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Abstract

Understanding the main drivers of biodiversity loss in Europe’s agricultural landscapes has been a research priority in the last
decades. One of the most important factors promoting biodiversity in farmed landscapes is habitat heterogeneity, which has
often proved crucial for avian species and communities. Birds are highly sensitive to environmental changes and make use of a
broad range of ecological niches, thus being exceptionally sensitive to the loss of habitat heterogeneity. Remote sensing data
are particularly suited to quantify habitat heterogeneity at fine scales over relatively large extents, allowing to consider how dif-
ferent measures of heterogeneity may affect biotic communities at a regional scale. Here, we used airborne LiDAR (Light
Detection And Ranging) and satellite multispectral data to derive vegetation canopy height and primary productivity for 118
sites in complex agricultural landscapes in a region in the Central Alps. We computed different bird diversity indices and classi-
fied bird species into guilds according to specific traits to analyse the relationship between avian communities and different fac-
ets of habitat heterogeneity. Results confirmed that habitat heterogeneity is essential in shaping rich and diverse bird
communities, and it is particularly important for several farmland birds. By comparing the effects of canopy height, primary
productivity, and specific vegetation features (e.g., cover of grassland, shrub, and tree layers), we showed how different habitat
characteristics as well as landscape heterogeneity affected bird richness, diversity, functional entropy, and trait patterns. Land-
scape and height heterogeneity, estimated by NDVI and LiDAR Rao’s Q indices, strongly influenced all response variables, for
example, high NDVI values promoted species diversity and ground-understory nesters, and shrub layer was important for
ground-understory nesters and forest specialists. Finally, we provide recommendations for conservation practices and mitiga-
tion measures to improve bird diversity in agricultural landscapes.
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Introduction

The increasing loss of biodiversity in European agricul-
tural landscapes has been largely attributed to agricultural
intensification and abandonment of marginal areas in recent
decades (Assandri et al., 2019b; Botías et al., 2019; Bram-
billa, 2019). Understanding key environmental determinants
that could help stop (and reverse) farmland biodiversity loss
is particularly urgent and important (Jetz et al., 2019; Pettor-
elli et al., 2016).

Farmland birds are a key component of agricultural biodi-
versity and they are amongst the most threatened bird groups
in Europe (Reif & Vermouzek, 2019). In addition, especially
in farmed landscapes, birds provide crucial ecosystem serv-
ices, such as natural pest control, pollination, or seed dispersal
(Whelan et al., 2008), which should be guaranteed also for
the future generations. Birds have been used as indicators in
many ecological studies dealing with biodiversity in agro-eco-
systems, because they are highly sensitive to environmental
changes, occupy a wide range of ecological niches, show pat-
terns often representative of other taxa, and are relatively easy
to survey (Gottschalk et al., 2010). In 2005, even the Euro-
pean Union officially adopted a Farmland Bird Index (Greg-
ory et al., 2005) as a proxy to evaluate the general status of
biodiversity in agricultural landscapes in Europe.

Landscape heterogeneity is one of the most important fac-
tors driving composition and diversity of bird communities
in agricultural landscapes (Anderle et al., 2022; Brambilla,
2019): complex landscapes may provide a high number of
niches, increasing bird species richness and diversity (the
so-called habitat heterogeneity hypothesis; Tews et al.,
2004). Heterogenous landscapes increase resources avail-
able to birds (e.g., food, shelters) and may change their for-
aging behaviour (Schuldt et al., 2019) by influencing
movement patterns (Jirinec et al., 2016) and species interac-
tions (Seibold et al., 2013). In addition, landscape or habitat
heterogeneity can also determine microclimatic conditions
that could provide essential refugia in the face of climatic
extremes, increasing habitat and bird resilience (Brambilla
et al., 2021; Virah-Sawmy et al., 2009), allowing e.g., alpine
specialist species to avoid too warm microclimates (Alessan-
drini et al., 2022). The loss of heterogeneity is likely one of
the main drivers of the farmland birds crisis (Benton et al.,
2003), especially in intensive agricultural landscapes
(Bat�ary et al., 2011), which are currently undergoing major
land use and land cover changes in many parts of Europe,
including the Alps.
The effect of habitat and landscape heterogeneity is often
difficult to measure over large areas, since field-based sur-
veys have limited coverage in time and space, and mainly
focus on vegetation composition. It is even more difficult in
regions characterised by a wide elevational gradient (such as
the Alps), which contributes to shaping diverse agricultural
landscapes, and where environmental drivers may act over
different spatial scales (Anderle et al., 2022).

Remotely sensed data typically provide proxies of land-
scape or habitat heterogeneity, and can overcome the field
mapping limitations, enabling complete coverage of high-
resolution data at the landscape-scale in a shorter and easier
way (Rocchini et al., 2018). In the last years, LiDAR (Light
Detection And Ranging) and multispectral data have been
extensively applied to model biodiversity patterns (Moudr�y
et al., 2021; Randin et al., 2020), because they allow the
quantification of the canopy height and the habitat diversity
over wide areas with a high resolution (Maltamo et al.,
2014), and also to explore the link between birds and pri-
mary productivity (Evans et al., 2005). LiDAR data also can
be used to explore the “Height Variation Hypothesis”
(HVH; Torresani et al., 2020), which assumes that a high
variation in vegetation height translates into a more complex
habitat or landscape structure and hence a higher species
diversity (see also Appendix S2). However, few studies
focusing on agricultural landscapes and vertebrate ecology
have simultaneously included these two different types of
variables (e.g., Sheeren et al., 2014).

Our study evaluated the effects of heterogeneity of land-
scape and canopy height on birds (Palmer et al., 2002) by
capitalising on the increasing availability of remote sensing
data encompassing topographic variables, satellite multi-
spectral and LiDAR data. We worked at two spatial scales
(100 and 400 m-radii) to consider different sizes of bird ter-
ritories and because effects of some factors may be scale-
dependent, e.g., microclimate conditions or spatial configu-
ration. We focused on highly diversified agricultural
alpine landscapes, along a broad elevational gradient
(200�1800 m a.s.l.), which characterises the study area and
shapes the local bird communities. These characteristics
make the study area particularly suited to investigate hetero-
geneity effects across different conditions and scales
(Anderle et al., 2022). We focus on the impact on bird rich-
ness and diversity indices, on different avian functional traits
that are particularly relevant for ecosystem functioning
(Weisberg et al., 2014), and on threat levels. We expected
that (i) different remote sensing data types will provide
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complementary results to explain ecological requirements of
alpine bird communities; (ii) due to their ecological rele-
vance, NDVI and LiDAR Rao’s Q indices will contribute
most to the models since they best represent the level of het-
erogeneity; (iii) the different vegetation layers and the varia-
bles defining vegetation density (e.g., Mean and Maximum
NDVI) can contrastingly influence different bird guilds and
threat levels; (iv) independent variables will react differently
at the two different scales studied, mainly due to different
microclimate conditions or spatial configuration (Anderle
et al., 2022).

Understanding such impacts is needed to support the
development of conservation measures to mitigate the
impact of modern agriculture on birds. Tackling the loss of
landscape heterogeneity due to the intensification of the
most productive areas, or to the abandonment of the mar-
ginal ones, should be pivotal to the Common Agricultural
Policy (Assandri et al., 2019b), even though it largely failed
in addressing such issues until now (Assandri, 2022). Ade-
quate conservation and management measures should be
implemented by the countries to promote heterogeneity
through e.g., the increase of ecotonal elements,
Fig. 1. (A) Study area located in the Central Alps (north-eastern Italy, Au
agricultural areas.
diversification of agricultural practices, reduction of fertiliser
inputs, or the promotion of agriculture in marginal areas that
would be abandoned without concrete support (Assandri
et al., 2019a, 2019b; Fischer et al., 2008).
Materials and methods

Study area and study sites

The study was carried out in the Autonomous Province of
South Tyrol (north-eastern Italy), in the Central Alps. South
Tyrol covers an area of approximately 7400 km2, with an
elevation between 194 m and 3905 m a.s.l. (Fig. 1).

The territory is predominantly mountainous and primarily
covered by forests (50%), pastures (22%), meadows (10%),
unproductive areas (which include high mountains and gla-
ciers; 10%), orchards (3%), vineyards (1%), annual crops
(1%) and settlements (3%; Anderle et al., 2022). Annual and
permanent crops are mostly located in valley bottoms,
whereas grasslands (meadows and pastures) are found from
low mountainsides to the subalpine and alpine belts. The
tonomous Province of South Tyrol), and (B) the 118 study sites in
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study was conducted within a long-term project named Bio-
diversity Monitoring South Tyrol (Hilpold et al., 2023), and
sites were selected according to a stratified selection
approach, using different agricultural categories of land use
as strata (Table S1). We used different geographical baseline
data to calculate the total area of the different habitat strata in
South Tyrol; within each single stratum we performed a ran-
dom site selection (Hilpold et al., 2023). Only agricultural
sites from the valley floors to the montane area (1800 m a.s.
l.) were selected, resulting in a total of 118 sites. Sites above
that elevation are not or only weakly affected by agricultural
practices.
Bird data

A single observer (MA) surveyed diurnal bird species
from 15th April to 15th July, between 2019 and 2021. The
survey period coincides with avian breeding season in the
Alps, therefore, after the exclusion of migrants and overfly-
ing individuals, birds observed within their breeding habitats
can be considered as likely breeding (Assandri et al.,
2019b). Exclusively migrant species within the area were
excluded from the analysis (Arbeitsgemeinschaft f€ur Vogel-
kunde und Vogelschutz - S€udtirol, 2010), as well as birds
observed only flying over the survey sites, because they
were not breeding and not closely related with the specific
site, respectively. Each site was visited three times in the
same year and birds were counted within a 100 m-radius
from the site by means of 10-min point-counts, with at least
2 weeks between subsequent visits; the visit order of point-
count sites was changed between subsequent surveys
(Anderle et al., 2022). The minimum distance between two
points was set at 800 m to avoid possible double counts.
Counts started shortly after sunrise (5.30 a.m.) and ended at
11 a.m. Adverse weather conditions (moderate/strong wind
or heavy rain/snow) were avoided.

Using the ‘vegan’ package in R (Oksanen et al., 2020), we
calculated species richness as the total number of species
observed at a site, and the Shannon diversity index using the
maximum number of individuals observed during the three
visits per species at a site (Anderle et al., 2022). Using one
characteristic value (maximum) per site (over the three vis-
its) allowed to consider the actual composition of the breed-
ing bird community at sample sites, while avoiding treating
data collected over single visits in the same site as indepen-
dent. Bird species were assigned to guilds based on two
functional traits representing different types of key species-
habitat interactions (nest location and habitat specialisation),
and were also grouped according to the level of threat within
the study area. Nest locations were grouped in four catego-
ries, aligned along a gradient of vegetation development:
rock and building nesters, ground-understory nesters (nest-
ing directly on or close to the ground), mid-story and canopy
nesters (closed and open arboreal), and tree cavity nesters
(Storchov�a & Ho�r�ak, 2018). Habitat specialisation included
farmland, alpine grassland or forest specialists, generalist or
synanthropic species, based on the list of species used to
assess the Common farmland bird indicator for Europe
(https://pecbms.info/trends-and-indicators/indicators/indica
tors/E_C_Fa/); we slightly adjusted the list to mirror the
local context by integrating also the Italian indicator (Rete
Rurale Nazionale & LIPU, 2020; Table S3). Threat level
involved threatened (near threatened, vulnerable, endan-
gered, critically endangered), non-threatened (least concern)
birds and species with unidentified status were listed as
unknown (Ceresa & Kranebitter, 2020). We limited all trait
and threat levels between 0 and 1 to account for the different
number of categories (Kor�anyi et al., 2021; Marcolin et al.,
2021). Community Weighted Mean (CWM) for traits and
threat level, and Rao’s functional entropy were calculated
using the ‘FD’ package in R (Lalibert�e et al., 2014; Marcolin
et al., 2021). A comprehensive list of species recorded,
including the values of each trait per species, is available in
Table S3.
Environmental variables

Topographical, LiDAR, and multispectral variables were
calculated at two spatial scales (100 and 400 m) to estimate
habitat and environmental features. The smaller scale
reflects the territory size of passerine birds during the breed-
ing season (e.g., Pestka et al., 2018), while the larger one
approximates the wider home ranges of larger birds (e.g.,
Bocca et al., 2007). Furthermore, the effects of some factors
may be scale-dependant (e.g., microclimate conditions or
spatial configuration; Anderle et al., 2022). For a detailed
explanation of all environmental variables refer to Tables 1
and S2.
Topographical variables

We derived topographical variables from the Digital Ter-
rain Model based on Airborne Laser Scanning campaign
carried out in 2006 by the Province of Bolzano (http://geoca
talogo.retecivica.bz.it/geokatalog/). In addition, elevation,
slope, and potential solar radiation were used with a spatial
resolution of 2.5 m (Table S2).
LiDAR variables

We derived LiDAR variables from an airborne laser scan-
ning campaign carried out in 2004�2006 (Tamburlin et al.,
2021); the Canopy Height Model (CHM) derived from the
original point cloud had a 2.5 m spatial resolution. Human
artifacts were removed from the CHM using a shapefile of
the buildings falling within the study sites (Fig. S3). At 100
and 400 m scales we calculated at each site the following
indices: herb layer, shrub layer, tree layer, mean canopy
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height, maximum canopy height, standard deviation of can-
opy height, canopy cover (Torresani et al., 2020), and
LiDAR Rao’s Q index (Rocchini et al., 2017; Table 1 and
S2; Appendix S2).
Multispectral variables

Using Google Earth Engine (Moore & Hansen, 2011)
in R (R Development Core Team, 2021) we computed a
Sentinel-2-derived NDVI (Normalized Difference Vegeta-
tion Index) map with a spatial resolution of 10 m for the
years 2019, 2020, and 2021 (Fig. S4, S5, S6). Each map
Table 1. Environmental variable type, full name, descriptions, units, inter
For references and all variable descriptions see Table S2.

Type Full name Description

Topographical Slope Mean slope within 100 and 400-m
QGIS (QGIS Development Team,

Potential solar
radiation

Sum of direct, diffuse, and reflecte
to sun irradiance, according to inc
angle, and the shadowing effect of
It was computed for a reference da
using the command “r.sun” in GR
(GRASS Development Team, 202

Elevation Site elevation extracted from a DT
(QGIS Development Team, 2020)

Multispectral NDVI Rao’s Q
index

Rao’s q index calculated in R with
400-m buffers extracted from the

Qrs ¼
PN

i;j¼1
dij�pi�pj

Qrs = Rao’s Q applied to remote s
pi = pj = 1/N = relative abundance
selected area composed of N pixel
dij = spectral (distance/dissimilari
pixel i and j (dij = dji and dii = 0)

Mean NDVI Mean of values within 100-m and
extracted from the NDVI maps

Maximum
NDVI

Maximum value within 100-m and
extracted from the NDVI maps

LiDAR Shrub layer Percentage of area within 100-m a
fers with vegetation height betwee

LiDAR Rao’s Q
index

Rao’s q index calculated in R with
400-m buffers extracted from the

Qrs ¼
PN

i;j¼1
dij�pi�pj

Qrs = Rao’s Q applied to remote s
pi = pj = 1/N = relative abundance
selected area composed of N pixel
dij = spectral (distance/dissimilari
pixel i and j (dij = dji and dii = 0)
was obtained as a composite mean NDVI value of all the
available cloud-free images for the period from 15 April
to 15 July. For multispectral variables, we used a map of
the year consistent with the period when birds were sur-
veyed. Multispectral data allows the measurement of plant
characteristics and vegetation diversity. In addition, tex-
ture metrics derived from multispectral data quantify
spectral and spatial variation in pixel values of an image,
and thus suggest information on spectral and spatial vege-
tation heterogeneity (Haralick et al., 1973; Tuanmu &
Jetz, 2015). The mean NDVI, maximum NDVI, standard
deviation of NDVI and NDVI Rao’s Q index were calcu-
lated at each study site (Appendix S2, Table 1 and S2).
pretation, for those entered in the averaged most supported models.

Interpretation Value range (Unit)

buffer using
2020)

Site average slope
(larger values indicate
greater slope)

0�46 (°)

d radiation due
idence solar
topography.
y (21st June)
ASS GIS
0)

Site average sun radia-
tion (larger values indi-
cate greater radiation)

7413�9367 (Wm-2)

M using QGIS Site elevation (larger
values indicate greater
elevation)

200�1800 (m a.s.l.)

in 100-m and
NDVI maps

ensing data
of pixel i, j in a
s (buffer areas)
ty) between

Vegetation heterogene-
ity (larger values indi-
cate greater
heterogeneity)

0.02�0.42

400-m buffers Vegetation density
(larger values indicate
denser vegetation)

0.43�0.88

400-m buffers Vegetation density
(larger values indicate
denser vegetation)

0.65�0.96

nd 400-m buf-
n 1 and 4 m

Percentage of shrub
layer within the site

0�100 (%)

in 100-m and
LiDAR map

ensing data
of pixel i, j in a
s (buffer areas)
ty) between

Vegetation height het-
erogeneity (larger val-
ues indicate greater
heterogeneity)

0.02�9.85
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Analyses

Firstly, we standardised data by scaling all the indepen-
dent variables to better interpret the relative outcomes (Zuur
et al., 2010; Table 1 and S2). Predictors were checked for
collinearity and highly correlated variables were excluded
(Spearman’s Rho � 0.65, Dormann et al., 2007; see in
Apendix S1 and Table S2). The adequacy and completeness
of bird sampling was assessed with accumulation curves
using the ‘iNEXT’ package (Hsieh et al., 2016; Fig. S7).
Regression models

We analysed the effects of heterogeneity across different
conditions and scales on bird diversity indices, different bird
functional traits, and threat levels, by means of linear and
generalised linear models. For all models we evaluated the
variance inflation factors (VIFs) to account for multicolli-
nearity and excluded the most problematic variables (VIF >

3; Zuur et al., 2010) from the dataset (Appendix S1). We
also checked for potential patterns of spatial autocorrelation
in models’ residuals by means of a variogram (Dormann
et al., 2007). We did not detect any patterns, suggesting a
lack of spatial autocorrelation. We related six bird response
variables (species richness, Shannon diversity, Rao’s func-
tional entropy, and the Community Weighted Mean for nest
location, habitat specialisation, and level of threat) to topo-
graphic, LiDAR and multispectral variables. After checking
for normality and heteroscedasticity of residuals we used
Linear Models for all variables, except for species richness
(count data), for which we used a Generalized Linear Model
with a Negative Binomial distribution to handle over-disper-
sion (Zuur et al., 2013). We built all possible models for
each scale and response variable with the ‘dredge’ function
in the R package ‘MuMIn’ (Barton, 2020). An information-
theoretic approach to perform a model selection based on
the Akaike’s information criterion (Burnham & Anderson,
2004) corrected for small sample size (AICc) was applied.
The most supported models were selected (DAICc < 2),
after excluding uninformative parameters (i.e., variables that
were included only in models that comprised more parsimo-
nious and simpler models as nested ones; Arnold, 2010). A
total of 12 models (one for each dependent variable and
scale) were obtained by averaging the most supported ones
(DAICc < 2), or by taking the most supported if there were
no alternative models with similar support.
Results

A total of 3794 individuals belonging to 91 species (Table
S3) were counted; the accumulation curves suggested that the
sampling was adequate and complete (Fig. S7). The most
common species was blackbird (Turdus merula) with 309
records, followed by common chaffinch (Fringilla coelebs;
265); some of the rarest were corncrake (Crex crex), ortolan
bunting (Emberiza hortulana) and woodlark (Lullula
arborea). Ground-understory nesters accounted for 38.5% of
the species surveyed, mid-story and canopy nesters for
23.1%, tree cavity nesters for 19.8% and rock and building
nesters accounted for 18.7%. Farmland and alpine grassland
specialists accounted for 29.7%, while 26.4% were forest spe-
cialists, the remaining (44.0%) were generalist and synan-
thropic species. Half of the species (51.0%) were non-
threatened birds, threatened birds (mainly farmland specialists)
were 23.7% and the remaining (25.3%) had unknown status
(for bird species classification please refer to Table S3).

Concerning remote sensing data, the NDVI Rao’s Q index
was selected in more than half of the final models and was
the most frequently significant multispectral variable in the
models. LiDAR Rao’s Q index was retained in 10 out of 12
final models, and it was the most frequently included vari-
able (for variable description and interpretation please see
Table 1 and S2).
Bird species richness and diversity

Species richness was positively affected at both scales by
solar radiation and LiDAR Rao’s Q, and at 400 m by NDVI
Rao’s Q (see Fig. 2 and Table S4). Shannon diversity was
also mainly positively influenced by environmental varia-
bles. In fact, solar radiation, and LiDAR Rao’s Q showed
positive effects at both scales, while NDVI Rao’s Q and
mean NDVI only at 100 m, and Maximum NDVI only at
400 m. Only Elevation showed contrasting effects on Shan-
non diversity: positive at 100 m and negative at 400 m.
Rao’s functional entropy was positively influenced at both
scales by solar radiation and by NDVI Rao’s Q, while it was
negatively affected by shrub layer at both scales.
Nest location

Nest location index was positively influenced at both scales
by LiDAR Rao’s Q, while negatively by NDVI Rao’s Q. Ele-
vation had negative effects on nest location at 400 and 100 m.
Nest location at 400 m was influenced positively by Maxi-
mum NDVI. With decreasing elevation, the community com-
position changed at both scales from species nesting on
ground or close to the ground to species nesting in the canopy
and in tree cavities. The same happened with decreasing
NDVI Rao’s Q at both scales. The community composition
also changed from species nesting on ground or close to the
ground to species nesting in the canopy and in tree cavities
with increasing LiDAR Rao’s Q at both scales and maximum
NDVI at 400 m (see Fig. 2 and Table S4).
Habitat specialisation

Habitat specialisation index was influenced positively at
both scales by LiDAR Rao’s Q, by slope at 100 m, and by



Fig. 2. Graphical representation of different responses to predictors shown by the dependant variables, based on the final models at the two
different spatial scales (100 m and 400 m). “+” and “�” represent positive (red colour) and negative (blue colour) effects. Numbers represent
coefficients (based on models with DAICc < 2, bold, if parameters do not include zero in their confidence intervals); blank cells denote no
effects (see Table S4 for a complete view of different models).
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maximum NDVI and shrub layer at 400 m. Concurrently, it
was negatively affected by solar radiation at 400 m and by
NDVI Rao’s Q at 100 m. The community changed from
farmland and alpine grassland specialists to forest specialist
with increasing slope at 100 m, maximum NDVI and shrub
layer at 400 m, and LiDAR Rao’s Q at both scales. The
community composition changed from forest specialists to
farmland and alpine grassland specialists with increasing
NDVI Rao’s Q at 100 m and potential solar radiation at
400 m (see Fig. 2 and Table S4).
Threat level

Level of threat was positively influenced by LiDAR Rao’s
Q at both scales, by shrub layer and maximum NDVI at
400 m, and by mean NDVI and slope at 100 m. NDVI
Rao’s Q had negative effects at 400 m on threat level. The
community changed from threatened to non-threatened birds
increasing slope and mean NDVI at 100 m, increasing maxi-
mum NDVI and shrub layer at 400 m and increasing LiDAR
Rao’s Q at both scales. While the community changed from
non-threatened to threatened birds with increasing NDVI
Rao’s Q at 400 m. For more details, please refer to Fig. 2
and Tables S1 and S3.
Discussion

In our study we assessed the effects of the heterogeneity
of both landscape and canopy height on bird richness and
diversity, on selected avian traits, and threat levels. As
expected, (i), different data types provided complementary
results to explain ecological requirements of the alpine bird
communities studied. For example, increasing slope and ele-
vation mainly favoured a bird community with more forest
specialists, while high solar radiation favoured a diverse and
rich community and was particularly important for farmland
birds. High NDVI and LiDAR Rao’s Q correlated with high
richness and diversity, and NDVI Rao’s Q also with func-
tional entropy of bird communities in agricultural land-
scapes. The former was more important for agricultural and
threatened species, and the latter for forest species. As we
predicted (iii), increasing mean and maximum NDVI mainly
triggered a shift in the bird community from farmland to for-
est nesters, from threatened to non-threatened birds, and
from ground-understory to forest nesters (both mid-story
and canopy and tree cavity nesters). The shrub layer sup-
ported forest species at the 400 m-scale. Contrary to what
we assumed (iv), only once one variable (elevation on Shan-
non diversity) showed different effects at the two different
scales. As in our expectations (ii), RAO’s Q index seems
promising, despite being still under-explored in animal ecol-
ogy studies (Rocchini et al., 2018); therefore, we recom-
mend its use as a good proxy for habitat heterogeneity in
future studies addressing the effect of heterogeneity on bio-
logical communities.

Heterogeneous landscapes, mainly revealed by NDVI
Rao’s Q, promoted richness, diversity, and functional
entropy of bird communities. The canopy height heterogene-
ity, expressed by LiDAR Rao’s Q, promoted more mid-story
and canopy nesters and forest specialists in the community,
offering more niches, resources, and nesting opportunities
(Bohn & Huth, 2017; Ceresa et al., 2012). The negative
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effects that LiDAR Rao’s Q had on bird communities with
ground-understory nesters, farmland specialists, and threat-
ened birds, suggest that increasing canopy heterogeneity is
detrimental to species more closely associated with open
habitats, which often rely on short vegetation with no or
scarce trees (e.g., skylark Alauda arvensis, or red-backed
shrike Lanius collurio; Brambilla et al., 2020; Ceresa et al.,
2021). The effects exerted by both Rao’s Q indices and
shrub layer, highlighted the importance of landscape hetero-
geneity, e.g., the occurrence of marginal elements (such as
hedges, single trees, rows of trees, woodlands) and diversifi-
cation of agricultural practices, for breeding birds, which is
in line with many other studies providing consistent evi-
dence from the same sector of the Alps (Assandri et al.,
2019b) and other regions (Barbaro et al., 2021). Addition-
ally, not only the whole community was richer and more
diverse, but also farmland and alpine grassland specialists
(which included the most threatened species in this study),
ground-understory nesters and functional entropy benefited
from increasing landscape heterogeneity (Smith et al.,
2022). The greatest number of species detected, 23 in total,
was obtained from two orchard meadows, a hay meadow,
and a pasture. This result highlights the key role of exten-
sively managed grasslands, a ‘traditional’ habitat with high
natural and cultural values, for the conservation of farmland
biodiversity, especially for farmland specialists (Brambilla,
2019; Smith et al., 2022). Furthermore, more complex grass-
lands can offer greater resources, both in terms of food and
shelters available, especially to farmland specialists. Indeed,
our results showed that an increase of Rao’s Q, or maximum
NDVI (that respectively may reflect an increase in the land-
scape heterogeneity and in the presence of e.g., hedges, tree
rows, or bushes) led to an increase in diversity of the bird
community, functional entropy, farmland and alpine grass-
land specialists, probably because NDVI reflected the abun-
dance of above-ground invertebrates (e.g., food for
insectivores and chicks of most species) and the quantity
and quality of available plant-based foods (e.g., for grani-
vores and omnivores; see Ding et al., 2021; Pettorelli et al.,
2011). Higher NDVI heterogeneity (e.g., alternation of
grassland, forest and different habitats) might provide partic-
ularly suitable conditions for many species, being associated
with the co-occurrence of food-rich (micro)habitats with
dense vegetation, and (micro)habitats suitable for food col-
lection, with sparser or less dense vegetation (e.g., Brambilla
& Gatti, 2022).

The presence of dense vegetation, as indicated by maxi-
mum and mean NDVI values, had different effects on
threatened birds and forest nesters and specialists. While
the maximum NDVI values were beneficial for the latter
two groups, they had a negative impact on threatened
birds. This is likely because dense vegetation is a preferred
nesting habitat for forest birds, but it is not exploited by
species that nest in open areas (as many threatened ones).
An increasing NDVI Rao’s Q index, depicting heteroge-
neous landscapes, showed a negative influence on forest
specialists, mid-story and canopy, and tree cavity nesters,
as they are mainly associated with continuous forest areas
embedded in agricultural landscapes (Anderle et al., 2022;
Be»cik et al., 2020). Shrub layer exerted negative effects
on functional entropy, and on a bird community with
more farmland and grassland specialists and threatened
birds (mainly farmland specialists) at 400 m. However, it
had positive effects on a community with more forest spe-
cialists. These effects could be related to intensive apple
orchards and vegetation at intermediate climax stages
(which due to their height were classified as shrub layer).
These habitats were mainly found in the valley floors and
in montane areas within the study area, respectively. Both
those habitats are non-optimal for farmland and alpine
grassland specialists but suitable for generalists and some
forest specialists (Rime et al., 2020).

Some other topographical characteristics contributed to
shaping avian communities in Alpine agricultural land-
scapes. Slope emerged as a rather important driver by pro-
moting more forest specialists and negatively impacting
farmland and alpine grassland specialists, and threatened
birds (which were mainly farmland specialists). The topo-
graphically most favourable areas (flat or gently sloping) are
usually exploited for agriculture, while steeper slopes are
hardly accessible and consequently left uncultivated or are
covered by forest. As elevation increases, management
intensity of agricultural practices decreases (Assandri et al.,
2019b; Brambilla et al., 2021), while the number of semi-
natural elements generally increases, as does the risk of land
abandonment (Brambilla, 2019). This pattern was mirrored
by the opposite effects that elevation had on Shannon diver-
sity at different scales, positive at the 100, and negative at
the 400 m-scale, and by the positive effect on functional
entropy. Solar radiation was also important for birds, mainly
exerting positive effects, something expectable in this rather
cold Alpine region. This effect was particularly evident for
farmland specialists, who could benefit from targeted man-
agement or conservation initiatives implemented in areas
with a favourable exposition. For example, some species
normally confined to the valley floor are shifting upwards,
where they find better sites that best suit their microclimatic
needs (e.g., the Corncrake; Brambilla et al., 2021).

Our results showed that habitat heterogeneity derived
from LiDAR and multispectral data can provide ecologically
important variables and can thus become an alternative to
field surveys, especially at larger scales. The availability of
LiDAR and multispectral data is continuously increasing, as
is their potential to provide large-scale species distribution
models (Rocchini et al., 2022). There is also a high potential
for using similar models to provide information that can
lead to management and conservation actions, such as the
identification of target areas for the conservation of farmland
biodiversity, providing important management information
for the improvement of agricultural landscapes (Cooper
et al., 2020; Moudr�y et al., 2021). Therefore, we suggest
that such data should be increasingly included in ecological
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and conservation studies to optimise their use in land plan-
ning, management, and conservation.
Conclusions

Many studies showed the efficiency of using LiDAR or
multispectral variables as proxies for environmental factors
shaping bird communities in relation to land use and other
landscape characteristics; nonetheless, only very few have
combined such variables while focussing on agricultural
landscapes. Our findings suggested that a combination of
LiDAR and multispectral images, also accounting for topo-
graphical aspects, can best predict characteristics of bird
communities in agricultural landscapes. In our models,
many factors were only important at a single scale, others at
both, highlighting the importance of modelling ecological
patterns at different scales. The ongoing dynamics of inten-
sification in agricultural profitable areas and abandonment in
marginal, high-elevation ones, are thus reflected in the asso-
ciation between elevation and avian traits, with forest spe-
cialists being favoured by abandonment at higher elevation.
On the other side, management intensification of valley
floors is also forcing farmland specialists to shift towards
upper elevations. However, climatic conditions are sub-opti-
mal, and suitable habitats, even if of potential high-quality,
are less available on a wide landscape scale due to the aban-
donment of agricultural practices (and subsequent forest
encroachment).

The effects of habitat heterogeneity and characteristics on
avian communities may help define conservation measures,
as e.g., within the framework of the new Common Agricul-
tural Policy (2023�30). Increasing habitat heterogeneity,
especially in the impoverished valley floors, where land-
scape intensification and homogenisation are massive, is key
to farmland bird conservation. High habitat heterogeneity,
e.g., diversification of farming practices and high availabil-
ity of landscape elements between fields, such as dry-stone
walls, individual trees, hedges, tree rows, or small wood-
lands, should be conserved and restored. An increase in het-
erogeneity would largely benefit the overall biodiversity
while also contributing to increasing the cultural value of
agricultural landscapes.
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