
Exceptions all Over the Shop
Modular, Customizable, Language-Independent Exception Handling Layer

Walter Cazzola
Università degli Studi di Milano, Italy

cazzola@di.unimi.it

Luca Favalli
Università degli Studi di Milano, Italy

favalli@di.unimi.it

Abstract
The introduction of better abstractions is at the forefront of
research and practice. Among many approaches, domain-
specific languages are subject to an increase in popularity
due to the need for easier, faster and more reliable applica-
tion development that involves programmers and domain
experts alike. To smooth the adoption of such a language-
driven development process, researchers must create new
engineering techniques for the development of programming
languages and their ecosystems. Traditionally, programming
languages are implemented from scratch and in a monolithic
way. Conversely, modular and reusable language develop-
ment solutions would improve maintainability, reusability
and extensibility. Many programming languages share sim-
ilarities that can be leveraged to reuse the same language
feature implementations across several programming lan-
guages; recent language workbenches strive to achieve this
goal by solving the language composition and language ex-
tension problems. Yet, some features are inherently complex
and affect the behavior of several language features. Most
notably, the exception handling mechanism involves varied
aspects, such as the memory layout, variables, their scope, up
to the execution of each statement that may cause an excep-
tional event—e.g., a division by zero. In this paper, we propose
an approach to untangle the exception handling mechanism
dubbed the exception handling layer : its components are
modular and fully independent from one another, as well
as from other language features. The exception handling
layer is language-independent, customizable with regards
to the memory layout and supports unconventional excep-
tion handling language features. To avoid any assumptions
with regards to the host language, the exception handling
layer is a stand-alone framework, decoupled from the excep-
tion handling mechanism offered by the back-end. Then, we
present a full-fledged, generic Java implementation of the
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SLE ’23, October 23–24, 2023, Cascais, Portugal
© 2023 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-0396-6/23/10. . . $15.00
https://doi.org/10.1145/3623476.3623513

exception handling layer. The applicability of this approach
is presented through a language evolution scenario based on
aNeverlang implementation of JavaScript and LogLang, that
we extend with conventional and unconventional exception
handling language features using the exception handling
layer, with limited impact on their original implementation.

CCS Concepts: • Software and its engineering → Ab-
straction, modeling and modularity; Compilers; Exten-
sible languages.

Keywords: Language Modularization, Exception Handling.
ACM Reference Format:
Walter Cazzola and Luca Favalli. 2023. Exceptions all Over the
Shop: Modular, Customizable, Language-Independent Exception
Handling Layer. In Proceedings of the 16th ACM SIGPLAN Inter-
national Conference on Software Language Engineering (SLE ’23),
October 23–24, 2023, Cascais, Portugal. ACM, New York, NY, USA,
14 pages. https://doi.org/10.1145/3623476.3623513

1 Introduction
Programming language development is a complex activity. It
involves the development of an ecosystem of varied software
artifacts, such as, parsers, optimizers, translators and devel-
opment environments. The traditional approach towards
language development is monolithic: language constructs
and their semantics are planned during the design phase and
rarely change overtime. The monolithic approach is consid-
ered easier to develop and more performant; however, the
final products are hard to change, update and evolve. Devel-
oping different languages with similar constructs can provide
reuse opportunities that are only possible if the implementa-
tion is modularized, so that it is easier to extract and reuse
in different contexts [41]. Language workbenches [22, 25] are
a common approach to this problem.
However, tool support does not suffice due to the inher-

ent complexity of some language features. Take exception
handling as an example. Introducing an exception handling
mechanism in an existing language implementation has a
drastic impact on the way a program executes, because each
statement might throw an exception: exception handling
is a crosscutting feature. Crosscutting features are language
features whose code is scattered across the implementation:
they are known to reduce the flexibility and maintainabil-
ity of software systems [19], and can also affect parse-tree
rewriting contexts [32]. Moreover, each language has a differ-
ent memory layout and handles exceptions in a different way.

1

https://orcid.org/0000-0002-4652-8113
https://orcid.org/0000-0001-7452-2440
https://doi.org/10.1145/3623476.3623513
https://doi.org/10.1145/3623476.3623513
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3623476.3623513&domain=pdf&date_stamp=2023-10-23

SLE ’23, October 23–24, 2023, Cascais, Portugal Walter Cazzola and Luca Favalli

This makes a strictly modular and reusable implementation
of exception handling challenging. In this work, we discuss a
framework for the generalization of the exception handling
crosscutting feature, to implement it without affecting the
original implementation of the language and without making
any assumptions on the structure of the original language.

Our contribution is a general, customizable, reusable, and
extensible exception handling conceptual framework—dubbed
as exception handling layer—that can be adopted by language
workbenches to untangle the exception handling concern
from the code of other language features.
The applicability of the proposed framework is demon-

strated through a full-fledged Java implementation, then
used to refactor the exception handling mechanism of a
JavaScript [12] interpreter written in Neverlang [8, 14, 48]
Moreover, we present the flexibility of our proposal by im-
plementing unconventional exception handling language
features such as the retry and resume statements, and imple-
menting a recovery procedure for the LogLang [13] declara-
tive domain-specific language. On each step of the language
evolution scenario, we keep track of the required develop-
ment effort in terms of lines of code and modified files. This
work is validated by answering these research questions:

RQ1. How hard is it to refactor an existing language
implementation so that it can be used in tandem
with the exception handling layer?

RQ2. How hard is it to add exception handling support
to a language implementation using the excep-
tion handling layer?

RQ3. Howmuch is the achievedmodularization reliant
on Neverlang-specific mechanisms?

RQ4. Does the conceptual framework support varied
exception handling mechanisms and their lan-
guage features?

The remainder of this paper is structured as follows. Sect. 2
contains any background information relevant to this work,
including language workbenches, their capabilities and the
basics of exception handling. Sect. 3 presents the exception
handling layer as the main contribution of this work. In
Sect. 4 we present language evolution scenarios based on the
introduction and extension of the exception handling layer.
Finally, in Sect. 5 and Sect. 6 we will respectively discuss any
related work and draw our conclusions on this research.

2 Background
In this section, we discuss the background information on
language workbenches and exception handling.

2.1 Language Workbenches
Modular language development benefits from the creation of
sectional compilers [8] defined in terms of independently
developed language features. Each language feature is a

reusable piece of a language specification, formed by a syn-
tactic asset and a semantic asset, representing a language
construct and its behavior respectively. Language work-
benches [23] embrace this philosophy to improve reusabil-
ity and maintainability of linguistic assets. The term lan-
guage workbench was firstly introduced by Fowler [25] for
the tools suited to support the language-oriented program-
ming paradigm [55], in which complex software systems
are built around a set of domain-specific languages, each
used to express the problems and the solutions of a portion
of the complex system. Nowadays, language workbenches
are used to facilitate the development of modular program-
ming languages and the reuse of software artifacts through
better abstractions. These abstractions are designed to sup-
port five different composition mechanisms among program-
ming languages: language extension, language restriction,
language unification, self-extension, and extension composi-
tion [21]. There are several language workbenches in litera-
ture, each proposing its own flavor of language composition.
Some examples (among many others) are: Melange [20],
MPS [52],MontiCore [33], Neverlang [48], Rascal [31], Sil-
ver/Copper [51], and Spoofax [54].
2.2 Exception Handling
Software exceptions are anomalies that can occur during
the execution of any instruction of a program. When an
exception occurs, the application state does not conform
to the continuation of its normal execution flow [27]. In-
stead, exceptions are handled through dedicated language
control structures—called exception mechanisms—that re-
place the standard continuation with an exceptional con-
tinuation. Most modern programming languages provide
such exception mechanisms, yet adequate exception han-
dling has been proven difficult [18]. Sub-optimal exception
handling practices are associated to low software quality
and post-release defects [44]. Therefore, it is vital that each
programming language provides the exception mechanisms
that are the most appropriate with respect to the intended
behavior. Relying on the abstractions provided by the back-
end is still the most common practice in the development of
DSLs but this limits the capabilities of the exception handling
mechanism to those offered by the back-end. Each language
has its own constructs and uses a different notation, although
three common elements have been identified [27]:

— a part of a program or an operation that brings an
exceptional event to the attention of the caller; this is called
throwing or raising an exception and can either be implicit
(e.g., a division by zero) or explicit (e.g., a throw call in Java);

— the handler is a part of a program that must be executed
to handle an exceptional event; exception handling can either
be explicitly defined or provided by default;

— the handler’s reach is a syntactic construct or part of
a program (such as a block) that can launch the associated
handler if the activation point of the exceptional event falls
within it.

2

Exceptions all Over the Shop SLE ’23, October 23–24, 2023, Cascais, Portugal

exception table❷
❽

❾

ID match

section
❹

protected section
❺

section

section

protected section

section

finalizer❿

memory layout❶

handler
❸

handler

handler

handler

selector

selector

thrower

❻
secure area

❼
store

dispatcher

dispatcher

dispatcher

dispatcher

dispatcher (no match)

selector

selector

ex
ec

ut
io

n

re
tr

ie
ve

recovery

Figure 1. EHL general architecture and process.

3 The Exception Handling Layer
In this section, we discuss the conceptual framework for the
implementation of a portable exception handling mechanism
whose code is not scattered across the language implemen-
tation. This conceptual framework provides language devel-
opers with a template to design modular exception handling
language extensions. We dubbed this conceptual framework
as exception handling layer (EHL). We discuss EHL’s funda-
mental data structures and procedures. We also present a
fully modular decomposition that decouples exception han-
dling from the other language features.

3.1 Architecture
Fig. 1 depicts the general architecture of EHL, its components
and their interaction. Note how an exception-unaware lan-
guage is a corner case of this architecture where all elements
except the memory layout are omitted.
Memory layout (❶). The memory layout abstracts the
stack of the machine the program is running on. We do not
make any assumptions with regards to data structure used
to represent the memory layout. Instead, the memory layout
is split into sections.1 According to this architecture, sections
are nodes arranged within a directed graph that abstracts
the entire memory. For simplicity, Fig. 1 shows the memory
layout as a stack, a common memory layout among general
purpose programming languages [1]. In fact, a stack can be
viewed as a directed acyclic graph whose nodes are arranged
in a chain—i.e., each section is connected to the previous
element of the stack. Arbitrary memory layouts allow to ab-
stract unconventional exception handling mechanisms such
as the exit function in Erlang: if a process calls exit(kill)
and does not catch the exception, it will terminate and emit
exit signals to all linked processes.2
Each section of the memory layout is either protected

or normal, depending if it is within a handler’s reach or
1Please refer to the corresponding paragraphs for more details on sections.
2https://www.erlang.org/doc/man/erlang.html#exit-1

not. However, the memory layout itself does not hold this
piece of information. In fact, to properly modularize the
exception handling concern, the memory layout is unaware
of the existence of exceptions at all. Instead, any information
regarding exceptions—such as, any exception handlers that
can reach a section—resides in a distinct data structure. The
samememory layout can therefore be used in a programming
language without exception support. Notice that the memory
layout of an exception-unaware language implementation
contains only normal sections.
Exception table (❷). The exception table contains all ref-
erences to the location of the exception handlers so that the
correct handler can be executed for each exception type. In
this context, the exception type is not a data type provided
by the back-end but a more general and arbitrary descrip-
tor. There is no assumptions wrt. the implementation of
this table, e.g., it may be a list with an index associated to
each handler or a bi-dimensional map associating each pair
(section, exception ID) to a handler.
Exception handler (❸). As in [27], an exception handler
refers to the code to be executed when an exception is caught,
e.g., a catch block in Java. The nature of the handler depends
on the language the exception mechanism is plugged on:
in a compiler, it can be the method or the function to be
executed; in an interpreter it can directly hook the AST node
representing the code to execute. A custom implementation
of the exception handler could even store the instructions to
be executed directly inside the exception table.
Normal section (❹). Each normal section coincides with
thememory reserved to the execution of a function ormethod
call, or, in some languages, to a block of code—e.g., a delim-
ited sequence of instructions. Each section also serves as
a namespace: it contains a symbol table with an arbitrary
number of scopes, each with the named constants, variables,
structures and procedures that are visible within that scope.
A normal section is unaware of the existence of exceptions
and is not within any exception handler’s reach. The mem-
ory layout contains a reference to the currently executing
section. In languages using a single stack, the current section
coincides with the top of the stack, whereas in other cases it
can be set by an external program, e.g., by the scheduler.
Protected section (❺). Protected sections represent the
handler’s reach from [27] and are parts of the program that
are capable of capturing and handling exceptions, such as a
try-except block in Python. A protected section is identical
to a normal section but it is within the reach of an exception
handler. If a section is normal or protected is determined by
a procedure called selector (more on that later).
Thrower (❻). The thrower is a section that threw an ex-
ception, according to [27]. The thrower may be implicit, such
as a section that caused a division by zero, or explicit, such
as a section containing a throw statement in Java.

3

https://www.erlang.org/doc/man/erlang.html#exit-1

SLE ’23, October 23–24, 2023, Cascais, Portugal Walter Cazzola and Luca Favalli

Secure area (❼). The secure area is a special buffer re-
served to the thrower to store all the relevant information
(if any) for the exception handling mechanism. The secure
area is needed to avoid any assumptions on the exception
handling mechanism: the EHL treats exceptional events as
simple signals, whereas any additional information is carried
by the secure area. E.g., in Java the secure area would hold
an instance of the Throwable class, whereas JavaScript ap-
plications can throw the result of any expression. The secure
area is also used to store other information, such as the list
of all sections visited during the exception handling event.
Dispatcher (❽). The dispatcher is an arbitrary graph tra-
versal algorithm that is fired when an exception is thrown.
Starting from the current section, the dispatcher navigates
the memory layout. On each section, the dispatcher runs a
secondary procedure called selector to determine if the cur-
rent section is protected. The traversal ends when a protected
section has a viable exception handler, as determined by the
selector. Otherwise—i.e., when there are no more sections to
be visited in the queue—the dispatcher terminates abruptly
and delegates to a procedure called finalizer. For instance,
a stack-based implementation of the dispatcher may pop
frames from the stack until finding a handler.
Selector (❾). The selector is an arbitrary procedure return-
ing a viable handler for the thrown exception when a section
is protected. Its result may be determined by inspecting the
contents of the symbol table—i.e., a section is protected if
the exception table maps that section to at least one handler.
The selector could be customized to implement implicitly
protected sections—i.e., sections with a default exception
handler without a need for the programmer to declare one—
even without inspecting the exception table.
Finalizer (❿). The finalizer is an arbitrary procedure that
runs when no viable handler is found and the dispatcher
cannot reach any more sections within the memory layout.
The finalizer implements the ultimate recovery procedure
and allows the runtime environment to smoothly shut down
the application when a thrown exception cannot be handled
by any handler of any protected section. Finalizers can also
be used to attempt restoring the application to a suitable
state without stopping the execution (see Sect. 4).

3.2 Process
In this section, we discuss the life-cycle of an exceptional
event according to EHL. This process evolves according to
four sequential phases: normal execution, exception throwing,
exception carrying and exception handling.
Normal execution. During normal program execution,
the memory expands and shrinks according to the creation
and destruction of sections. Traditionally—i.e., when the
memory is a stack—a new section is created and pushed on
the top of the stack upon entering a new scope, such as at the

beginning of a block or on function calls. Sections are then
popped from the stack after their code completes its execu-
tion. Different languages may use a different memory layout,
adding and removing sections accordingly. For instance, if a
section spawned several threads, the memory layout graph
can contain several sections with an edge towards that sec-
tion, one for each thread. In EHL, each time a new protected
section is added to the memory layout, any handler for that
protected section is added to the exception table. When a
protected section ends its execution, it is removed from the
memory layout and its handlers are (optionally) unregistered
from the exception table. This execution flow is continued
until a thrower is encountered, as shown by the red dot in
Fig. 1, then an exceptional event occurs and the execution
proceeds to the exception throwing phase.
Exception throwing. The system halts the normal exe-
cution when an exception is thrown. Such an exception is
identified with a descriptor—e.g., its class in Java and the
secure area is populated. Finally, a signal is sent to the EHL
runtime to start the exception carrying phase.
Exception carrying. The thrown exception travels across
the system according to the dispatcher algorithm until the
correct handler is found, if it exists. During this phase, it must
be possible to inspect the memory state, to feed handlers
with any relevant information—e.g., the variables in scope.
Fig. 1 shows that the exception carrying phase is handled by
the dispatcher and the selector. The dispatcher traverses the
memory layout graph; on each visited section, the dispatcher
delegates to the selector to determine if the current section
is protected and if any of its handlers can handle the carried
exception. This is usually done by inspecting the exception
table, but some languages, particularly DSLs, may imple-
ment default handler procedures that are not held within
the exception table. For instance, if the layout is a stack,
the dispatcher may iteratively inspect the section on top of
the stack, popping any normal section and any protected
section with incompatible handlers. The process proceeds
to the exception handling phase if a compatible handler is
found (as shown by the blue box in Fig. 1). Otherwise the
dispatcher is resumed to continue browsing the memory
layout according to the traversal algorithm. The exception
carrying mechanism fails and control is given up to the final-
izer when the dispatcher ends its execution—i.e., when there
are no more sections to be visited. The finalizer performs
any procedure needed to ensure that the system is safely
shut down or recovered, possibly reporting any failures to
the user. For instance, in Java the finalizer prints the stack
frame before terminating the execution. A finalizer could
also be used to roll back to a globally-known safe state.
Exception handling. The exception handling procedure
starts when the selector finds a handler that is compatible to
the thrown exception. The handling procedure retrieves the

4

Exceptions all Over the Shop SLE ’23, October 23–24, 2023, Cascais, Portugal

Exception Table

DispatcherHandlerSelectorFinalizer

Throw Exception

Throw API Secure Area

E
H

L

CatchTry

Exception IDThrowCan ThrowE
xc

ep
tio

n
H

an
dl

in
g

IdentifierBlockExpressionB
as

e
La

ng
ua

ge

Legend:

internal syntactic link

internal semantic link

external syntactic link

external semantic link

M
em

or
y

La
yo

ut

Figure 2. Language modularization according to the EHL.

information stored inside the secure area and—optionally—
the scope of the protected section. There is no requirement
on how the secure area is implemented: two possible op-
tions are either a globally accessible object or a instance that
is created upon exception riding and then tunneled across
the dispatcher, the selector and eventually the handler or
the finalizer. Once the exception has been handled, the nor-
mal application flow is resumed. In many programming lan-
guages the execution flow is resumed after the end of the
protected section, but other resumption mechanisms may
be in place. Some examples are resumption from the instruc-
tion in which the exception has been thrown (resume) and
from the first instruction of the thrower (retry). These mech-
anisms usually assume the handler changed the memory to
a safe state or with additional information before resuming
the normal execution. The EHL is agnostic wrt. exception
handling mechanism chosen by the language and supports
these mechanisms (see next sections).

3.3 Exception Handling Modular Decomposition
A language can be decomposed to leverage the EHL, untan-
gling the exception handling code from the code of unrelated
language features. Fig. 2 depicts such a modularization. Fig. 2
is comprised of two main components: the base language
(red box) and the exception handling implementation built
on its top. Fig. 2 also splits the exception handling mecha-
nism into exception handling language features (black box)
and EHL (blue box). The part about the base language imple-
mentation is not relevant to this discussion and is omitted.
Each node in Fig. 2 is either a language feature (oval shape)
or a component of the EHL architecture (rectangular shape,
data structures are represented with a darker color and algo-
rithms with a lighter color). The EHL components mirror the
architecture discussed in Sect. 3.1. Each arrow represents a
dependency between coupled components. Double and sin-
gle arrows represent semantic and syntactic dependencies

respectively. Dashed and normal arrows represent depen-
dencies to external and internal components respectively.
The key element of this decomposition is dependency

management. To minimize coupling between components
and to maximize reuse, the decomposition uses EHL data
structures as adapters [26], so that exception handling lan-
guage features are not directly coupled with the underlying
exception handling mechanism and the semantics can be
changed freely. In fact, no feature from the base language
depends on the exception handling, neither syntactically
nor semantically. Exception handling features can instead
depend on features of the base language, which they can
extend, override and specialize depending on the exception
handling mechanism to be implemented. For instance, in
Fig. 2, the Throw language feature syntactically depends on
the Expression language feature, because in this case the
throw statement can throw an exception based on the return
value of an expression. Similarly, the CanThrow language fea-
ture extends the semantics of any expression by declaring
that its evaluation may cause an exceptional event—e.g., a
division by zero. Notice how such a decomposition is com-
pletely modular, so that exception handling features can be
used independently. E.g., it is possible to create languages
where i) the throw statement is present but expressions can
never cause an exception, ii) expressions can cause excep-
tions but the throw statement is absent, and iii) exceptions
can be thrown but never caught (no try-catch statements).

Internal dependencies among components of the EHL are
similarly structured: the Throw Exception component acts
as glue code that depends on all other elements of the ex-
ception handling mechanism, namely exception table, dis-
patcher, selector, handlers, finalizer and secure area. A dif-
ferent exception handling mechanism can be deployed by
swapping the Throw Exception component with a similar
component that shares the same interface but connects dif-
ferent elements. For instance, it is possible to create a new ex-
ception handling in which the dispatcher is replaced whereas
all other elements remain the same. Similarly, elements can
be shared across several Throw Exception components, pos-
sibly pertaining different programming languages. To ensure
that data is properly carried throughout the entire exception
handling process, all elements depend on the exception table,
on the secure area, and on the memory layout. Thus, in the
EHL the dependencies between components are limited to
the data representation (darker color), rather than on the
behavior: as long as the data representation stays the same,
the exception handling mechanisms can be extended and
replaced at will. Some specific language features may break
this rule. For instance, the Catch language feature depends
on the Handler, because it needs to register a new handler
within the exception table upon entering a protected section.
However, such dependencies are always limited to one lan-
guage feature and do not impact the rest of the language: in

5

SLE ’23, October 23–24, 2023, Cascais, Portugal Walter Cazzola and Luca Favalli

1 public class JEL {

2 public static void raise (ExceptionID exceptionID,

3 ExceptionTable exceptionTable, Memory memory,

4 Section thrower, Dispatcher dispatcher,

5 Selector selector, Optional<Finalizer> finalizer,

6 Optional<SecureArea> secureArea) {

7 var handler = dispatcher.dispatch (

8 exceptionID, exceptionTable, memory,

9 thrower, selector, secureArea);

10 handler.ifPresentOrElse (

11 h -> h.handle(secureArea),

12 () -> finalizer.ifPresent (f ->

13 f.finalize(secureArea, exceptionID)));

14 }

15 }

Listing 1. Glue code that connects all the elements of JEL.
Please note that redundant generic data types are omitted
to save space; refer to the text of this section for the generic
data types associated to each element.

Fig. 2, the Catch feature can be replaced with a different one
without affecting the Throw and CanThrow features.

3.4 Exception Handling Layer in Java
In this work, we implemented the EHL as a library dubbed as
Java exception layer (JEL). JEL behaves like an intermediate
layer between the running application and the underlying
JVM execution environment. The JEL library is intended to
be used instead of the default exception handling mechanism
offered by the JVM to support additional language features,
such as retry/resume operations and handlers for arbitrary
types—instead of just members of the Throwable hierarchy.
While the underlying Java exceptions still exist within the
runtime environment, they should be transparent for the
user: assuming the language provides a full-fledged imple-
mentation of its exception handling mechanism using JEL,
all Java exceptions are captured and translated into a JEL ex-
ceptional event. According to the modularization constraints
discussed in Sect. 3.3, notice how JEL does not refer to any
language-specific implementation aspect, such as the sup-
ported operations and their syntax. JEL is implemented as a
library of generic interfaces with a default implementation.
Generic Data Types. Since the dependencies among com-
ponents is EHL are based on the data representation, JEL
data structures and algorithms can be customized according
to five different data types (classes, in Java):

— EX_ID the exception identifier;
— SEC_ID the unique identifier for a section;
— VAR_NAME_TYPE the type used for variables identifiers;
— VAR_TYPE_TYPE the type used for variables types;
— PAYLOAD the type of data carried by the secure area.

Default implementation. Mirroring the EHL architec-
ture, JEL provides the interfaces for three data structures:

i) the memory layout, ii) the exception table and iii) the
secure area, as well as their default implementations.
The memory layout is shared between the base language

and the exception handling module. To fit the modulariza-
tion requirements, the memory layout is implemented in an
agnostic way wrt. the exception handling and is populated by
generic Section objects. JEL provides two default implemen-
tations for the memory layout interface: a graph and a stack
sharing the same Section objects. Both implementations
can be adapted to the language by specifying the SEC_ID,
VAR_NAME_TYPE and VAR_TYPE_TYPE generic data types.

The default exception table is implemented as a two-dimen-
sional look-up table that takes the ID of the exceptional
event and the ID of the thrower Section and maps them to
the respective handler method. The exception table can be
interacted with to register and unregister exception IDs and
exception handlers upon entering and exiting sections during
execution. The default exception table can be customized
according to all five generic data types.
The default secure area is implemented as a wrapper for

an object with store and retrieve operations. The type of
wrapped data is set by specifying the PAYLOAD generic data
type. The responsibility of correctly populating this data
structure is delegated to the thrower, which will change
depending on the language the EHL is being plugged on.

JEL also provides a default implementation for dispatcher
and selector routines that can be customized according to
all five generic data types. The default dispatcher is a traver-
sal algorithm for a stack-based memory layout, that pops
elements from the top, delegating to the selector on each
element, until finding a handler or reaching the bottom. The
default selector queries the two-dimensional exception table
for the handler for a (SEC_ID, EX_ID) pair, if any.

Finally, JEL provides a static raisemethod that is in charge
of starting the exception throwing event and that acts as the
glue code connecting all the elements, as shown in Listing 1.
Given this code, the execution of an exceptional event from
the perspective of a language feature coincides with a call to
the raise method with the correct arguments.

4 Case Study and Discussion
This section presents and discusses a language evolution
scenario that uses EHL to add exception handling support to
a base exception-unaware language. TheNeverlang language
workbench [48] is used to implement both the exception-
unaware base language and its exception-aware variants.

4.1 Neverlang Overview
Neverlang [48] is a language workbench for the modular de-
velopment of programming languages and their ecosystems.
It is based on the language feature concept [9], each devel-
oped as separate units called slices that can be independently
compiled, tested, and distributed. Syntactic and semantic

6

Exceptions all Over the Shop SLE ’23, October 23–24, 2023, Cascais, Portugal

1 module nl.jel.JELTryStatement {

2 reference syntax {

3 try_part: TryPart ^ "try" ProtectedSection;

4 protected: ProtectedSection ^ Block;

5 }

6 role (evaluation) {

7 try_part: .{

8 eval $try_part[1];

9 Section<Long,String,JSReference> section =

10 $try_part[1].section;

11 JELSymbolTable jst = (JELSymbolTable)$$SymbolTable;

12 Stack<Long, String, JSReference> stack =

13 jst.getStack();

14 stack.push(section);

15 stack.peek().get().getCode().execute();

17 if($try_part[1].shouldRaise) {

18 JSSecureArea secure = $$SecureAreaBuilder.build (

19 $try_part[1].error;

20);

21 JSJEL.raise($$JSExceptionTable, stack,

22 section, $$JSDispatcher, $$JSSelector,

23 $$JSFinalizer, secure

24);

25 }

26 stack.pop();

27 }.

28 protected: .{

29 /*Code to generate the Section executable object*/

30 }.

31 }

32 }

33 endemic slice nl.jel.JELEndemic {

34 declare {

35 static JSExceptionTable: nl.jel.JSExceptionTable;

36 static SecureAreaBuilder: nl.jel.SecureAreaBuilder;

37 static JSDispatcher: nl.jel.JSDispatcher;

38 static JSSelector: nl.jel.JSSelector;

39 static JSFinalizer: nl.jel.JSFinalizer;

40 }

41 }

42 language nl.jel.JSLangJEL {

43 slices nl.jel.JELTryStatement /* ... */

44 endemic slices nl.jel.JELEndemic /*...*/

45 roles syntax <+ evaluation

46 }

Listing 2. Syntax and semantics for the JavaScript try block
language feature in Neverlang.

assets are contained in a compilation unit called module. A
module contains a reference syntax block—in which the
productions are defined—and any number of roles. Each role,
is preceded by the role keyword, and represents a visit of
the parse tree: each role is made by one or more semantic
actions [1] that are executed when some nonterminal sym-
bol is encountered in the parse tree. Syntactic definitions
and semantic roles are exogenously composed using slices.
Please refer to [48] for a full Neverlang overview.
Basic capabilities. Listing 2 shows a modular implemen-
tation of the try statement and part of the compositionmech-
anisms offered by Neverlang. The Try module (lines 1-32)
declares a reference syntax for the try part of a try-catch

block (lines 2-5), made of two production rules. The first
is labeled “try_part” (line 3) and the second is labeled “pro-
tected” (line 4). The semantics are declared within a role

block (lines 6-31) defining several semantic actions; each
action is attached to a nonterminal of any of the productions
of the reference syntax by referring to their label3—e.g., the
semantic action at line 7 refers to the production at line 3,
whereas the semantic action at line 28 refers to the produc-
tion at line 4. Nonterminals within a production are accessed
using square brackets, in an array-like fashion as highlighted
by the red arrows in Listing 2. Following the syntax directed
translation technique [1], attributes are accessed from non-
terminals by dot notation as done for retrieving the section
attribute on line 10. Neverlang semantic actions are written
in Java with some syntactic sugar. The semantic action at
lines 7-27 retrieves the Section object from a child node
(line 10), pushes it on the stack (line 14), and tries to execute
it (line 15). A new exception is thrown (line 21) if any error
occurs. Regardless of the result, the section is eventually
popped from the stack (line 26).
Other capabilities. Neverlang supports composition be-
tween module units using other units called slice and bundle,
hereby not shown for brevity. Neverlang endemic slices

units can be used to declare instances that are globally acces-
sible throughout all semantic actions within the language.
E.g., lines 33-41 of Listing 2 declare several instances needed
for the correct execution of JEL, one for each of its customiz-
able elements, as discussed in Sect. 3.4. These instances can
be accessed using the $$ operator, as done when throwing
an exception on lines 21-24. Thanks to this mechanism, the
exception handling process can be customized simply by
swapping the nl.jel.JELEndemic endemic slice with a dif-
ferent endemic slice that re-declares the same instances by
changing their class. Instead, the semantic action of module
nl.jel.JELTryStatement remains unaltered. Modules, bun-
dles, slices, and endemic slices are composed into a complete
and executable language specification using the language

unit, as done in lines 42-46. Neverlang supports language
product line engineering [10, 11] through AiDE [34, 35, 49,
50], FeatureIDE [24], and the Gradle build tool.

4.2 JavaScript Evolution Scenario
We present a three-staged evolution for a JavaScript inter-
preter written inNeverlang [12] conform to the EcmaScript 3
specification, with the exception of part of the standard li-
brary. The variant V1 is the base language with its own imple-
mentation of both the memory layout and of the exception
handling. Variant V2 removes exception handling support
and replaces the original implementation of the memory lay-
out with a JEL-based symbol table. Variant V3 adds several
exception handling language features on top of variant V2.

3Neverlang also provides an alternative mechanism, based on absolute
position of nonterminals within the reference syntax, not discuss for brevity.

7

SLE ’23, October 23–24, 2023, Cascais, Portugal Walter Cazzola and Luca Favalli

Table 1. The effort to evolve JavaScript from V1 to V2 and
from V2 to V3 wrt. the memory layout (Memory) and excep-
tion handling features (Exceptions). Data are collected by
using the svn diff and the diffstat Linux commands.

Evolution step effortCode edit Change type V1 → V2 V2 → V3

Total 7 1
Memory 6 0
Exceptions 0 0Files changed

Glue 1 1

Total 7 20
Memory 5 0
Exceptions 0 17Files added

Glue 2 3

Total 369 489
To new files 292 485
Memory 322 0
Exceptions 0 448

Insertions
(LoC)

Glue 47 41

Total 71 0
Memory 70 0
Exceptions 0 0

Deletions
(LoC)

Glue 1 0

On both evolution steps, we measured the implementation
effort, as summarized in Table 1. The first step is intended
to measure the effort needed to render an existing language
compliant to JEL and, by extension, to the EHL, thus an-
swering RQ1. The second evolution step aims at measuring
the effort needed to implement varied exception handling
language features in JEL, thus answering RQ2. In both steps,
we discuss how much this refactoring is affected by Never-
lang, thus answering RQ3. The resulting implementation of
JavaScript V3 is available on Zenodo.4

JavaScript V1. JavaScript V1 supports many of the most
important features offered by the language, including (but
not limited to):

— numeric, boolean, string and reference types;
— prototype-based classes and constructors;
— expressions between basic, reference and object types;
— if-else, switch, while, and for statements;
— standard output;
— functions declaration and invocation;
— throw, try, catch, and finally statements.

Most notably, JavaScript V1 uses a custom memory layout
based on a linked list; since this interpreter runs on the
Neverlang runtime and therefore on JVM, it leverages the
default exception handling mechanisms provided by Java
to implement throw and try-catch statements. While this
allows for a easy solution, the end result is hard to extend, due
to Java not supporting unconventional exception handling
language features by default.
4https://doi.org/10.5281/zenodo.8328246

1 public class JSStack

2 extends Stack<Long, String, JSReference>

3 implements JSEnvironment.Instance<JSStack> {

4 @Override

5 public Class<JSStack> genericType() {

6 return JSStack.class;

7 }

8 }

Listing 3. Adapting generic JEL datatypes to the needs of a
specific language interpreter.

Overall, JavaScript V1 is comprised of 144Neverlang units—
for a total of 5,409 lines of code (LoC)—and 73 Java classes—
for a total of 6,475 LoC: 318 LoC are needed to implement the
memory layout, with an additional 1,983 LoC to represent
types and variables within memory. 43 LoC are needed to
implement the throw statement, and 135 LoC are needed to
implement try, catch, and finally, with an additional 109
LoC to implement the errors of various types.
This is the baseline against which the following variants

will be evaluated, to measure the effort of replacing this
implementation with a JEL-based one.
JavaScript V2. The JavaScript V2 interpreter replaces the
default implementation of the linked list symbol table pro-
vided by JavaScript V1 with the default stack memory layout
provided by JEL. Moreover, it removes any support for excep-
tion handling, meaning that JavaScript V2 programs cannot
throw nor catch any exceptions. To minimize the impact
on the original code, the symbol table was implemented as
an adapter [26]—dubbed JELSymbolTable—that extends the
LinkedListSymbolTable class, so that the old implementa-
tion still works just by changing the runtime class of the
symbol table. Then, calls to the JELSymbolTable are dele-
gated to the actual JEL stack. As shown in Listing 3, the
implementation of this stack is minimal because it does not
provide any functionality, but simply specifies the generic
types introduced in Sect. 3.4 according to data types needed
by JavaScript, in particular:

— SEC_ID is instantiated to Long;
— VAR_NAME_TYPE is instantiated to String;
— VAR_TYPE_TYPE is instantiated to JSReference.

The JSReference class is particularly important in this con-
text, because we could reuse most of the existing types with
the new data structures. The JSEnvironment.Instance in-
terface replaces the naïve singleton LinkedListSymbolTable
instance with a more customizable alternative that allows
instances of any subclass to be registered as the singleton.
Although limited, some modifications were required to

change the original implementation of JavaScript V1. Table 1
reports the effort required to make these changes. The refac-
toring required the modification of 7 files (6 Java classes and
1 Neverlang unit) and the creation of an additional 7 files
(5 Java classes and 2 Neverlang units). All three Neverlang
units are a form of glue code: we implemented a new lan-
guage unit and two endemic slices, but no modules. This

8

https://doi.org/10.5281/zenodo.8328246

Exceptions all Over the Shop SLE ’23, October 23–24, 2023, Cascais, Portugal

refactoring required 369 insertions and 71 deletions, for a
total of 440 modifications; removing the existing implemen-
tation of the exception handling mechanisms required no
modifications. Considering the size of the whole JavaScript
V1 project, changing the memory layout to support JEL re-
quired a modification of 440/(5, 409 + 6, 575) = 3.67% of the
project. Moreover, Table 1 shows that out of 369 insertions,
292 were made to newly created files, therefore changes to
existing files are limited to 71 deletions and 77 insertions. In
fact, using the diffstat command with the -m flag, reveals
that the actual results are 306 insertions, 8 deletions and 63
modifications. We can now answer RQ1.

How hard is it to refactor an existing language
implementation so that it can be used in tandem
with the exception handling layer?

Refactoring an existing and full-fledged implementation of a
language interpreter such as JavaScript V1 so that it can be
used in tandem with a EHL implementation for Java requires
modifying about 3.67% of its code. We can conclude that
an existing memory layout can be replaced with a memory
layout based on EHL with limited effort, especially if part of
the default implementation can be reused. Of course, differ-
ent languages may require a different effort—e.g., a smaller
project may require more changes wrt. the project total size.
JavaScript V3. The JavaScript V3 interpreter adds several
exception handling language features on top of JavaScript
V2. This includes the generic types specification for the JEL
exception table, dispatcher, selector, finalizer and secure area
according to the following types:

— EX_ID is instantiated to String;
— PAYLOAD is instantiated to JSExceptionPayload.

The remaining three generic types must conform to the mem-
ory layout definition and therefore they are the same used in
JavaScript V2. We used the default JEL implementation for
all data structures and algorithms (akin to what shown in
Listing 3), with the exception of the finalizer and the secure
area. The finalizer stops the application, whereas the secure
area holds a JSExceptionPayload that keeps the stack trace
during the exception handling process. We also implemented
the following exception handling language features: throw
statement, retry, and resume statements, and try catch

block, finally blocks. Most notably, throw, try, catch, and
finally are fairly common exception handling language fea-
tures, whereas retry and resume are rather unconventional.
Both are resumption mechanisms that drive the execution of
the program after running an exception handler. The retry
(inspired by design by contract [40]) continues the execution
from the first statement of the thrower and the resume (in-
spired by hardware pipelines) continues the execution from
the next statement after the one causing the exceptional
event. The implementation of the try block was already
shown in Listing 2 and discussed in Sect. 4.1. We do not re-
port the implementation of all other features for brevity and

1 module neverlang.js.jel.exceptions.JELStatementList {

2 reference syntax from neverlang.js.JSStatementList

3 role (evaluation) {

4 s_list_0: .{

5 ▶baseActionList;

6 JSCompletionValue s = $s_list_0[0].cvalue;

7 if (s.getType() == JSCVType.THROW)

8 $$JELResumeArea.push($s_list_0[2]);

9 }.

10 s_list_1: .{ ▶baseAction; }.

11 }

12 }

13 slice neverlang.js.jel.exceptions.JELResumeBlock {

14 concrete syntax from neverlang.js.JSStatementList

15 module neverlang.js.jel.exceptions.JELStatementList

16 with role evaluation delegates {

17 baseActionList ⇒
18 neverlang.js.JSStatementList ▶ evaluation[0],

19 baseAction ⇒
20 neverlang.js.JSStatementList ▶ evaluation[3]

21 }

22 }

23 module neverlang.js.jel.exceptions.JELResumeStatement {

24 reference syntax {

25 stat: Statement ^ ResumeStatement;

26 resume: ResumeStatement ^ "resume" SemiColonOpt;

27 }

28 role(evaluation) {

29 resume: .{

30 ASTNode resume = $$JELResumeArea.peek();

31 $ctx.eval(resume);

32 $resume.cvalue = resume.getValue("cvalue");

33 }.

34 }

35 }

Listing 4. Throw statement using Neverlang and JEL.

1 var a = 1;

2 try {

3 throw 1;

4 a = a + 42;

5 } catch (x) {

6 a = a + x;

7 resume;

8 }

(a) JavaScript program us-
ing the resume statement.

1 var a = 1;

2 try {

3 if (a <= 10)

4 throw 1;

5 } catch (x) {

6 a = a + x;

7 retry;

8 }

(b) JavaScript program us-
ing the retry statement.

Listing 5. Unconventional exception handling language fea-
tures in JavaScript V3.

instead we focus on the most interesting aspects. With re-
gards to the catch and finally blocks, both are registered as
handlers for the corresponding protected section within the
exception table, with the difference that the handler for the
finally block is always executed, regardless of an exception
being thrown or not. From an implementation standpoint,
this was achieved by creating a composite [26] handler that
runs both the catch part and the finally part when an excep-
tion is caught whereas only the finally part is executed if

9

SLE ’23, October 23–24, 2023, Cascais, Portugal Walter Cazzola and Luca Favalli

no exception occurs. To implement the throw statement in a
way that also supports the resume statement, we leveraged
the original implementation provided by the JavaScript V1
interpreter: the node of the parse tree associated to each
statement is assigned an attribute called cvalue that marks
if that statement keeps the normal flow (JSCVType.NORMAL)
or not, such as upon execution of a break or a continue.
Similarly, when a throw statement is found, the exception
is not thrown right away, rather the cvalue attribute is set
to JSCVType.THROW. If that value is found when executing a
statement, then all other statements within the same block
are skipped. Listing 4 shows how to achieve reuse for this
implementation. The JELStatementList imports its syntax
from the JavaScript V1 statement lists (line 2) and it over-
rides its semantics by leveraging the delegation operator [4]
(lines 5 and 10). Upon encountering the delegation opera-
tor, the actual semantic actions to be executed are specified
within the slice unit, as shown at lines 17 and 19. There-
fore, the same code may use different delegates by using a
different slice with a different delegates block. While the
semantics of the semantic action labeled as s_list_1 stay
the same (it calls the delegate but it adds no code), the se-
mantic action labeled as s_list_0 is overridden. After the
delegation, if the current statement of the list was a throw
(line 7), then the parse tree node for the next statement is
pushed to an endemic instance called JELResumeArea: this in-
formation is the resumption point of any resume statements
within the exception handlers (line 8). This information is
then retrieved (line 30) and executed (line 31) in the current
context by the semantic action of the resume statement itself.
Listing 5(a) shows a JavaScript V3 program in which variable
𝑎 evaluates to 44 because the execution of the try block is
resumed after executing the exception handler. The retry
statement leveraged a similar technique: the node associated
to the first statement of a protected section is pushed to the
JELRetryArea endemic instance and can be retrieved upon
executing the retry. In Listing 5(b) the protected section is
retried until 𝑎 > 10. For both the JELResumeArea and the
JELRetryArea the latest resumption point is popped upon
exiting the protected section.
Table 1 reports the effort associated to the implementa-

tion of the language features hereby discussed. Overall, the
implementation required the creation of 20 new files and
the modification of just one existing file—i.e., the Neverlang
language unit was updated to include the new language
features. Notice how no files had to be modified to achieve
these results, therefore this evolution step required no dele-
tions. This result is important because it shows that once
the memory layout for JEL is in place, the exception han-
dling language features can be implemented without further
modifications to existing code. Moreover, out of the 489 in-
sertions (only 81.6 LoC per exception handling language
feature on average), none was used to add features to the
memory layout–e.g., by adding additional informationwithin

the sections on the stack—instead insertions were limited to
the implementation of the language components and their
interaction with JEL. We can now answer RQ2 and RQ3.

How hard is it to add exception handling support
to a language implementation using the excep-
tion handling layer?

Adding an exception handling language feature to a lan-
guage that uses a memory layout compliant to the EHL such
as JavaScript V2 took 81.5 LoC per feature on average. In
total, we implemented 6 different language features: try,
catch, and finally blocks, and throw, retry, and resume

statements using 489 LoC and without affecting any of the
pre-existing implementation, except for 4 lines of glue code.
The total effort may increase if the interpreter needs to im-
plement different exception handling mechanisms, such as
a dispatcher different from the JEL default. However, such
a change can also be achieved without changing the origi-
nal code, but simply by adding pieces of glue code such as
Neverlang endemic slices.

Howmuch is the achievedmodularization reliant
on Neverlang-specific mechanisms?

In the first evolution step (V1→V2), we achieved the refactor-
ing by writing only 3Neverlang units used as glue code. Most
of the modifications involved the reliance of Java classes
on the singleton instances; we refactored this into a more
customizable mechanism using only Java, as exemplified in
Listing 3. Thus, we believe that the same refactoring could
be performed in other language workbenches with similar
results. In the second evolution step (V2→V3) we could add
the exception handling features without changing the orig-
inal code partly thanks to Neverlang features, especially
the delegation operator shown in Listing 4. Although del-
egation can be used to compose semantic actions [4], in
this context it was simply used as an overriding mechanism
for semantic actions, a feature that is supported by most
language workbenches such as MontiCore [29], MPS [7],
Lisa [42], Spoofax [30], andMelange [20]. The same can also
be achieved with aspect-oriented superimposition [36]. Sim-
ilarly, Listing 2 shows the composition among JEL elements
using the Neverlang endemic slice construct. However, the
same result can be achieved with an additional layer be-
tween the semantic action and the JEL interface, as shown
in Fig. 2 with the Throw Exception component: instead of
performing the composition directly within Neverlang, the
same composition could be performed within a Java class.
We conclude that the reliance of our implementation on Nev-
erlang was very limited and was a form of opportunistic
reuse rather than an actual requirement.
4.3 LogLang Evolution Scenario
The EHL and JEL by extension are intended to be used across
different languages with different characteristics. Since this
model is meant to work in tandem with the modularization
options offered by language workbenches, it is particularly

10

Exceptions all Over the Shop SLE ’23, October 23–24, 2023, Cascais, Portugal

1 task SomeTask {

2 backup "/foo/bar.txt" "/backup/bar.bak"

3 remove "/foo/bar.txt"

4 }

(a) Exemplary task written in LogLang.

./gradlew runLogLang

> Task :runLogLang

executing task SomeTask

File ./foo/bar.txt does not exist, do you want to create it?

(b) LogLang finalizer in action.
Listing 6. LogLang with exception handling support.

relevant that it is compliant to the needs of domain-specific
languages (DSL), that are typically the main output of lan-
guage workbenches. To test this, we stretched JEL capabil-
ities to implement a recovery procedure for the LogLang
DSL, used for file system tasks declarations [13]. LogLang
tasks are declarative, do not support any form of exception
handling nor run on any memory layout. The DSL also does
not include any language features to catch errors, nor to
define handlers. In this case, the idea was to verify if the
same model is applicable to a scenario in which most ele-
ments of the EHL can be omitted. To achieve this goal, we
extended LogLang, so that LogLang tasks throw a JEL excep-
tion whenever the file on which the task must be performed
does not exist. Such an example is shown in Listing 6. Since
there are no memory, no sections, and no handlers, both the
dispatcher and the selector always fail their search, therefore
according to Listing 1, control is eventually taken by the
finalizer. The finalizer is a custom procedure that prompts
the users by asking them if they want to create the file. For
instance, when running the task reported in Listing 6(a), file
“foo/bar.txt” does not exist, therefore the user is prompted
accordingly, as in Listing 6(b). The users can either accept
or decline: in the former case the file is created and the task
execution is resumed normally; in the latter the finalizer
stops the application. This language evolution required the
creation of just one class5 of 70 LoC, added 1 LoC to three
different Neverlang modules—i.e., the code needed to throw
the exception—and modified an endemic slice to include the
JEL-related endemic instances. In total, the refactoring took
77 LoC. We can now answer RQ4.

Does the conceptual framework support varied
exception handling mechanisms and their lan-
guage features?

Thanks to JEL we could implement varied exception han-
dling language features. Some features were fairly traditional,
such as the throw statement, and the try, catch, and finally
blocks in JavaScript, while others are rather unconventional,
such as the retry and resume statements. Most notably, these
features are not supported by the exception handling mech-
anisms offered by the JVM, but they could be easily imple-
mented with JEL in a modular way. Moreover, we applied the
5For simplicity, we created only one class that implements the Dispatcher,
Selector, and Finalizer interfaces at the same time.

same architecture for the implementation of an unconven-
tional recovery procedure for a DSL without any memory
layout and that does not support any exception handling
by default. We believe that these two evolution scenarios
prove the applicability of the EHL to the creation of varied
exception handling mechanisms and their features.

4.4 Threats to Validity
External validity. The language evolution scenarios are
based on Neverlang and Java and they may not be possible
to reproduce it in different contexts. To prevent this issue,
we implemented JEL without making any assumptions nei-
ther with regards to the base language nor to the language
workbench. In particular, JEL does not rely on the Neverlang
runtime and can be used by any program running on the
JVM. We also tried to limit our reliance on Neverlang to
perform the language evolution, as discussed in the answer
to RQ3. Similarly, JEL was created from scratch and does
not rely on specific characteristics of Java to work. Even the
infrastructure based on the five generic types is just a pro-
grammer convenience to improve error messages at compile
time, since those types are affected by type erasure and do
not exist at runtime. In summary, we believe that a similar
library with data structures and algorithms compliant to the
EHL could be implemented in any other general purpose
programming language other than Java.
Construct validity. The answer to RQ1 and RQ2 is based
on a specific evolution scenario, therefore a similar imple-
mentation of the EHL on other languages may require ad-
ditional effort. To avoid this issue, we strictly defined the
EHL first, then developed JEL following the EHL and finally
performed the evolution experiment. We never reiterated
on any prior step to accommodate the evolution experiment.
Whenever a change was necessary to perform the evolution,
it was made to the host language implementation and never
to the library nor to the EHL therefore our measures should
be able to represent the actual development effort.
Internal validity. We defined the EHL and answered RQ3
and RQ4 based on our experience with exception handling
mechanisms and with language workbenches. This may
cause an issue due to exotic exception handling mechanisms
and language workbenches we may be unaware of. To pre-
vent this issue, we did not make any assumptions on the
language, even allowing for arbitrary memory layouts; we
also tested an unconventional exception handling mecha-
nism in which most of the elements of the EHL are optional.
This convinced us of the generality of our architecture, as
well as of its implementation.

5 Related Work
Modular language development is a popular research topic.
Many language workbenches have been proposed, each with
its own take on language composition. Their contribution
is related to ours due to their focus on providing ways to

11

SLE ’23, October 23–24, 2023, Cascais, Portugal Walter Cazzola and Luca Favalli

avoid the monolithic approach to language implementa-
tion. Melange [20] integrates tools from the Eclipse Mod-
eling Framework (EMF) ecosystem [46]and supports lan-
guage extension and language merge [20]. Meta Program-
ming System (MPS) [52] is a development environment for
non-textual DSLs based on projectional editing [53] using
concepts (abstract syntax nodes) and behaviors (semantics).
MontiCore [33] generates abstract data types for the parse
tree and uses Java visitors for the semantics. It supports reuse
through the extension of abstract data types and grammar
inheritance. Rascal [31] is a meta-programming language
that supports the implosion of parsed text and parse tree
transformations. The evaluation leverages the pattern-based
dispatch technique [3]. Spoofax [54] provides several DSLs
for language development; the semantics are called rules and
strategies and can be defined as a sequence of functions over
the AST. To the best of our knowledge, there are no contri-
butions using language workbenches to directly address the
exception handling mechanism and its portability, but, as we
discussed in Sect. 4.2, we believe that the EHL is applicable
to all aforementioned language workbenches and Java-based
ones could even use the JEL library.
Development of crosscutting features such as exception

handling have been discussed mainly with regards to aspect-
oriented programming. For instance, Liebig et al. use the
superimposition operator to handle crosscutting features in
Mobl [37]. Hadas and Lorenz switch the perspective by intro-
ducing language orientedmodularity [28]: instead of tackling
the problem of crosscutting features in languages, they lever-
age the ease of use of language workbenches to create sev-
eral DSLs, each tackling a different crosscutting concern in
other systems. However, interactions among language-based
tools are hard to understand without good integration [5];
compared to the EHL, their work is not applicable to the
definition of modular exception handling language features
in a unique language.

On the topic of exception handling, some contributions fo-
cus on exception handling in management systems: Chiu et
al. [17] address the importance of reusing exception handlers
to deal with workflow exceptions and propose the ADOME
exception handling environment for the definition of dy-
namic bindings for exception handlers, run-time modifica-
tions of exception handlers and exception handler reuse.
Similarly, the VIEW scientific workflow management system
provides customizable and hierarchical exception handlers;
the authors also propose a language for user-defined excep-
tion handling mechanisms [45]. Celovic and Soukouti [15]
describe the proper use of exception handlers for the devel-
opment of large scale enterprise systems. In their work, they
defined six groups of responsibilities, including the thrower
and the catcher; our conceptual framework is similar and
reflects these responsibilities. In all these cases, the applica-
bility to traditional programming languages is not discussed.
The contribution from Ogasawara et al. [43] addresses on the

optimization of stack unwinding and stack cutting in Java
and could be used to create an optimized version of the excep-
tion handling layer. More in general, using an intermediate
layer to abstract the memory layout and exception handling
introduces an overhead that requires optimizations such as
by limiting the costs of metaprogramming capabilities used
by the language workbench [39] and using optimized AST
interpreters with partial evaluation [38].
Cabral and Marques implement retry semantics on lan-

guages lacking this language feature using aspect-oriented
programming [6]. Bagge et al. [2] present a layer that can
be used on top of any platform-specific error reporting to
generalize error reporting and handling through the alert
concept. The proposed implementation also supports retry
semantics, but it is implemented as an extension to the C
language, therefore replication in other languages requires
the development of a similar extension. Chase [16] also dis-
cussed exception handling in C, although his remarks are
general enough to be valid for any language. Chase observes
that the exception handling mechanism should be smoothly
integrated with the rest of the host programming language,
but the contribution focuses on low level details instead of
defining a general and abstract framework such as the EHL.

In their contribution, Brinke et al. [47] discuss a tailorable
control flow, including exceptional flow. In their view, all
exception handling mechanisms should be supported within
the same language and application programmers should be
able to choose which kind of exception handling mechanism
they want to use. Their work is closely related to ours, since
they propose an intermediate layer to customize exception
handling, but the code is written using continuations, thus
compared to the EHL the base language must support first-
order functions and the resulting code may be less readable.

6 Conclusions
Exception handling is a collection of language features whose
implementation is usually hard to reuse because scattered
across several parts of the implementation. The EHL frame-
work permits to untangle the code of the exception handling
language features from the code of other language features.
The EHL architecture is very flexible, allows for arbitrary
memory layouts, dispatching algorithms and handling proce-
dures, and most of its elements are optional. We proved the
EHL applicability by developing the JEL library and using it
to add exception support to a full-fledged implementation
of JavaScript without changing its implementation. Our ex-
perience shows that several exception handling language
features—both conventional and unconventional—can be
achieved with an high degree of modularity and with limited
development effort.

Acknowledgments
This work was partially funded by the MUR project “T-
LADIES” (PRIN 2020TL3X8X).

12

Exceptions all Over the Shop SLE ’23, October 23–24, 2023, Cascais, Portugal

References
[1] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. 2006.

Compilers: Principles, Techniques, and Tools (second ed.). Addison-
Wesley, Boston, MA, USA.

[2] Anya Helene Bagge, David Valentin, Magne Haveraaen, and
Karl Trygve Kalleberg. 2006. Stayin’ Alert:: Moulding Failure and
Exceptions to Your Needs. In GPCE’06. ACM, Portland, OR, USA, 265–
274.

[3] Bas Basten, Jeroen van den Bos, Mark Hills, Paul Klint, Arnold
Lankamp, Bert Lisser, Atze van der Ploeg, Tijs van der Storm, and
Jurgen Vinju. 2015. Modular Language Implementation in Rascal—
Experience Report. Science of Computer Programming 114 (Dec. 2015),
7–19.

[4] Francesco Bertolotti, Walter Cazzola, and Luca Favalli. 2023. On the
Granularity of Linguistic Reuse. Journal of Systems and Software 202
(Aug. 2023). https://doi.org/10.1016/j.jss.2023.111704

[5] Barret Bryant, Jean-Marc Jézéquel, Ralf Lämmel, Marjan Mernik, Mar-
tin Schindler, Friedrich Steinmann, Juha-Pekka Tolvanen, Antonio
Vallecillo, and Markus Völter. 2015. Globalized Domain Specific Lan-
guage Engineering. In Globalizing Domain-Specific Languages (Lecture
Notes in Computer Science 9400), Benoît Combemale, Betty H.C. Cheng,
Robert B. France, Jean-Marc Jézéquel, and Bernhard Rumpe (Eds.).
Springer, 43–69.

[6] Bruno Cabral and Paulo Marques. 2009. Implementing Retry—
Featuring AOP. In LADC’09. IEEE, João Pessoa, Brazil, 73–80.

[7] Fabien Campagne. 2016. The MPS Language Workbench. Vol. 1. Cre-
ateSpace Independent Publishing.

[8] Walter Cazzola. 2012. Domain-Specific Languages in Few Steps: The
Neverlang Approach. In SC’12 (Lecture Notes in Computer Science 7306).
Springer, Prague, Czech Republic, 162–177.

[9] Walter Cazzola, Ruzanna Chitchyan, Awais Rashid, and Albert Shaqiri.
2018. `-DSU: A Micro-Language Based Approach to Dynamic Soft-
ware Updating. Computer Languages, Systems & Structures 51 (Jan.
2018), 71–89. https://doi.org/10.1016/j.cl.2017.07.003

[10] Walter Cazzola and Luca Favalli. 2022. Towards a Recipe for Language
Decomposition: Quality Assessment of Language Product Lines. Em-
pirical Software Engineering 27, 4 (April 2022). https://doi.org/10.1007/
s10664-021-10074-6

[11] Walter Cazzola and Luca Favalli. 2023. Scrambled Features for Break-
fast: Concept, and Practice of Agile Language Development. Commun.
ACM (Nov. 2023).

[12] Walter Cazzola and Diego Mathias Olivares. 2016. Gradually Learn-
ing Programming Supported by a Growable Programming Language.
IEEE Transactions on Emerging Topics in Computing 4, 3 (Sept. 2016),
404–415. https://doi.org/10.1109/TETC.2015.2446192

[13] Walter Cazzola and Davide Poletti. 2010. DSL Evolution through
Composition. In RAM-SE’10. ACM, Maribor, Slovenia.

[14] Walter Cazzola and Edoardo Vacchi. 2013. Neverlang 2: Componen-
tised Language Development for the JVM. In SC’13 (Lecture Notes in
Computer Science 8088). Springer, Budapest, Hungary, 17–32.

[15] Dino Celovic and Nader Soukouti. 2004. About Effective Exception
Handling. White Paper. Sanabel Solutions.

[16] David Chase. 1994. Implementation of Exception Handling. The Jour-
nal of C Language Translation 5, 4 (June 1994), 229–240.

[17] Dickson Chiu, Qing Li, and Kamalakar Karlapalem. 2000. A Logical
Framework for Exception Handling in ADOME Workflow Manage-
ment System. In CAiSE’00 (Lecture Notes in Computer Science 1789).
Springer, Stockholm, Sweden, 110–125.

[18] Roberta Coelho, Lucas Almeida, Georgios Gousios, Arie van Deursen,
and Christoph Treude. 2017. Exception Handling Bug Hazards in
Android. Empirical Software Engineering 22 (June 2017), 1264–1304.

[19] Adrian Colyer, Awais Rashid, and Gordon Blair. 2004. On the Separa-
tion of Concerns in Program Families. Technical Report 107. Lancaster
University, Lancaster, United Kingdom.

[20] Thomas Degueule, Benoît Combemale, Arnaud Blouin, Olivier Barais,
and Jean-Marc Jézéquel. 2015. Melange: a Meta-Language for Modular
and Reusable Development of DSLs. In SLE’15. ACM, Pittsburgh, PA,
USA, 25–36.

[21] Sebastian Erdweg, Paolo G. Giarrusso, and Tillmann Rendel. 2012. Lan-
guage Composition Untangled. In LDTA’12. ACM, Tallinn, Estonia.

[22] Sebastian Erdweg, Tijs van der Storm, Markus Völter, Meinte Boersma,
Remi Bosman, William R. Cook, Albert Gerrtsen, Angelo Hulshout,
Steven Kelly, Alex Loh, Gabriël D. P. Konat, Pedro J. Molina, Martin
Palatnik, Risto Pohjonen, Eugen Schindler, Klemens Schindler, Ric-
cardo Solmi, Vlad A. Vergu, and Eelco Visser. 2013. The State of the
Art in Language Workbenches. In SLE’13 (Lecture Notes on Computer
Science 8225). Springer, Indianapolis, USA, 197–217.

[23] Sebastian Erdweg, Tijs van der Storm, Markus Völter, Laurence Tratt,
Remi Bosman, William R. Cook, Albert Gerritsen, Angelo Hulshout,
Alex Kelly, Gabriël Konat, Pedro J. Molina, Martin Palatnik, Risto Po-
hjonen, Eugen Schindler, Klemens Schindler, Riccardo Solmi, Vlad
Vergu, Eelco Visser, Kevin van der Vlist, Guido Wachsmuth, and Jimi
van der Woning. 2015. Evaluating and Comparing Language Work-
benches: Existing Results and Benchmarks for the Future. Computer
Languages, Systems and Structures 44 (Dec. 2015), 24–47.

[24] Luca Favalli, Thomas Kühn, and Walter Cazzola. 2020. Neverlang and
FeatureIDE Just Married: Integrated Language Product Line Develop-
ment Environment. In SPLC’20. ACM, Montréal, Canada, 285–295.

[25] Martin Fowler. 2005. Language Workbenches: The Killer-App for
Domain Specific Languages? Martin Fowler’s Blog. http://www.
martinfowler.com/articles/languageWorkbench.html

[26] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
1995. Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, Reading, Ma, USA.

[27] John B. Goodenough. 1975. Exception Handling: Issues and a Proposed
Notation. Commun. ACM 18, 12 (Dec. 1975), 683–696.

[28] Arik Hadas and David H. Lorenz. 2016. Toward Pratical Language
Oriented Modularity. In Modularity’16. ACM, Málaga, Spain, 94–98.

[29] Robert Heim, Pedram Mir Seyed Nazari, Bernhard Rumpe, and An-
dreas Wortmann. 2016. Compositional Language Engineering Using
Generated, Extensible, Static Type-Safe Visitors. In ECMFA’16 (Lecture
Notes in Computer Science 9764). Springer, Vienna, Austria, 67–92.

[30] Lennart C. L. Kats and Eelco Visser. 2010. The Spoofax LanguageWork-
bench: Rules for Declarative Specification of Languages and IDEs. In
OOPSLA’10. ACM, Reno, Nevada, USA, 444–463.

[31] Paul Klint, Tijs van der Storm, and Jurgen Vinju. 2009. RASCAL: A Do-
main Specific Language for Source Code Analysis and Manipulation.
In SCAM’09. IEEE, Edmonton, Canada, 168–177.

[32] Jan Kort and Ralf Lämmel. 2003. Parse-Tree Annotations Meet Re-
Engineering Concerns. In SCAM’03. IEEE, Amsterdam, The Nether-
lands, 161–170.

[33] Holger Krahn, Bernhard Rumpe, and Steven Völkel. 2010. MontiCore:
A Framework for Compositional Development of Domain Specific Lan-
guages. International Journal on Software Tools for Technology Transfer
12, 5 (Sept. 2010), 353–372.

[34] Thomas Kühn and Walter Cazzola. 2016. Apples and Oranges: Com-
paring Top-Down and Bottom-Up Language Product Lines. In SPLC’16.
ACM, Beijing, China, 50–59.

[35] Thomas Kühn, Walter Cazzola, and Diego Mathias Olivares. 2015.
Choosy and Picky: Configuration of Language Product Lines. In
SPLC’15. ACM, Nashville, TN, USA, 71–80.

[36] Ralf Lämmel. 2003. Adding Superimposition to a Language Semantics.
In FOAL’03. Boston, MA, USA, 65–70.

[37] Jörg Liebig, Rolf Daniel, and Sven Apel. 2013. Feature-Oriented Lan-
guage Families: A Case Study. In VaMoS’13. ACM, Pisa, Italy.

[38] Stefan Marr and Stéphane Ducasse. 2015. Tracing vs. Partial Evalua-
tion: Comparing Meta-Compilation Approaches for Self-Optimizing
Interpreters. In OOPSLA’15. ACM, Pittsburgh, PA, USA, 821–839.

13

https://doi.org/10.1016/j.jss.2023.111704
https://doi.org/10.1016/j.cl.2017.07.003
https://doi.org/10.1007/s10664-021-10074-6
https://doi.org/10.1007/s10664-021-10074-6
https://doi.org/10.1109/TETC.2015.2446192
http://www.martinfowler.com/articles/languageWorkbench.html
http://www.martinfowler.com/articles/languageWorkbench.html

SLE ’23, October 23–24, 2023, Cascais, Portugal Walter Cazzola and Luca Favalli

[39] StefanMarr, Chris Seaton, and Stéphane Ducasse. 2015. Zero-Overhead
Metaprogramming: Reflection and Metaobject Protocols Fast and with-
out Compromises. In PLDI’15. Portland, OR, USA.

[40] Bertrand Mayer. 1992. Applying ‘Design by Contract’. Computer 25,
10 (Oct. 1992), 40–51.

[41] David Méndez-Acuña, José A. Galindo, Thomas Degueule, Benoît
Combemale, and Benoît Baudry. 2016. Leveraging Software Product
Lines Engineering in the Development of External DSLs: A Systematic
Literature Review. Computer Languages, Systems & Structures 46 (Nov.
2016), 206–235.

[42] Marjan Mernik. 2013. An Object-Oriented Approach to Language
Compositions for Software Language Engineering. Journal of Systems
and Software 86, 9 (Sept. 2013), 2451–2464.

[43] Takeshi Ogasawara, Hideaki Komatsu, and Toshio Nakatani. 2001. A
Study of Exception Handling and Its Dynamic Optimization in Java.
Sigplan Notices 36, 11 (Oct. 2001), 83–95.

[44] Guilherme de Pádua andWeiyi Shang. 2018. Studying the Relationship
between Exception Handling Practices and Post-Release Defects. In
MSR’18. ACM, Gothenburg Sweden, 564–575.

[45] Dong Ruan, Shiyong Lu, Aravind Mohan, Xubo Fei, and Jia Zhang.
2012. A User-Defined Exception Handling Framework in the VIEW
Scientific Workflow Management System. In SC’12. IEEE, Honolulu,
Hawaii, USA, 274–281.

[46] Dave Steinberg, Dave Budinsky, Marcelo Paternostro, and Ed Merks.
2008. EMF: Eclipse Modeling Framework. Addison-Wesley.

[47] Steven te Brinke, Mark Laarakkers, Christoph Bockisch, and Lodewijk
Bergmans. 2012. An Implementation Mechanism for Tailorable Excep-
tional Flow. In WEH’12. Zürich, Switzerland, 22–26.

[48] Edoardo Vacchi and Walter Cazzola. 2015. Neverlang: A Framework
for Feature-Oriented Language Development. Computer Languages,
Systems & Structures 43, 3 (Oct. 2015), 1–40. https://doi.org/10.1016/j.
cl.2015.02.001

[49] Edoardo Vacchi, Walter Cazzola, Benoît Combemale, and Mathieu
Acher. 2014. Automating Variability Model Inference for Component-
Based Language Implementations. In SPLC’14. ACM, Florence, Italy,
167–176.

[50] Edoardo Vacchi, Walter Cazzola, Suresh Pillay, and Benoît Combemale.
2013. Variability Support in Domain-Specific Language Development.
In SLE’13 (Lecture Notes on Computer Science 8225). Springer, Indi-
anapolis, USA, 76–95.

[51] Eric Van Wyk, Derek Bodin, Jimin Gao, and Lijesh Krishnan. 2010.
Silver: an Extensible Attribute Grammar System. Science of Computer
Programming 75, 1-2 (Jan. 2010), 39–54.

[52] Markus Völter and Vaclav Pech. 2012. Language Modularity with
the MPS Language Workbench. In ICSE’12. IEEE, Zürich, Switzerland,
1449–1450.

[53] Markus Völter, Janet Siegmund, Thorsten Berger, and Bernd Kolb. 2014.
Towards User-Friendly Projectional Editors. In SLE’14 (Lecture Notes
in Computer Science Volume 8706). Springer, Västerås, Sweden, 41–61.

[54] Guido H. Wachsmuth, Gabriël D. P. Konat, and Eelco Visser. 2014. Lan-
guage Design with the Spoofax Language Workbench. IEEE Software
31, 5 (Sept./Oct. 2014), 35–43.

[55] Martin P. Ward. 1994. Language Oriented Programming. Software—
Concept and Tools 15, 4 (Oct. 1994), 147–161.

Received 2023-07-07; accepted 2023-09-01

14

https://doi.org/10.1016/j.cl.2015.02.001
https://doi.org/10.1016/j.cl.2015.02.001

	Abstract
	1 Introduction
	2 Background
	2.1 Language Workbenches
	2.2 Exception Handling

	3 The Exception Handling Layer
	3.1 Architecture
	3.2 Process
	3.3 Exception Handling Modular Decomposition
	3.4 Exception Handling Layer in Java

	4 Case Study and Discussion
	4.1 Neverlang Overview
	4.2 JavaScript Evolution Scenario
	4.3 LogLang Evolution Scenario
	4.4 Threats to Validity

	5 Related Work
	6 Conclusions
	Acknowledgments
	References

