value 1 if the firm 

survives the shakeout. 
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Table 1: network activity and survival 

 

 Surviving   

Link40 0 1 Total 

0 303 3 306 

1 48 286 334 

Total  351 289  

 

The table clearly shows that firms exiting the market are firms without links. Furthermore, 

an inspection of the network structure in the initial phase shows that the network structure, 

at the shakeout, is typically given by a single component of connected firms, while 

remaining firms are disconnected. A first strong selection occurs between firms that are 

in network, and survive at the first shakeout, and firms that “are not able” to join the 

network “reasonably” soon. The fact that firms without links eventually exit the market 

is not obviously surprising, since it is the natural consequence of the assumption that costs 

are reduced only through collaborations. The interesting point is the mechanism through 

which some firms are excluded by the R&D network.  

Second, I need to explain also the evolution of the network structure, in particular the 

increase in centralization in the initial phase. The firms’ polarization in two groups of 

connected and disconnected firms is a candidate for a first basic explanation, but the 

evolution within the main component can also be an important determinant. 

I will show that both the selection process and the evolution of the network structure are 

driven by a self-reinforcing, path-dependent process, in which events in the early stages 

of industry affect firms’ centrality in the initial network with long term consequences in 

terms of survival (Arthur, 1990). Forming links at the beginning (which in the model is 

due to random factors, and in the real world could correspond to different managerial 

practices, social contacts or other small “historical accident” affecting firms’ networking 

propensity) propels a positive feedback mechanism that favors the centrality of such 

firms, and entraps excluded firms in their status. However, among the surviving firm, the 

negative feedbacks end up prevailing, and firms converge in market shares and efficiency 

levels.  
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The first mover advantage of firms forming links at the beginning comes from the net 

effects of forces described in the previous section. Firms that are “lucky” and form links 

in the first periods become larger than the other firms. This increases their incentive to 

form new links, since in this phase decreasing returns are not substantial yet. At the same 

time, large firms are more efficient and competent (they are larger because they are more 

efficient) and they offer their collaborators more opportunities to learn. A 

complementarity exists between “large” and “small” firms: large firms are willing to 

cooperate because of the “cost spreading” argument and because of the search for 

technological complementarities; small firms are willing to collaborate because of the 

high level of competences they can find in large firms. The final effect of this process is 

the tendency to reinforce the centrality of first movers’ firms, which results in the sharp 

increase of the centralization index. This process comes naturally to an end since the 

number of possible links to be formed is limited. This corresponds to the phase of industry 

maturity, when the network becomes complete.  

At the same time, firms that are not able to form links in the initial phase are excluded by 

the subsequent process of the network formation: their incentive to start collaborations 

decreases because such firms are getting smaller and smaller, and they are a limited source 

of learning opportunities for their potential collaborators.  

Overall, this suggests an industrial structure where one can identify three kinds of firms, 

identified by their position in the network in the initial phase: 1) central actors, whose 

position is strongly path-dependent and that can gain a (temporary) leadership in the 

market; 2) (temporarily) peripheral actors, that is firms that are active in the network in 

relatively laggard positions, but are destined to catch up with the leader, if able to survive 

the shakeout. 3) isolated firms, which are not able to join the network soon, being trapped 

in a self-reinforcing mechanism of exclusion, and which end up exiting the market. 

 

For a quantitative assessment, I run two OLS regression on the data generated by the 

simulations. I considered the variation on the number of links between period 40 and 

period 10 as dependent variable (newlink40), and I regressed it on the number of times a 

firm has been called to change its network status from period 10 to period 40 

(newcalled40) and on the number of links the firm have at period 10 (link10). In a sparse 

network, the first variable is clearly supposed to have a positive coefficient. Table 2 shows 
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that, at the beginning of the life cycle, also the sign of the coefficient for the second 

variable is positive, and significant. I have the confirmation that the “Matthew effect”9 is 

at work here: firms that are more central at the beginning are more likely to attract new 

collaborators in the following periods. This property is often found in networks of 

alliances (see, for instance, Powell et al, 1996). 

 

Table 2: the “Matthew effect” at work 

 

newlink40    Coeff.    Std. Err T P>|t|      

     

newcalled 0.2363637 0.0195672 12.08 0.000 

link10 0.7089678 0.0574208 12.35 0.000 

constant 0.3405201 0.0848473 -4.01 0.000 

     

Number of 

obs 

640    

F(2,637) 149.58    

R-squared 0.3196    

 

 

Concerning the selection process, the picture so far must be enriched including the role 

played by the externalities arising in the process of network formation. When two firms 

form a link, they always create a negative externality upon the remaining firms (“business 

stealing” effect). However, when two firms start to collaborate, this also creates a positive 

“technological externality”, but only for firms connected with these two firms. The new 

projects increase the rate of growth of efficiency of the two partners, with a positive effect 

on the technological opportunities for their collaborator. The increasing network density 

is strongly penalizing for firms outside the active network at the beginning, since they 

find increasingly difficult to join the network. 

                                                 
9 The term refers to the Gospel According to St Matthew: “For unto every one that hath shall be give, and shall have 

abundance: but from him that hath not shall be taken away even that which he hath”. 
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It is interesting to compare my results with the (static) analysis by Goyal and Joshi (2003) 

and the dynamic analysis in Dawid and Hellmann (2014)  Goyal and Joshi, in a setting 

with Cournot competition, ex ante identical firms and fixed costs for link formation, they 

show that only three network structures can be sustained as equilibria, as a function of the 

level of  the link formation cost: the empty network, the complete network and the 

dominant group network, in which only a non-singleton, fully connected component is 

formed. In a dynamic extension of Goyal and Joshi, Dawid and Hellmann show that the 

dominant group architecture is the characterize stochastically stable R&D networks, and, 

contrary to Goyal and Joshi, produce generically unique predictions about the size of the 

dominant group can be obtained. My model generates as a long run structure a dominant 

group network as well, and it provides a dynamic non-ergodic mechanism that leads to 

this structure, through a process of rise and fall in the network which consistent with 

empirical evidence and interact with industry evolution. 

 

In commenting the results, there is an important final remark that has to be done. The 

results of the model are not purely dependent on the randomness associated to link 

revision. In particular, the shakeout is not simply driven by the fact that some firms are 

not drawn to form links. Randomness plays a role because it perturbs an initially 

symmetric situation, giving some firms an initial advantage. After that, an economic self-

reinforcing mechanism operates, which significantly reduces the role of randomness. In 

other words, the model shows the instability of a symmetric market structure, when firms 

can form pairwise links. For this reason, it seems reasonable to start with an empty 

network in a symmetric set-up (in terms of efficiency levels). If the network at time t=0 

were a non-empty network (for instance, a random graph), this would guarantee some 

firms (the firms with more collaborations at t=0) an exogenously given advantage, which 

would increase the probability of such firms to become central actors in the evolution of 

the network. The same argument applies if one removes the assumption of equally 

efficient firms at t=0. Furthermore, as section 4.3 will show, the results do not depend on 

isolated firms being fixed in their level of efficiency. 

 

4.2 Comparative dynamics  
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A natural question concerns possible exercises of comparative dynamics. In theory, 

several different parameterizations can be discussed. Here, I consider two of them. 

First, I increase technological opportunities. 321 ,, aaa  are chosen in a way that the 

expected value of f(d) becomes 0.75 (instead of 0.5).10 I call this experiment Simulation 

A. The opportunities for “knowledge” recombination within collaborative projects 

increase, making collaboration more attractive, ceteris paribus. Notice that high 

opportunity here does not mean that there is “more” to learn in the long run (unit cost is 

bounded from below, and it always (potentially) converges to 0), but that learning is 

easier. The effect on market structure is ambiguous, a priori. On one hand, more firms 

can engage in collaboration, especially at the beginning. On the other hand, the average 

efficiency growth rate is expected to be higher, and this is detrimental for the survival of 

firms that do not join immediately the network. As figures show, both effects are at work: 

with “high opportunities”, the equilibrium number of firms is higher (the long run level 

of concentration is lower), but the shakeout occurs typically earlier. Technological 

progress is faster, as expected. Notice, finally, that the network does not reach density 1. 

This is easily explained by the fact that the faster depletion of innovative opportunities 

makes inconvenient the formation of links before a complete network is reached. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
10 In particular, 84375.0

1
a , 75.0

2
a 5.1

3
a .  
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Figure 6 

 

 

Until now, I considered time invariant technological positions. Empirical evidence 

suggests that interfirm technological agreements are important in explaining the 

movement of firms over time, and they can lead firms to become technologically more 

similar at the dyadic level (Mowery et al, 1998). 

 

In order to study the impact of variation of   on network evolution, I consider the case 

where technological heterogeneity matters in the outcome of collaboration, fixing the 

optimal distance at 0.5 (but keeping fixed the expected value of f)11. 

For this case, I run two sets of simulation, one with 1  (Simulation B), the other with 

99.0  (Simulation C). The results are reported in Figure 7 and 8. 
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Figure 7 

 

 

The first remark concerns the comparison between Simulation B and the Standard 

Simulation. Although the qualitative picture is rather similar, one can observe a slightly 

higher level of concentration in the long run. This is due to the relationship between the 

optimal distance and the initial distribution of technological positions. It is intuitive to see 

that, once the assumption of uniformously distributed firms is maintained, increasing the 

optimal technological distance over a certain threshold makes less likely for firms to find 

a partner at the optimal technological distance, especially for firms with intermediate 

technological positions. Since at the beginning this is what really matters, more frictions 

are introduced in the search of a satisfying partner. Firms lucky enough to find such 

partners get a stronger advantage. Progress is less rapid, concentration is higher and the 

network less dense. This is clearly an example which shows that the hypothesis on the 

initial distribution of firms matters, especially for certain technological environments, 

because it affects the opportunity for cooperation in the industry. This aspect deserves 

further analysis in the future. 
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Figure 8 

 

 

The changes when   is smaller than 1 are radical. At the beginning the evolution is the 

same. This is not surprising, since the process of technological convergence takes time. 

The difference occurs after the shakeout. The process of network formation soon comes 

to an end. The reason for that is simple: the emergence of one single component inevitably 

lead to the overall convergence to a single technological position, which is detrimental 

for innovation. In the forty replications, the final value of the average technological 

distance lies in the interval [0.002,0.02]. This implies that both technological progress 

and convergence in market shares stop. 

 

This result shows the important role that entry, a factor not considered in the model, can 

play. In a relatively mature industry, in which the technological positions of incumbents 

have converged, new entrants have an important role to play. They can bring into the 

market different capabilities. This also help the new firms to survive, although less 

efficient, because of their role in the network. Extending the model to the role of new 

entrants is an interesting avenue for future research. 

 

4.3 Extensions  
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In this section I check the robustness of the results with respect to two main assumptions 

of the models. First, I implement two other algorithms driving the formation of the R&D 

network; second, I introduce, although in a simple way, an alternative source for cost 

reduction. Overall, the model exhibits robustness with respect to these changes. 

Concerning the rules for links revision, it has been maintained the hypothesis of revision 

of one link per period. Given this restriction, two different algorithms have been 

considered. The first one can be defined as “socially oriented”, and it aims at capturing 

the idea that meetings are more likely between firms that have collaborators in common. 

In practice, the algorithm works as follows: 

 

a) One firm is picked up randomly. Each firm has the same the probability to be chosen. 

b) With probability 
1

|)(|

n

tN i  the firm revises the state of one of its existing links; 

otherwise, the firms revise the state of one of its non-existing links. 

c) In the case of revision of an existing link, a firm )(tNj i  is chosen with uniform 

probability. 

d) In the case of revision of a non-existing link, a given firm j is chosen by i to revise the 

state of the link with probability: 

 







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)()(1
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tNk

ki

ji

i

tNtN

tNtN
                                                                                                  (10) 

 

i.e.  the probability of "meeting" is increasing to the number of collaborators that the two 

firms have in common. 

The second algorithm will be labeled as “economically oriented”. It is meant to capture 

the active, “rational” firm’s search for optimal partners.  

 

a) One firm is picked up. Each firm has the same the probability to be chosen. 
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b) For each ik  , net profits for i resulting from the meeting with k are computed. In 

particular, if the link ik does not exist, firm i correctly predicts the willingness of k to 

cooperate or not. I indicate with )(ikit  such profits. 

c) The firm j that is chosen is given by: 

 

)(maxarg
)(

ikj it
tNk t




                                                                                                      (11) 

 

In case of ties, the firm with the highest index is chosen. 

Figure 9 and 10 reports the Herfindahl index, the total output and network density for the 

same parameterization of the “Standard Simulation”, when the algorithms of network 

formation are respectively the “socially” oriented algorithm (Simulation D) and the 

“economically” oriented-one (Simulation E). 

 

Figure 9 
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Figure 10 

 

 

 

The effects of the “socially” oriented algorithm are negligible. The results are easy to 

interpret. What is crucial in the model are the first links formed, when the self-reinforcing 

mechanism is at the work. Since at the beginning the network is sparse, the probability of 

meeting is basically uniform, and the differences are necessarily of minor importance. 

When the network has reached a sufficiently high density (i.e. in the periods just 

preceding the shake out), firms active in the network become significantly more likely to 

meet. But these firms are also the more likely to be willing to start cooperation, since they 

are larger and more competent. The effect, then, is simply to make the convergence 

towards the complete network slightly more rapid, and consequently the shakeout slightly 

more rapid, without an impact on the qualitative behavior of the system. 

The “economically oriented” algorithm has instead a more significant effect. This is 

similar to an increase in technological opportunities: the shakeout occurs earlier, but 

involves fewer firms. This algorithm substantially reduces the frictions in the network 
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formation, and then it leads to a stronger role of the first mover advantage. Larger firms 

at the beginning have more incentives to form new agreements, so they can look around 

for complementarities among the "small firms"; small firms can look for the largest firms. 

In this way, more links are formed: the shakeout is anticipated (because the exclusion 

process starts in advance) but involves fewer firms. In any case, the selection process is 

strong. 

In terms of alternative sources of cost reduction, a simple formulation has been 

considered. I relax the assumption that costs can be reduced only through collaboration. 

Each period, each firm is assumed to start an "in-house" R&D project.12 More generally, 

other factors (for instance, learning by doing) can lead to such a reduction in costs. The 

assumption is that this process of cost reduction does not require any investment by the 

firm. Introducing explicitly an R&D cost (i.e. a fixed cost similar to the costs required for 

cooperative R&D) in the framework of a simultaneous game would create a problem of 

multiple equilibria, when firms are close enough in efficiency level (i.e. size). Even if one 

assumed some rule to pick up one equilibrium, this would be too complex to implement. 

In economic terms, this assumption can be justified by claiming that collaborative 

projects are typically started for larger, costlier (and with higher benefits) projects than 

in-house R&D. The assumption of no cost approximates a situation where each firm can 

always cover the costs of internal R&D, and the costs can be consequently not modelled. 

Furthermore, in the present context, I introduce in-house R&D to check the robustness of 

the results, and not to fully model the choice between in-house and cooperative R&D. 

Here, one major point is to check the robustness of the selection result due to the network 

formation. With positive costs (and indivisibility), small firms would not invest in R&D 

alone either (for the cost spreading argument). Then the “no cost” situation can be 

interpreted an upper bound for outcome of the selection process: selection cannot be 

stronger than the case of “costless” R&D. 

Following the notation of the paper, I label iitv the value of such an in-house project. I 

consider two possible formulations: 

 

itiit fv  )0(                                                                                                                (12) 

                                                 
12 See Tedeschi et al. (2014) for an agent-based model where firms can switch between stand-alone and 

collaborative innovation. 
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kfviit )0(                                                                                                                   (13) 

 

In the first case (Simulation F), I consider a cumulative process: more competent firms 

have more valuable in-house projects; in the second case (Simulation G), instead, the 

value is independent from firm's level of efficiency. This second case is clearly more 

favorable to 'laggard' firms, and it is introduced mostly as a benchmark case. 

Figure 11 
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Figure 12 

 

The effect of this modification (Figure 11 and 12) goes in the predicted direction: 

selection is less strong. In the "cumulative" version (Figure 11, with 4.0 ), results are 

similar to the “Standard Simulation”. In this formulation, in house R&D and cooperative 

R&D are complementary: starting cooperative projects increases the value of in-house 

R&D, and the presence of in-house R&D increases the incentive of cooperative R&D 

through its effect on size. Then the two effects, strengthening and weakening the selection 

process, substantially cancel out.   

In the second case, the effect of decreased concentration is stronger. In this case (Figure 

12), 2.0 and k=0.5, which means that in-house R&D is equivalent to a collaboration 

with a firm having the same technological position and efficiency 0.1. However, the main 

point here is that the results of the model respond “smoothly” to a limited ability of firm 

to progress autonomously in cost reduction: the logic in the arguments put forth in the 

previous sub-section is still valid. 

 

5. Conclusion 

 

In this paper I presented a model of dynamic R&D network formation, in which the focus 

was explicitly on the joint dynamics of market structure, firms’ technological capabilities 

and network evolution.  
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My results show the importance of R&D networks as powerful selection mechanism, 

leading firms that are not able to join the network or that occupy weak positions to exit 

the market. These results are consistent with previous theoretical work on R&D networks, 

which predict the emergence of asymmetric networks with a dominant group architecture, 

to which my model adds a dynamic non-ergodic mechanism that leads to this structure, 

through a process of rise and fall in the network which is consistent with empirical 

evidence and interact with industry evolution. This emphasis on asymmetric networks, 

which have profound effects on market structure, is consistent with the empirical evidence 

on the firms’ motivation to engage in collaboration (Hagedoorn, 1993).  

The model could be extended in a number of directions. First, as already mentioned in 

the paper, the role of new entrants in the coevolution of industry and network. Second, I 

could relax the assumption of product homogeneity, to assess the intensity of competition 

can affect network evolution. Third, and more ambitiously, the model could be extended 

to a two-industry context, where profitable cooperation may occur also across industries, 

and networks and industry coevolve.  
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Appendix 

 

Proof of Proposition 1 

 
Simple derivations show that: 
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As long as firms are close enough, the second factor is positive13. The sign of the derivative is then 

determined by ),(32 jidaa  , which is positive if firms’ distance is lower than the optimal one, and 

negative otherwise. 
 

Proof of Proposition 2 

 

Deriving one obtains: 

 

 

                                                 
13 Notice however that the condition of positivity here is stricter than the necessary condition of positive gains from 

collaboration. 
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The quantities in the first two square brackets are positive, so it is the first addend.  The sign of the second 

addend depends on  
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which is negative for  sufficiently small. 

From the study of the second derivative, it can be shown that it is negative for  sufficiently small. Then 

the point (if any) where the derivative becomes 0 must be a maximum point. If gains from the collaboration 

are positive, there are consequently three possible cases: the increase in j  1) has always a positive effect; 

2) has always a negative effect; 3) has a positive effect initially, and then has a negative effect. 

 

Proof of Proposition 3 

 
Deriving one obtains: 
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The first addend is negative, while, if the necessary condition for positive gain holds, the sign of the second 
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It can be shown that:  
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The first quantity in square brackets is larger than 1, while the second is smaller than 1 for )),(( jidf  

small. Their difference is then positive. 

The overall effect is ambiguous. Studying the second derivative, one gets 0
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small. Then the point (if any) where the derivative becomes 0 must be a maximum point. There are 
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consequently three possible cases: the increase in i  1) has always a positive effect; 2) has always a 

negative effect; 3) has a positive effect initially, and then a negative effect. 
 

Proof of Proposition 4 

 

The proposition comes directly from: 
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Proof of Proposition 5 

 

I consider the situation where a stable oligopolistic structure has emerged, in the sense that the number of 

firms will remain constant in the future (the market structure at time t will be maintained in all the periods 
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E>0, the link will asymptotically become unprofitable. Given that each link is updated with a positive 

probability, it will be severed with probability 1 as t , and then I have the initial claim. 

 

 

 

 


