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A B S T R A C T

Facial Landmark Detection (FLD) algorithms play a crucial role in numerous computer vision applications,
particularly in tasks such as face recognition, head pose estimation, and facial expression analysis. While FLD
on images has long been the focus, the emergence of 3D data has led to a surge of interest in FLD on it due
to its potential applications in various fields, including medical research. However, automating FLD in this
context presents significant challenges, such as selecting suitable network architectures, refining outputs for
precise landmark localization and optimizing computational efficiency. In response, this paper presents a novel
approach, the 2-Stage Stratified Graph Convolutional Network (2S-SGCN), which addresses these challenges
comprehensively. The first stage aims to detect landmark regions using heatmap regression, which leverages
both local and long-range dependencies through a stratified approach. In the second stage, 3D landmarks are
precisely determined using a new post-processing technique, namely MSE-over-mesh. 2S-SGCN ensures
both efficiency and suitability for resource-constrained devices. Experimental results on 3D scans from the
public Facescape and Headspace datasets, as well as on point clouds derived from FLAME meshes collected in
the DAD-3DHeads dataset, demonstrate that the proposed method achieves state-of-the-art performance across
various conditions. Source code is accessible at https://github.com/gfacchi-dev/CVIU-2S-SGCN.
. Introduction

Facial Landmark Detection (FLD) algorithms (Wu and Ji, 2019) are
esigned to automatically detect the locations of key facial landmarks,
uch as the corners of the eyes, eyebrows and the tip of the nose, in

images, 3D point clouds or videos. FLD approaches can be categorized
in FLD on images and on 3D data.

FLD on images has drawn much attention for many years as a
rerequisite in many computer vision applications. For example, it is
dopted as the first step in a wide variety of tasks, including face
ecognition (Bodini et al., 2018), estimation of head pose (Yang et al.,
019), and evaluation of facial pain expression (Patania et al., 2022),
p to cues related to its clinical status (Sforza et al., 2013). Recently,
o obtain accurate facial landmark detection on in-the-wild images,
.5D/3D FLD methods have been proposed (Zeng et al., 2023; Ferman
t al., 2024). They still operate on 2D images, while requiring multi-
iew consistency or leveraging generative 3D visual models and neural
endering.

Instead, FLD on 3D data, the focus of our study, aims at detecting
acial landmarks on point clouds. Indeed, with the evolution of 3D/4D

capture technologies even with smartphone (Thurzo et al., 2022), the
bundance of meshes and point clouds has increased (Cheng et al.,

∗ Corresponding author.
E-mail address: giuseppe.facchi@unimi.it (G.M. Facchi).

2018; Yang et al., 2020), fostering interest in this domain, which has
found utility in diverse areas, including face recognition and biomet-
rics (Kakadiaris et al., 2017; Zhou and Xiao, 2018), facial expression
recognition (Sandbach et al., 2012), alignment and morphometric anal-
ysis (Blandano et al., 2024), animation and virtual reality (Choi et al.,
2022), medical and dental applications (Hallgrímsson et al., 2020; Lee
et al., 2022). In particular, it should be noted that in medical research,
there is an extensive collection of studies investigating the use of facial
anthropometry to diagnose genetic syndromes through craniofacial
abnormalities, focusing on manually detected landmarks (Vu et al.,
2022; Gibelli et al., 2020). However, these methods rely on operator
skill, making them challenging and time-consuming. Thus, automating
FLD on 3D data is crucial to improve reliability and efficiency, allowing
rapid analysis of facial morphology through 3D scans.

Current methods for extracting landmarks from 3D data often rely
on 2D images through projection techniques (Paulsen et al., 2018),
conformal geometric mappings (Fan et al., 2016), or UV position
maps (Zhang et al., 2020). Although these approaches allow for the
use of well-established 2D image processing techniques, they have
limitations. Specifically, conformal geometric mapping methods can
robustly locate landmarks despite variations in facial expression and
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rotation, but they rely on 2D landmark extraction techniques that are
ften appearance-based. This can be problematic when the appearance
s missing or varies due to subject or acquisition conditions. Similarly,
rojection methods may inaccurately determine landmark positions
ecause they do not fully account for the inherent 3D geometry of the
ifferent faces among the subjects.

Therefore, a continuous, compact, and easily accessible 3D rep-
resentation is favored as input for 3D landmark localization models,
enabling more direct and precise estimation. However, the pursuit of
this approach presents significant challenges, mainly due to three key
factors that must be addressed. First, select the appropriate network
architecture to learn the 3D landmarks. Convolutional Neural Networks
(CNNs) are inherently designed for regular grid structures like 2D
images, and thus do not directly apply to 3D facial data, which is
typically represented as unordered point clouds rather than regular
grid structures. Graph Neural Network (GNN) models offer a promising
alternative to process 3D data, but there has been a limited emphasis on
optimizing predictive performance by defining a graph structure for the
FLD task. A second challenge involves refining neural network outputs
in post-processing to achieve maximal precision. In a FLD on images
context, the soft-argmax method is often used to extract precise land-
mark coordinates from a 2D heatmap (Honari et al., 2018), enabling
robust and accurate landmark localization. Unfortunately, applying
this function to a set of 3D coordinates yields 3D target landmarks
that may not lie on the facial surface. This is especially true in areas
with significant curvatures, requiring a different approach. Lastly, it is
important to minimize the computational time of the FLD method, as
this is typically the first stage in a pipeline for further processing on 3D
r 4D data and must avoid the creation of bottlenecks. Moreover, the
uitability for deployment on low-resource or edge devices also requires
he implementation of lightweight models. Effectively addressing these
hallenges is key to advancing FLD techniques on 3D data and their
ractical application in real-world scenarios.

In this study, we present a new method that addresses all the
aforementioned challenges by detecting the position of 3D landmarks
directly on the mesh surface, leveraging geometric information rather
han relying on 2D image-based appearance. Specifically, we propose
 2-Stage Stratified Graph Convolutional Network, namely 2S-SGCN.
n the first stage, a heatmap regression is proposed to detect the
andmark regions, adopting a stratified Coarse-to-Fine GCN. Essentially,
his method involves the construction, evolution and exchange of a
ully connected coarse graph that fosters a global exchange of features,
long with a locally connected fine graph designed to capture the local
etails inherent in the 3D facial structure. The advantage of integrating
ong-range dependencies is dual: it not only enhances performance, but
lso provides a lightweight solution that is suitable for implementation

on resource-constrained devices. The efficiency of this step is further
nhanced by working on resampled point clouds with a strictly lower

number of points, which accelerates the process while still ensuring
accurate localization of the landmark regions. In the second stage,
starting from the landmark regions, the precise 3D landmarks are
determined. To this aim, we introduce a novel method called MSE-
over-mesh, which identifies, through a minimization process, the
facial landmarks on the original mesh. Given the required precision, the
computation of this stage is carried out over the original mesh points
(not resampled) ensuring that the estimated landmarks are part of it,
chieving high precision. Moreover, due to the localized nature of this
rocess, the time consumption is minimal.

In summary, the main contributions of our work include:

• A novel Stratified GCN (SGCN) heatmap regressor which lever-
ages both local and long-range dependencies. This leads to opti-
mized utilization of computational capacity, making it well-suited
for devices with limited hardware.

• A new 3D heatmap post-processing method for 3D landmarks
regression (MSE-over-mesh), guaranteeing the landmarks are
part of the mesh.
2

Our approach demonstrates state-of-the-art performance on publicly
vailable 3D scan datasets, Facescape and Headspace, across different
motion and expression conditions, with additional evaluation on point
louds derived from FLAME meshes in the DAD-3DH dataset. Com-
rehensive ablation studies further reinforce the effectiveness of the
tratified approach and the proposed refinement method.

2. Related works

In this section, we recall FLD methods on images, survey tech-
iques for FLD on 3D data, and revisit deep learning architectures for

point-cloud data.

2.1. FLD on images

Current facial landmark detection methods for images can be cat-
egorized into two types: 2D landmark detection, which focuses on
localizing landmarks only on the visible portion of the face in the
2D image, and 2.5D/3D landmark detection, which identifies also
landmarks that are not visible in the 2D image but are present on the
underlying 3D facial structure eventually inferred.

In recent decades, the field of 2D FLD on images, has witnessed
notable advances, with traditional FLD algorithms typically falling
into three main categories: Holistic methods, Constrained Local Model
(CLM) methods, and Regression-Based methods. Holistic methods rely
on both the overall facial appearance and the broader facial shape
patterns to detect landmarks. An example of this approach is the Active
Appearance Model (AAM), pioneered by Taylor and Cootes (Edwards
et al., 1998). AAM utilizes statistical techniques to fit facial images
using a limited set of coefficients, thereby controlling variations in both
facial appearance and shape. This method aims to minimize differences
between a synthesized face and the target face. In contrast, CLM
methods (Cristinacce et al., 2006) determine landmark positions by
considering both global facial shape patterns and local appearance in-
ormation surrounding each landmark. This approach is advantageous
ecause it is better equipped to handle illumination variations and oc-
lusion. Regression-Based methods (Tang et al., 2019) take a different

approach by directly learning the mapping from image appearance to
landmark locations. Unlike Holistic and CLM methods, they typically
do not construct explicit global face-shape models. Instead, they may
implicitly embed face shape constraints in their learning process. More
recently, the advent of deep learning, particularly convolutional neural
networks (CNNs), has significantly improved the precision of 2D FLD,
marking a remarkable advancement in the field (Zhu and Ramanan,
2012; Burgos-Artizzu et al., 2013).

More recently, there has been a surge of research activity in this
ield, focusing on estimating 3D landmarks from images and videos. In
his work, we broadly categorize these methods into three approaches:
D-to −3D projection, 3D-aware techniques, and 3D Morphable Model
3DMM)-based methods. While 2D-to −3D projection methods directly

regress 3D landmarks from 2D images (Bulat and Tzimiropoulos, 2017),
D-aware techniques use volumetric representations to encode the 3D
andmarks (Zhang et al., 2022), applying explicit multi-view image

constraints to ensure consistent 3D landmark predictions across im-
ages (Zeng et al., 2023; Ferman et al., 2024). Lastly, 3DMM-based
methods rely on 3D face models, such as BFM (Paysan et al., 2009)
or FLAME (Piao et al., 2019), either to directly estimate model pa-
rameters (Wood et al., 2022) or as intermediate representations to
refine 3D landmarks (Wu et al., 2021; Valle et al., 2019). Additionally,
some methods project 3DMM vertices directly onto the image, as seen
in 3DDFA-V2 (Guo et al., 2020b), or fit the FLAME model to the
3DMM and use the resulting vertices for projection, as demonstrated
in DAD-3DNet (Martyniuk et al., 2022) and RingNet (Sanyal et al.,
2019).



J. Burger, G. Blandano, G.M. Facchi et al. Computer Vision and Image Understanding 250 (2025) 104227

f
d
i
l
l
T
w
d
i
a

c
o
m
f

l
i

T
c
h
p
c
t
o
c

t

w
p
r
t

t
l
a

p
f
(
k

a
t
m
a
d

b
w

𝑣
𝑉

p
p
s
d
e
e
w
i
s

P

r
t
v

Although numerous efforts have been made to develop methods
or extracting 3D landmarks from 2D images, the task remains fun-
amentally challenging due to the limited spatial information that 2D
mages can provide. Accurately determining the 3D positions of facial
andmarks using only 2D data is an ill-posed problem, as it inherently
acks the depth and dimensionality required for precise localization.
his approach does not fully capitalize on the potential of 3D data,
hich can significantly enhance accuracy and reliability. In fact, 3D
ata offers a detailed representation of facial surface geometry, captur-
ng fine details and contours that 2D images cannot, leading to more
ccurate and robust landmark estimation.

2.2. FLD on 3D data

With the growing use of 3D acquisition devices, newer techniques
have emerged that operate directly on 3D data. These techniques
eliminate the need to infer the depth component from 2D images,
leading to 3D facial landmark detection algorithms designed to identify
the precise locations of facial landmarks in three-dimensional space. It
is important to note that the method proposed in this paper, 2S-SGCN,
falls into this category, using a 3D point cloud as input to fully exploit
the capabilities of 3D data.

Conventional approaches have relied on geometric features, such as
ombining surface curvatures and depth relief curves for the location
f landmarks (Segundo et al., 2010). However, the accuracy of these
ethods is often limited by their reliance on manually engineered

eatures or custom 3D face models.
More recently, the ‘‘Multiview Consensus CNN for 3D Facial Land-

mark Placement’’ (MVLM) (Paulsen et al., 2018) has been proposed to
everage the robustness of 2D FLD methods. MVLM can be categorized
nto indirect 3D deep learning methods involving a multistep process:

first, the 3D shape is projected onto a 2D plane from various angles.
hen, a 2D CNN is employed to predict the landmark positions, fore-
asting a heatmap on these 2D images. Ultimately, it integrates the
ighest point of the heatmap across multiple views using a RANSAC
rocedure. Although this method yields superior accuracy compared to
onventional techniques, it introduces numerical discrepancies due to
he transition between 2D and 3D coordinates, as well as the integration
f 2D landmarks from multiple viewpoints. In addition, it is time
onsuming.

The state-of-the-art performance are achieved by 3DFA-GCN (Wang
et al., 2022) that employs a fully 3D approach to the FLD problem. It
is based on the Position Adaptive Graph Convolution (PAConv) point
cloud architecture (Xu et al., 2021), and incorporates a local surface
unfolding and registration module to predict 3D landmarks from the
heatmaps.

2.3. Deep learning architectures on 3D data

3D data are unstructured and inherently irregular, which prevents
he application of standard CNNs designed for 2D image data. Here

we briefly recall the point cloud network architectures (Guo et al.,
2020a) that can be referred also to tackle the 3D landmark detection.
They can be categorized in three main areas: Pointwise MLP networks,
Convolutional-Based networks, and Graph-Based networks.

A pioneering work in Pointwise MLP networks is PointNet (Qi
et al., 2017a). Specifically, it learns pointwise features independently

ith several MLP layers and extracts global features with a max-
ooling layer. It achieves permutation invariance by summing up all
epresentations and applying nonlinear transformations. As the core of
he PointNet++ (Qi et al., 2017a) hierarchy, its set abstraction level is

composed of three layers: the sampling layer, the grouping layer, and
he PointNet based learning layer. By stacking several set abstraction
evels, PointNet++ learns features from a local geometric structure and
bstracts the local features layer by layer.
 f

3

Regarding Convolution-Based networks, PointConv (Wu et al., 2019)
erforms 3D convolution by treating convolution kernels as nonlinear
unctions of local coordinates of points, comprising of weight functions
learned via MLP networks) and density functions (estimated through
ernel density estimation). Similarly, KP-Conv (Thomas et al., 2019)

constructs convolution kernels by combining predefined kernels with
specific rules. These methods often exhibit high complexity, both in
terms of memory usage and computational burden during learning.

Recent advancements in point-cloud learning have turned to Graph-
Based Networks due to their ability to model neighboring information
effectively for irregular data. With this in mind, DGCNN (Wang et al.,
2019b) employs an EdgeConv module to extract local features from a
dynamic graph, continually updating neighboring relationships at each
feature layer. Another recently introduced module is PAConv (Xu et al.,
2021), which has been integrated into widely-used architectures such
s PointNet++ and DGCNN. PAConv dynamically constructs convolu-
ional kernels based on positional information, assembling basic weight
atrices stored in a Weight Bank. The coefficients for these matrices

re self-adaptively learned from point positions through ScoreNet. This
ata-driven approach enables PAConv to build kernels with greater

flexibility, enhancing its capability to handle irregular and unordered
point cloud data efficiently and effectively.

3. Preliminaries

3.1. Notation

In our discussion, the set of vertices on the original mesh is denoted
y 𝑃 . We define the subset of 𝑃 representing facial landmarks as 𝐿,
here |𝐿| ≪ |𝑃 |. From a resampled version of 𝑃 (cfr. Section 3.2)

we construct a graph represented as a tuple 𝐺 = (𝑉 , 𝐸), where 𝑒𝑖𝑗 =
(𝑣𝑖, 𝑣𝑗 ) ∈ 𝐸 ⊆ 𝑉 ×𝑉 represents an edge from the vertex 𝑣𝑖 to the vertex
𝑗 . The set of neighbors of a vertex 𝑣𝑖 is denoted by  (𝑣𝑖) = {𝑣𝑗 ∈
| (𝑣𝑖, 𝑣𝑗 ) ∈ 𝐸}. The matrix of node features is denoted as 𝐹 ∈ R|𝑉 |×𝑛,

where each 𝑓𝑖 ∈ R𝑛 is the feature vector for vertex 𝑣𝑖.

3.2. Preprocessing

Consistency and effectiveness across datasets are ensured by im-
lementing a pre-processing phase aimed at normalizing raw facial
oint clouds. First, to address meshes expressed in varying coordinate
ystems with different scales, rotations, and translations, a face stan-
ardization step is required. This involves centering data points to
liminate potential translations, rotating them to align their principal
igenvectors with reference ones, and scaling them so that all points fit
ithin a volume where each side extends from −1 to 1. Standardization

s applied to both the vertices in 𝑃 and the landmarks in 𝐿. For
implicity, throughout the remainder of the paper, we will refer to

standardized positions without explicitly stating it.
Furthermore, we conceived a resampling step aiming at normal-

izing the point-cloud cardinality, as well as the point-cloud sampling
locations. Indeed, some devices employ a uniform sampling method
across all surfaces, while others may sample more densely in areas of
high curvature to better capture detailed surface information. To ensure
uniformity, we resample all input meshes to have the same number of
points |𝑉 | uniformly distributed (see Fig. 1). To this aim, we adopted
oisson disk sampling as described in Yuksel (2015). The resampling

step also serves the purpose of downsampling the mesh, significantly
educing the computational cost of the first stage of our method. In
he remainder of the paper, we will denote the collection of resampled
ertices as 𝑉 (where |𝐿| ≪ |𝑉 | ≪ |𝑃 |), which will serve as the basis
or constructing the graphs in the next sections.
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Fig. 1. (left) A detail of an original mesh from the Facescape dataset. (right) The
corresponding mesh after uniform resampling. Red dots correspond to the landmarks
in this area. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Fig. 2. An example of a 3D heatmap corresponding to the nose landmark. It is obtained
applying Eq. (1) with 𝜎 = 0.03.

3.3. 3D heatmap generation

In order to train the heatmap regressor used in the first stage of
he proposed method, it is essential to generate 3D heatmaps from
andmark ground truths serving as soft labels (Wang et al., 2022).

Specifically, given the resampled vertices 𝑉 of a 3D face point cloud,
nd the corresponding landmarks 𝐿, for each vertex 𝑣 ∈ 𝑉 , we compute

the Euclidean distances to every landmark 𝑙 ∈ 𝐿, producing a distance
matrix 𝛥 with dimensions R|𝑉 |×|𝐿|. This matrix is then transformed
using a Gaussian function to encode the distances into a normalized
robability matrix, represented as the 3D heatmap:

𝐻 = exp
(

− 𝛥2

2𝜎2

)

∈ R|𝑉 |×|𝐿|, (1)

where 𝜎 represents a hyperparameter that controls the spread of the
heatmap. Essentially, the 3D heatmap indicates the probability of each
landmark occurring at a specific location as shown in Fig. 2 for one
xample case.

3.4. GCN layer and loss function

A core component of our approach is the use of a GCN (Graph
onvolutional Network) layer, as proposed in Kipf and Welling (2016).

The iterative aggregation and update steps at layer 𝑙 for node features
𝑓𝑖 are defined by the following equation:

𝑓 (𝑙+1)
𝑖 = 𝜎

⎛

⎜

⎜

∑ 1
𝑐

𝑊 (𝑙)𝑓 (𝑙)
𝑗

⎞

⎟

⎟

. (2)

⎝
𝑗∈ (𝑣𝑖) 𝑖𝑗

⎠

c

4

In this expression, 𝑊 (𝑙) denotes the learnable weight matrix at layer
, 𝑐𝑖𝑗 is a normalization factor, which may be the product of degrees of
he 𝑣𝑖 and 𝑣𝑗 among other potential normalization techniques, and 𝜎(⋅)
s the activation function applied element-wise.

Another essential component of the proposed solution is the use of a
oss function specifically designed for unbalanced data. This is crucial
ecause the generated 3D heatmaps feature only a few points within
he Gaussian bell of each landmark, with many points falling outside
f it, resulting in an unbalanced ground truth. Specifically, we adopt a
odified version of the Adaptive Wing Loss (Wang et al., 2019a): let ℎ

and ℎ̂ represent the ground truth and estimated heatmap values for a
point 𝑣, respectively. We calculate the point-wise loss as follows:

𝓁(ℎ, ℎ̂) =
{

(1 + 𝛽 ℎ)𝜔 ln |ℎ − ℎ̂|𝛼−ℎ if |ℎ − ℎ̂| < 𝜃
(1 + 𝛽 ℎ)𝑀|ℎ − ℎ̂| −𝑁 otherwise.

(3)

In essence, the Adaptive Wing Loss dynamically adjusts its behavior
based on the magnitude of prediction errors. For small errors, it behaves
like a logarithmic curve, focusing on fine-tuning and detailed adjust-
ments. For larger errors, which are common in cases of severe class
imbalance or when the model prediction is far from the ground truth,
the loss function transitions to a more linear behavior, ensuring that the

odel remains sensitive to these errors without being overwhelmed by
them.

Our modification introduces a weight, (1 + 𝛽 ℎ), proportional to
he point-wise heatmap ℎ, thus prioritizing errors near the landmark
ositions.

4. Proposed method

Estimating 3D landmarks presents unique challenges, which we
address with a 2-Stage Stratified Graph Convolutional Network. The
irst stage focuses on identifying the landmark regions, while the second
ne focuses on the inferred areas to pinpoint the precise landmark
ositions. The implications of this two-stage approach are twofold: it
nsures an efficient solution by allowing the determination of landmark
egions on a rough, resampled mesh, while analyzing the original
esh just for the final point detection, which hence requires minimal

computation. Additionally, high 3D landmark precision is ensured by
the second stage working on the original mesh.

Furthermore, the first stage employs a stratified approach that
combines a holistic yet sparser analysis (Coarse) with a more detailed
ocal analysis (Fine). This method effectively addresses the imbalanced

nature of the data (distinguishing between landmark and non-landmark
points) and the lack of precise morphological features for certain land-
marks, such as those on the face contour. A purely local analysis would
struggle to tackle these challenges, while a purely global approach
would be too rigid and coarse, failing to adapt to the subtle variations
n facial features and expressions. In Fig. 4 we sketch our method

comprising the two primary stages. The first is the heatmap regression,
which produces �̂� ∈ R|𝑉 |×|𝐿|, that is the estimate of the 3D landmark
heatmap 𝐻 . The second is the landmark estimation stage, which takes
̂ and the original mesh 𝑃 as input, and predicts the final landmark
ositions �̂�, belonging to 𝑃 .

4.1. Heatmap regression stage

Our model takes as input the resampled point cloud, treated as the
et of nodes 𝑉 for the graph 𝐺. For the local analysis, we connect each

vertex in 𝑉 with its 𝑘-nearest neighbors (𝐺𝐹 in Fig. 4). The choice of
𝑘 impacts the method performance: higher 𝑘 augments the receptive
field for each GCN layer avoiding to get stuck in local minima, while
ntroducing the risk of over-smoothing. In contrast, for the holistic

analysis, our objective is to identify a small subset of vertices 𝐶 ⊂
𝑉 , establishing a total connection among them to guarantee global

Fig. 4). Such set 𝐶 should guarantee the total
ommunication (𝐺𝐶 in
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Fig. 3. 3D representation of landmark positions for 300 randomly selected subjects
from Facescape Emotions (left) and Headspace datasets (right). The red dots constitute
the average positions 𝐿𝑚𝑒𝑎𝑛 for each landmark type. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

coverage of the point cloud. One possible choice could be to perform a
ery sparse uniform resampling (e.g., with 100 vertices). Here we opt
o a more effective solution that exploits the knowledge given by the

labeled training set. Indeed, as shown in Fig. 3, all landmarks on the
normalized training data are spread over specific areas of interest, even
n the presence of multiple emotions (plot on the left). Computing the
verage for each landmark (red dots in Fig. 3) allows the construction

of a prototype to refer to in the determination of the subset 𝐶 for each
graph at hand.

Specifically, we obtain for each dataset the prototype 𝐿𝑚𝑒𝑎𝑛 com-
puting the mean position of each landmark across all subjects in the
training set:

𝐿𝑚𝑒𝑎𝑛 = {𝑙𝑚𝑒𝑎𝑛𝑖 = 1
|𝑆|

∑

𝑠∈𝑆
𝑙 𝑠𝑖 , 𝑖 = 1...|𝐿|}, (4)

where 𝑠 represents a sample in the training set 𝑆.
Then, 𝐿𝑚𝑒𝑎𝑛 is aligned with the vertices 𝑉 at hand, and the subset

f vertices 𝐶 is obtained by identifying the points in 𝑉 closest to the
positions in 𝐿𝑚𝑒𝑎𝑛 as:

𝐶 = {𝑐𝑖 | 𝑐𝑖 = ar g min
𝑣∈𝑉

𝑑(𝑣, 𝑙𝑚𝑒𝑎𝑛𝑖 ), 𝑖 = 1...|𝐿|}. (5)

The resulting set 𝐶 ensures coverage of the entire face, focusing
specifically on areas likely to correspond to the landmarks to be iden-
tified. Given 𝐶, we can construct the Coarse graph 𝐺𝑐 = (𝑉 , 𝐸𝑐 ), where
𝐸𝑐 = {(𝑢, 𝑣) | (𝑢, 𝑣) ∈ 𝐶 ×𝐶} is the set of edges of 𝐺𝑐 . For completeness,
we specify that the Fine graph 𝐺𝑓 = (𝑉 , 𝐸𝑓 ), implements the local
connection as 𝐸𝑓 = {(𝑢, 𝑣) | 𝑣 ∈  (𝑢),∀𝑢 ∈ 𝑉 }, where  resembles
a 𝑘-nearest neighbors (𝑘-NN) technique.

All vertices 𝑣 ∈ 𝑉 are characterized by the feature vector 𝑓 (𝑣) =
𝑝𝑜𝑠(𝑣), 𝑛𝑜𝑟𝑚𝑎𝑙(𝑣)], where 𝑝𝑜𝑠(𝑣) is the 3D coordinate set of 𝑣 and
𝑜𝑟𝑚𝑎𝑙(𝑣) is the normal of the triangle face from which 𝑣 has been

sampled.
To harness both coarse and fine-grained representations of 3D facial

data, we devised two distinct branches within our model architecture.
he main computational block is made up of a GCN layer (Eq. (2)), a
ormalization layer (LayerNorm), and a Rectified Linear Unit (ReLU)

activation function. This is initially applied to 𝐺𝑐 and 𝐺𝑓 , computing
the initial embeddings for each node in both the Coarse and Fine
scenarios independently. The architecture is then designed to integrate
he information from the two modalities using a linear layer, which

furnishes all nodes with both local and global information. Following
this integration, the previously introduced main computational block is
pplied iteratively to both branches 𝐷 times, alternating the linear layer
o fuse the local and global information. Here, to avoid over-smoothing,

residual connections (Li et al., 2020) between consecutive layers are
employed. Finally, a fully connected layer is adopted to produce the
output �̂� ∈ R|𝑉 |×|𝐿|.
 i

5

4.2. Landmark estimation stage

Given �̂� , a straightforward method for estimating a landmark 𝑙
nvolves calculating the weighted average of the points with the highest
redicted similarity values relative to the landmark itself.

Specifically, let top𝑡(𝑙) be the set of 𝑡 points that have the highest
values in �̂� in relation to the landmark 𝑙. The weighted average is
computed as:

𝑚 = 1
𝑡

∑

𝑣∈top𝑡(𝑙)
softmax(�̂�(𝑣, 𝑙)) ⋅ 𝑝𝑜𝑠(𝑣), (6)

where the softmax converts the heatmap values of the top𝑡(𝑙) vertices
into a probability distribution, then used to weight the vertices posi-
tions. While this solution is adequate, it does not guarantee that the
resulting point will be situated on the mesh manifold introducing an
avoidable error.

Here, we introduce a new approach, namely MSE-over-mesh,
that addresses the aforementioned problem, recasting the computation
in the original mesh domain. Formally, for each landmark 𝑙, we first
compute the mean 𝑚 according to Eq. (6), and then identify the set
𝐵𝑚 of vertices in the original mesh 𝑃 that are located within a sphere
centered on 𝑚. The radius of this sphere is set to include a broader
locality:
𝐵𝑚 = {𝑝 ∈ 𝑃 ∣ 𝑑(𝑝, 𝑚) ≤ 𝛾 𝑟𝑚},
𝑟𝑚 = max{𝑑(𝑚, 𝑣) ∣ 𝑣 ∈ top𝑡(𝑙)},

(7)

where 𝛾 > 1 and 𝑑 is the Euclidean distance. The predicted landmark 𝑙
s identified as the value 𝑝 within 𝐵𝑚 that, when used as the center
f a Gaussian distribution (as specified in Eq. (1)), best aligns with

the distribution represented by the estimated heatmap �̂�(𝑞 , 𝑙) for the
andmark 𝑙, throughout 𝑞 ∈ top𝑡(𝑙). Mathematically, this is achieved
y minimizing the sum of the squared differences between the Gaus-
ian distribution centered at 𝑝 and evaluated at 𝑞, and the estimated
eatmap �̂�(𝑞 , 𝑙) for the landmark 𝑙 over the same points 𝑞:

𝑙 = ar g min
𝑝∈𝐵𝑚

1
𝑡

∑

𝑞∈top𝑡(𝑙)

(

�̂�(𝑞 , 𝑙) − exp
(

−
𝑑(𝑝, 𝑞)2
2𝜎2

))2

(8)

By selecting the point from the original mesh, we ensure that 𝑙 is
ositioned accurately on the mesh itself, thus maintaining topological
recision.

A representation of the whole landmark estimation stage is drawn
in Fig. 5.

5. Experimental analysis

The experimental analysis has been conducted to evaluate various
aspects of the proposed method, 2S-SGCN. First, a comprehensive
application of 2S-SGCN to 3D face scans is performed. Specifically,
we refer to two publicly available datasets, Facescape and Headspace,
to evaluate the 2S-SGCN method alongside state-of-the-art (SOTA)
methods acting on 3D scans, 3DFA-GCN and MVLM, while perform-
ing extensive ablation studies. Second, to demonstrate the effective-
ness of 2S-SGCN even on large datasets, including subjects captured
under diverse, uncontrolled conditions (pose, lighting, expression),
we apply it to the FLAME meshes collected in the DAD-3DHeads
dataset (Martyniuk et al., 2022). This allows for a comparison of our

ethod with those that estimate 3D landmarks from images and videos,
DDFA-V2, RingNet and DAD-3DNet, although the comparison is

ndirect.

5.1. Datasets

Facescape (FS) dataset (Yang et al., 2020). This dataset encompasses
textured 3D faces from 847 subjects, acquired in 20 different conditions
including four primary facial emotions (neutral, sadness, smile, and
anger), while the other data capture facial elementary expressions
e.g. lip roll, brow raiser, mouth stretch). Each acquisition comprises
pproximately 25,000 vertices and 50,000 triangles. The dataset also

Fig. 6).
ncludes 68 3D facial landmarks for each model (
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Fig. 4. Illustration of the proposed model architecture. Two stages are conceived: the Heatmap regression and the Landmark estimation. The input to the process is constituted by
both a Coarse graph representation, 𝐺𝑐 , where sparse nodes are fully connected, alongside a Fine representation, 𝐺𝑓 , where each node is linked to its 𝑘-nn neighbors (for clarity,
only a subset of the graph 𝐺𝑓 is displayed). The symbol ⊕ signifies the concatenation operation. 𝐷 refers to the model depth, while 𝐿 indicates the number of landmarks.
Fig. 5. Illustration of the refinement method. (a) The top𝑡(𝑙) points with the highest probability are identified on the learnt heatmap of the landmark 𝑙. (b) The weighted average,
denoted as 𝑚, is calculated, and the distances from 𝑚 to each of the top𝑡(𝑙) points are computed. (c) A sphere with radius 𝛾 ⋅ 𝑟𝑚 is extrapolated on the original mesh centered at
𝑚. (d) For each 𝑝𝑖 ∈ 𝐵𝑚, the error 𝑏𝑖 is calculated as the average difference between the heatmap values of the top𝑡(𝑙) points, obtained by centering the heatmap at 𝑝𝑖, and their
predicted probability values generated by the model. The predicted landmark on the original mesh is the one with minimum 𝑏𝑖 relative error, as described in Eq. (8).
l

Headspace (HS) dataset (Dai et al., 2020). This dataset comprises 1519
D subject acquisitions, including 25 non neutral expressions. The
esolution is variable, but typically there are over 100,000 vertices and
ver 200,000 triangles. The dataset is provided together with 68 3D
acial landmarks for 1223 models (Fig. 7).

DAD-3Dheads (DAD-3DH) dataset (Martyniuk et al., 2022). This dataset
consists of 44,898 images captured in uncontrolled conditions, with
2,152 of these images linked to a corresponding FLAME mesh con-
aining 5023 vertices. Of these, 3669 vertices represent the head, while
he remainder correspond to the neck and eyeballs. Additionally, the

dataset provides model-view and frustum projection matrices that map
the 3D mesh from model space to 2D images, along with rich attribute
data, including head poses, emotions, occlusions, gender, age, image
quality, and lighting conditions. A sample from the dataset is shown in
Fig. 12.
6

Fig. 6. (left) A textured mesh from Facescape (FS) dataset. (right) The mesh with
andmarks.
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Fig. 7. (left) A textured mesh from Headspace (HS) dataset. (right) The mesh with
andmarks.

Fig. 8. Mean error (mm) obtained on the FS Neutral test set, varying the number of
vertices |𝑉 | of the input data.

5.2. Parameters setting and model configurations

The hyperparameter optimization and adjustment for the 2S-SGCN
rchitecture were carried out with reference to the neutral subjects in
he Facescape dataset, while also ensuring that they remain optimal
or other trials considered, resulting in the following settings. The
umber of vertices of the graphs, |𝑉 |, has been set to 8000, according
o the investigation reported in Fig. 8. This choice turns out to be
 good trade-off between effectiveness and efficiency. Besides, the
eceptive field is defined by tuning the parameters 𝑘 (the number of
eighbors in 𝐺𝑓 ) and 𝐷 (the number of layers in the central block of
he architecture) together, finding an optimal balance with 𝑘 = 16 and
= 20. The number of vertices 𝑡 considered during stage 2 (Eq. (6) and

ubsequent) was determined by evaluating model performance while
arying 𝑡 within a range from 1 to 35. As shown in Fig. 9, when

adopting the refinement MSE-over-mesh, 𝑡 does not significantly
affect performance, suggesting that the method is robust with respect to
this parameter. We set it to 12 as it guarantees good performance and
low computational costs. Finally, we set 𝛾 = 5 (Eq. (7)), to address the
significant difference in point density between resampled and original
meshes.

The heatmap regressor is configured to receive six input channels
hat represent initial node embeddings, which are then mapped to a
4-dimensional latent embedding. This dimensionality is kept constant
ntil the final linear layer, which produces |𝐿| outputs. Concerning loss
ptimization parameters (Eq. (3)), we adhere to the settings recom-

mended in the original paper (Wang et al., 2019a), specifically 𝜔 =
14, 𝜃 = 0.5, 𝛼 = 2.1, and we set 𝛽 = 50.

The 3DFA-GCN architecture was trained using the original Adaptive-
Wing loss, maintaining the parameter setting proposed in the original
paper. We adhered to the code provided by the authors and applied
their technique to resample point clouds using Farthest Point Sam-
pling (FPS), as detailed in Qi et al. (2017b). We conducted numerous
 r

7

Fig. 9. Average landmark localization error produced varying the value of 𝑡 in Eqs. (6)–
(8). The plots refer to the method using the simple weighted average method 𝑚 for
andmark estimation, yielding the 1S-SGCN, or using the MSE-over-mesh method,

resulting in the complete proposed method 2S-SGCN. The best accuracy for MSE-
over-mesh is given by 𝑡 = 12, while the best accuracy for 𝑚 is given by 𝑡 = 6.

experiments to determine the ideal FPS setting, considering values
uch as 2048, 8192, and 32,768. Ultimately, we set the FPS to 8192,
alancing computational efficiency with maintaining model accuracy,
nd allowing for direct comparison with 2S-SGCN.

All training procedures for both 3DFA-GCN and our method were
performed over 500 epochs with the Adam optimizer (Kingma and Ba,
2014) and a batch size of 4.

The MVLM architecture was trained for 100 epochs with the default
D processing configuration, including geometry and depth information
hile excluding the utilization of texture information during training.

5.3. Experiments on 3D scans

Experiments have been designed to take advantage of the character-
istics of the available data. Specifically, the FS dataset is divided into
three subsets: Neutral Emotion (1 per subject), Multi-Emotions (4 per
subject including the neutral), and Multi-Expressions (16 per subject).
n contrast, the HS dataset is treated as a whole, since only a few of the

annotated data (specifically, 13) exhibit non-neutral expressions. Both
the HS dataset and the first two FS subsets are used for training and
testing (applying an 80% training and 20% testing split, identical for all
models, to ensure a fair comparison), while the FS Multi-Expression set,
which includes 2704 face models, is used in an inter-condition mode to
test the models’ ability to generalize. It is worth noting that although
the number of landmarks is the same in the two datasets FS and HS,
their positions differ, especially in their placement on the contours of
the face and eyebrows (Fig. 3). This prevents them from being treated
ndistinguishably, making cross-dataset validation unfeasible.

Performance is assessed by calculating the Euclidean distance be-
tween the predicted landmarks and the actual ground truth. The ex-
perimental findings are shown in Table 1, which indicates the mean
error for all landmarks across each test set evaluated. Furthermore,
to provide an insight into the model behavior, we evaluated their
performance in intra-condition mode averaging the errors with respect
to specific facial regions by grouping semantically similar landmarks.
Specifically we identified five groups: the facial contour, the eyebrows,
the eyes, the nose and the mouth. In Fig. 10 the summarized perfor-
mance are plotted. Concerning the experiments in inter-condition mode

e report the performance obtained by each model on each expression
see Figs. 14 and 15).

Finally, the assessment of model sizes and prediction times is doc-
mented in Table 2. Although all experiments were carried out on an
VIDIA A100 GPU 80 GB, MVLM was trained on the same A100 GPU but
nderwent testing on an NVIDIA RTX 3060 GPU due to the method’s
eliance on 3D rendering of faces.
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Table 1
FLD performance is reported as the mean and standard deviation of the Euclidean distance between predicted and true landmarks. The experiments reference the training and

test sets used, with the size of each set indicated in brackets. Tests on FS Expressions represent inter-condition mode. The first three lines report our method and comparisons
with the SOTA. The last three lines report the ablation studies: 1S-SGCN (the second-stage refinement is replaced by the simple weighted average (𝑚)), 2S-GCN (stratification is
ot done in the first stage, referring only to the Fine graph), and 1S-GCN (both refinement and stratification are not done).

Train FS Neutral (678) Train FS Emotions (2712) Train HS (978)

Method Test FS Neutral (169) Test FS Expressions (2704) Test FS Emotions (676) Test FS Expressions (2704) Test HS (245)

MVLM 0.897 ± 0.177 2.134 ± 1.094 1.579 ± 0.782 1.965 ± 0.769 1.709 ± 0.568
3DFA-GCN 1.447 ± 0.149 2.556 ± 0.462 1.416 ± 0.145 2.226 ± 0.378 1.711 ± 0.477
2S-SGCN 0.371 ± 0.227 1.932 ± 1.204 0.477 ± 0.255 1.825 ± 1.108 1.662 ± 0.727

1S-SGCN 1.211 ± 0.313 2.490 ± 0.959 1.287 ± 0.301 2.322 ± 0.848 2.098 ± 0.625
2S-GCN 0.623 ± 0.267 2.352 ± 1.656 0.656 ± 0.376 1.875 ± 1.208 1.878 ± 0.766
1S-GCN 1.442 ± 0.282 2.834 ± 1.308 1.442 ± 0.304 2.354 ± 0.925 2.816 ± 0.701
+
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Fig. 10. FLD performance, expressed as the Euclidean distance (in millimeters) between
predicted and true landmarks, for the three methods tested (MVLM, 3DFA-GCN, 2S-
GCN) on different landmark groups: Face Contour (17 landmarks), Eyebrows (10

andmarks), Eyes (12 landmarks), Nose (9 landmarks) and Mouth (20 landmarks).

Table 2
Comparison across model size, heatmap prediction time and landmark prediction time

for the considered FLD methods.
Model size Heatmap prediction time Landmark prediction time

MVLMa 283 MB 5.273 s 4.816 s
3DFA-GCN 4.1 MB 0.068 s 0.423 s
2S-SGCN 1.5 MB 0.023 s 0.003 s

a MVLM heatmap prediction time is obtained on NVIDIA RTX 3060 GPU.

5.4. Ablation studies

We conducted ablation studies to assess the impact of the key
omponents of our proposed method, namely the stratified Coarse-to-
ine heatmap regression approach, and the contribution of the second
tage MSE-over-mesh for final landmark estimation. Specifically, we
etup three ablation studies: 1S-SGCN does not include the refinement
tage MSE-over-mesh, using instead the simple weighted average (𝑚)
or landmark estimation, thus resulting in a one-stage method. The
blation 2S-GCN does not adopt the stratified approach in Stage 1,

referring only to the Fine graph, resulting in a 2-Stage-GCN method.
inally, the ablation study 1S-GCN excludes both the Coarse graph
n Stage 1 and the contribution of the MSE-over-mesh refinement

ethod in Stage 2.

8

Fig. 11. Comparison of the mean error obtained employing either the stratified (Coarse
 Fine) method (SGCN) or the Fine graph representations only (GCN) combined with
ither the weighted average (1S-) or the MSE-over-mesh methods (2S-). Evaluation
s conducted in the ’Facescape Neutral’ experimental setting.

The effectiveness and efficiency of the investigated models, along
ith the complete proposed method, have been evaluated by perform-

ing a series of experiments with varying model depth 𝐷. The results
of these experiments, are presented in Fig. 11. Specifically, it can be
inferred that omitting stratification requires a greater network depth
to achieve the same performance: the plot shows that 2S-GCN with
𝐷 = 20 has the same performance as 2S-SGCN with 𝐷 = 10 (the same
holds when comparing 1S-GCN and 1S-SGCN), indicating that 2S-
GCN needs many more iterations of message-passing to reach the same
level of information sharing obtained by 2S-SGCN with much less
depth while including long-range dependencies. Moreover, it emerges
learly the importance of the second stage: by omitting it, the error

significantly increases for any value of 𝐷.
A quantitative evaluation of the investigated models is provided in

the second part of Table 1 (the last three lines), showing the results
btained for each experimental setting considered in the testing phase.

5.5. Experiments on FLAME meshes

This experimental session aims to evaluate the robustness and gen-
ralizability of the proposed method by testing it on meshes derived
rom images captured outside of a controlled laboratory environment,
n real-world scenarios. For this purpose, we use the FLAME meshes
rovided in the DAD-3DH dataset, which encompass a wider range of

facial expressions, ages, and acquisition conditions, covering a contin-
uous spectrum.

The key difference between a 3D scan and a FLAME mesh is the
egularity of the latter. This consistent structure allows us to precisely

identify a subset of vertices, such as those consistently located at
specific facial features, to serve as GT landmarks for our applica-
tion. This regularity ensures accurate and repeatable landmark selec-
tion, which is not possible with raw 3D scans. In Fig. 12 (Right),
the 122 GT landmarks are displayed. These landmarks have been
selected to closely match those used in the Facescape and Headspace



J. Burger, G. Blandano, G.M. Facchi et al. Computer Vision and Image Understanding 250 (2025) 104227

a
f
o
c

o

p
a
o

s
m

a
c

o
o
1
d
t

C

f

s

I
o

M
p

d

e

p
p
b
r
r

e

t
t
w
d
f

t
p
s
c

s
a
A
o
m
3

g
e
w
s

Fig. 12. (Left) A 2D image from the DAD-3DH dataset. (Right) The mesh generated
from the 2D image using the FLAME model, with the selected subset of landmarks
highlighted in red. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Table 3
NME of our method with SOTA 3D FLD methods on the DAD-3DH dataset across four
different conditions: the Overall setting includes all data; the Pose setting focuses on
typical poses in the 2D images; the Expr setting includes instances with exaggerated
acial expressions; and the Occl setting considers 2D images with significant facial
cclusions. The column |𝐋| indicates the number of landmarks detected. Notably, the
omparison is indirect, as it refers to a different set of landmarks.

|𝐋| Overall Pose Expr Occl

3DDFA-V2 68 0.052 0.112 0.046 0.046
RingNet 68 0.128 0.393 0.073 0.186
DAD-3DNet 68 0.033 0.088 0.025 0.029
2S-SGCN 122 0.0073 0.0076 0.0078 0.0072

datasets, but with a denser distribution. Besides, to ensure a fair ap-
plication of our model without leveraging knowledge of the vertex in-
dexing, we resampled the FLAME models (considering the head portion
nly) as described in Section 3.2, generating generic point clouds with

anonymized vertices. This process ultimately provides us with a large
dataset of 42,152 labeled point clouds obtained under uncontrolled
acquisition conditions.

For training, we split the dataset into two parts, with 80% used for
the training set and 20% for the test set. Experiments demonstrate very
high precision in 3D space, achieving a Normalized Mean Error (NME)
of 0.0170 ± 0.0037. To provide an indicative measure of this error in a
hysical distance, we assume the human face is roughly 20 cm in size
nd scale the results accordingly, yielding a Mean Absolute Error (MAE)
f 1.544 ± 0.342 mm.

Interestingly, in this experiment, we can compare our method with
tate-of-the-art 3D FLD methods on 2D data by using the transformation
atrices provided by the DAD-3DH dataset, which map 3D points

onto 2D images. These matrices allow us to project both the predicted
nd ground truth 3D landmarks onto the 2D image, enabling error
omputation in 2D and comparison with SOTA methods, as shown in

Table 3. The results are also presented qualitatively in Fig. 13. While
this comparison offers valuable insights, it remains an indirect com-
parison for two reasons. First, our division of the dataset into training
and test sets may differ from those used by other methods. Second, the
landmark sets are different: SOTA methods use 68 landmarks, whereas
ur method uses 122. This difference is due to the absence of the
riginal 68 landmark indices in the dataset, prompting us to select
22 landmarks that closely resemble the original set but with a denser
istribution. Nonetheless, given the large size of the dataset, we believe
he observed performance is both relevant and consistent.

6. Discussion and conclusion

In this study, we introduced a novel approach, 2S-SGCN, to address
challenges in Facial Landmark Detection on 3D data. 2S-SGCN is
9

conceived as a two-stage process: the first stage employs a stratified
oarse-to-Fine Graph Convolutional Network (GCN) for heatmap re-

gression, while the second stage focuses on refining these results to
accurately locate points on the original mesh corresponding to the
acial landmarks.

The advantage of using a stratified approach has been demon-
trated by the ablation studies, where, in all experimental settings,

the stratified approach significantly improves performance accuracy.
ncorporating long-range dependencies through the Coarse graph not
nly enhances performance but also provides a lightweight solution

by reducing errors with fewer layers. This makes it well-suited for
implementation on resource-constrained devices, as shown in Table 2.

Even more effective is the contribution of the refinement stage
SE-over-mesh: it not only allows to improve significantly the
erformance (cfr. Fig. 11 and Table 1), but also makes the approach

less sensitive to the parameter settings, as can be appreciated in Fig. 9
for the top rank definition, and in Fig. 8 for the choice of the graph car-
inality. This last achievement is particularly important, as it renders

the method agnostic to the size of the input graph, thereby making it
specially reliable and adaptable across various scenarios.

Comparisons with the state-of-the-art demonstrate the effectiveness
of 2S-SGCN. In particular, in the intra-condition experiments on the FS
dataset, 2S-SGCN outperforms both MVLM and 3DFA-GCN. In the ex-
periments involving the HS dataset, all methods achieve performances
that differ by a negligible margin of less then 0.2 mm.

In the inter-condition experiments (Test FS Expressions), 2S-SGCN
erforms the best, although the advantage is reduced, especially com-
ared to MVLM, which as expected behaves well on less controlled data
eing a non-geometric approach that imposes fewer constraints while
equiring higher computational costs. In contrast, 3DFA-GCN shows a
educed capability to generalize. Finally, not surprisingly, the error of
2S-SGCN is slightly reduced when training on multi-emotions instead
of solely on neutral expressions.

The investigation is enriched by the efficiency evaluation reported
in Table 2, where both the model size and execution time attest to the
ffectiveness of both stages of 2S-SGCN.

Further insight into the behavior of the model is gained by analyzing
he performance of different groups of landmarks in the intra-condition
ests (Fig. 10). For the proposed method 2S-SGCN, it is observed that
hen faces exhibit emotions, a greater error is registered in correspon-
ence to the eyes and the mouth, which are notably the parts of the
ace that undergo the most deformation during an expression.

Concerning the inter-condition tests, we can observe in Figs. 14
and 15 that 2S-SGCN generally performs better than the other meth-
ods, although it struggles with certain expressions such as ’Mouth
stretch’, ’Jaw left/right’, and ’Lip funneler’. It should be noted that
hese expressions involve significant mouth deformations that were not
resent during training (especially when adopting the model trained on
ubjects with neutral expression only), making inference exceptionally
hallenging for all models.

Furthermore, the application of 2S-SGCN on meshes derived from
ingle 2D images has allowed us to test our method on a large dataset
cquired under uncontrolled conditions, further proving its robustness.
dditionally, it has demonstrated that our method is agnostic to the
riginal data source: as long as the input data can be mapped to a 3D
esh, our approach consistently performs well, regardless of how the
D mesh is generated.

The encouraging results prompt further investigation. First, it would
be valuable to evaluate the adoption of 2S-SGCN on genuine 3D data
acquired in the wild. While such datasets are currently lacking, the
rowing availability of low-cost acquisition devices, such as depth cam-
ras and smartphones, is expected to address this gap. These datasets
ould enable a comprehensive evaluation of our method in real-world

ettings, capturing a wider range of variations beyond those found in
controlled environments or synthetic models, offering deeper insights
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Fig. 13. Results on the DAD-3DH dataset. Green dots represent the projection of the ground truth landmarks, while red dots indicate the projection of the predicted landmarks.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
f
Fig. 14. Mean error (mm) for each expression in the FS Expressions subset (2704 face
graphs), evaluated under inter-condition modality using a model trained on FS Neutral.

into the robustness and applicability of our approach in diverse, un-
onstrained conditions. Additionally, it would be highly interesting to
ssess the reliability of the identified points indirectly by utilizing them
n downstream tasks. Beyond landmark localization, examining how
ur FLD impacts tasks such as facial expression recognition, emotion
etection, or facial attribute classification could offer important insights
nto the effectiveness of the detected landmarks for more complex facial

analysis. Furthermore, the generalization capabilities of the model
open opportunities for applications involving rare or unique facial
deformations (e.g., due to syndromes, pathologies, or accidents), where
extensive datasets may not be readily available.
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