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Abstract
The availability of cloud services offered by different providers brings several advantages to users and companies, facilitating 
the storage, sharing, and processing of data. At the same time, the adoption of cloud services brings new security and privacy 
risks and challenges. As a matter of fact when leveraging cloud-based services for data storage and processing, data owners 
loose direct control on their data. Data and queries over them could then be at risk for both potentially improper exposure, 
compromising their confidentiality, or tampering, compromising their integrity. In this paper, we discuss the main issues to 
be addressed for guaranteeing data security and privacy in cloud-based storage and processing. We illustrate the different 
challenges to be considered and the research directions toward their solutions.

Keywords Cloud-based scenario · Data protection · Selective data sharing · Access confidentiality · Querying encrypted 
data · Query integrity · Distributed query execution

Introduction

The adoption of cloud services has seen a significant 
increase in the last years as it has created new market oppor-
tunities for companies. There is no doubt that there are many 
benefits in using cloud services such as better business con-
tinuity, scalability, and economical savings. However, there 
are also new security and privacy risks that need to be care-
fully considered (e.g., [1–4]), when migrating applications 
and data from a local on-premises system to the cloud. In 
fact, data are stored and processed at external cloud provid-
ers on which the owners of the data have no control. Such 

lack of control raises several concerns: data should be safe-
guarded against unauthorized accesses (confidentiality) and 
modifications (integrity), should be accessible to authorized 
users when needed (availability), and should be adopted for 
performing secure computations to support, for example, 
decision making and business analytics.

The security and privacy issues to be addressed when 
data and computations are outsourced to the cloud vary 
depending on the considered scenario (e.g., a scenario where 
the cloud is used mainly for data storage or a scenario where 
the cloud is also used for fine-grained retrieval and query 
processing). In this paper, we consider a scenario charac-
terized by a multiplicity of cloud providers offering stor-
age and computational services, which can then be used by 
data owners and users for storing data and for performing 
(distributed) computations. The complexity of this scenario 
comes not only from the security and privacy guarantees 
that must be offered on data and accesses on them but also 
from the need of supporting computational services on pro-
tected data. For instance, if the data outsourced to the cloud 
are stored in encrypted form for confidentiality reasons, the 
execution of queries and, more in general, of computations 
over these data requires the adoption of novel approaches 
that should be directly applicable to the encrypted data.

The goal of this paper is to present an overview of the 
main issues that must be considered for properly protect-
ing outsourced data and computations. These issues and 
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challenges can be characterized according to different 
dimensions. In particular, our analysis is guided by the level 
of service requested from the cloud, which we identify as: 
(1) storage, and (2) query. These different services raise 
different security and privacy issues. The first level (stor-
age) refers to scenarios where data owners use the cloud for 
storing their data, and access to data simply corresponds to 
upload and/or download operations. In this case, security 
refers to proper protection of data stored on the cloud plat-
form, and to empower data owners with control over their 
data in the cloud, meaning that data owners should be able to 
administer their data and selectively share them with others. 
The second level (query) refers to scenarios where access to 
data requires fine-grained retrieval and execution of queries, 
also using the presence of multiple providers for conveni-
ently supporting collaborative queries. In this case, security 
refers to protection of dynamically retrieved data and query 
results. For both the storage level and query level, the paper 
will address the problem of guaranteeing confidentiality 
and integrity. Data confidentiality is needed whenever the 
outsourced data are sensitive or confidential, and therefore 
should not be known to the cloud providers themselves. In 
many scenarios, cloud providers are also not trustworthy, 
and data owners, as well as cloud users, should then be able 
to verify the correctness of the responses (retrieved data or 
computations) received from the cloud. Clearly, the precise 
meaning of confidentiality and integrity depends on the level 
of service (i.e., refer to stored data and queries). Figure 1 
summarizes the issues that will be discussed in the remain-
der of this paper. For each issue, we will describe existing 
approaches that have been adopted for addressing it.

Running example. For concreteness, in the following, 
we frame the discussion in the context of relational data-
base systems. We then consider data as relational tables and 
computations as queries of the general form “select from 
where”. Our examples will be based on a scenario with two 
data owners � and ℂ , a subject � interested in performing 
an analysis involving the data managed by � and ℂ , and 
three external providers � , �  , and ℤ offering computational 

services only (see Fig. 2). Owner � manages the information 
about the access points of a cell-free network. Such informa-
tion is stored in relation Access Point (AP) with attrib-
utes ( ���� , ������ , ��������� , ���������� ) reporting 
information about the identifier of an access point ( ���� ), 
the number of antennas of the access point ( ������ ), and 
the coordinates (latitude and longitude, respectively) of 
the access point ( ��������� , and ���������� , respec-
tively). Owner ℂ manages the information about the activi-
ties of user devices. Such information is stored in relation 
CallDetailRecord (CDR) with attributes ( ��� , ���� , 
������ , ���� , �������� ) reporting the information about 
the identifier of the relation ( ��� ), the identifier of an access 
point ( ���� ), the hash of the identification number of a user 
device ( ������ ), the activity time ( ���� ), and the duration 
of the activity ( �������� ). Figure 3 shows an example of 
the two relations AP and CDR. Note that, in the following, 
attributes will be denoted using their initials.

Outline. The remainder of the paper is organized as fol-
lows. Section “Data Protection” provides an overview of 
the approaches that ensure data confidentiality and integrity. 
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Section “Selective Information Sharing” discusses the solutions 
addressing the problem of supporting selective sharing of data. 
Section “Access Confidentiality” describes solutions for ensur-
ing access confidentiality. Section “Indexes for Queries over 
Encrypted Data” illustrates techniques that can be adopted for 
fine-grained access to encrypted data, focusing on index-based 
solutions. Section “Query Integrity” discusses how to assess 
the integrity of data returned as a result of queries executed by 
cloud providers. Section “Controlled Execution of Collabora-
tive Queries” focuses on solutions supporting controlled col-
laborative computations with the involvement of multiple pro-
viders. Finally, Section “Conclusions” gives our conclusions.

Data Protection

When data are moved to the cloud, data owners have to first 
select the providers that offer the storage and/or computa-
tional services more suitable for their needs, in terms of 
quality of the service, performance, and security offered 
(e.g., [5–11]). Whenever the outsourced data are sensitive 
or confidential, there is the problem of ensuring proper pro-
tection (integrity and confidentiality) of such data. We now 
discuss some of the solutions proposed for protecting the 
integrity and confidentiality of data.

Integrity and Confidentiality

Ensuring data integrity means that the data owner and users 
should be able to verify whether data have been improperly 
modified or tampered with. Existing solutions (e.g., [12]) 
are based on the use of hashing and digital signatures as 
building blocks. With these solutions, the verification of the 
integrity of the data requires data owners to access their 
data in the cloud. Other solutions (e.g., proof of retrievabil-
ity (POR) and/or provable data possession (PDP) schemes 
[13, 14]) are based on the idea of inserting sentinels in the 
encrypted outsourced data (POR) or pre-compute tokens 
over encrypted or plaintext data (PDP) to provide the owner 
with a probabilistic guarantee that the data have not been 
modified by non-authorized users.

With respect to confidentiality, existing solutions (e.g., 
[15, 16]) are typically based on the assumption that the 
outsourced data are managed by a honest-but-curious pro-
vider. Honest-but-curious means that the provider is trusted 
to manage the data but it is not trusted with respect to their 
confidentiality. In this case, data owners apply an encryption 
layer to their data before storing them to the external pro-
viders. Although encryption is a powerful mechanism that 
protects data confidentiality, there are also approaches that 
limit or depart from encryption whenever possible. These 
approaches are based on the observation that dealing with 
encrypted data is a burden since encryption makes it not 
always possible to efficiently execute queries and evaluate 
conditions over the data. Furthermore, encrypting the whole 
data collection may not be needed when it is the associa-
tion among different pieces of information that is considered 
confidential and not a single piece of information. As an 
example, consider relation CDR in Fig. 3(b), and suppose 
that the association ( �,�,� ) is considered sensitive because it 
permits to infer that a specific user device ( � ) was connected 
in a specific timeframe ( � and � ). While the association is 
sensitive, the list of hash user identifiers, the list of times, 
and the list of durations singularly taken are not sensitive. 
Therefore, there is no need to encrypt these attributes if 
there are alternative solutions that protect their association. 
A possible solution for protecting sensitive associations is 
data fragmentation. Data fragmentation consists in verti-
cally splitting the set of attributes of a relation in different 
fragments in such a way that the fragments are not linkable 
(e.g., [17, 18]). Intuitively, fragmentation protects sensitive 
associations among different attributes when the attributes 
involved in a sensitive association are not visible in the 
same (publicly available) fragment, and fragments cannot 
be joined by non-authorized users. For instance, considering 
the sensitive association ( �,�,� ) above-mentioned, relation 
CDR could be split in two fragments, denoted F1 and F2 , with 
F1={�,I,H} and F2={�,� }. In this way, the three attributes � , 
� , and � are not visible together in a single fragment. Note 
that when a single attribute is sensitive, fragmentation can-
not provide protection. In this case, the attribute is protected 
only when it does not appear in plaintext in any fragment 
stored at an external provider. For instance, suppose that 

Fig. 3  Relations of the running example

AccessPoint (AP)
Apid Numant Platitude Mlongitude

t1 A1 4 38.846224 -77.306373
t2 A2 2 13.923404 2.158925
t3 A3 1 45.529661 9.269336
t4 A4 4 46.127087 10.353258
t5 A5 7 41.902782 12.496365
t6 A6 6 43.923555 19.408342
t7 A7 6 25.482951 75.508649
t8 A8 7 13.923404 79.508649

CallDetailRecord (CDR)
Cid Idap Hashid Time Duration

t1 C1 A1 jk78 11:12:00 5
t2 C2 A2 jk78 11:20:00 10
t3 C3 A6 k07g 23:59:10 12
t4 C4 A7 uog5 15:15:10 7
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attribute � is sensitive. Fragment F1 of the previous example 
should then store the values of this attribute in encrypted 
form. Fragmentation strategies differ in how (and whether) 
fragmentation is coupled with encryption [15]. In particular, 
three different fragmentation paradigms have been proposed. 
In the following discussion, examples will refer to the sensi-
tive associations of relation CDR illustrated in Fig. 4a.

The first paradigm, called two can keep a secret, is char-
acterized by the presence of two independent, non-commu-
nicating, cloud providers, each of which stores a fragment 
of the relation. Sensitive attributes are always encoded (e.g., 
encrypted) across both cloud providers so that they cannot 
deduce the attribute values (e.g., a cloud provider can store 
the encrypted attribute values and the other cloud provider 
can store the keys used for encrypting these values). All the 
other attributes must be encoded whenever storing them in 
plaintext at any of the two providers would make at least one 
sensitive association visible in the fragment. Note that the 
two fragments must have a common attribute (i.e., a unique 
tuple ID) to allow authorized users to correctly reconstruct 
the original relation by joining the two fragments. Figure 4b 
illustrates a fragmentation for relation CDR such that neither 
F1 nor F2 store all the attributes of the sensitive associa-
tions in Fig. 4a in plaintext. Note that attribute � is stored 
in encrypted form (which is represented with a gray back-
ground) since its plaintext storage in F1 would expose sensi-
tive association { �,� }, and its plaintext storage in F2 would 
expose sensitive association { �,�}.

The second paradigm, called multiple fragments, supports 
the splitting of the original relation in any number of frag-
ments. Encryption is adopted to protect sensitive attributes, 
and fragmentation to protect sensitive associations. Frag-
ments contain all attributes of the original relation in either 
encrypted form or plaintext form (i.e., every fragment is 
complete) and are not linkable since they do not have com-
mon attributes. Since fragments are not linkable, there is 
no need to assume that the providers storing them do not 
communicate and they can also be stored on the same pro-
vider. Figure 4c illustrates a fragmentation for relation CDR 
in three fragments F1 , F2 , and F3 , where encrypted attributes 
have a gray background. Note that in this case, attribute � 
does not need to be encrypted but can be stored in plain-
text in a fragment different from fragments F1 and F2 that 
already contain the plaintext attributes � and � , respectively. 
The query involving � can then be efficiently executed on its 
plaintext representation in F3.

The third paradigm, called keep a few, see the involve-
ment of a trusted party (e.g., the owner) for storing a small 
amount of data. This paradigm does not apply encryption 
since sensitive attributes are always stored at the trusted-
party side. Sensitive associations are protected by storing 
at least one of their attributes at the trusted-party side. Like 
for the two can keep a secret paradigm, the two fragments 
must have a common key attribute to permit authorized users 
to correctly reconstruct the content of the original relation. 
Figure 4d illustrates a fragmentation for relation CDR in two 

Fig. 4  An example of sensitive associations a for relation CDR(�,�,�,�,� ) in Fig. 3b and of its fragmentation with respect to the two can keep a 
secret (b), multiple fragments (c), and keep a few (d) paradigm
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fragments Fo and Fc , where Fo is the fragment stored at the 
trusted party and Fc is the fragment stored at an external 
cloud provider. Note that at least one attribute of each sensi-
tive association in Fig. 4a is in Fo.

Fragmentation solutions can be further extended to con-
sider, in the allocation of fragments to providers, the dif-
ferent characteristics of the providers themselves such as 
economic cost and performance.

Fragmentation in Decentralized Cloud Storage

The idea of splitting data in fragments (i.e., “data chunks”) 
for confidentiality reasons is also applied in decentralized 
cloud storage (DCS) systems. In DCS systems, a resource 
(e.g., a file) is split in shards each of which is allocated 
(with replication to provide availability guarantees) to dif-
ferent nodes. The resource can be accessed by retrieving 
and recomposing its shards. Since the nodes in the DCS 
are usually of different providers that are outside the con-
trol of data owners, owner-side encryption is typically used 
to protect the confidentiality of the resources. While effec-
tive, owner-side encryption leaves resources exposed to 
threats. Resources are still vulnerable when, for example, 
the encryption key is exposed or when malicious nodes not 
deleting their shards upon owner’s requests try to reconstruct 
a resource in its entirety. The approach in [19] addresses 
these issues by making the (even partial) reconstruction 
of data impossible if even a single shard is missing. This 
is obtained through the application of an All-Or-Nothing-
Transform (AONT) encryption mode [20] that transforms 
a plaintext resource into a ciphertext so that the whole 
encrypted resource is required to obtain back the original 
plaintext resource. The encrypted resource is then properly 
partitioned into several slices that are distributed at the dif-
ferent nodes in the system in such a way that at least k + 1 
nodes should collaborate to collect the slices composing a 

resource. This means that a resource is protected against col-
lusion of up to k malicious nodes. Data availability is instead 
provided through the storage of a number of replicas of each 
slice of a resource.

An interesting problem to be address in the DCS context 
is related to the need of balancing data availability and secu-
rity guarantees while limiting the data owner’s intervention 
in case of failure of a node (and hence unavailability of a 
subset of shards) [19, 21].

Selective Information Sharing

The consideration of a large community of users introduces 
the problem of how to grant access to the data outsourced to 
the cloud in a selective way. Selective sharing means that the 
access to data by other users should obey possible authori-
zations that the data owner wishes to apply. The enforce-
ment of such authorizations cannot be performed by the data 
owners themselves since it is impractical to assume that the 
owners intercept each and every access request. Similarly, 
the enforcement of the authorizations cannot be delegated 
to the cloud provider because it is not trusted to access the 
data content, and because the data owner should remain in 
control. Existing solutions to this problem (e.g., [22]) com-
bine selective encryption and key derivation strategies (e.g., 
[23]), or rely on attribute-based encryption (e.g., [24]).

Selective Encryption

Selective encryption means that different pieces of informa-
tion are encrypted with different encryption keys. These keys 
are distributed to users in such a way that they can decrypt 
all and only the data authorized to access. The authorization 
policy is then translated into an equivalent encryption policy, 

t1 t2 t3 t4 t5 t6 t7 t8
E 1 1 1 1 0 0 0 0
F 1 1 1 1 0 0 0 0
G 0 0 0 1 1 1 1 1
H 0 0 0 1 1 1 1 1
I 0 0 0 1 1 1 1 1
J 0 0 0 0 1 1 1 1

EE

FF

GG

HH

II

JJ

EF

GHI

EFGHI

GHIJ

t1, t2, t3

t4

t5, t6, t7, t8

(a) access matrix (b) key derivation hierarchy

Fig. 5  An example of access matrix defined by � for relation AP (a), and of corresponding key derivation hierarchy (b)
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regulating key distribution to users and the keys used to 
encrypt the resources. As an example, consider relation AP 
in Fig. 3a, and suppose that before its outsourcing the rela-
tion is encrypted at tuple level, meaning that for each tuple, 
the attributes of the relation are encrypted all together. Sup-
pose that there are six users, Ellen (E), Frank (F), Gary (G), 
Hope (H), Ily (I), and Joe (J), that are authorized to access 
the information stored in this relation. Figure 5a illustrates 
an example of access matrix defined by the data owner � of 
relation AP regulating access to the tuples in the relation. 
The access matrix represents the authorization state, that is, 
the authorizations defined by the data owner at a given time. 
According to this access matrix, Ellen and Frank can access 
the first four tuples t1 , t2 , t3 , and t4 , Gary, Hope, and Ily can 
access the last five tuples t4, t5,… , t8 , and Joe can access the 
last four tuples t5,… , t8 . A simple way for enforcing such 
access restrictions consists in first encrypting all tuples char-
acterized by the same access profile (i.e., the same access 
control list—ACL) using the same encryption key, and then 
communicating the encryption keys to the users author-
ized to access the corresponding tuples. For instance, with 
respect to the access matrix in Fig. 5a, we can see that there 
are three different access control lists for the tuples of rela-
tion AP: ACL(t1 ) = ACL(t2 ) = ACL(t3 ) = {Ellen, Frank}, 
ACL(t4 ) = {Ellen, Frank, Gary, Hope, Ily}, and ACL(t5 ) = 
ACL(t6 ) = ACL(t7 ) = ACL(t8 ) = {Gary, Hope, Ily, Joe}. 
We can then use three encryption keys: one key, say k1 , for 
encrypting tuples t1 , t2 , t3 , a second key, say k2 , for encrypt-
ing t4 , and a third key, say k3 , for encrypting tuples t5,… t8 . 
Key k1 is then communicated to Ellen, Frank, and Gary only, 
k2 to Ellen, Frank, Gary, Hope, and Ily, and k3 to Gary, Hope, 
Ily, and Joe only. In this way, the users can only decrypt the 
tuples that they are authorized to access. Note that each user 
has to manage as many keys as the number of access control 
lists to which the user belongs.

Although effective, selective encryption requires data re-
encryption every time a user is granted or revoked access 
to a piece of information. This implies a download/upload 
overhead of possibly huge resources at the data owner side 
for data re-encryption. For instance, suppose that the owner 
� of relation AP grants access for a new user Kal to tuples 
t5 , t6 , t7 , and t8 . These tuples are download, decrypted, re-
encrypted with a new key, say k4 , and then re-uploaded. The 
encryption key k4 is then communicated to Kal and to all 
other users who can still access the tuples (i.e., Gary, Hope, 
Ily, and Joe). To avoid users having to store and manage a 
huge number of keys, the approach in [22] is based on a key 
derivation method and on two layers of encryption.

A key derivation method allows the derivation of a key 
starting from another key and some public information, and 
requires the definition of a key derivation hierarchy that 
establishes which key can be derived from which other key. 
A key derivation hierarchy can be seen as a directed graph 

with a vertex for each key in the system, and an edge from 
key ki to key kj iff kj can be derived from ki . The key deriva-
tion method used in [22] associates each key k with a public 
label l, and each edge in the key derivation hierarchy with 
a public token [23]. Given two keys ki and kj , with public 
label li and lj , respectively, the public token ti,j that permits 
to derive kj from ki and lj is computed as ti,j = kj ⊕ h(ki, lj) , 
where ⊕ is the bitwise XOR operator, and h is a hash func-
tion. The set containment relationship over the set of users is 
then used to define the key derivation hierarchy that initially 
contains one vertex for each user and each access control 
list. Then for each vertex corresponding to an access control 
list, the direct ancestors are the vertices that form a non-
redundant set covering for it. For instance, with respect to 
the access matrix in Fig. 5a, the direct ancestors of the vertex 
representing access control list {E,F} are vertex {E} and 
vertex {F}. For the vertices that have more than two com-
mon ancestors, a factorization process can be applied. Such 
a process corresponds to the insertion of an intermediate 
vertex representing the common ancestors. This allows a 
saving in the number of edges (and therefore tokens) that 
needs to be defined. Figure 5b illustrates the key deriva-
tion hierarchy corresponding to the access matrix in Fig. 5a, 
where the dotted lines from a vertex to tuples indicate that 
the tuples are encrypted using the key represented by the 
vertex (e.g., tuple t4 is encrypted with the key represented by 
vertex {EFGHI}), and the dotted lines from users to vertices 
represent the keys assigned to users. This hierarchy has a 
vertex ({GHI}, denoted with a dotted line) that does not 
correspond to any access control list and that represents the 
set of common ancestors for vertices {EFGHI} and {GHIJ}. 
The presence of this vertex saves one token because instead 
of connecting vertices {G}, {H}, and {I} to both {EFGHI} 
and {GHIJ}, they are connected to {GHI}, and then ver-
tex {GHI} is connected to {EFGHI} and {GHIJ}. The keys 
associated with vertices {E}, {F},… ,{J} are those commu-
nicated to the corresponding user and are used for (directly 
or indirectly) deriving the keys associated with the verti-
ces representing the access control list (which are used to 
encrypt the tuples of relation AP). For instance, suppose that 
user Ellen wishes to access tuple t4 . User Ellen uses key kE 
(i.e., the key represented by vertex {E} in the key derivation 
hierarchy) to derive key kEF = tE,EF ⊕ h(kE, lEF) that in turn is 
used to derive key kEFGHI = tEF,EFGHI ⊕ h(kEF, lEFGHI) , which 
is the key adopted for encrypting tuple t4.

With respect to the use of the two layers of encryption 
for policy update enforcement, the proposal in [22] uses one 
(static) layer applied by the data owner before storing the 
data in the cloud, and a second (dynamic) layer applied by 
the storage provider. The idea is that the second layer applied 
by the storage provider enforces policy updates, according 
to the data owner’s requests, encrypting the data in such a 
way that only the authorized users can remove the two layers 
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of encryption. This approach requires support by the cloud 
provider in managing policy updates. For instance, suppose 
that the authorization of Ellen to access tuple t1 of relation 
AP is revoked. Instead of downloading this tuple from the 
cloud provider, decrypting it, re-encrypting the tuple with a 
different key, and then re-uploading the encrypted tuple, the 
data owner sends to the cloud provider a request of protect-
ing the tuple with a second layer of encryption, using a key 
that only Frank (who can still access t1 ) knows or can derive. 
In this way, Ellen cannot remove this second encryption 
layer enforced by the cloud provider, and therefore cannot 
access the tuple anymore. An alternative solution for effi-
ciently supporting access revocation without relying on the 
cloud provider consists in using an encryption that performs 
a complete mixing of the resource. This mixing guarantees 
that the unavailability of a small portion of the encrypted 
resource prevents its (even partial) reconstruction [20]. The 
encrypted resource is then sliced into fragments and every 
time a user is revoked access to the resource, the owner can 
re-encrypt a randomly selected (small) fragment with a key 
that the revoked user neither knows nor can derive. Few 
works have extended the selective encryption technique to 
also enforce selective write privileges (e.g., [25]) and to sup-
port the presence of multiple data owners that selectively 
share their data (e.g., [26]).

Attribute‑Based Encryption

Attribute-based encryption (ABE) is a public-key encryp-
tion that regulates access to data according to access policies 
that are defined over attributes associated with the data and/
or with the users (e.g., [1]). These approaches can then be 
distinguished in two main classes: Ciphertext-Policy ABE 
(CP-ABE), and Key-Policy ABE (KP-ABE). In CP-ABE, 
the secret key of a user is associated with a list of attrib-
utes, and data are associated with an access policy defined 
over an attribute universe of the system. A user can access 
(decrypt) a data item if and only if the attribute values asso-
ciated with the user satisfy the access policy associated with 
the encrypted data. For instance, suppose that the attrib-
ute universe includes attributes { ������� , ���� }, where 
������� can assume values ‘Ghost’, ‘Microservice’, or 
‘Wise’ and ���� can assume values ‘Technician’ or ‘Admin-
istrative’. Suppose also that the tuples of relation AP can 
be accessed by technicians working for the Ghost company 
or from users working for the Microservice company. The 
tuples of relation AP are then encrypted under the access 
policy ((�������:Ghost and ����:Technician) or �������
:Microservice). In this case, user Alice with attribute list 
{ �������:Ghost, ����:Administrative} cannot decrypt the 
tuples of relation AP.

In KP-ABE, the access policy is encoded into the user’s 
secret key and data are encrypted according to an attribute 

list. A user can access (decrypt) a data item if and only if 
the attribute values associated with the data item satisfy 
the access policy associated with the user’s attribute secret 
key. For instance, if the access policy ((�������:Ghost and 
����:Technician) or �������:Microservice) is encoded into 
the Bob’s attribute secret key, then Bob cannot decrypt the 
tuples of relation CDR, which are encrypted based on the 
attribute list { �������:Wise, ����:Technician}. Between 
the CP-ABE and KP-ABE, the first one has received much 
more attention than the second one mainly because the defi-
nition of the access policy is on the hand of the data owners. 
We conclude by noting that also the ABE-based approaches 
have been extended to support write privileges through, for 
example, the application of attribute-based signature tech-
niques (e.g., [27]).

Access Confidentiality

Although encryption and/or fragmentation protect the 
confidentiality of data stored at external cloud providers 
(Section“Data Protection”), these solutions are not enough 
when data are involved in the execution of queries. The 
observation of the accesses to an outsourced data collection 
may reveal sensitive information about the user performing 
the query as well as about the data collection itself. As an 
example, suppose that Alice is looking for the information 
about a specific disease, say arthritis. By knowing that Alice 
is looking for information about arthritis, it is possible to 
infer that Alice (or a person close to her) is suffering from 
it. Analogously, disclosing the fact that two accesses aim at 
the same encrypted piece of information allows an observer 
to maintain the information about the frequency of accesses 
to data and, exploiting external knowledge on the frequency 
of accesses to the corresponding plaintext data, reveals to the 
observer the plaintext data behind the accessed encrypted 
data. It is, therefore, necessary to protect, beside data con-
fidentiality, also access confidentiality (i.e., confidentiality 
of the target of each access) and patter confidentiality (i.e., 
confidentiality of the fact that two accesses aim at the same 
piece of information). Different solutions have been pro-
posed to protect access and pattern confidentiality (e.g., PIR, 
ORAM-based approaches, shuffle index) [16]. In particular, 
the shuffle index [28] organizes the outsourced relation as 
an unchained B +-tree (i.e., a B +-tree where contiguous leaf 
nodes are not connected) built over a candidate key of the 
relation. Figure 6a illustrates a logical representation of a 
shuffle index with fan-out 3 (i.e., the number of pointers 
to child nodes in a node is at most 3), where each node is 
associated with a unique logical identifier. These identifiers 
do not reflect the order relationship among the values in the 
nodes. Each node of the shuffle index is encrypted (with 
a random salt to destroy plaintext distinguishability), and 
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stored in a physical block. Figure 6b illustrates the physical 
representation of the shuffle index in Fig. 6a.

Access and pattern confidentiality are guaranteed through 
the combined application of three protection techniques: 
cover searches, cached searches, and shuffling. Cover 
searches are fake searches that are executed together (i.e., 
in parallel) with the search operation for a target value. To 
be effective, cover searches should be indistinguishable from 
real searches, and visit disjoint paths along the tree, also 
with respect to the target. More precisely, for each level of 
the shuffle index (but the root level), the user downloads 
from the cloud provider a fixed number of nodes (physical 
blocks), say num_cover + 1: one is the block along the path 
to the target value, and num_cover are the blocks along the 
(disjoint) paths to the cover searches. For the cloud provider, 
each of the num_cover + 1 searches, and hence accessed leaf 
blocks, can be the target. Cover searches then hide the target 
search within a group of other fake searches.

Cached searches consists in maintaining at the user side a 
local layered cache (i.e., a cache with one layer for each level 
of the shuffle index) that is used to store the nodes along 
the paths to the target values of the num_cache most recent 
accesses to the shuffle index. Whenever the target value is 
in cache, the corresponding block is not read from the cloud 
provider and an additional cover search is used during the 
access, to guarantee that the cloud provider always observes 
the visit of num_cover + 1 disjoint paths. Intuitively, the 
cache avoids short-time intersection attacks, which could 
be exploited by the cloud provider to identify repeated sub-
sequent accesses downloading non-disjoint sets of blocks.

Shuffling destroys the otherwise static node-block corre-
spondence by storing each visited node in a different block. 
Shuffling then assigns a different block to each accessed 
node, choosing among the downloaded blocks. This guar-
antees that repeated accesses to the same block do not imply 
repeated accesses to the same node. To prevent the cloud 
provider from inferring where a node has been moved, every 

time a node is stored into a different block, it is re-encrypted 
using a different random salt. Note that the parent of a shuf-
fled node is updated to preserve the consistency of the shuf-
fle index (i.e, the pointers to the child nodes must be updated 
according to the shuffling performed). The shuffle index then 
guarantees that accesses downloading the same block(s) 
might have a different target, and that accesses aimed at 
the same target may download disjoint sets of blocks. The 
cloud provider is then not able to reconstruct the frequency 
of accesses to data based on the observed accesses to physi-
cal blocks.

Figure 6b illustrates an example of shuffle index where 
we perform a search for value x3, the cache contains the path 
to y1, and value z2 is chosen as cover. The search operation 
starts with an access to the root node (001) in the local cache, 
and with the identification of the nodes along the path to the 
target (block 102), cover (block 103), and in cache (block 
101). Blocks 102 and 103 are downloaded from the cloud 
provider and decrypted, and node x along the target path is 
inserted in the local cache. The client then shuffles nodes 
101, 102, and 103 (e.g., x is assigned to 103, z to 101, and 
y to 102), updates the root node to adjust the pointers to the 
children according to the shuffling performed, re-encrypts 
its content, and stores it at the cloud provider. Analogously, 
the blocks at the second level of the shuffle index along the 
path to the target (block 203) and to the cover (208) are 
downloaded and decrypted, and the local cache is updated by 
inserting node x3 and removing y1. The client then shuffles 
blocks 203, 208, and 202 (e.g., x3 is assigned to 208, z2 to 
202, and y1 to 203), updates the parents of leaf nodes (i.e., x, 
y, and z) with the new values for the pointers to the children, 
re-encrypts them, and re-writes them back at the cloud pro-
vider. Finally, the client re-encrypts the accessed leaf nodes 
and sends the corresponding blocks to the cloud provider 
for storage. The gray blocks in Fig. 6b are the blocks read 
and written during the search operation (i.e., the blocks cor-
responding to nodes in the target and cover paths), and the 
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(a) logical representation (b) physical representation

Fig. 6  An example of logical and physical representation of a shuffle index and of a search for value x3
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light gray blocks are those only written (i.e., the blocks cor-
responding to nodes in the local cache).

Note that the presence of multiple providers can be ben-
eficial for efficiently performing anonymized version (e.g., 
k-anonymity [29]) of very large datasets (e.g., [30, 31]), and 
for providing access and pattern confidentiality. For instance, 
the shuffle index has been extended to work in a distributed 
scenario characterized by three independent providers stor-
ing a portion of the shuffle index (and that can then observe 
only a portion of the accesses over it) [32]. Each access to 
the shuffle index is designed to involve all the providers and 
to dynamically move accessed data among the providers. 
The developed solution provides stronger protection com-
pared to the use of a single provider and has been designed 
to resist to collusion even among all the three providers.

Indexes for Queries over Encrypted Data

In this section, we consider the problem of supporting query 
execution over data stored in the cloud in encrypted form 
while preserving data confidentiality. There are two lines of 
approaches that address this problem. The first line consists 
in applying, at the owner side, cryptographic algorithms that 
support the evaluation of conditions directly over the data 
encrypted with these algorithms (e.g., property-preserving 
encryption, searchable symmetric encryption, and homo-
morphic encryption [33–35]). The second line consists in 
complementing the encrypted data with indexes that are then 
used for query execution (e.g., [36]). Indexes are metadata 
associated with the encrypted relation stored at an external 
provider that allow the provider to retrieve the data of inter-
est. In the following, we focus on index-based solutions, 
and we first discuss how a relation can be encrypted and 
indexed (Section “Encrypted and Indexed Relation”), and 

then present some indexing solutions (Sections “Single-
Dimensional Indexes” and “Multi-dimensional Indexes”).

Encrypted and Indexed Relation

Before storing a relation R(a1,… , an ) in the cloud, it is 
important to decide the granularity level at which the rela-
tion must be encrypted. A relation R can be encrypted at 
relation, attribute, tuple, or cell level. Clearly, the granularity 
level has an impact on the overhead implied by encryption/
decryption operations and on the number of spurious tuples 
(i.e., tuples that do not belong to the query result but that the 
cloud provider cannot filter out) returned by the provider in 
response to a query. For instance, encryption at the relation 
level causes low overhead in terms of encryption/decryp-
tion operations but it requires to always download the whole 
relation independently from the query. Cell level encryption, 
instead, causes a high overhead for encryption/decryption 
operations, but allows the provider to be more precise in 
finding the data of interest. Tuple level encryption repre-
sents a reasonable trade-off between encryption/decryption 
overhead and precision in query execution.

The encrypted and indexed relation Rk corresponding 
to the tuple-level encryption of relation R(a1,… , an ) has 
schema Rk(��, ���, Il,… , Im) , with id a randomly chosen 
tuple identifier, Enc the encrypted tuple, and Ii the index 
computed over attribute ai , i = l,… ,m . In the following, 
for simplicity, we assume that all attributes in R are associ-
ated with an index in Rk while noting that only attributes 
expected to be involved in queries need to be indexed. Fig-
ure 7b illustrates an example of encrypted relation for the 
plaintext relation in Fig. 3a, which is reported in Fig. 7a. In 
this example, indexes have been defined for all the attributes 
of the plaintext relation (e.g., IA is the index over attribute 
Apid), and Greek letters denote index values.

AccessPoint (AP)
Apid Numant Platitude Mlongitude

t1 A1 4 38.846224 -77.306373
t2 A2 2 13.923404 2.158925
t3 A3 1 45.529661 9.269336
t4 A4 4 46.127087 10.353258
t5 A5 7 41.902782 12.496365
t6 A6 6 43.923555 19.408342
t7 A7 6 25.482951 75.508649
t8 A8 7 13.923404 79.508649

(a)

AccessPointk (APk)
Id Enc IA IN IP IM

tk
1 1 jjds7@ α γ β δ

tk
2 2 hw87hs ε χ β κ

tk
3 3 782gjk ρ η λ ζ

tk
4 4 jf98nd ω ξ θ φ

tk
5 5 h2e823e � ι θ π

tk
6 6 j96f5@ σ µ o ν

tk
7 7 9834js ϕ � θ υ

tk
8 8 ;[6dsk τ ϑ γ ε

(b)

Fig. 7  An example of plaintext (a) and corresponding encrypted and indexed relation (b)
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To limit the number of spurious tuples in query results, 
indexes should reflect the properties of the plaintext values 
they represent but, at the same time, they should not reveal 
the underlying plaintext values. The analysis in [37] shows 
that indexes are sensitive to frequency-based attacks and that 
an index function, to be robust against frequency attacks, 
should flatten the distribution of index values and generate 
collisions. This implies that all index values should have the 
same number of occurrences and that a same index value 
could correspond to different plaintext values. By destroy-
ing the frequency distribution of index values, an observer 
cannot exploit the frequency distributions of plaintext and 
index values for reconstructing the index function.

We now describe some indexing solutions, distinguish-
ing between indexes defined over each single attribute (Sec-
tion “Single-Dimensional Indexes”), and indexes defined 
over multiple attributes (Section  “Multi-dimensional 
Indexes”) of the relation to be outsourced.

Single‑Dimensional Indexes

Single-dimensional indexes can support the execution of 
equality and/or range conditions over a single attribute of 
the plaintext relation. There are different kinds of indexes 
that differ in how the mapping between plaintext values and 
index values is computed (and hence queries are translated). 
Such techniques can be classified as follows.

• Direct index (1:1) Each plaintext value is mapped to 
one index value and vice versa. This mapping can be 
computed, for example, by applying a deterministic 
encryption function over the plaintext values. This index 
preserves the frequency of the original plaintext values 
since all the occurrences of the same plaintext value are 
mapped to the same index value. As an example, index 
IA in Fig. 7b is a direct index computed over the plaintext 
values of attribute Apid of the relation in Fig. 7a.

• Bucket index (n:1) Each plaintext value is mapped to one 
index value, with collisions. This means that different 
occurrences of the same plaintext value are all mapped to 
the same index value, and that different plaintext values 
can be mapped to the same index value. This mapping 
can be computed, for example, by applying a hash func-
tion with collisions [38] or by partitioning the plaintext 
attribute domain and mapping all values in a partition to 
a same index value. As an example, index IP in Fig. 7b 
is a bucket index computed over the plaintext values of 
attribute Platitude of the relation in Fig. 7a. Here, 
plaintext values 38.846224 and 13.923404 are both 
mapped to the same index value � , and plaintext values 
46.127087, 41.902782, and 25.482951 are mapped to �.

• Flattened index (1:n) Each plaintext value is mapped 
to one or more index values so that all index values 

have the same number of occurrences (flattening). 
Each index value, however, represents one plaintext 
value only. This mapping can be computed by apply-
ing, for example, an encryption function over plaintext 
values that ensures such properties. As an example, 
index IN in Fig. 7b is a flattened index computed over 
the plaintext values of attribute Numant of the rela-
tion in Fig. 7a. Here, the two occurrences of plaintext 
value 4 are mapped to different index values, that is, � 
and � , and the two occurrences of plaintext value 6 are 
mapped to � and � . In this way, all index values have a 
flat frequency equal to 1.

Given a query of the form “select Attributes from R where 
aj = v ” submitted by a user, it can be easily translated into 
a query over the corresponding encrypted and indexed 
relation: “select Enc from Rk where Iaj in mapaj(v) ” where 
mapaj is the index function defined over attribute aj that 
maps a value v in the domain of the attribute to the cor-
responding index value(s). The transformed query is exe-
cuted by the provider storing the encrypted and indexed 
relation and the result is returned to the user. The user 
decrypts the query result and possibly executes the origi-
nal query over the decrypted result to filter spurious tuples. 
For instance, suppose that a user submits query “select 
Apid from AP where Platitude=38.846224”. This 
query is transformed into the following query operating on 
the encrypted and indexed relation APk : “select Enc from 
APk where IP in { �}”. The provider storing relation APk 
executes the transformed query and returns the set { tk

1
,tk
2
 } 

of tuples of the encrypted and indexed relation in Fig. 7b. 
Upon receiving the encrypted tuples, the user decrypts 
them and executes query “select Apid from Res where 
Platitude=38.846224”, with Res the relation contain-
ing the two decrypted tuples. This query returns the first 
tuple only since the second tuple is spurious.

Alternative indexing solutions (not based on the defini-
tion of an indexing function) designed for supporting range 
queries leverage traditional indexing approaches usually 
adopted in the database context. For instance, the proposal in 
[38] uses a B+tree for supporting range queries. The B+-tree 
is constructed over an attribute of the original plaintext rela-
tion and is stored at the cloud provider in encrypted form. 
More precisely, the B +-tree is stored as a relational table 
with two attributes: a node ID, automatically assigned by 
the system on insertion, and an encrypted value, represent-
ing the node content. The execution of a range query over 
the attribute used for constructing the B+-tree is performed 
by the client through the execution of a sequence of queries 
that retrieve tree nodes at progressively deeper levels. The 
execution starts by retrieving from the cloud provider the 
encrypted root of the B +-tree, which is decrypted by the 
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client to determine the node at the next level of the tree that 
has to be retrieved from the provider. The process termi-
nates when a leaf is reached: the node ID of the leaf can be 
used to retrieve the tuples satisfying the range condition. 
For instance, suppose that the execution of a range query 
terminates over a leaf node with ID 10. Since all the leaf 
nodes of a B+-tree are linked, the search process continues 
from node 10 by following the sibling link to the next leaf 
node, say the node with ID 11, to see whether it contains 
tuples that satisfy the range conditon, and so on. The search 
process terminates when the examined leaf node contains a 
value that falls outside the range condition.

Multi‑dimensional Indexes

Multi-dimensional indexes are build for supporting multi-
dimensional queries, that is, queries with conditions involv-
ing different attributes. Some proposals use tree-based 
structures (e.g., encrypted R-tree [39] and virtual binary tree 
[40]) for indexing data with the goal of defining techniques 
to efficiently visit the tree-based structure, while protecting 
data confidentiality.

Other multi-dimensional indexing techniques are based 
on an idea similar to the bucket-based index described in 
the previous section (e.g., [41, 42]). The tuples in the origi-
nal plaintext relation are represented as points in a multi-
dimensional space, with one dimension for each attribute 
that can be involved in a query. Then the points in the space 
are partitioned into different regions (buckets), and each 
region is assigned with an index or a set of indexes. As an 
example, consider the plaintext relation in Fig. 7a, and sup-
pose that the attributes possibly involved together in queries 
are attributes Numant and Platitude. Figure 8a illus-
trates the two-dimensional representation of the tuples over 
the two attributes Numant and Platitude. The indexing 
techniques in [41, 42] then differ in how the points in the 

space are partitioned and in how indexes are assigned to 
each partition.

The proposal in [42] partitions the tuples with the goal of 
minimizing a cost measure that depends on the number of 
spurious tuples retrieved by a query (for details on the cost 
measure see [42]) while keeping the disclosure risk (i.e., 
the ability of estimating the value of one or more attributes 
of the tuples in a bucket) low. More precisely, the partition-
ing operates in two phases. In the first phase, the tuples are 
partitioned having as input the dataset and the number M of 
buckets that the partitioning should produce. The process 
starts with all data points in a bucket B (i.e., one rectangle) 
to which corresponds a cost computed with the selected cost 
measure, and then among all possible pairs of points, the 
process selects the pair such that the corresponding rectan-
gle (i.e., the rectangle where the two selected points are the 
end points of the longest diagonal of the rectangle) reduces 
the actual cost by the maximum amount. As an example, 
consider the AP relation and its spatial representation in 
Fig. 8a, where initially all points belong to the drawn rec-
tangular B. Figure 8b shows the two data points chosen, 
corresponding to the two light gray end points of the dashed 
line in the figure, which determine the “best rectangle” B′ 
to consider for the creation of a new bucket (i.e., the rec-
tangle that determines the maximum reduction in the cost). 
After this selection, the data points are partitioned into two 
buckets: one corresponds to the new rectangle, B′ , (i.e., the 
dashed rectangle in Fig. 8b) and the other one corresponds 
to the initial rectangular B modified so to cover only the 
data points that are not already covered by B′ . Then, the 
minimum bounding rectangle (i.e., the smallest rectangle 
that includes all points in a given d-dimensional rectangle) 
of all rectangular areas affected by the creation of B′ (i.e., 
the rectangular area that lost some data points that are now 
included in B′ ) is recomputed. After this step, all data points 
are checked and are possibly reassigned to the actually exist-
ing buckets (possibly readjusting their minimum bounding 
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Fig. 8  An example of clustering for the proposal in [42]
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rectangles) if the cost can be further reduced. Fig. 8c illus-
trates the two buckets B and B′ resulting after a reassignment 
has been applied on the two existing buckets. The process 
continues until M buckets {B1,… ,BM} have been created. 
In the second phase, the data points in the generated buck-
ets are re-distributed, among the existing buckets, in a way 
that the average entropy and variance of the distribution of 
values in the buckets are increased. The rationale is to add 
“confusion” in the buckets so to make difficult to infer some-
thing about the values of the attributes of the tuples in the 
buckets. The encrypted and indexed relation is then obtained 
by encrypting the plaintext relation at the tuple level. Each 
tuple is associated with the identifier of the bucket to which 
the corresponding plaintext tuple belongs.

The proposal in [41] partitions the tuples in buckets with 
the goal of constructing a multi-dimensional flattened index. 
The idea is to create buckets with almost the same num-
ber of tuples (denoted b). Each bucket is then associated 
with a set of indexes, one for each attribute of interest of 
the plaintext relation. In other words, all (and only) tuples 
in a bucket are associated with the same combination of 
index values. In this way, the multi-dimensional index is 
robust against static inferences because the distribution of 
the combination of index values is almost flat. The partition-
ing process starts with all points in a bucket, and then selects 
an attribute/dimension and a threshold value in its domain. 
The selection of the attribute can be performed considering 
different metrics (e.g., the attribute with the highest number 
of distinct values). The multi-dimensional space is parti-
tioned into two subspaces based on the selected threshold, 
each containing the points falling on its side of the cut (i.e., 
lower or higher than the threshold). The threshold used for 
the cut is computed according to the type of the selected 
attribute. If the attribute is continuous, meaning that the 
attribute is characterized by a total order relationship on 
its domain, the threshold corresponds to the median. If the 

attribute is nominal, meaning that there is not any natural 
order relationship defined over its domain, the threshold cor-
responds to the value that splits the space in two sub-spaces 
with nearly 50% of the tuples each. When the spaces can-
not be further divided without generating a sub-space with 
less than b tuples, the process terminates. As an example, 
consider the plaintext relation in Fig. 7(a) and suppose that 
a multi-dimensional index must be supported on attributes 
Numant and Platitude, and that the partitioning process 
must create buckets of at least two tuples. The partitioning 
process starts by selecting one attribute between Numant 
and Platitude. In this example, Numant has five distinct 
values and Platitude has 7 distinct values. The selected 
attribute is then attribute Platitude. The median value is 
40.374503 and a first cut splits the overall space in Fig. 9a in 
two subspaces: one contains all points where Platitude 
is greater than or equal to the median and the other one con-
tains all the other points. Since the two sub-spaces contain 
four points, a further cut is performed on the two sub-spaces. 
In both cases, the cuts are performed over attribute Numant 
whose median value is 5. Figure 9b illustrates the resulting 
buckets and Fig. 9c illustrates the encrypted and indexed 
relation, which contains four groups of tuples corresponding 
to the four sub-spaces in Fig. 9b. All tuples in a group are 
associated with the same pair of index values. Note that for 
readability, the tuples in the encrypted and indexed relation 
appear in the same order as the tuples in the corresponding 
plaintext relation in Fig. 7a.

Query Integrity

As discussed in Section  “Data Protection”, integrity, 
together with confidentiality, is a critical aspect that must 
be ensured when data owners outsource their data to the 
cloud. However, verifying the integrity of outsourced data 

Fig. 9  Spatial representation (a) of the relation in Fig. 7a, its partitioning (b), and corresponding encrypted and indexed relation computed as 
described in [41] (c)
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by their owners is only one of the aspects of integrity. In 
particular, the processing of data (possibly distributed 
among multiple collaborative providers) requires solutions 
for verifying the integrity of the data processing result. The 
integrity aspect is particularly important when the parties 
involved in a data processing are not trustworthy, meaning 
that they are not reliable for properly responding to queries. 
Intuitively, providing integrity of query execution requires 
guaranteeing that the query result includes all data satisfying 
the query (completeness) and has been computed correctly 
(correctness) over the most recent version of truthful data 
(freshness). Existing solutions can be classified as determin-
istic techniques and probabilistic techniques (e.g., [1, 43]). 
Deterministic techniques are based on the use of authenti-
cated data structures that are associated with the outsourced 
relation and are computed over an attribute of the relation. 
These techniques permit to detect integrity violations with 
certainty. Examples of deterministic approaches for correct-
ness/completeness are signature chaining schemas, Merkle 
hash trees, and skip lists. These authenticated data structures 
provide deterministic integrity guarantees but only for que-
ries that include conditions over the attribute on which the 
structure has been built.

As an example, we consider the technique based on the 
definition of a Merkle Hash Tree (MHT). A Merkle Hash 
Tree over a relation R is a binary tree that stores, in each 
leaf, the result of a one-way hash function h applied over 
a tuple of the relation. The internal nodes store the result 
of the hash function applied over the concatenation of the 
values stored at their children. The tuples in the leaves of 
the MHT are ordered according to the values of an attribute 
� , and the root of the MHT is signed by the data owner, and 
communicated to users authorized to access the outsourced 
relation. Figure 10 illustrates an example of a MHT defined 
over attribute ���� of relation AP in Fig. 7a. To verify the 
correctness of a range query over attribute � of a relation 
R , the cloud provider returns to the user a set of tuples in R 
with contiguous values for � (i.e., the tuples resulting from 
the evaluation of the range query) together with a Verifi-
cation Object (VO) that includes the values of the nodes 
needed by the user to compute the hash value of the root. 
The user then computes the hash value of the root using the 

VO and the tuples received from the provider, and checks 
whether such a value corresponds to the root value initially 
computed by the data owner [44]. If there is a match of the 
computed value of the root with the known signed root, the 
query result is complete. Note that the computation of the 
VO depends on the set of tuples returned. For instance, in 
case of a point query that returns a specific tuple, the VO 
contains the values of all the nodes being sibling of those 
in the path from the root to the leaf corresponding to the 
returned tuple. As an example, consider the AP relation in 
Fig. 7a and the  MHT in Fig. 10 built over attribute ���� . 
Suppose that a user submits query “select * from AP where 
����=A6” that returns tuple t6 . To verify the correctness 
of the query result, tuple t6 is returned together with a VO 
that contains the green nodes in Fig. 10 (i.e., t5 , h78 , and 
h1234 ). The user can then compute the hash of tuple t6 and 
combine it with the VO, as illustrated in the figure, to com-
pute the root of the tree, which is then compared to the one 
computed and signed by the data owner. More precisely, 
the user computes h�

5
= h(t5) , h�6 = h(t6) , h�56 = h(h�

5
∥h�

6
) , 

h�
5678

= h(h�
56
∥h78) , and h�

12345678
= h(h1234 ∥h

�
5678

) , and then 
verifies whether h′

12345678
 corresponds to the signed value 

received from the data owner.
Probabilistic techniques [1] enable the assessment of 

query integrity by injecting control tuples in the stored 
data or in the computation. The advantage of these solu-
tions with respect to the deterministic approaches is a larger 
applicability, as they are not limited to operate on a spe-
cific attribute. However, not operating on an authenticated 
data structure, the offered guarantee is only probabilistic, 
as integrity compromises that affect the completeness of a 
query result can be detected only if the missed information 
in a query result corresponds to the control tuples. Control 
tuples injected into the input dataset are of two kinds: non-
genuine tuples (called sentinels or markers), and controlled 
replicas of tuples (called twins). Absence of a sentinel or of 
one of the twins (in the presence of the other) from a query 
result signals its incompleteness. As an example of working 
of the probabilistic techniques, we consider the approach in 
[43], where queries are performed by an untrusted compu-
tational provider. Suppose that a client wishes to perform a 
join query over relations AP(�,� ) and CDR(�,� ) (see Fig. 11). 
The cloud providers storing the two relations first inject both 
sentinels and twins (which are the tuples that satisfy a repli-
cation condition communicated to the storage providers by 
the client). The resulting extended relations ( ��∗ and ���∗ ) 
are then encrypted on-the-fly and sent to the computational 
provider (in the figure, encrypted values are represented as 
Greek letters). The encrypted relations ��∗

k
 and ���∗

k
 have 

two attributes: Jk , the encrypted join attribute; and T k , the 
encryption of all attributes (including the join attribute). 
Note that encryption protects both data confidentiality 
from the computational provider and makes control tuples 

h1 = h(t1) h2 = h(t2) h3 = h(t3) h4 = h(t4) h5 = h(t5) h6 = h(t6) h7 = h(t7) h8 = h(t8)

h12 =
h(h1 ‖h2)

h34 =
h(h3 ‖h4)

h56 =
h(h5 ‖h6)

h78 =
h(h7 ‖h8)

h1234 =
h(h12 ‖h34)

h5678 =
h(h56 ‖h78)

h12345678 = h(h1234 ‖h5678)

Fig. 10  An example of Merkle hash tree for attribute ���� of relation 
AP in Fig. 7a
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indistinguishable. The computational provider computes the 
natural join between the received encrypted relations and 
sends the result ( J∗

k
 ) to the subject. The subject decrypts J∗

k
 , 

verifies its ( J∗ ) completeness (i.e., if all the expected senti-
nels and twins are in J∗ ) and correctness, and, if no omission 
is detected, projects over attributes � , � , and � and removes 
twins and sentinels to obtain the final join result.

Related to the use of sentinels and twins, there is the 
problem of regulating the injection and distribution of such 
control data in distributed cloud scenarios where a computa-
tion is distributed among different workers [45]. Attention 
is also needed to the problem of accountability in case of 
integrity violation.

Controlled Execution of Collaborative 
Queries

Emerging scenarios require cooperation among providers 
storing independent data collections for performing distrib-
uted collaborative computations, while ensuring that data 
security and privacy are properly protected. In the follow-
ing, we first describe existing solutions that focus on the 

problem of processing distributed queries under protection 
requirements regulating the selective visibility of data (Sec-
tion “Distributed Queries Under Protection Requirements”). 
Then, we describe an approach that can be used in scenarios 
where multiple external providers offering computational 
services can be conveniently involved in query execution 
(Section “Collaborative Queries with Multiple Providers”).

Distributed Queries Under Protection Requirements

In the relational database context, the problem of supporting 
query execution considering constraints on the visibility of 
data is addressed through the specification of views and the 
definition and enforcement of access restrictions over such 
views (e.g., [46, 47]). Views provide fine-grained content-
dependent access control. Basically, a query submitted by 
a subject over a given set of (basic) relations is rewritten 
using the views available to the requesting subject. This 
query rewriting can be performed according to two differ-
ent models [47]. With the Truman model, the query is trans-
parently rewritten, and the result is returned to the subject. 
The main problem with this model is that the subject can 
obtain misleading results as they have been computed over 
a portion of the dataset (i.e., the one visible to the user). As 
an example, consider relation CDR in Fig. 3 and suppose 
a user is permitted to access only the tuples related to her 
device. In this case, a view is created for the user having the 
form “create authorization view MyCDR as select * from 
CDR where Hash-id = $user-hashid”, with $user-hashid a 
parameter of the view. Suppose now that the user submits 
the query “select avg(�������� ) from CDR”. The system 
modifies this query as “select avg(�������� ) from MyCDR” 
and returns the average of the duration of the user’s connec-
tions, giving her an impression that her average connection 
duration is the same as the overall average connection dura-
tion. With the non-Truman model, only if the rewritten query 
is equivalent to the original query (i.e., the rewritten query 
returns the same result as the original query), the query is 
considered valid and the result is returned to the requesting 
subject; otherwise the query is rejected. For instance, the 
previous query would be rejected.

Other solutions are based on the concept of access pat-
tern (e.g., [48, 49]). An access pattern for a relation speci-
fies which attribute values should be given as input to gain 
access to the values of (a subset of) the other attributes for 
the same tuples. For instance, with respect to the Access-
Point relation in Fig. 12a, an access pattern over this rela-
tion can specify that the identifier Apid of an access point 
must be provided as input to access attributes Numant, 
Platitude, and Mlongitude. Relations can then be 
accessed only according to their corresponding access pat-
terns. The query evaluation process must be revised to take 
into account the restrictions modeled as access patterns.

Sl Sr

computational
provider

client

AP
A N

A1 4
A2 2

CDR
I H

A1 h1
A2 h2
A6 h1
A7 h3

add sentinels/twins add sentinels/twins

AP∗

A N

A1 4
A2 2
A2 2
x m1

CDR∗

I H

A1 h1
A2 h2
A6 h1
A7 h3
A2 h2
x m2

encrypt encrypt

AP∗
k

Jk Tk

α µ1
β µ2

β µ3
χ µ4

CDR∗
k

Jk Tk

α η1
β η2
γ η3
δ η4

β η5
χ η6

��

J∗
k

AP*.Jk AP*.Tk CDR*.Jk CDR*.Tk

α µ1 α η1
β µ2 β η2

β µ3 β η5
χ µ4 χ η6

decrypt

J∗

A N I H

A1 4 A1 h1
A2 2 A2 h2
A2 2 A2 h2
x m1 x m1

Fig. 11  An example of the evaluation of a join query with twins 
(green tuples) on ‘A2’ and one marker (yellow tuples)



SN Computer Science           (2023) 4:440  Page 15 of 21   440 

SN Computer Science

Sovereign join [50] is a solution for performing a join 
operation between two relations in a way that the provider in 
charge of performing the join operation (which must be dif-
ferent from the owners of the involved relations) cannot infer 
anything about the operands. Similarly, the owners of the 
operands do not learn anything about the join result or about 
the other operand relation. To this purpose, the join opera-
tion is performed through a secure coprocessor located at the 
provider in charge of join evaluation. The query execution 
then starts with a subject sending a join operation to the pro-
vider. Note that the subject submitting a join operation must 
be different from the owners of the two relations involved in 
the join. The provider is not trusted for confidentiality, and 
therefore has an encrypted version of the relations on which 
the join operation must be computed. The provider sends the 
join operation and the encrypted relations to the coprocessor. 
The coprocessor decrypts the relations, performs the join 
operation, encrypts the query result with a key shared with 
the requesting subject, and then returns the encrypted results 
to the provider. Finally, the provider sends the encrypted 
result to the requesting subject.

Collaborative Queries with Multiple Providers

A recent approach for supporting the collaborative execu-
tion of queries over distributed data collections introduces 
an authorization model regulating the data on which dif-
ferent providers have explicit visibility [51]. This solution 
supports queries of the general form “select from where 
group by having” and their execution is performed accord-
ing to a query plan that is represented as a tree T(N), 
with N the set of nodes in the tree, whose leaf nodes are 
base relations and whose internal nodes are the relational 
operations to be executed to perform the query. The query 
plan is produced with classical optimization criteria, and, 
in particular, we assume that projections and selections are 
pushed down to avoid the retrieval of data that are not of 
interest for the query. The working of this approach will 
be described with reference to the running example (Sec-
tion “Introduction”), considering a subject � interested 
in performing the query in Fig. 12b over the relations in 
Fig. 12a (which are the relations of our running example) 
whose query plan is shown in Fig. 12c. In the query, ts1 
and ts2 correspond to two timestamps (e.g., ‘09:00:00’ and 
‘17:00:00’, respectively).

We now illustrate: (i) the model and specification 
language that the data owners can use to express access 
restrictions on their data together with the concept of rela-
tion profile (Section “Policy Specification and Relation 
Profile”), and (ii) the mechanism enforcing such access 
restrictions during the execution of queries (Section “Policy 
Enforcement”).

Policy Specification and Relation Profile

Data owners keep control on their data through the defini-
tion of authorizations that state which subject can access 
which data in which form (plaintext or encrypted). Formally, 
given a relation R and a subject S , an authorization over R 
for S is a rule of the form [ Rp,Re] → S , with Rp,Re⊆ R and 
Rp∩ Re=∅ , stating that subject S can access in plaintext the 
set Rp⊆ R of attributes and in encrypted form the set Re⊆ R 
of attributes ( S cannot access all the other attributes in R ). 
Clearly, the plaintext visibility over the set Rp of attributes 
also implies the encrypted visibility over them. Also, since 
the subjects available in the system, which can be involved in 
the execution of a query, may not be all known a priori, the 
proposed approach supports the specification of authoriza-
tions that apply to all subjects when no explicit authorization 
already exists. Such authorizations have “any” as subject of 
the authorization. Figure 12d shows the set of authoriza-
tions defined for the running example. Each data owner can 
access all attributes of its relation in plaintext (i.e., � can 
access in plaintext all attributes of relation AP and ℂ can 
access in plaintext all attributes of relation CDR), and can 
possibly access the attributes of other relations in plaintext 
or encrypted form (e.g., � can access attribute � of relation 
CDR in encrypted form and in plaintext attributes � , � , and 
� ). External subjects offering computational resources only 
can access a subset of the attributes of the relations managed 
by the data owners in plaintext or encrypted form. Finally, 
there are two authorizations with value “any” as subject stat-
ing that attributes � and � of relation AP and attributes � and 
� of relation CDR can be accessed in plaintext by any other 
subject.

To determine when a subject can access a base or a 
derived (i.e., resulting from the execution of a query) rela-
tion, it is necessary to capture the informative content of the 
relation itself. Each relation is then associated with a rela-
tion profile. Intuitively, a relation profile is characterized by 
three components: the set Rv of visible attributes, that is, the 
attributes appearing in the schema of the relation; the set Ri 
of implicit attributes used in the computation of the relation 
(e.g., attributes involved in a selection condition that, even if 
removed from the relation schema, might have left a trace of 
their values in the query result); and the set R≃ of equivalent 
attributes, that is, the attributes that have been compared in 
the computation of the relation. Visible and implicit attrib-
utes are distinguished between plaintext (i.e., Rvp and Rip ) and 
encrypted (i.e., Rve and Rie ). Note that the profile of a rela-
tion can be extended to take into consideration the fact that 
the attributes used in a query can be renamed and that the 
relations managed by their data owners can also be stored in 
encrypted form [51, 52].

The profile of a base relation has all the elements but Rvp 
empty, since the relation is assumed accessible in plaintext 
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by the subject storing it (which, however, does not imply that 
the relation is stored in plaintext but only that it is accessi-
ble in plaintext), and does not carry any implicit content or 
equivalence relationship.

The profile of a derived relation depends on the profile 
of the operand relations and on the operators involved in 
its computation. Every operator operates on visible attrib-
utes only (i.e., attributes in Rvp and Rve , which belong to the 

schema of the operand relation R ), but it may affect also 
implicit attributes and the equivalence relationship in the 
profile of the resulting relation. For instance, the selection 
of tuples having N > 1 operates on visible attribute N, which 
is inserted into the implicit component after the operation 
has been evaluated. Figure 13 illustrates the graphical rep-
resentation of the relation profiles resulting from relational 
operations, encryption operation, and decryption operation, 

Fig. 12  An example of data sources (a), query (b), corresponding query plan (c), and authorizations on relations AP and CDR (d)
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together with an example for each operator on our running 
example. The relation profile of a relation obtained through 
the execution of the operation represented by a node in a 
query plan is shown as a dotted flag attached to the node 
itself with three components: v (visible attributes Rvp and 
Rve ), i (implicit attributes Rip and Rie ), and ≃ (sets of equiva-
lent attributes R≃ ). Within visible and implicit attributes, 
we distinguish the encrypted ones (i.e., Rve and Rie ) by rep-
resenting them on a gray background. As we will discuss 
in the following section, query plans can be extended with 
the insertion of: encryption operations, represented as gray 
boxes, containing the attributes to be encrypted on top of the 
operand relation; and decryption operations, represented as 
white boxes, containing the attributes to be decrypted, below 
the node representing the operator.

We now discuss the profile resulting from the application 
of each operator, focusing on profile components affected by 
the operator evaluation, while not discussing components 
that remain unchanged.

• Projection (�) The profile of the resulting relation con-
tains, in the visible attributes, only the attributes that 
have been projected.

• Selection (�) For conditions of the form ‘ a op x’, with 
x a value, attribute a is added to the implicit component 
(either encrypted or plaintext, consistently with the vis-
ibility of a in the operand). For conditions of the form ‘ ai 
op aj ’, equivalence {ai, aj} is added to the equivalence set.

• Cartesian product (×) The profile of the resulting rela-
tion is obtained by taking the union of the corresponding 
components in the profiles of the operands.

• Join (⋈) It is equivalent to a selection with a (conjunction 
of) conditions of the form ‘ ai op aj ’, which is applied to 
the Cartesian product of the operands (i.e., �C(Rl × Rr) ). 
The profile of the result reflects then the information con-
veyed by both these operators.

• Group by (�) The profile of the resulting relation con-
tains, in the visible attributes, only those attributes on 
which the grouping ( A ) and aggregate function ( a ) oper-
ate (when f (a) is count(∗ ), only attributes in A are main-
tained). Attributes appearing in the grouping function 
( A ) are added to the implicit attributes (to capture the 
possible information leakage from their grouping).

• Encryption Attributes on which encryption is applied 
are moved from visible plaintext to visible encrypted 
component.

• Decryption Attributes on which decryption is applied are 
moved from visible encrypted to visible plaintext com-
ponent.

Figure 14a illustrates the profiles of the relations resulting 
from the operations in the query in Fig. 12c.

Policy Enforcement

Given a (base or derived) relation, we can check whether a 
subject can access the relation comparing the relation profile 
with the authorizations of the subject. A subject can access 
a relation (authorized visibility) if the subject is authorized 
to access: 1) in plaintext, all plaintext attributes appearing 

Fig. 13  Graphical representation of the profiles resulting from rela-
tional, encryption, and decryption operations
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in the visible and implicit component of the relation profile; 
2) in plaintext or encrypted form, all encrypted attributes 
appearing in the visible and implicit component of the rela-
tion profile; 3) in the same form (plaintext or encrypted) 
all attributes appearing in the same set of the equivalent 
component of the relation profile. The first two conditions 
correspond to the classical enforcement of policy rules 
considering both the visible and implicit components of 
a relation profile. The third condition prevents unintended 
information leakage of attribute values due to comparison in 
query evaluation. As an example, consider the authorizations 
in Fig. 12(d) and a relation R with profile [ �,����,_,_,{��}]:

• � , � , and �  are not authorized for R (condition 1, attrib-
ute �);

• ℂ is authorized for R;
• � is not authorized for R (condition  2, attribute � 

and attribute �);
• ℤ is not authorized for R (condition  3, attribute � 

and attribute �).

The definition of authorized visibility is then used to regu-
late the assignment of operations in a query plan to a sub-
ject in respect of the authorization policy. Intuitively, an 
operation in a query plan operates on one or two operand 
relations, and produces a relation as output. Since the rela-
tion profile of a relation resulting from the evaluation of an 
operation captures all the information necessary to compute 
the operator, a subject is authorized for the execution of the 
operation if and only if it is authorized for all the relations 
involved: the operand(s) and the operation result. Given 
a query plan T(N), the goal is to produce an authorized 
assignment of operations to subjects. Note that any assign-
ment obtained selecting, for each operation in T(N), a sub-
ject authorized to execute the operation can be made author-
ized by injecting encryption and dencryption operations. 
An authorized assignment can be determined by applying 
a three-phase process: (1) for each operation in the query 
plan, compute the set of candidates (i.e., authorized sub-
jects); (2) for each operation, select an assignee according 
to a parameter of interest (e.g., economic cost); (3) inject 
encryption/decryption operations in the query plan to make 
the assignment authorized and to satisfy operation visibil-
ity requirements (i.e., some operations cannot be evaluated 
over encrypted attribute values, and therefore such attrib-
utes must be available in plaintext). We refer to a query 
plan enriched with encryption/decryption operations as an 
extended query plan. Note that the encryption operations 
necessary to make an assignment authorized depend on 
the subject to which an operation is assigned. For instance, 
for the query in Fig. 12c, attributes � and � would need to 
be encrypted for assigning the execution of the join to � 
but could remain in plaintext if the join is assigned to ℂ . 

Decryption operations are instead applied when the execu-
tion of an operation over an attribute cannot be performed 
over its encrypted representation.

Candidate computation Different strategies can be 
adopted for finding the set of candidates. A first possi-
ble strategy consists in leaving all attributes in plaintext 
in the query plan. The main advantage of this strategy is 
that operations are always performed over plaintext data. 
The disadvantage is the limited number of candidates to 
which operations can be assigned. Figure 14a illustrates 
for the query of the running example, the candidates for 
each operation assuming all attributes in plaintext. Here, 
for example, only subjects ℂ and � can perform the selec-
tion over attribute � (as well as all the following operations 
in the query plan).

An alternative strategy consists in encrypting all attrib-
utes. This increases the number of subjects to which each 
operation can be assigned but it would prevent the evaluation 
of operations requiring plaintext visibility over attributes. 
For instance, considering the query of our running exam-
ple suppose that the last selection cannot be performed over 
encrypted values. Encrypting attribute � would prevent the 
possibility of executing such a selection at an external server. 
To avoid this problem and to have the possibility of selecting 
an assignment considering a larger number of candidates, we 
assume that all (visible) attributes of a basic (leaf nodes of a 
query plan) or derived (internal nodes of a query plan) rela-
tion are encrypted but those that need to be in plaintext for 
the execution of the operation. All subjects that are author-
ized to access these relations can be considered candidates 
for executing the operation.

Fig. 14  Query plan with relation profiles and candidates for the query 
in Fig. 12c assuming all attributes in plaintext
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Assignee selection After each operation in the query plan 
has been associated with the set of candidates, the assignees 
are selected from the corresponding candidate sets. We note 
that any candidate in a candidate set can be selected indepen-
dently from the candidate selected for other nodes since any 
assignment can be made authorized by injecting encryption 
and decryption operations as needed. Among all the possible 
assignments, we can select the one that optimizes a param-
eter of interest, such as cost or performance.

The computation of a minimum cost assignment needs 
to consider the cost of executing a computation, the cost 
of transferring data between different subjects involved in 
the computation, and also the cost of possible encryption/
decryption operations that would be required for the selected 
candidates to be authorized for the operations assigned to 
them [51].

Encryption/decryption injection After the selection 
of the assignee of each operation in the plan, encryption 
and decryption operations are injected in the query plan as 
needed to guarantee authorization enforcement and opera-
tion execution. In particular, for each operation (node) in 
the query plan, a decryption operation is inserted for those 
attributes that must be in plaintext for the evaluation of the 
operation but that are encrypted in its operand(s). Encryp-
tion operations are instead injected after the execution of 
an operation in the query plan for all attributes appearing 
in plaintext and that the subject receiving the operation 
result can access only in encrypted form. Figure 15 illus-
trates two extended query plans for the running example, 
assuming operations allocated to the subject indicated on 
the left of each node. In the plan in Fig. 15a attribute � 

of relation AP and attributes � and � of relation CDR are 
encrypted before being transmitted to ℤ since ℤ cannot 
access them in plaintext. However, attribute � has to be 
decrypted before the execution of the join operation by �  . 
In the plan in Fig. 15b, all attributes of the two relations 
AP and CDR are encrypted before being transmitted to � 
since � cannot access them in plaintext. Note also that 
attributes � and � must be encrypted before the execu-
tion of the selection operations because, otherwise, the 
operations would leave an implicit plaintext trace in the 
computation that � , executing the subsequent operations, 
cannot access. Note also that avg(� ) is decrypted before 
the execution of the final selection operation because we 
assume that the execution of this operation can be evalu-
ated on plaintext values only.

Conclusions

The adoption of cloud-based solutions provides several 
advantages to data owners and users, who can enjoy effi-
cient and scalable services for the storage, management, and 
processing of their data. At the same time, data externally 
stored may be sensitive or company confidential, and hence 
their confidentiality and integrity—and in some cases also 
confidentiality of accesses executed on them as well as the 
integrity of data resulting from outsourced computations,—
should be guaranteed, even with respect to the storage and 
processing provider(s). There are several challenges to 
tackle, which require the investigation of new issues and the 
design of novel technological solutions to address them. This 

Fig. 15  An example of two extended authorized query plans for the query plan in Fig. 12c
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paper has discussed problems to be addressed and illustrated 
some directions introducing emerging approaches to protect 
data and computations in cloud-based scenarios.
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