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CLASSIFYING FANO 4-FOLDS WITH A RATIONAL FIBRATION ONTO A 3-FOLD

C. CASAGRANDE AND S.A. SECCI

ABSTRACT. We study smooth, complex Fano 4-folds X with a rational contraction onto a 3-fold,
namely a rational map X --+ Y that factors as a sequence of flips X --» X followed by a surjective
morphism X — Y with connected fibers, where Y is normal, projective, and dim Y = 3.

We show that if X has a rational contraction onto a 3-fold and X is not a product of del Pezzo
surfaces, then the Picard number px of X is at most 9; this bound is sharp.

As an application, we show that every Fano 4-fold X with px = 12 is isomorphic to a product of
surfaces, thus improving the result by the first named author that shows the same for px > 12.

We also give a classification result for Fano 4-folds X, not products of surfaces, having a “special”
rational contraction X --» Y withdimY = 3, px — py = 2, and px > 7; we show that there are
only three possible families. Then we prove that the first family exists if px = 7, and that the second
family exists if and only if px = 7. This provides the first examples of Fano 4-folds with px > 7
different from products of del Pezzo surfaces and from the Fano models of Bl P*. We also construct
three new families with px = 6.

Finally we show that if a Fano 4-fold X has Lefschetz defect 0x = 2, then px < 6; this bound is
again sharp.

1. INTRODUCTION

Let X be a smooth, complex Fano 4-fold, and px its Picard number. Recall that since X is Fano, px
coincides with the second Betti number of X, therefore it is a topological invariant and is constant
in smooth families. It is well known that there are finitely many families of Fano 4-folds, and it is a
recent result that when the Picard number is large, X must be a product of surfaces:

Theorem 1.1 ([Cas24], Th. 1.1). Let X be a smooth Fano 4-fold. If px > 12, then X = S; x S5,
where S; are del Pezzo surfaces.

Let us point out that all known examples of Fano 4-folds that are not products have p < 9, hence
it is not known whether for p = 10, 11, 12 there are only products of surfaces. For the case p = 12,
there is the following partial result.

Theorem 1.2 ([Cas24]], Th. 4.3). Let X be a smooth Fano 4-fold. If px = 12 and X is not isomor-
phic to a product of surfaces, then there is a rational contraction X --+ Y withdimY = 3.

. . . = .
A rational contraction is a rational map X --» Y that factors as X --» X 1V where Eisa
sequence of flips, f is surjective with connected fibers, and Y is normal and projective (namely f is
a contraction).
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In this paper we study Fano 4-folds X having a rational contraction X --+ Y with dimY = 3,
and such that X is not isomorphic to a product of surfaces, as above. We have different motivations
and goals: first, to describe the geometry of X, especially when py is large, and possibly to give
classification results; then to determine a sharp bound on px, and to use it to show that Fano 4-folds
with Picard number 12 are products of surfaces; to construct new families of Fano 4-folds with large
Picard number (at least 6); and finally to give a sharp bound on the Picard number of Fano 4-folds
with Lefschetz defect 2 (see below). As an outcome we get results in different directions, let us
explain them separately.

Bounding the Picard number. Our first goal is to bound the Picard number of Fano 4-folds with a
rational contraction onto a 3-fold, and our result is the following.

Theorem 1.3. Let X be a smooth Fano 4-fold that is not isomorphic to a product of surfaces, and
having a rational contraction X --+Y withdimY = 3. Then px < 9.

This improves the previous bound p < 12 obtained in [[Cas20, Th. 1.2], and it is sharp, as the
Fano model of Blg, P is a smooth Fano 4-fold with p = 9 and a rational contraction onto Bl P3,
see Ex.

Fano 4-folds with p = 12. As a straightforward consequence of Th. [[.2] and [I.3] we improve the
bound in Th. [T

Corollary 1.4. Let X be a smooth Fano 4-fold with px = 12. Then X = S; x Sy where S; are del
Pezzo surfaces.

Fano 4-folds with Lefschetz defect 2. The Lefschetz defect of a Fano variety X is an invariant
defined as follows. Let V1 (X) be the real vector space of one-cycles in X, with real coefficients, up
to numerical equivalence. For any prime divisor ¢: D — X, the push-forward gives a linear map
tv: N1(D) — Ni(X), and we consider the image

Nl(D, X) = L*(Nl(D)) Q Nl(X),
so that N1 (D, X) is the linear subspace of N (X ) spanned by classes of curves in D. The Lefschetz
defect of X is defined as
(1.5) dx := max{codim N1 (D, X) | D a prime divisor in X }.
We refer the reader to [Cas23|| for a survey on dx, and recall the following result.

Theorem 1.6 ([Cas12]], Th. 1.1). Let X be a smooth Fano variety. If 6x > 4, then X =2 S x Z,
where S is a del Pezzo surface with ps = dx + 1.

Therefore when X is not a product, we have dx < 3. Fano varieties with 0x = 3 do not need to
be products, but for them a structure theorem is given in [[CRS22]], which in dimension 4 yields the
following.

Theorem 1.7 ([CRS22], Prop. 1.5). Smooth Fano 4-folds with 6x = 3 are classified. Either X =
S1 X Sy where S; are del Pezzo surfaces, or px € {5,6}. There are 6 families for px = 5, and 11

for px = 6.
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We believe that, to study Fano varieties with large px, it is important to investigate the next case
0x = 2, by looking for a special geometrical structure, as started in [Cas14]. In dimension 4, as an
application of our results, we prove the following.

Theorem 1.8. Let X be a smooth Fano 4-fold with 6x = 2. Then px < 6.

We note that this bound is sharp too, as it is achieved by (Bly,,; P?)? (see Rem. 2.1)). However we
are not aware of other examples with p = 6, while we provide several (known and new) examples
of Fano 4-folds X with 6x = 2 and px < 5, see §7.4land §7.6

New families of Fano 4-folds with p = 7. We already recalled that all known examples of Fano
4-folds that are not products of surfaces have p < 9. More precisely, for p = 7, 8,9 there is only
one known family, given by the Fano model of Bl, P* for r = 6,7, 8, see Ex. We point out
that also for p = 6 there are very few known families (again excluding products): 6 toric [Bat99], 2
non toric with dx = 3 [CRS22| Prop. 7.1], and one in [Man24]].

We construct two new families with p = 7, which are the first examples of Fano 4-folds with
p > 7 different from the Fano model of Bl P4 and products of del Pezzo surfaces, as follows (see

§7.2land §7.3).

Proposition 1.9. Ler r € {0, ...,4} and let W be the Fano model of Bly, ., P* (see Ex.[Z2), with
Qo, . - -, q- € P* general points. Let A C P* be one of the following:

(1) a general cubic rational normal scroll containing qo, . . . , Gy,
(11) a general sextic (singular) K3 surface with Sing(A) = {qo, - .., g}, having rational double
points of type Ay or As in q; for every 1, and contained in a smooth quadric hypersurface.

Let S C W be the transform of A, and X — W the blow-up of S. Then X is a smooth Fano 4-fold
withpx =r+3¢€{3,...,7}

We note that this gives also two new families with p = 6, and besides these we construct an
additional new family with p = 6 (§.3). These new families all have a rational contraction onto a
3-fold, and their construction has been suggested by our study of Fano 4-folds with such a rational
contraction, as we explain below.

There are a few cases in our constructions that we leave open, and could lead to more examples,

see Questions [7.1] [7.6] and

Special rational contractions. Let X be a smooth Fano 4-fold and f: X --» Y a rational con-
traction with dimY = 3. We say that f is special if Y is QQ-factorial and, when we factor f as

X R X L v where ¢ is a sequence of flips and f a contraction, we have that f has at most
isolated 2-dimensional fibers (and no 3-dimensional fibers). Special rational contractions have es-
pecially good properties, see [Cas20, §3 and §6].

It follows from [[Cas20] that, when X has a rational contraction onto a 3-fold, it also has a special
rational contraction onto a (possibly different) 3-fold. In our setting we show the following.

Theorem 1.10. Let X be a smooth Fano 4-fold with px > 7, not isomorphic to a product of surfaces,
and having a rational contraction onto a 3-dimensional variety.
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Then there exists a special rational contraction X --+ Y, where Y is a weak Fan 3-fold with
at most isolated, locally factorial, and canonical singularities, and px — py € {1,2}.

Therefore to study the geometry of X as in Th. above we are reduced to study separately the
two cases where X has an elementary rational contraction onto a 3-fold, and where there is a special
rational contraction X --» Y of relative Picard number two, with dim Y = 3.

Classification results. In the case of relative Picard number two, in the range px > 7, we show that
there are only three possibilities for X.

Theorem 1.11. Let X be a smooth Fano 4-fold with px > 7, not isomorphic to a product of
surfaces, and having a special rational contraction X --» Y with dimY = 3 and px — py = 2.
Then px € {7,8,9} and X is the blow-up of W along a normal surface S, where W is the Fano
model of Bl P* (see Ex.[Z2), and S C W is the transform of a surface A C P* containing the
blown-up points, as in one of the following cases:

(1) Ais a cubic scroll;
(11) A'is a sextic K3 surface, with rational double points of type Ay or Az at the blown-up points,
and px =7;
(7ii) A is a cone over a twisted cubic.
In cases (i) and (it) the surface S is smooth, while in (iii) S has one singular point, given by the
vertex of the cone. Moreover Y is smooth, and up to flops Y = Bl P°.

With Prop. [L.9 we show that cases (i) and (i) do occur for px < 7, while we do not explore case
(1i1).
Techniques and strategy of proof. Let X be a Fano 4-fold and f,: X --» Y arational contraction
with dimY = 3. First of all, by the results in [[Cas20], we can assume that f is special (see
Prop. 3.11).

Recall that, when dx > 3, either X is a product of surfaces, or px € {5,6} and the possible X
are classified, by Th. and[1.7}; therefore we can also suppose that 0x < 2.

Let us consider a factorization of fy as X 5 XL Y'; we can assume that f is K -negative.
Then Y has at most isolated, locally factorial, and canonical singularities, and outside the (finitely
many) 2-dimensional fibers, f is a conic bundle (see [3.3). By studying the connected components
of the discriminant divisor of f in Y, we show that when f is special and 6y < 2, then either
px — py < 2,0r0x = 2 (Lemma[3.12).

We first treat the case where px — py < 2. We assume that py- > 5 and follow the same approach
as in [Cas13] and [Cas20], that led to the bound px < 12. We show that Y is weak Fano, and that
(up to flops) there is a blow-up ¥ — Y|, of r distinct smooth points, where Y| is weak Fano with
py, < 2 (312, Lemmal5.16] proof of Th.[6.3).

In order to bound px, we need to bound the number r of blown-up points, and for this we use
the anticanonical degree. Since 0 < — K3 = —Kf’/o — 8r, we give bounds on —Kf’/o in our setting,
using several results from the literature on singular Fano or weak Fano 3-folds, see Section 4 and
references therein.

1y is weak Fano if — Ky is nef and big.
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In the elementary case (namely px — py = 1), this is enough to show that px < 9; if moreover
Y is smooth, then we show that (up to flops) there are only six possibilities for Y; and Y (Cor. [6.4).

The case where px — py = 2 is studied in much more detail, as besides bounding the Picard
number, we classify X as stated in Th. [L1Il This is done in Section [3 which is the heart of the
paper, and requires a long and articulated analysis that allows to prove first that Y = Bl P?, and
then to identify X. We refer the reader tol5.2|for an overview of the proof.

Finally let us consider Fano 4-folds X with Lefschetz defect 6y = 2. If X is a product of
surfaces, it is easy to see that px < 6. Otherwise, by [Casl4] either X has a special rational
contraction X --» Y where dimY = 3 and px — py = 2, or it has a flat contraction X — S onto a
surface. In the second case we get easily px < 5 by applying results from [Cas08]]. In the first case
we apply our previous results on the case of relative Picard number two; more precisely we exclude
that py > 7 thanks to our classification (Thm. [[.1T).

Outline of the paper. In Section 2| we set up the notation and give some preliminary results. In
particular in §2.2] we recall the properties of fixed prime divisors in Fano 4-folds with p > 7, that
will be crucial in the sequel.

Section [3]is about special rational contractions from smooth 4-folds to 3-folds. First we consider
K -negative special contractions f: X — Y where X is a smooth projective 4-fold and dim Y = 3;
then we introduce special rational contractions of Fano 4-folds onto 3-folds, and their properties.

Section ] is an auxiliary section, where we present some results on Fano and weak Fano 3-folds
Y with locally factorial and canonical singularities, in particular with respect to the anticanonical
degree — K7 ; these will be needed in the rest of the paper.

In Section [§ we treat the case of relative Picard number 2, and prove Th. [L.T1l

Then in Section [0l we treat the elementary case and the case of Lefschetz defect 2, proving Theo-
rems 1.8 and

Finally Section[7]is devoted to the construction of new families and examples, we prove Prop.
and ask some open questions on possible further new examples.

CONTENTS
[L__Introduction 1
b Preliminaricd 6
3. Special rational contractiond 12
- 17
5.__The case of relative Picard number twd 21

l6._The case 6, — 2 and the elementary casd 48
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2. PRELIMINARIES
2.1. NOTATIONS

We work over the field of complex numbers. We refer the reader to [KMO98] for the terminology and
standard results in birational geometry, and to [HK0O] for Mori dream spaces.

Let X be a normal and Q-factorial quasi-projective variety. A contraction is a surjective, projec-
tive map f: X — Y, with connected fibers, where Y is normal and quasi-projective. We denote by
N1(X/Y) the vector space of one cycles in X, with coefficients in R, contracted to points by f, up
to numerical equivalence. We say that [ is elementary if dim N1(X/Y) = 1, and f is K-negative
is —Kx is f-ample.

Let X be projective. As usual we denote by N''(X) (respectively N1(X)) the vector space of
R-divisors in X (respectively one cycles in X with coefficients in R) up to numerical equivalence.
We denote by [D] € N''(X) the class of a divisor, and = stands for numerical equivalence.

An elementary contraction f is of type (a,b) if dim Exc(f) = a and dim f(Exc(f)) = b. Ad-
ditionally, when dim X = 4, we say that f is of type (3,b)", with b € {0, 1,2}, if Y is smooth
and f is the blow-up of a smooth, irreducible subvariety of dimension b. Still when dim X = 4,
we say that f is of type (3,0)% if Exc(f) = Q where @ is a 3-dimensional quadric, f(Q) = {pt},
and NEXC( ne = Og(—1); then () is either smooth or the cone over a smooth quadric surface, see
[Cas17, Lemma 2.19].

We denote by NE( f) the face of NE(X') generated by classes of curves contracted to points by f.

Suppose that X is a Mori dream space. An extremal ray R is one dimensional face of NE(X). Let
f: X — Y be the associated elementary contraction (namely R = NE(f)); we set Locus(R) :=
Exc(f). For a divisor D on X we write D - R > 0,= 0,< 0if D-v > 0,=0,< 0fory € R
non-zero. We also say that R or f are D-positive, D-trivial, D-negative respectively.

By a flip we mean the flip of a small extremal ray R, or equivalently of a small elementary
contraction, in the sense of [KMO98, Def. 3.33]. We say that the flip is D-negative if R is. In
dimension 3, as customary a flop is the flip of a K -trivial extremal ray.

We set D+ := {y € Ni(X)|D -~y = 0}. In a real vector space N of finite dimension, we denote
by (71, .. .,7,) the convex cone spanned by 71, ..., 7.

In N''(X) we denote by Mov(X) (respectively Eff (X)) the convex cone spanned by classes of
movable (respectively effective) divisors. Since X is a Mori dream space, both cones are polyhedral.

A fixed prime divisor is a prime divisor D such that Bs |mD| = D for every m € Z-,.

A small Q-factorial modification (SQM) of X is a birational map X --» X' that factors as a finite

sequence of flips. A rational contraction is a rational map f: X --» Y that factors as X ix L
Y, where ¢ is a SQM and f’ is a contraction; f is elementary if px —py = 1. An elementary rational
contraction can be divisorial, small, or of fiber type, depending on the corresponding property of f’.

Let X be a normal and QQ-factorial projective variety. We say that X is log Fano if there exists an
effective Q-divisor A such that (X, A) has klt singularities and — (K x + A) is ample; in particular
—Kx is big. If X is log Fano, then X is a Mori dream space, by [BCHM 10, Cor. 1.3.2]; moreover
if X --» Y is arational contraction with Y (Q-factorial, then Y is still log Fano, by [PS09, Lemma
2.8].
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Let X be a smooth projective 4-fold. An exceptional plane is a surface L C X such that L = P?
and N7/ x = Op2(—1)%%; we denote by C;, C Lalinein L, note that — Ky -C, = 1. An exceptional
line is a curve ¢ C X such that £ = P! and Ny x = Op1(—1)%%; note that Kx - £ = 1.

A node is an ordinary double point.

We denote by P? @ P2 the union of two planes in P intersecting in one point.

If .: Z — X is aclosed subset, we set NV (Z, X) := 1.(NM1(Z)) C M (X).

We give a few preliminary results that are needed in the sequel; recall the definition of Lefschetz

defect (L3).

Remark 2.1 ([Cas23]], Lemma 5). Let X =Y x Z where Y and Z are smooth Fano varieties; then
dx = max{dy,dz}. Moreover it follows from the definition of Lefschetz defect that a del Pezzo
surface S has dg = pg — 1.

Remark 2.2. Let X be a normal and (Q-factorial projective variety, Z C X a closed subset, and
D C X aprime divisor such that Z N D = (). Then N,(Z, X) C D+ C Ni(X). Indeed we have
D - C = 0 forevery curve C' C Z.

Remark 2.3. Let X be a normal and (Q-factorial projective variety, Z C X a closed subset, and
f: X — Y acontraction. Then dim NV (Z, X) < dim N1 (f(Z),Y) + px — py.

Indeed consider the pushforward f.: N7 (X) — N1(Y); we have f.(N1(Z, X)) = N1(f(Z),Y)
and dim ker f, = px — py.

Lemma 2.4. Let a: X — W be the blow-up of a smooth projective 4-fold along a smooth irre-
ducible surface S, with exceptional divisor E C X.
Then Ox(—Kx)g is ample on E if and only if the vector bundle

Nsw © Ow(=Kw)is = Nsyw @ Os(—Ks)
is ample on S. Moreover we have the following:
Ky = Ky, — 3(Kw)s)? — 2Ks - Kwys + c2(Nsyw) — K2,

K% - eo(X) = Kpy - co(W) — 12x(Os) + 2K% — 2K - Kws — 2ca(Nwy),

XX, —Fx) = x(W, ~Kw) = x(05) — 5 ((uwis)? + Ks - Fuwjs).

Proof. We have £ = Pg(Ng)y;,) with tautological class n = Ox(—E) 5. Moreover

OE<KE) = OérE(Os(Ks) (29 detNS\//W) & ?7®(72), OW(_KW)|S = OS(—KS) X det./\fg/w,
and Ky = (Kx + E)p. We get that Ox(—Kx)jp = 1 ® ajy(Ow(—Kw)s) is the tautological
class for £/ = PS(./\/:%//W & Ow(—Kw)‘s).

Finally we recall that for a vector two vector bundle £ we have £ = £Y ®det(E), and the formulae
are from [[CR22, Lemma 3.2]. [ |

Remark 2.5. Let Y be a smooth quasi-projective variety, X := Py (£) where £ is a rank two vector
bundleon Y, and 7: X — Y the P!-bundle. Set L := det £ € Pic(Y).
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Let C' C Y be a smooth projective rational curve and set S := 7~ }(C') = F,, where F, is the
Hirzebruch surface and e > 0. Let I'" and I'* be respectively the negative section and a positive
section of mg: S — C (namely (I'")? = —e and (I'")? = ein S). Then L - C' = e mod 2 and

—KX~F*:—Ky~C'—e, —KX'F+I—KY'C+€.
Proof. We have —Ky = n*(—Ky) — K, and
_KX\S = W*(—Ky)‘s — Kﬂs = W*(—Ky)|g - KS + (W‘S)*KPI.

In particular if T'is 't or I'” we get —Kx - I' = —Ky - C — Kg - I' — 2, which yields the formulae
above since —Kg-I'" =2 —cand —Kg-I'" =2 +e.

To see that L - C'= e mod 2, write £|c = Op1(a) ® Op1 (b) witha < b. Then L - C' = a + b and
e=b—a. u

Finally recall some results on K '-negative contractions.

Theorem 2.6 ([AW9S]], Theorem on p. 256). Let X be a smooth quasi-projective 4-foldand f: X —
Y a K-negative divisorial elementary contraction of type (3,2). Then f can have at most finitely
many 2-dimensional fibers over yy, ..., y,, Sing(Y") C {y1,...,y.}, and Y is locally factorial and
has at most nodes as singularities. Moreover over Y ~ {y1,...,y.} f is just the blow-up of a
smooth, irreducible surface.

Theorem 2.7 ([Dell4], Th. 2.2). Let X be a normal and locally factorial projective variety with
canonical singularities, and with at most finitely many non-terminal points. Let f: X — Y be a
K -negative birational elementary contraction, with fibers of dimension < 1. Then f is divisorial.

Theorem 2.8 ([Kaw89]). Let X be a smooth, quasi-projective 4-fold, and f: X — Y a K-negative
small elementary contraction. Then Exc(f) is a finite, disjoint union of exceptional planes.

Theorem 2.9 ([Kac98||, Th. 1.1, Cor. 2.2 and references therein). Let X be a projective 4-fold with
at most locally factorial, terminal, isolated l.c.i. singularities. Let f: X — Y a K-negative small
elementary contraction. Then for every irreducible component L of Exc(f) we have (L, —Kx1,) =

(P2, Op=(1)).
Proposition 2.10 ([Casi4], Prop. 3.7(2)). Let X be a smooth Fano 4-fold and p: X --+ X' a

birational, rational contraction such that X' is Q-factorial. Set P := X'\ dom(p~!). Then for
every irreducible curve C C X' with —Kx - C = 1 we have either C C P or C N P = ().

A conic bundle is a projective morphism f: X — Y where X is a quasi-projective variety with
Gorenstein, log terminal singularities, Y is smooth, and there exists a rank 3 vector bundle £ on Y
such that X C Py (&), f is the restriction of the projection 7: Py (£) — Y, and every fiber of f is a
plane conic in the corresponding fiber of 7; see for instance [Bea77, Ch. I].

Theorem 2.11 ([AWO98], Prop. 4.1 and references therein). Let X be a smooth quasi-projective
variety and f: X — Y a K-negative contraction such that every fiber of f has dimension one.
Then'Y is smooth and f is a conic bundle.

Proposition 2.12 ([Rom19bl], Prop. 1.3). Let X be a Gorenstein quasi-projective variety with log
terminal singularities and f: X — Y a K-negative contraction with Y smooth, such that every
fiber of f has dimension one. Then f is a conic bundle.
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2.2. FANO 4-FOLDS AND FIXED DIVISORS

In this section we recall some results on the birational geometry of Fano 4-folds. First of all, we
describe in Lemma [2.13] the structure of SQM’s of a Fano 4-fold. Then we recall a classification
result for fixed prime divisors in Fano 4-folds with Picard number > 7, there are only four possible
types, and we describe the associated divisorial elementary rational contractions (Th.-Def. 2.16).
Finally we describe the possible relative positions of some pairs of fixed prime divisors that appear
as exceptional divisors for the same birational map (Lemmas -2.19).

Lemma 2.13 ([Cas13l], Rem. 3.6). Let X be a smooth Fano 4-fold and p: X --» Xa SOM. We
have the following:

(a) X is smooth, X ~ dom(p) = Ly U - - - U L, where L; are pairwise disjoint exceptional planes,

)
and X ~ dom(p™ )y =¢6U---U ET where U; are pairwise disjoint exceptional lines; moreover
@ factors as
®

-~

X<—X—>X
f

where [ is the blow-up of L1 U - - - U L, and g is the blow-up of {; U - - - U {,.

(b) Let C C X be an irreducible curve, different from (1, ... (., and intersecting {1 U --- U/, in
s > 0 points; then —Kg - C > 1+ s.

() If-K3-C=1thenCN (L U---UL,) =0

Lemma 2.14 ([Cas13], Rem. 3.7). Let X be a smooth Fano 4-fold and f: X --+ Y a rational
contraction. Then there exists a SQM £: X --» X such that the composition f o £~1: X — Y is
regular and K -negative.

Lemma 2.15. Let X be a smooth Fano 4-fold with px > 6, and D C X the exceptional divisor of a
divisorial elementary contraction of type (3,2). Let X --» X bea SOM, and D C X the transform
of D. Then D does not contain exceptional planes, and dim N1(D, X) = dim ./\fl(D, X ).

Proof. By [Casl7, Rem. 2.17(2)] D does not contain exceptional planes, thus the statement follows
from [Cas13, Cor. 3.14]. H

Theorem - Definition 2.16 ([[Cas17]], Th. 5.1, Cor. 5.2, Def. 5.3, Lemma 5.25, Def. 5.27). Let X be
a smooth Fano 4-fold with px > 7, or px = 6 and 0x < 2, and D a fixed prime divisor in X.

(a) There exists a unique diagram:
X-5HX %Sy

where § is a SOM, o is a divisorial elementary contraction with exceptional divisor the trans-
form D of D, and Y is Fano (possibly singular);

(b) o is of type (3,0)™, (3,0)%, (3,1)*", or (3,2), and we define D to be of type (3,0)*", (3,0)%,
(3,1)", or (3, 2), accordingly;

(¢) if D is of type (3,2), then X = X. In the other cases & factors as a sequence of D-negative and
K -negative flips.
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(d) We define Cp C D C X to be the transform of a general irreducible curve C'z C DcCX
contracted by o, of minimal anticanonical degree. Then Cp = P!, D - Cp = —1, and Cp C
dom(¢).

(e) Givena SOM X --» X' and a divisorial elementary contraction o’: X' — Y’ with Exc(c’) the
transform of D, there is a commutative diagram:

X-f.x - x

y -2y
where )y and 1y are SOM’s, D C dom (1)), and o(D) C dom(1)y ).

Let X be a smooth Fano 4-fold, p: X --» X a SQM, and F C X a fixed prime divisor. We
define the type of E to be the type of its transform F C X, and we define C'r C E C X to be the
transform of Cz, C X. Note that, since dim(X ~ dom(¢!)) = 1 (see Lemma2.13(a)), we have
Cg C dom(p1).

We say that two fixed prime divisors D, E are adjacent if [D], [E] € N'(X) generate a two
dimensional face of Eff (X'), and moreover ([D], [E]) N Mov(X) = {0}.

Lemma 2.17. Let X be a smooth Fano 4-fold with px > 7 and let D, I/ be adjacent fixed prime
divisors, E of type (3,2), and D of type (3,1)" or (3,0)%, such that DN E # (. Then D - C; = 0
and one of the following holds:

(i) Disoftype (3,1, E-Cp =1, and E N L = () for every exceptional plane L C D;

(13) D is of type (3,1)", E - Cp = 0, there exists an exceptional plane Ly C D such that
D-C,=-1,E-C, =1 Cp =Cg+ Cp, and ENL = () for every exceptional
plane L C D with C, # Cp,;

(iti) D isoftype (3,0)%, E-Cp = 1, there exists an exceptional plane Ly C D such that D-Cp, =
—1, F-Cp, =2 Cp =Cg+Cyr,, and EN L = ( for every exceptional plane L C D with
Cp # Cp,.

Proof. Recall that E' does not contain exceptional planes (Lemma[2.13); then D -Cr = 0 by [[Cas20,

Lemma 4.9]. If D is of type (3,1)" and £ - Cp > 0, then we have () by [Cas22, Lemma 4.23].
Suppose that, if D is of type (3,1)", we have F - Cp = 0. Then we apply [Cas22, Lemma 6.9,

Prop. 6.1, Prop. 6.4, and Cor. 6.10], and get (i7) or (7). |

Given two adjacent fixed prime divisors D and F in X, up to a SQM we can contract both of them
with divisorial elementary contractions. However if D and E intersect, in general the SQM and the
type of divisorial elementary contractions may depend on the order with which we contract the two
divisors. In the next lemmas we describe this situation for the cases given by Lemma [2.17; this will
be used in Section[Sl The vertical arrows (labeled by «) are divisorial elementary contractions with
exceptional divisor F or its transforms, while the horizontal arrows (labeled by o) are divisorial
elementary contractions with exceptional divisor D or its transforms.
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Lemma 2.18 ([Cas22]], Lemma 4.23 and its proof). Let X be a smooth Fano 4-fold with px > 7
and let D, E be adjacent fixed prime divisors as in Lemma[2.17(i). Then we have a diagram

Xf£>)?—U>XO

NAE

e «, &, and o are divisorial elementary contractions of type (3,2) with exceptional divisor E or
its transforms;

e { and o are as in Th.-Def. 216 (a) for D, o blows-up a fiber C = P! of ap, and Exc(o) =
]Ppl (O D O(].)) = Bl]ine ]P>3,'

e Exc(oy) C Wreg, Exc(oy) = a(Exc(o)) = P3, and oy is the blow-up of the smooth point
Oéo(C) € Wo,'

o S and &y, are SOM'’s.

where:

Lemma 2.19. Let X be a smooth Fano 4-fold with px > 7 and let D, E be adjacent fixed prime
divisors as in Lemma 2. 17(ii) or (iit). Then we have a diagram

e

e o, &, and o are divisorial elementary contractions of type (3, 2) with exceptional divisor E or
its transforms;

e ¢ and o are as in Th.-Def. (a) for D;

e & is a sequence of D-negative and K -negative flips, and E C dom(&;);

e & is the flip of the small extremal ray generated by [C1,| (see Lemma[2.17);

e oy, is a divisorial elementary contraction with Exc(oy,) the transform of D, and Exc(oy) C
Wreg;

o &y isaSOM;

e if D is of type (3,1)*" and o blows-up a curve I' C X, then I - Exc(ag) > 0, and oy, is of type
(3, 1) and blows-up the curve o(I") C Wy,

e ifois of type (3,0)%, then oy, is of type (3, 0)*™".

g

X—>X0

T B

Wo

fn ‘

where:

Proof. We order the sequence of D-negative flips in £ by performing first all E-trivial flips; by
Lemma m the loci of these flips are exceptional planes disjoint from E, so that &£ C X and its

transform E C X are contained in the open subsets where ; is an 1som0rphlsm Then NE(X ) must
have a unique E- -negative extremal ray, which gives the contraction & : X — W of type (3, 2).
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The transform D C X of D contains exceptional planes L} := Lo, L2, ..., L¢ such that C L =

Cp, forevery i = 1,...,d, and they are the indeterminacy locus of the last flip £&. Moreover
(§2),5 is regular, and (52)‘ 5 D — D is the blow-up of d smooth points, with exceptional divisors
L,... Ld

If D is of type (3, 1)*", then D is a P'-bundle over a curve I', and the composite map D—T
has d singular fibers  given by LiU SZ, where S; = [, is the transform of the corresponding fiber of

D — I'. Moreover END = S, U---U S, and (& a)p: D — &(D) contracts S; to curves, and &(D)

is another P2-bundle over I'. There are exceptional lines £ C X corresponding to L} (see Lemma
213(a)), and if E C X is the transform of E, we have E - ¢i = —1. In Xy, the images o (¢) for
1 =1,...,d are the fibers of o that meet I".

If D is of type (3,0)%, then d = 1 by [Cas22, Prop. 6.4 and its proof], and D Blp,lA) =
Bl P3. If D is a smooth quadric, then the conic is smooth, and END = Fy. If D is the cone over
P! x P!, then the conic is reducible, and E N D has two irreducible components, both isomorphic
to ;. Finally ag(D) = P3. |

3. SPECIAL RATIONAL CONTRACTIONS

In this section we introduce special contractions and rational contractions. First in we consider
K-negative special contractions f: X — Y where X is a smooth projective 4-fold and dim Y = 3.
We recall some results from [Cas20], in particular concerning the discriminant divisor A C Y, and
define the intrinsic discriminant A, of f as the union of the irreducible components Ay of A such
that f*(Ay) is irreducible.

Using the classification of the possible 2-dimensional fibers of f by Andreatta-Wisniewski and
Kachi, we show that if 7y € Y is a singular point, then either 179 € Ay, or ¥ is a node and f~* (Yo)
is the union of two copies of P? meeting transversally at one point, and the lines in the two P?’s are
numerically equivalent in X (Th.[3.7). We will use this in Section [3 to relate (in our setting) the
presence of these special fibers over nodes to the non-rationality of Y (Lemma [5.23)).

Then in we turn to special rational contractions, and present the results needed to show that
if a Fano 4-fold X has a rational contraction onto a 3-fold and dx < 1, then there is also a special
rational contraction X --» Y withdimY = 3 and px — py € {1,2} (Prop.3.11land Lemma[3.12).

3.1. SPECIAL, K-NEGATIVE CONTRACTIONS FROM A 4-FOLD TO A 3-FOLD

Definition 3.1. Let X be a normal and QQ-factorial projective variety, and a Mori dream space. A
contraction of fiber type f: X — Y is special if Y is Q-factorial and, for every prime divisor
D c X, either f(D) =Y, or f(D) is a prime divisor in Y.

Equivalently, when dim X = 4 and dimY = 3, a contraction f: X — Y is special if YV is
QQ-factorial and f has at most isolated 2-dimensional fibers and no 3-dimensional fiber.

Special contractions of Mori dream spaces were introduced and studied in [Cas20], to which we
refer the interested reader for more details.
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Theorem 3.2 ([Cas20]). Let X be a smooth projective 4-fold and a Mori dream space, and let
f: X =Y be aspecial, K-negative contraction with dimY = 3. Set m := px — py — 1. We have
the following:

(a) Y can have at most isolated, locally factorial, canonical singularities, contained in the images
of the 2-dimensional fibers of f;

(b) there are m prime divisors By, ..., B,, CY such that f*B; is reducible for everyi = 1,... m,
and f* D is irreducible for every prime divisor D different from By, ..., B,,;

(¢) By, ..., By, are pairwise disjoint;

(d) f*Bj has two irreducible components E; and EZ The general fiber of f over B; is e; + €;, where
e;, €; are integral curves with E; - e; < (), EZ c6; <0,and —Kx -e; = —Kx - é; = 1, for every
1=1,...,m

Proof. Statement (a) follows from [Cas20,, Prop. 2.20] and Th. and the other statements from
[Cas20, Lemmas 3.4 and 3.5]. [ |

3.3. Let X be a smooth projective 4-fold and a Mori dream space, and f: X — Y a special,
K -negative contraction with dim Y = 3, as in Th.

If Fi,...,F, C X are the 2-dimensional fibers of f, and Xy := X ~ (F} U --- U F}), then
fixe: Xo =Y N (f(F1)U---U f(F,)) is a conic bundle (see Th.[2.11). We denote by A C Y the
closure of the discriminant divisor of fx,, and we still refer to A as the discriminant divisor of f.
Note that f(F;) may or may not be in A.

By Th.3.2[d), By, ..., By, are irreducible components of the discriminant divisor A. We define
the intrinsic discriminant divisor A;,, of f to be the union of the irreducible components of A
different from By, ..., B,,, namely a component A of the discriminant divisor is in A, if and
only if f*A is irreducible. We have A = A, if and only if m = 0, equivalently f is elementary.

Lemma 3.4. In the setting of 3.3 for everyi =1,...,m we have B; N A, = 0, B; is a connected
component of A\, and B; is smooth outside the images of the 2-dimensional fibers.

Proof. Let i € {1,...,m}. Outside the 2-dimensional fibers, f is a conic bundle, and B; is an
irreducible component of the discriminant divisor. Since X is smooth, where f is a conic bundle,
the singularities of the discriminant divisor correspond to double lines (see [Bea77, Prop. 1.2]).
On the otflg:r hand there cannot be a double line F' over B;, because if I' = F},;, we would have
CENE;andT =¢;, ' = é;, bute; # ¢é; by Th.[3.2[d). Thus B; is smooth outside the images of
the 2-dimensional fibers and cannot meet other irreducible components of the discriminant divisor
(note that, being Y locally factorial, two prime divisors cannot intersect in finitely many points).

Remark 3.5. In the setting of 3.3 let ' := f~1(y) be a fiber of f. Then dim N, (F, X) > 1 if and
onlyify € ByU---UB,,.

Proof. Suppose that y € B;. By Th.[3.2l(d), F' N E; must contain a one-cycle I'; which is a degen-

eration of the curve ey, in particular I'y = ey; similarly F' N E contains a one cycle I numerically
equivalent to é;. Therefore [e1], [é1] € N7(F, X), and this classes are linearly independent because
E; - e; < 0 while F; - ¢, > 0. We conclude that dim V; (F, X) > 1.
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Conversely if y ¢ By U---U B,,, then FN E; = () fori = 1,...,m, hence N{(F,X) C
(ker f,)NE{N---NEL, where f,: N1(X) — N (Y) is the pushforward (see Rem.2.2)). Moreover
ker f, is generated by the classes [e1], ..., [en], [Fo] where Fj is a general fiber of f, and one can
easily check that (ker f,) N Eif N ---N B = R[Fy]. We conclude that dim A (F, X) = 1. [ |

We recall that P? e P2 is the union of two planes in P* intersecting in one point.

Lemma 3.6 ([Kac97))). In the setting of 3.3] let F := f~'(yo) be a fiber such that F' = P? e P2,
Then yo € A and dim N1 (F, X) = 1.

Proof. The fact that yo ¢ A follows from [Kac97, Th. 3.1]; note that, in the terminology of [Kac97],
a limit conic in /' = F} U F; is a union of a line in F} and a line in F3, both containing the point
Fy N Fy; hence F' is not connected by limit conics, because for general x,y € F} there is no limit
conic containing both of them. We also note that, even if in [Kac97] the contraction f is assumed
to be elementary, the proof of Th. 3.1 is local around £, and only needs that F' is an isolated 2-

dimensional fiber.
Finally dim NV; (F, X) = 1 follows from Rem. [ |

Theorem 3.7 ([AWO8], Kac97])). In the setting of3.3) let F := [~'(yo) be a 2-dimensional fiber of
f. Then one of the following holds:

(1) Y is smooth at y,
(i7) dim N1 (F, X) = 1 and yo € Nipyy;
(it7) dim N, (F, X) =1, F 2 P? @ P2, Y has a node at yo, and yoy ¢ A.

Proof. If dim N1 (F, X) = 1, then there is an open neighborhood Yj of yo such that, if X, :=
f~YY,), then Jixo: Xo — Y is elementary, and we apply the results in [Kac97]. In particular we
see that for type A [Kac97, Th. 0.6] we have (i); for type B [Kac97, Th. 0.7] we have (i) or (iii);
for type C [Kac97, Th. 0.8] we have y, € A, and then (i7) by Rem.

Suppose instead that dim N;(F, X) > 1. The possible F are classified in [AW9S8| Prop. 4.11],
and moreover ' % P?eP? by Lemma[3.6, thus we have the possibilities: Fy, P! x P!, P2U (P! x P!),
or P2 U TF;, where in the two reducible cases, the components meet along a curve which is a line in
P2 and a line of the ruling in P! x P!, or the (—1)-curve in F;.

In all cases we have dim NV;(F, X) = 2 and F does not contain exceptional planes, so we can
choose an open neighborhood Yj of 4o such that, if X, := f~(Y;), then dim N1 (X,/Y)) = 2, and
no fiber of f over Y; contains an exceptional plane. Set f, := fx,: Xo — Yo, and let us consider a
factorization of fj in elementary steps:

X, - W, 5 v

If « is of fiber type, then dim W, = 3 and f is birational. However [ cannot be small because Y
is locally factorial (Th.[3.2l(a)), and it cannot be divisorial otherwise there would be a divisor in X
sent by fj to a closed subset of codimension > 2 in Y[, impossible because f is special. Therefore
« is birational and dim Wy = 4.

Since f is K-negative, «v is K-negative too. Hence o cannot be small, otherwise Exc(«) would
be a union of exceptional planes contained in fibers of fy (see Th. 2.8). Then « is divisorial,
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dim a(Exc(a)) < 2 and dim fy(Exc(a)) < 2. On the other hand f is special, so fy(Exc(a))
must be a divisor in Y;. We conclude that « is of type (3,2), and fo(Exc(«)) = Yy N B; for some i.

We also note that the general fiber I" of /3 is a curve disjoint from o(Exc(«)), and f is K-negative,
thus Ky, - I' < 0. Since dim N, (W, /Y,) = 1, this means that /3 is K -negative.

We have

F — a(F) = " (y) - Yo
and yo € fo(Exc(ov)) by Rem.[3.5] thus F' N Exc(a) # 0, and o is not an isomorphism.

If F is irreducible, then F' = [F; or P' x P!, and ap is either a P'-bundle, or the contraction of
the (—1)-curve in F;. Up to exchanging this factorization of f, with the other one, we can assume
that o is a P'-bundle. Then « has one-dimensional fibers over «(F), therefore a/(F) C (W) e
by Th. Moreover o(F') = 371(y,) is a one-dimensional fiber of /3, and we have (i) by Th.

If instead F is reducible, then F' = F; U Fy with [} =2 P? and I, = F; or P! x P!, Again up to
exchanging this factorization of f, with the other one, we can assume that o, is an isomorphism
and o, is a P'-bundle, so that o(F') = P? and a(F) N a(Exc(w)) is a curve. Again o has one-
dimensional fibers over o(F") N o(Exc(av)), hence a(F') C (Wp)yee by Th. In this case a(F) =
871 (yo) = P? is a 2-dimensional fiber of 3, and we get (i) by [AW98, Th. 5.9.6]. [ ]

Example 3.8. We give an example of a smooth Fano 4-fold X with px = 2 with an elementary,
K -negative contraction f: X — Y with dimY = 3, where Y has 10 nodes y;, f~'(y;) = P? o P?
for every 4, and f is smooth with fiber P* over Y ~\ {91, ..., %10}, so that A = (). The resolution of
the base Y is the well-known Artin and Mumford’s 3-fold [AM72]]; we outline the description of X
and refer the reader to [Bea83, §9] for more details.

Let G be the grassmannian of lines in P2, and R C G the subvariety given by the lines contained
in a fixed pencil of quadrics in P>. Then R is an Enriques surface, called Reye congruence. Let
o: X — G be the blow-up along R; then X is a smooth projective 4-fold with px = 2. Moreover
there is an elementary contraction f: X — Y, where Y is a locally factorial 3-fold with precisely
10 nodes, and f is smooth with fiber P! outside the nodes. In particular f and o are K -negative, and
X is Fano. The fibers of f over the nodes are isomorphic to P? e P2,

Remark 3.9. Let f: X — Y be a conic bundle where Y is smooth, quasi-projective and X has at
most isolated singularities, and let A C Y be the discriminant divisor.

Let p € A be such that f~!(p) has two components, and let ¢ € f~!(p) be the singular point of
the fiber. Then X is singular at ¢ if and only if A is singular at p.

Proof. The statement being local on Y, we can assume that Y is affine and that X C Y x P?is
defined by the equation

2
F= Z aij(y)xiz; =0,
i,j=0
where y = (y;) are local coordinates on Y at p, a; € O(Y), and (x¢ : ;1 : ) are coordinates on
P2. We can also assume that f~!(p) has equation 27 + 25 = 0, so that a;;(p) = ag(p) = 1 and
a;;(p) = 0 for all other indices. Then f~!(p) is singularat go = (1: 0: 0), and ¢ = (p, o)-

We have g—i(q) =0fort=0,1,2, and g—;(q) = aa“—;;)(p) for every j.
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On the other hand, the local equation of A at p is given by D = det(a;;). The determinant is
given by a sum (with signs) of products of three elements of the matrix (a;;) lying in different rows
and columns. Each such product can be expressed as a product of two functions vanishing at p,
except agoa11ase. We conclude that

8D 8(&00(1,11(1,22) 8(1,00 8F
g P =5 — ) =75~ =5-(d)
Yj Yj Yj Yj
and the statement follows. See also [Bea77, Prop. 1.2]. [ |

3.2. SPECIAL RATIONAL CONTRACTIONS FROM A FANO 4-FOLD TO A 3-FOLD
Definition 3.10. Let X be a normal and Q-factorial projective variety, and a Mori dream space. A

rational contraction of fiber type f: X --» Y is special if there is a SQM X 5, X such that the
composition fo&~1: X — Y is regular and special; this does not depend on the choice of the SQM
€.

We will need the following properties.

Proposition 3.11 ([Cas20], Prop. 2.13). Let X be a normal and Q-factorial projective variety, and
a Mori dream space. Let f: X --+Y be a rational contraction of fiber type. Then f can be factored

f! . . . . N
as X =+ Y' 5 Y where f' is a special rational contraction and g is birational.

Lemma 3.12. Let X be a smooth Fano 4-fold and X --+ Y a special rational contraction with
dimY =3. If px —py >3, thendx > px —py —1 > 2.

Proof. The argument is similar to [Rom19a, proof of Lemma 3.10]. We consider a factorization
x-5x Ly

where £ is a SQM and f is a K-negative special contraction (see Lemma , and set m :=

px — py — 1. By Th. there are pairwise disjoint prime divisors By, ..., B,, C Y such that

f*(B;) has two irreducible components E; and E;. Moreover the general fiber of f over B; is e; +¢é;

where E; - e; <0, E; - ¢; <O,3.Ild—KXv'6i: —K)’('vél: 1.

We show that E; and E; are covered by irreducible curves of anticanonical degree one. Indeed
if p € E;, there must be an effective one-cycle I' which is a degeneration of e; and containing p
in its support. Then [I' = e;, thus every irreducible component of I' is contracted by f, which is
K -negative. Since —K ¢ - I' = 1, I' must be an integral curve. Similarly for ;.

By Lemma2.13|(c) this implies that F; U E; C dom (7). Let E/, B! C X be the transforms of
E;, E; respectively; we have (E; U Ej) N (B} U E}) = () for every i # j.

Since px — py > 3, we have m > 2. The divisor F is disjoint from E, ... E/ | E,’n, thus

NM(ELX) C (B n---n (B, N (E,)*"
(see Rem. 2.2). Moreover intersecting with (the transforms of) the curves ¢;, é,, we see that the
classes [EY), ..., [E! ], [E!] € N} (X) are linearly independent, and this gives codim N (E}, X) >
m, hence 0x > m = px — py — 1. [
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4. WEAK FANO 3-FOLDS

We recall that a normal and Q-factorial projective variety Y is weak Fano if — Ky is nef and big.
This is an auxiliary section where we present some results on Fano and weak Fano 3-folds Y with
locally factorial and canonical singularities; in particular we are interested in bounding — K3-. These
results will be applied in the rest of paper to study the base of a special rational contraction X --+ Y
where X is a Fano 4-fold and dimY = 3. The reader may skip this section and come back to it
when needed.

Let Y be a weak Fano 3-fold with locally factorial, canonical singularities. Then Y is log Fano,
and | — mKy | for m > 0 defines a birational map ¢: Y — Z, that we call the anticanonical map
of Y. Moreover Z is a Gorenstein Fano 3-fold, the anticanonical model of Y .

Lemma 4.1 ([Pro05, KarQ9]). Let Y be a Fano 3-fold with at most locally factorial and canonical
singularities. Then —K% < 64.

Proof. We use the results in [Pro05, Kar09] on the anticanonical degree of Fano 3-folds with Goren-
stein canonical singularities.

By [Pro03} Th. 1.5] we have —K3 < 72, and if —K} = 72 then Y should be P(1,1,1,3) or
P(1,1,4,6), but these two varieties are not locally factorial.

Then [Kar09, Th. 1.5] shows that, if 64 < — K 13/ < 72, then there are two possibilities for Y, with
—K3 =66 or —K3 = 70.

If — K3 = 70, then by [KarQ9, §3, in particular p. 1226] there is a birational morphism 7: W —
Y with Exc(7) an irreducible curve, which is contracted to the unique singular point of Y. Then
Y is not even Q-factorial, indeed let H C W be a general very ample divisor, so that H intersects
Exc(7) in points. Then 7(H) C Y is a prime Weil divisor which cannot be Q-Cartier, because
771 (7(H)) = H U Exc(7) is not a divisor, hence the pullback of m7(H) does not exist for any
m e Z>0.

If —Kf’/ = 66, then by [Kar(09, Th. 1.5, Prop. 5.2] Y is toric and singular, thus again Y cannot be
locally factorial. u

Lemma 4.2 ([OulS8l). Let Y be a Fano 3-fold with at most isolated, locally factorial, and canonical
singularities. Assume also that — K3 > 24, py = 2, and that Y has two distinct elementary
contractions of fiber type. Then Y is smooth and rational, and one of the following holds:

(i) Y 2 P! x P? and — K3 = 54,

(11) YV = Ppo(Tp2) and — K3 = 48;
(i17) Y C P? x P2 is a divisor of degree (1,2), and — K3 = 30.

Proof. Without the assumption on — K., the possible Y’s are classified in [Oul8, Th. 1.2]; there are
7 families, and they are all degenerations of smooth Fano 3-folds. By checking the anticanonical
degree we get the statement. Note that in case (i77), the first projection from P? x P? realizes Y as
a P'-bundle over P2, thus Y is smooth and rational. [ |

Proposition 4.3. Let Y be a weak Fano 3-fold, not Fano, with at most isolated, canonical, and
locally factorial singularities. Assume also that py = 2, that Y has two distinct elementary rational
contractions of fiber type, and that the anticanonical map of Y is small with exceptional locus
contained in Y,.,. Then one of the following holds:
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(1) Y 2 Pp (O & O(1)%?) and — K3 = 54,
(i) up to flops, Y is as in [JPO8|, Th. 3.6(1)] and — K3 = 40;

(i17) —K3 < 32.

Before proving this proposition, we need some auxiliary results. The techniques used below are
standard in the study of weak Fano threefolds, see for instance [[P99, JPOS, JPR11, [Pro05! [Pro23l].

Let Y be as in Prop. and set Y, := Y. Since py, = 2 and — Ky, is nef and big but not
ample, Y7 has two elementary contractions, one g, : Y7 — W; which is K-negative, and another one
which is K -trivial. This last one is the anticanonical map ¢: Y7 — Z, so it is small by assumption,
with exceptional locus contained in (Y7),.,; let £: Y] --» Y5 be its flop. Then Y5 is still weak Fano,
and since terminal flops preserve the singularity type (see [KM98| Th. 6.15]), also the indeterminacy
locus of ! is contained in (Y5),,,, and Y5 has the same singularities as Y;; note that — K3, = — K3, .
The second elementary contraction g,: Yo — W5 is K -negative.

Y-t Y,
gll lgz
W, W,

We note that g; cannot be small by Th. therefore Mov(Y;) = Nef(Y;) U £*(Nef(Y3)). Since
Y} has two elementary rational contractions of fiber type, these must be ¢g; and g, o &, namely g; and
go must be of fiber type.

Let i € {1,2}. If dimW; = 1, then W; = P! and g, is a fibration in del Pezzo surfaces.
If dim W; = 2, then the surface WW; is smooth (see [Oul8, Lemma 5.5]), and it is rational with
pw, = 1, thus W; = P?; in this case g; is a conic bundle (see Prop. 2.12).

Let D; C Y] be a general fiber of g; if WW; = P!, or the pullback of a general line if W; = P2.
Let also Dy C Y] be the transform of Dy C Y;. Then [Dy],[Ds] € N(Y7) generate the cone of
effective divisors, and since Y] is locally factorial, we have

(4.4) m(—Ky,) = ay Dy + ay Dy
with m, aq, ay positive integers such that ged(m, a1, az) = 1.
Lemma 4.5. If W, 2 P and D, = P?, then Y1 2 Y, = Ppi (O @ O(1)%?) and — K3 = 54.
Proof. We have Y| = Ppi(F) where F is arank 3 vector bundle on P!, because Y is locally factorial
(see [HN13, Rem. 3.2] and references therein); moreover F is decomposable. Since Y; is weak
Fano, not Fano, and it has small anticanonical map, the only possibility is Y] = Ppi (O & O(1)%2).
Then — K- 33/1 = b4 and Y5 = Y7, and we have the statement. [ |
Lemma 4.6. If W, = P2 and g, is smooth, then one of the following holds:

(i) Y is as in [JPO8, Th. 3.6(1)] and — K3 = 40;

(i1) —K3 < 24.
Proof. We have Y = Pp2(F) with F a rank 2 vector bundle on P?. The possible F such that Y is

weak Fano have been classified in [Lan98|] when F has odd degree, and [Yas12] when F has even
degree.
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When F has even degree, we can assume that ¢;(F) = 0, and since Y is not Fano, by [Yas12,
Prop. 2.10 and 2.11] we have cy(F) € {4,5,6} and — K3 = 54 — 8co(F) € {6, 14,22}

When F has odd degree, we can assume that ¢; (F) = —1, then — K} = 8(7 — ¢(F)). The pos-
sibilities for F are given in [Lan98| Th. 3.2]; moreover in this case Y = Pp2(F) has automatically
indexﬁ 2; when the anticanonical map is small these threefolds have been classified also in [JPOS&,
Th. 3.6].

Let us assume that — K3 > 24, equivalently that co(F) < 4. Since Y is not Fano, by [Lan98]|
Th. 3.2] we have co(F) € {—2,1,2,3}. Moreover, since the anticanonical map is small, we have
co(F) € {2,3} by [JPOS8, Th. 3.6]. If co(F) = 2 then —K3 = 40 and Y is as in [Lan98| Th. 3.2.5],
which is the same as [JPO8, Th. 3.6(1)] (and also [JPRII, 2.13(iv)]). Finally, if co(F) = 3, Y
should be as in [JPOS8, Th. 3.6(2)] but in this case go: Yo — W is birational, which is excluded by
our assumptions. |

Lemma 4.7. Suppose that g; contracts some irreducible curve I'; C Y; with —Ky, - I'; = 1 for
i=1,2. Then — K3 < 24.

Proof. Intersecting (4.4)) with I'; we get m = ab with b := D,-T,, thus a2<b<_KY1)_E2> ~ a1 D;.
This implies that Oy, (b(—Ky,) — D3) € (g1)* Pic(W;) = ZOy,(D1) (see [KM98, Th. 3.7(4)]),
therefore as|a;. Working in Y5 and intersecting with I'y, we get a;|as and hence a; = as. On the

other hand as|m and ged(as, m) = 1, and we conclude that a; = ay = 1 and m(—Ky,) = D1 + 52,
so that:

4.8) _Kigfl < <_KY1)2 ’ <_mKY1> = <_KY1)2 Dy + <_KY1)2 : 52'

Leti € {1,2}. If W; = P!, then D; is a del Pezzo surface, thus (—Ky;)? - D; = (—Kp,)* < 9.
If instead W; = P2, then g; is a conic bundle; the surface D; is smooth, rational, and has a conic
bundle over P! with d, singular fibers, where d; is the degree of the discriminant divisor of g;. An
elementary computation gives (—Ky;)? - D; = 12 — d; < 12.

Finally we have (—Ky,)? - Dy = (—Ky,)? - Do; this is a well-known fact for flops, that can be
seen as follows. Consider a locally factorial resolution of ¢: Y] --+ Y5:

Y
X
vi---f-->7

We have o] Ky, = «a;Ky,; recall that ¢: Y}, — Z is the anticanonical map. If £ C Y is an
irreducible exceptional divisor of oy, we have (p o ay)(E) = {pt}, and o Ky, = (¢ o a1)* Kz, thus
(ajKy,)g = 0. This implies that, for every pair of divisors B, B’ in Y1, if E, B C Y, are their
transforms, we have Ky, - B- B’ = Ky, - B-B.

From (@.8) we conclude that — K3} < 24. [ |

’The index of a weak Fano variety is the divisibility of — K in the Picard group, as for Fano varieties.
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Lemma 4.9. Suppose that W, = P, D; = P! x P!, D, 2 P2, and that if W, = P2, then g, is not
smooth. Then — K3 < 32.

Proof. We proceed similarly to the proof of Lemma[.7l Let I'y C D; be a line in the quadric, and
note that (—Kp,)* = 8. Suppose first that there exists an irreducible curve I'y C Y5 contracted
by g2 such that — Ky, - I'y = 1; as before we have (—Ky2)2 - Dy < 12. Intersecting with 'y
we get 2m = agb with b := Dy - T'y, thus as(b(—Ky,) — 2D3) = 2a1D; and as|2a,; intersecting
with Iy we get aq|as. This implies that either a; = ap or 2a; = ay. Then using that a;|m and
ged(ay, az, m) = 1 we deduce that a; = 1, ay < 2, and — K5 < 8a; + 12a, < 32.

Suppose now g, does not contract curves of anticanonical degree one. Then, by our assumptions,
it must be W, = P! and D, = P! x P!. By taking I'; a line in the quadric D, and proceeding as
above, we geta; < 2fori =1,2, (—Kp,)? = 8,and — K3 < 8a; + 8ay < 32. [ |

Proof of Prop. If for some i € {1,2} we have W; = P! and D; = P?, the statement follows
from Lemmal.3] Similarly, if for some i € {1,2} we have W; = P? and g; is smooth, the statement
follows from Lemma Therefore we can assume that, for i = 1,2, either W; = P? and g; is
singular, or W; = P! and D; % P2

Now if for ¢ = 1,2 g; contracts some irreducible curve of anticanonical degree one, we apply
Lemmal4.7l Otherwise, up to switching Y; and Y5 we can assume that W, = P! and D; = P! x P!,
and we apply Lemma[4.9l [

Lemma 4.10. In the setting of Lemma suppose moreover that Y is smooth. Then one of the
following holds:

(i) Y is as in [JPO8, Th. 3.5(3)] and — K3 = 32;
(i1) —K3 < 24.

Proof. Smooth weak Fano threefolds with a del Pezzo fibration, and having small anticanonical
map, have been classified in [JPR11] and [Tak22]]. In our setting Y; has a quadric fibration and
go 1s either a singular conic bundle, or another del Pezzo fibration. Then, by [Tak22, Th. 2.3], if
K 33/ > 24 the only possibility for Y is [[Tak22, (2.3.4)]; then Y7 has index two, and it is the same
as [JPOS, Th. 3.5(3)] (and also [JPR11} 2.13(1.ii1)]). [ |

Proposition 4.11. Let Y be a smooth weak Fano 3-fold with py = 2 and with two distinct el-
ementary rational contractions of fiber type. Assume moreover that Y is not Fano, and that the
anticanonical map of Y is small. Then one of the following holds:

(1) Y 2 Pp (O ® O(1)%?) and — K3 = 54;

i) up to flops Y is as in [JPO8, Th. 3.6(1)] and — K3 = 40;
) Y is as in [JPO8| Th. 3.5(3)] and — K3 = 32;

) =K <24

(i
(4i1
(iv

Proof. We proceed as in the proof of Prop.[4.3] just applying Lemmal.1Qlinstead of Lemma4d.9. W
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5. THE CASE OF RELATIVE PICARD NUMBER TWO

In this section we study Fano 4-folds having a special rational contraction onto a 3-dimensional
target, with relative Picard number two, and we prove Th.[L.11lfrom the Introduction; for the reader’s
convenience, we report the statement here.

Theorem 5.1. Let X be a smooth Fano 4-fold that not isomorphic to a product of surfaces, and
having a special rational contraction fy: X --+ Y with dimY = 3 and px — py = 2. Then
px < 9.

Moreover, if px > 7, then X is the blow-up of W along a normal surface S, where W' is the Fano
model of the blow-up of P* at px — 2 points (see Ex.[Z2), and S C W is the transform of a surface
A C P* containing the blown-up points, as follows:

(1) Ais a cubic scroll;
(13) A'is a cone over a twisted cubic;
(1ii) A is a sextic (singular) K3 surface, with rational double points of type A or Ay at the blown-
up points, and px = 1.

In cases (i) and (iii) the surface S is smooth, while in (ii) S has one singular point, given by the
vertex of the cone. Moreover Y is smooth, and up to flops Y = Bl P°.

5.2 (Outline of the proof). The proof of Th.[5.1]is quite long and articulated, and it will take the
whole section; let us outline the strategy. We assume that px > 7, so that py > 5.

We consider a SQM £: X --» X such that fi=fyo& L X = Yis regular and K -negative.
There is a unique prime divisor B C Y such that f*(B) = F; + F is reducible, and it is a connected
component of the discriminant divisor of f (3.3)).

We show that f factors as X3Sw5 Y, where & is a divisorial elementary contraction of type
(3,2) with exceptional divisor F, and that there is a divisorial elementary contraction a.: X — W

of type (3, 2) with exceptional divisor the transform of F, so that there is a SQM W --» W (see
diagram (5.3) below).

The first part of the proof follows the same lines as [Cas13,/Cas20]: we show that Y is weak Fano
and that, up to flops, there is a blow-up k: Y — Y of r smooth, distinct points py,...,p, € Y,
where Y is a weak Fano 3-fold Y; with py, < 2 (5.12] Lemmal[5.16). Then we show, in sequence:

e the anticanonical map ¢: Y — Z of Y is small, and pz = 1 (3.14] Lemma[5.19);

e — Ky = A\B for some \ € Q- (Lemma[5.20);

e the composition po fy: X — Z is regular and factors through «, so it gives a contraction of fiber
type W — Z (5.22]- see diagram (3.3]) below);

e B is the discriminant of f, and A, = () (Lemma[3.23] see B3 for A,,,);

e Y and Y are nodal (53.24).

Finally we show that Y and Y|, are smooth and rational, and thanks to the constraints given by our
setting, that (up to flops) there are only six possibilities for Y, (Lemma[5.26). We mention here that
we use the rationality of Y to deduce smoothness, because the fibers of our special contraction over
the nodes are unions of two copies of P? intersecting transversally at one point, and the lines in the
two PP?’s are numerically equivalent; this gives an obstruction to rationality (Lemma [5.23).



22 C. CASAGRANDE AND S.A. SECCI

Then we show that f descends to a special contraction fy: Xo — Yy with px, — py, = 2, where
X --» X is a birational (rational) contraction, and we can describe it using the classification of
fixed prime divisors of X (Lemmal[3.28). Also the factorization of f descends to a factorization of fj
as Xo 2% Wy, 2% Y}, where o is a divisorial elementary contraction of type (3, 2) with exceptional
divisor the transform of E, (3.41). Moreover T, is a P!-bundle outside possibly finitely many 2-
dimensional fibers, and the fibers 7, *(p;) over the blown-up points are isomorphic to P! (Lemma
5.43). N

Using the properties of fixed prime divisors in X, we show that the birational map W --» W,
factors as a SQM W --» W followed by a divisorial contraction oy, : W Wy, where for each
i=1,...,r oy blows-up either the fiber 7, ' (p;), or a point in that fiber (Lemma[5.46).

(5.3) X-faX---X_—2.X%,

6] f o QOL

WYL w - =W T W, | o

Z@Y Yo

Now we use the constraints on the possible anticanonical degrees of curves in I/, and /W, together
with the P'-bundle structure of 7, outside finitely many points of Y;, to exclude five out of six
possibilities for Yy, and conclude that Yy = P? and Y 2 B, ,, P* (Lemma[5.54]-[5.38).

We also show that 1/ is Fano (5.38)) and that, up to contracting E5 instead of £ in the factoriza-
tions of f and fo, oy blows-up one point in each fiber 7, ! (p;) fori = 1,...,7 (5.60), and 7 is a
P'-bundle over P? (Lemma[5.61]).

Fano 4-folds with a P!-bundle structure over IP3 are classified, and in our setting the only pos-
sibility is W, = Bl P*; this implies that W = Bl pis P* and that W is the Fano model of
Bl pis P* (Lemma [5.62). This, together with the fact that there is a non-trivial contraction of
fiber type W — Z, implies that py; < 8 and hence py < 9 (Lemma[3.64), so we get the bound on
PX-

Finally we identify the surface S C W which is blown-up by a: X — W as the transform of a
suitable surface A C P4, and we get the three possibilities given in the statement.

Proof of Th.[5.1]

5.4. We follow [Cas20, proof of Th. 6.1]. We assume that px > 7, so that py > 5. Since X is not a
product of surfaces, Th.[L.6l and [.7limply that X has Leschetz defect §x < 2.
Consider a K -negative resolution of fy (see Lemma 2.14):

Ix
XZ_-X_ 2V
13 f
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Then Y can have at most isolated, locally factorial, canonical singularities, contained in the images
of the 2-dimensional fibers of f (Th.[3.2[a)). Moreover Y is log Fano, hence — Ky is big, and — Ky -
NE(g) > 0 for every elementary contraction of fiber type g: Y — Y (see [Laz04, Th. 11.4.19]).

5.5. By Th.[3.2]and [Cas20, Lemma 4.10], there exists a unique prime divisor B C Y such that f*B
is reducible, and f*B = F,+ E, with F; C X fixed prime divisors of type (3,2) (see Th.-Def.2.16)).
As in the proof of Lemma we see that (F; U Fy) N ¢ = () for every exceptional line ¢ C X,
therefore £y U B, C dom(£71). We denote by E}, E, C X the transforms of E{, Ey C X , so that
E{ U EY C dom(€).
We also note that B is a connected component of the discriminant of f, and that B is smooth
outside (possibly) the images of the 2-dimensional fibers of f, by Lemma[3.4l

Lemma 5.6. The cone NE(f) has two extremal rays, both of type (3, 2), with exceptional divisors

FE, and E,. Let &: X — W be the elementary contraction with exceptional divisor E,. We have a
diagram:

5.7 X -

X

W W Ty

where o: X — W is a divisorial elementary contraction of type (3,2) with Exc(a) = FE}, and

Ew: W ——» W is a SOM. Finally W and W are locally factorial and have at most nodes, at the
images of some 2-dimensional fibers of o and &; moreover W' is Fano.

We set S := «(F) C W. Then S C dom(&,y), and with a sligh abuse of notation we still denote
by S its transform in 1V, which is &(E) ). Note that 7(S) = B.

Proof. Since E} C X is a fixed prime divisor of type (3, 2), by Th.-Def. 2.16] there exists a: X —
W with the properties above, and IV is Fano. Moreover £} does not contain exceptional planes by
[Cas17, Rem. 2.17(2)], and neither does E', as they are contained in the open subsets where £ is an
isomorphism.

We know by Th. [3.2|(d) that f contracts a curve e; with F; - e; < 0, thus NE(f) has an F-
negative extremal ray R; moreover R is K-negative, because f is. Since Locus(R) C F; and
E does not contain exceptional planes, R cannot be small (see Th. 2.8)), thus it is divisorial with
Locus(R) = Ej. Since dim f(F,) = 2, also the image of E; under the contraction of R must be
a surface, and R is of type (3,2). The same argument holds for Es, and the rest of the statement
follows from Th. [

Lemma 5.8. Let g: Y — Y| be a birational contraction with dim Exc(g) = 1. Then BNExc(g) = ()
and Exc(g) is the disjoint union of smooth rational curves C' contained in Y, with normal bundle
Op1 (—=1)%2; in particular NE(g) C Ky-. Moreover f~(C) =2 Fy, and the (—1)-curve { C f~1(C)
is an exceptional line in X.
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Proof. The same proof as the one of [Casl3, Lemma 4.5] applies, with the only difference that, in
the notation of [CasI3, Lemma 4.5], dim N, (U /U) could be bigger than 2. We take 7 to be any
extremal ray of NE(U /U) not contained in NE( fi7)- Finally we have B N Exc(g) = () because
(N (B U Ey) =0 (seel5.3). [ |

Lemma 5.9. Let g: Y — Y| be a divisorial elementary contraction, and set G := Exc(g). Then g
is the blow-up of a smooth point p € Yy, and D := f*G is a fixed prime divisor, not of type (3, 2).

Proof. Since g is elementary and g(G) is either a point or an irreducible curve, we have dim V; (¢(G), Yp) <

1, hence dim NV, (G,Y) < 2 and dim NV (f~!(G), X) < 4 (see Rem.2.3)). If there is a component
D of f~1(G) which is a fixed prime divisor of type (3,2), let Dy C X be its transform. Then
dim N (Dy, X) = dimN;(D, X) < 4 by Lemma 213 while 0y < 2 and py > 7 (see 54,
a contradiction. Thus G # B (recall that f*B = FE; + E, with E; of type (3,2), see [5.5) and
D := f~1(Q) is a prime divisor; moreover D is fixed, because G is, and not of type (3, 2).

We show that g is of type (2, 0). By contradiction, suppose that g is of type (2,1). As in [Cas13]
proof of Lemma 4.6] we show that there is an open subset U C X such that D N U is covered by
curves of anticanonical degree 1. By Lemma[2.13|(¢), Dy still has a nonempty open subset covered
by curves of anticanonical degree 1; this implies that D and D are of type (3, 2) by [Cas17, Lemma
2.18], a contradiction.

Thus g is of type (2,0); set p := g(G) € Yy. As in [Casl3] proof of Lemma 4.6] we have a
diagram:

(5.10) X-rox-Fox
oA
Yy -+,

where h is a sequence of D-negative flips relative to go f, and k is a divisorial elementary contraction
with Exc(k) the transform of D, so that k(Exc(k)) is contained in the fiber f;!(p).

We show that dim f; !(p) = 1. If D is of type (3,0)" or (3, 1)*", this is shown in [Cas13, proof
of Lemma 4.6, Step 2], so we can assume that D is of type (3,0)?. Moreover, if G N B # 0, the
statement is shown in [[Cas20, 6.4.3 — 6.4.6], thus we can also assume that G N B = 0, so thAat
p € g(B),and E; N D = (). This implies that £y C dom(h); let E; C X be its transform. Then E;
is disjoint from Exc(k); moreover El is covered by curves of anticanonical degree one, therefore it
is disjoint from all exceptional lines of X (see Lemma[Z.13(c)). We also have f(k(E;)) = g(B),
thus £, N (f1 0 k)~ (p) = 0.

Suppose by contradiction that dim f; ! (p) = 2. We proceed as in [Cas13, proof of Lemma 4.6,
Steps 3 — 6], with the difference that in our setting f; is not elementary, and dim NE(f; o k) = 3.

As in [Cas13] we see that fi o k is not K -negative, so there is an extremal ray R of NE(f; o k)
such that —K; - R < 0; moreover NE(f; o k) also contains the extremal ray NE(k). We have
E,-R=F, - NE(k) = 0; on the other hand E\ is not trivial on the whole cone NE(f; o k),
otherwise E; would be the pullback of a divisor from Yy, but (f; o k)~!(g(B)) has two irreducible
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components, E and the transform of E,. Thus E\ll NNE(fiok) = R+NE(k), and E\f also contains

the classes of all exceptional lines of X. Then we can work within this 2-dimensional cone and as
in [Cas13]| show that A is just a K -negative flip and dim f; *(p) = 1. This concludes the proof that

dim f;(p) = 1.

Now as in [Cas20, 6.4.7, 6.4.8] we see that f; is K-negative, that Y|, is smooth at p, and finally
that g is just the blow-up of p. |

Remark 5.11. The assumption that py > 7 is essential in the above proof. Consider for instance
S =Bly,P, X =5x%xS5,Y =P x5,and f: X — Y the natural product map given by a conic
bundle S — P!. Then Y has a divisorial elementary contraction k: Y — P! x [F; which is the
blow-up of a smooth curve P! x {pr}.

5.12. Y is weak Fano.
Indeed since Y is log Fano, NE(Y") is closed and every one-dimensional face has the form NE(g)

for some elementary contraction g of Y. By [3.4l and Lemmas [5.8] and [5.9] we always have — Ky -
NE(g) > 0, thus — Ky is nef and big.

5.13. Let Y --» Y’ be a SQM. Then the composition X --+ Y is again a special rational contrac-
tion with px — pys = 2 (see [Cas13, Rem. 2.8]), so all the previous steps apply to Y’ as well. As in
[Cas13] p. 622], using Lemmas [5.8] and [5.9] one shows that if F C Y is a fixed prime divisor, then
E can contain at most finitely many curves of anticanonical degree zero.

5.14. Let ¢: Y — Z be the anticanonical map. If Y is not Fano, then ¢ is small, Exc(p) C Y,
and B N Exc(y) = (. Moreover if C' is a connected component of Exc(y), then C = P! with
Neyy = O(=1)%2, f~1(C) = Fy, and the (—1)-curve £ C Fy is an exceptional line in X .

Indeed by  is generically finite on every fixed prime divisor of Y, thus it is small, and the
statement follows from Lemmal[5.8]

Lemma 5.15. Let k: Y — Y’ be a blow-up of distinct smooth points. Then Y’ is weak Fano and
has the same singularities as Y, and the following hold:

(a) every small elementary contraction of Y' is K-trivial;

(b) if Y’ is not Fano, then the anticanonical map ¢': Y' — Z' is small, and Exc (') is contained in
(Y") e and does not contain any point blown-up by k. Moreover if C' is a connected component
of Exc(¢’), then C = P' with N¢jyr = O(—1)%;

(¢) every divisorial elementary contraction of Y is the blow-up of a smooth point, with exceptional
divisor not containing any point blown-up by k.

Proof: We note that if p € Y is a point blown-up by £, and C' C Y” is an irreducible curve
containing p, then the transform C' C Y of C satisfies —Ky - C' > 0 and Exc(k) - C' > 1, which
implies that — Ky~ - C' > 2. This shows that Y is weak Fano. Moreover Y’ cannot have K-negative
small contractions by Th. this gives (a).

Suppose that Y’ is not Fano. By what precedes, the points blown-up by % cannot lie in Exc(¢’),
thus Exc(y’) is contained in the open subset where k is an isomorphism, and k~!(Exc(¢')) C
Exc(p). Hence (b) follows from the analogous property of ¢ (see[5.14).
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Finally let g: Y' — Y| be a divisorial elementary contraction. It is shown in [Cas13] p. 623] that
Exc(g) N k(Exc(k)) = (); then by Lemma[5.9] ¢ must be the blow-up of a smooth point in Yj, and
we have (c). |

Lemma 5.16. Up to flops there exists a blow-up k: Y — Y; of r distinct smooth points py, ..., p, €
Yy such that py, < 2, and if py, = 2, then Yy has two distinct elementary rational contractions of

fiber type.

We denote by GG; C Y the exceptional divisor over p; € Yj.

Proof. As in [Casl3| p. 622] we consider all divisorial extremal rays of NE(Y') and get a map
k:Y — Y, which is the blow-up of r distinct smooth points. Moreover Yj is weak Fano and has
the same singularities as Y.

Let ¢: Yy --» Y| be a flop. The composition 1) o k: Y --» Y| is a rational contraction (see
[Cas13| Rem. 2.8]), and there is a SQM Y’ --» Y such that the composition £’: Y’ — Y[ is regular.
By Lemma[3.13the r points blown-up by & lie in dom(¢)). Thus £’ is again the blow-up of r distinct
smooth points, and we may replace k: Y — Y, with £: Y' — Y| if needed (see[5.13). Iterating the
reasoning, the same holds for any SQM Y; --» Y.

Suppose that there is a divisorial elementary rational contraction 7: Yy --» Y. Up to replacing
Yy and Y with a SQM, we can assume that 7 is regular. Then m must be the blow-up of a smooth
point in Y by Lemmal5.15](c), and we replace Y{, with Yj.

In this way, in a finite number of steps, up to flops and up to increasing the number r of blown-up
points, we reduce to the case where Yj has no divisorial elementary rational contraction, hence Y
has no fixed prime divisors (see [Cas13, Rem. 2.19]).

Suppose now that there is an elementary rational contraction of fiber type 7: Y, --» S with
dim S = 2; again up to flops we can assume that 7 is regular. Then S cannot have divisorial
elementary contractions: indeed if S — S; were such a contraction with exceptional divisor an
irreducible curve C, then 7! (C') should be a fixed divisor in Y}, against our reductions. Moreover
S is smooth (see for instance [Oul8, Lemma 5.5]) and rational, hence either S = P2, or S = P! x P!,

If S = P! x P! (so that py, = 3), let us consider the blow-up of the first point Y; — Y; (recall
from[5.4]that py > 5). The composition Y; — S is not equidimensional, and by [[Cas20, Prop. 2.13]
it factors as

Bl

Y Yo

| |

Y
S ——= S =P xP!

where Y7 --+ S’ is an elementary rational contraction and S’ — S is the blow-up of a smooth point,
thus 5" & Bly,,, P2

Consider a (—1)-curve of S’ contracted by S’ — P2, and its pullback G in Y;. This is a fixed
prime divisor, and up to to replacing Y; with a SQM, we can assume that G = Exc(g) for some
divisorial elementary contraction g: Y; — Y{; then g must be the blow-up of a smooth point, and
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there is an elementary rational contraction Y --» [Fy.

Y1 L }/0/
\ \
\ \
v ¥
Sl - Fl
Then as before we replace Y1 — Yj with g: Y7 — Y{J; now using the elementary rational contraction
Yy --» 1, we blow-down one more point and get Y’ with py, = 2.
In the end the only possible non-small elementary rational contractions of Y, are Yy, — {pt},
Yy --» P!, or Yy --» P2, Since Y} is a Mori dream space, it has at least py, non-small elementary
rational contractions; we conclude that py, < 2 and we get the statement. [ |

5.17. Since py > 5 (see[5.4) and — Ky is nef and big (see [5.12), we have r = py — py, > 3 and
0 < —Ky = —Kj, —8r, thus —K3, > 8r > 24.

Lemma 5.18. If py, = 2 and Y, is Fano, then Y| is smooth and rational; more precisely either
Yy &2 Pp2(Tp2), or Yy is isomorphic to a divisor of degree (1,2) in P? x P2

Proof. Since Y is Fano, Lemma[5.15|(a) implies that Y, has no small contraction. By Lemmal[5.16
Y) has two distinct elementary rational contractions of fiber type, hence they must be regular. By
we can apply Lemma [4.2] to Yj; either we get the statement, or Y = P? x P!. However the
blow-up of P? x P! at a point has a divisorial elementary contraction of type (2, 1), which is excluded
by Lemma[5.15(c). [ |

We recall that p: Y — Z is the anticanonical map of Y.
Lemma 5.19. We have p; = 1.

Proof. We have py — pz = dimNE(p) = dim(NE(Y) N K3), thus we have to exhibit py — 1
curves in Y, with anticanonical degree zero, whose classes in N1 (Y") are linearly independent.

Consider one of the points p; € Y blown-up by &, and set Y; := Bl,. Yy = Y;. Let G C Y; be
the exceptional divisor, and consider an extremal ray R; of NE(Y;) such that G - R; > 0. Then the
contraction of R; must be finite on G =2 P2, and has fibers of dimension at most one. By Lemma
5.15/(c) we conclude that the contraction of R; is either small, or of fiber type.

In the small case, let I, C Y; be a curve with class in R;, and I'; C Y its transform. Then I,
is contained in the open subset here Y — Y is an isomorphism, hence Ky - I'; = Ky, - ['; = 0,
I'i-G; >0,and ;- G; = 0forevery j =1,...,7, 7 # 1.

Suppose that the contraction ¢: Y; — S of R; is of fiber type; note that ¢)(G) = S, thus pg = 1,
py;, = 2, and py, = 1. Moreover v is K -negative and a conic bundle, see Prop. Let us consider
another point p; € Y; blown-up by £, j # ¢, and note that p; ¢ G. Since every irreducible curve
of Y; containing p; must have anticanonical degree > 2, the fiber ' of ¢ containing p; is a smooth
rational curve with —Ky, - I; = 2, and its transform I';; C Y has Ky - I';; = 0, G; - T';; > 0,
Gj-T;;>0,and G, - I';; =0forevery h € {1,....7} ~ {i,5}.

If R; is small for every ¢ = 1,...,r, we get I'y,...,I', C Y with linearly independent classes
in K. If py, = 1, then 7 = py — 1 and we are done. If py, = 2 and Y} is not Fano, let Iy C YV’
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be the transform of an irreducible curve of anticanonical degree zero in Y. Then G; - I'y = 0 for
every i = 1,...,r (see Lemma [5.13(b)), so that 'y, T'y,..., T, C Y yield again py — 1 linearly
independent classes in K-

If py, = 2 and Y is Fano, by Lemma [5.18 we know that Y; has two conic bundle structures.
Let I}, I'] C Y be the transforms of the fibers through p; of the two conic bundles; as before these
fibers must be smooth. Then Ky - I, = Ky - I'/ = G;- I, = G; - T'f = 0foreveryi =2,...,r.
Moreover the classes [I'}], [['] are linearly independent, because their pushforwards in N7 (Y}) are.
Thus we have the py — 1 curves [}, I}, 'y, ..., T, and we are done.

Suppose now that R; is not small; in particular py, = 1 and »r = py — 1. We get curves
F127- . -7F1r in Y with Ky - Flj =0, G- Flj > 0, Gj . Flj > 0, and G - Flj = 0 for every
,]=2,...,1,1F# .

Recall that » > 3 (see[5.17). If R, is small, then we get a curve I'y C Y such that Ky - 'y = 0,
Gy-Ty > 0,and G;-T'y; = 0 for every i # 2; the classes of 'y, I'1o, . . ., I'y, are linearly independent.

If instead R, is not small, we get a curve ['oy3 C Y with Ky -T'o3 =0, Gy - T'y3 > 0, G5 - T'93 > 0,
and G;-['y3 = O forevery i € {1,4,...,r}. Then one can check that the classes of I'o3, I'1o,..., 'y,
are again linearly independent. Indeed given a relation al'sz + bI'15 + cI'y13 = 0, intersecting with
G, fort = 1,2, 3 and analysing the signs of a, b, ¢, one getsa = b = ¢ = 0. |

Lemma 5.20. Set By := k(B) C Yo. Then py,...,p, € By, and for some A € Q- we have
—Ky = \B and —Kyo = >\B()

Proof. By Lemma we have dimNE(¢) = py — 1. On the other hand B is disjoint from
Exc(y) by 514, thus B+ > NE(p), B+ = K¢, and finally —Ky = \B for some A € Q. This
also implies that — Ky, = AB, in Y.

Leti € {1,...,r}andlet’ C G, beacurve. Then —Ky-I' > 0,thus B-T" > 0and p; € B,. R

Lemma 5.21. There is a bijection between the set of exceptional lines in X, and the set of curves of
anticanonical degree zero in'Y, via { — f({).

Proof. Let { C X be an exceptional line, and note that f(/) is a curve, because K 5 - £ = 1 while f
is K-negative (see[3.4). We have ¢/ N (E; U Es) = ) (see[3.3)), thus f(¢)N B =), and B - f(¢) = 0.
By Lemmal[5.20] this is equivalent to — Ky - f(¢) = 0. The converse is given by [

5.22. The composition o fx: X --+ Z is aregular contraction, and it factors through a: X — W
(see Lemma[5.6).

Indeed, by Lemma3.21] ¢ o f: X — Z contracts all exceptional lines of X, therefore o o f o
§ = po fy is regular (see Lemma 2.13(a)). Similarly, by Lemma the indeterminacy locus
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W~ dom(&;1) is isomorphic, via &, to X ~ dom(¢£~1), and ¢ o 7: W — Z contracts to points this
locus, therefore p o m o &y, : W — Z is regular.

Lemma 5.23. The discriminant of f is B, and f has no intrinsic discriminant (see[3.3)).

Proof. Suppose by contradiction that the discriminant of f has an irreducible component A besides
B. Then Ag N B =  (see[5.3), thus B - C' = 0 for every curve C' C Ay. By Lemma [5.20Q this
gives Ky - C' = 0 for every curve C' C Ag, namely 4 is contained in Exc(¢), but ¢ is small (see

B.14). ]

5.24. Lety, € Y be a singular pointand F := £~ (). Then yp is a node, yo & B, dim N, (F, X) =
1,and F = P? ¢ P2,

This follows from Th. [3.7] and Lemma [3.23] because the fiber I is 2-dimensional (see [3.4), and
Aintr = (Z)

Lemma 5.25. IfY is singular, then it is not rational.

Proof. Set Sing(Y) := {y1,...,ym} wWithm > 1, and F; := f~(y;). ByB2dy; is a node, y; € B,
dim N, (F;, X) =1,and F;, 2 P2 e P2, fori =1,...,m.

Let 21,...,2, € Y be the smooth points such that dim f~!(z;) = 2. Then f is a conic bundle
overU =Y ~A{y1,...,Ym,21,- -, 2}, with discriminant B N U (Lemma [5.23)). Let us consider
the factorization of f in elementary steps as in Lemma 3.6k

f

~/:/\

and recall that & is an elementary contraction of type (3, 2) with exceptional divisor £, and W is
locally factorial. Then 7 is smooth with fiber P! over U.

Since y; € Band f(E,) = B,wehave 7 !(y;) & F} X P? e P2 Write 7 !(31) = Ly U Ly C W
with L; = P2 and let Cy, be a line in L;. We have N;(7~(y,), W) = . (Ni(Fi, X)), hence
dim N, (7 (y1), W) = 1. Moreover —Ky - Cp, = =Ky - Cp, = 1, and we conclude that
C L = C Lo

If Fy = P! is a general fiber of 7, then Iy = Cp, + Cp, = 2C,; in particular no divisor in W can
have intersection 1 with Fy, and mj,—1(;y: 7' (U) — U cannot be the projectivization of a vector
bundle on U. Therefore 7,1y defines a nonzero class in the (cohomological) Brauer group Br(U)
(see for instance [Deb24, §6.2, 6.3]).

The following argument is from [Deb24, proof of Th. 6.7]. Let Y — Y be the resolution of the
nodes; then U C YandE =Y Uisa disjoint union of r points and m smooth quadric surfaces. If
H2(Y, Oy ) # 0 then Y and Y are not rational, thus we can assume that H2(Y', Oy) = 0, therefore
c1: Pic(Y) = H(Y,Z) is surjective.

The Thom-Gysin exact sequence

H*(Y,Z) — H*(U,Z) — HY(E,Z) =0
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yields that the restriction H 2(}?, Z) — H2(U,Z) is surjective, hence the composition Pic(Y) —
H?(U,Z) is surjective, and also ¢, : Pic(U) — H?(U, Z) is. This implies that Br(U) = Tors H?(U, Z)
[Deb24, Prop. 6.4].

Again using the Thom-Gysin exact sequence

0=HY(E,Z) — H*Y,Z) — H*U,Z) — H*(E,7) = 7*"

we find that Tors H3(Y', Z) = Tors H3(U, Z) is nonzero. Then Y and Y are not rational [Deb24)
Prop. 6.1]. |

Lemma 5.26. The 3-folds Y and Y, are smooth and rational, and up to flops, Y, belongs to the
following list.

[N ] Yo | K5, [ v | |
1 P3 64 | 1 Fano
2 Pp2 (Tp2) 48 2 Fano
3 | linear section of Gr(2,5) C PY 40 | 1 Fano
4 [JPOS, Th. 3.6(1)] 40 2 | weak Fano
5 [JPOS, Th. 3.5(3)] 32 2 | weak Fano
6 | divisor of degree (1,2) inP? x P?| 30 2 Fano

Proof. If py, = 2 and Y, is Fano, the statement follows from Lemma [5.18] and we get N. 2 and 6.
If py, = 2 and Y} is smooth and not Fano, then Y; has small anticanonical map by Lemma [5.13(b),
and two elementary rational contractions of fiber type by Lemma [5.16} moreover — K 33/0 > 24 (see
5.17). By Prop. we see that, up to flops, Yy is either [JPO8, Th. 3.5(3) or Th. 3.6(1)], or
Ppi (O & O(1)%?). However the blow-up of Pp: (O @ O(1)%?) at a point (not lying on the curve of
anticanonical degree zero) has a divisorial elementary contraction of type (2, 1), which is excluded
by Lemma[5.15(¢). Thus we get N. 4 and 5.

Let us assume that either py, = 1, or py, = 2 and Y} is singular and not Fano. Consider the
anticanonical map ¢q: Yo — Zo, and note that Y; is nodal by [3.24l By Lemma[5.13|(b) , contracts
curves of anticanonical degree zero in (Y{),, to nodes in Z,, therefore Z; is a nodal Gorenstein
Fano 3-fold with p;, = 1 and — K3, = —K}. > 24 by[5.17l Moreover if Cl(Z) is the Weil divisor
class group, we have rk C1(Z)) = py, € {1, 2}.

Then we can apply [Pro23, Th. 1.1 and 1.2] to Z;, and conclude that 7 is rational. Note that in
the notation of [Pro23l], Z, has genus g := %(—K %O) + 1 > 14, and if Z; has index two, then it has
degree d := $(— K3 ) > 4.

Hence Y{ and Y are rational too, so they are smooth by Lemma and we conclude that
py, = 1 and Y| is a smooth Fano 3-fold. Moreover r = py — 1 > 4 and —K%O > 8r > 32
(see 5.17). By classification (see [IP99, §12.2]) there are three possibilities for Yy: P2, a section
of the Pliicker embedding of the Grassmannian Gr(2,5) in P? by a codimension 3 linear subspace,
or a quadric. However the blow-up of a smooth 3-dimensional quadric at a point has a divisorial
elementary contraction of type (2, 1), which is excluded by Lemma[5.15](c). Thus we get N. 1 and
3. |
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5.27. We note that ko f: X — Yp is K-negative.
Indeed by Lemma [2.13(b) it is enough to check that k o f does not contract any exceptional line

¢ c X. By Lemmal3.21] f(¢) C Y is a curve of anticanonical degree zero, thus f(¢) ¢ G; for every
i=1,...,r,and k(f(¢)) is a curve.

Lemma 5.28. There is a diagram:

(5.29) X--X-Y-X-7.X,
AN
Ix o lf A
Yy —*oy;

where 1) is a sequence of K -negative flips, X is smooth, o is birational and divisorial with pairwise

disjoint exceptional divisors Dy, ..., D,, and fo is a contraction. Moreover, for eachi = 1,...,r,

the divisor D; C X is the transform of f*G; C X, o(D;) C fy '(pi), and there are three possitibil-

ities:

e D, is of type (3,0)*" and is the exceptional divisor of the blow-up of a smooth point of X;

e D, is of type (3,1)"" and is the exceptional divisor of the blow-up of a smooth curve contained in
(X(])reg;

e D, is of type (3,0)% and is contracted to an isolated hypersurface singularity of Xo, terminal and
locally factorial.

In particular X has at most locally factorial, terminal, isolated hypersurface singularities at
o(D;) for D; of type (3,0)%.

Proof. We set D; := f*G; C X, and with a slight abuse of notation we still denote by D; C X its
transform, fori =1,...,r.

By Lemma [5.9] D; is a fixed prime divisor, not of type (3,2), for every i = 1,...,r; by Th.-
Def. D; can be of type (3,0)™, (3,1)™, or (3,0)2. Moreover Dy, ..., D, C X are pairwise
disjoint, thus D; - Cp, = 0 when i # j. Using [Cas17, Lemma 5.29(2)] we see that Mov()?) N
([D1],...,[D;]) = {0}. Also note that k(f(D;)) = p; foreveryi =1,...,r.

By running in X aMMP for D; + -+ - + D,, relative to k o f, we get a diagram as (5.29)), where
1 is a sequence of D;-negative flips for some ¢, X is Q-factorial, ¢ is birational with exceptional
divisors D1, ..., D,, and f, is a contraction.

Since the MMP is relative to k o f which is K -negative (see[5.27), 1 is a sequence of K -negative
flips. Therefore X < dom(v)) is a finite, disjoint union of exceptional planes (see [Cas20, Lemma

4.1(c)]), each contained in some D;. Since the D;’s are disjoint in X, they stay disjoint also in X.
Then the description from Th.-Def. 2.16/ holds for each one of them. Finally the description of the
singularities of X, follows from [Cas17, Lemma 2.19]. [ |

Lemma 5.30. Leti € {1,...,r}. Every fiber of f over G; is one-dimensional.

Proof. Suppose by contradiction that f has a 2-dimensional fiber F' over G;, so that F' C D;. Since
D; = f*G;, we have D; - C = 0 for every curve C' C F; in particular F' N dom()) # (), as
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X < dom(7)) is a finite union of exceptional planes L such that either D; - C, < 0, or D; N L = ()
(see the proof of Lemma [5.28).

Let ' C X be the transform of F. Then F' C Exc(o), and Exc(o) cannot contain exceptional
lines, see [Cas17, Rem. 5.6]. The indeterminacy locus of ¢! is a finite union of exceptional lines,
therefore dim(F N (X ~ dom(y)~1))) < 0. Since dimo(F) < dimo(Exc(o)) < 1, there is an
irreducible curve C' C F such that C C dom(y)~!) and o(C) = {pt}. We get Exc(c) - C' < 0, and
D; - C" < 0where C' C F is the transform of C, a contradiction because D, - C' = 0. H

5.31. We have BN G; C By, foreveryi € {1,...,r}.
This follows from Lemma [5.30) because B is smooth outside (possibly) the images of the 2-
dimensional fibers of f (see[5.3).

Recall that X contains the fixed prime divisors Dy, ..., D,, F4, E5, and that we have associated
curves Cp, C Dy, Cg, C Ej, see Th.-Def.

Lemma 5.32. If Y is Fano, then X is Fano, otherwise X has a SQM which is Fano. Moreover f,
is K-negative.

Proof. We keep the same notation as in the proof of Lemma[3.28] Recall from Lemma[2.13]that the
indeterminacy locus of £~! is the finite, disjoint union of all exceptional lines in X. In particular
X ~dom(2)) is disjoint from X ~dom(£71), because exceptional planes and exceptional lines cannot
meet (see Lemma 2.13|(c)). Therefore X contains two types of exceptional lines, those contained
in dom(¢)~!), and those in the indeterminacy locus of 1)~'. Each of these last ones has positive
intersection with some D;, because 1 is a sequence of flips that are D;-negative for some 1.

Suppose first that Yj is Fano. Then every curve of anticanonical degree zero in Y must meet
Exc(k) = G; U--- U G,, and by Lemma [5.2]] this means that every exceptional line ¢ C X must
meet some D; = f*G;. On the other hand ¢ cannot be contained in any D;, because k o f is K-
negative (see[5.27), thus D; - ¢ > 0 for some i. We conclude that for every exceptional line ¢ C X
we have D, - ¢ > (0 for some .

Consider now 0*(—Kx,) = —Kg + >_;_, m;D; with m; = 2 (respectively m; = 3) if D; is of
type (3,0)% or (3,1)™ (respectively (3,0)™). Using that D;-Cp, = 0 for every i # j, proceeding as
in [Cas13], proof of Th. 3.15] one shows that —K ¢ +>_. m;D; is nef and that (—K ¢+, m; D;)* N

~

NE(X) = NE(0); this implies that X, is Fano.

If instead Y is not Fano, then we have py, = 2 and Y, contains some curves C; of anticanonical
degree zero, 7 = 1,...,s, with C; = --- = (. The transforms @» C Y of these curves are
precisely the curves of anticanonical degree zero in Y that are disjoint from Exc(k), and in turn by
Lemma [5.21] these are images of the exceptional curves ¢; C X that are disjoint from Dy, ..., D,.

We also have ¢, = --- = {,. Indeed fix j € {1,...,s}. We have f./; = 6’1 = éj = f.{; and, by
Lemmal5.6] ker f, is generated by the classes [C'g, |, [Cg,| with By -Cg, > 0and E; -4; = Ey-£; =0

(see5.5). Then ¢; = ¢; + aCp, + bCE, with a,b € Q, and intersecting with K and E; we get
a=b=0.
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We note that the ¢;’s are contained in dom()); let us still denote by ¢; their images in X. These
are the unique exceptional lines in X that are disjoint from Exc(o), and they are still numerically
equivalent.

Let us show that their class generates an extremal ray R of NE(X). By contradiction, if [¢;] does
not belong to an extremal ray, we can write

Z)\gf+ Z,UZCD +1—‘+

(20,

where Ay, p1; € Qxo, ¢ are exceptional lines, and I'" is an effective one-cycle (with coefficients in
@) such that —K -I't > 0and D; - ' > 0 forevery i = 1,...,r. Intersecting with D; we get
=>,MD;-t+D;-T't >3, A\ foreveryi = 1,...,r, and intersecting with K ; and using that
—K -C D; > 2 for every ¢ we reach a contradlctlon
Let n: X --» X' be the flip of R. Then the composite map X --» X' factors as sequence of

K-negative flips, each one D;-negative for some ¢, and every exceptional line in X’ has positive
intersection with some D;. We have a diagram:

X-1-X
Xo-"> X/

where Exc(o) = Dy U ---U D, is contained in dom(7), so that ¢ and ¢’ are locally isomorphic
divisorial contractions, and as in the first part of the proof we see that X is Fano. Moreover 7 is
the flip of a small extremal ray generated by the class of the exceptional lines o (¢;) C X,.

We also note that fy(c(¢;)) = Cj, so that f; does not contract any exceptional line, and it is
K-negative. |

Lemma 5.33. The contraction fy is special, px, — py, = 2, and the fiber f; Y(p;) is one-dimensional
foreveryi=1,...)r

Proof. We have px — px, = py — py, = 7, therefore px, — py, = px — py = 2. Moreover f is
special because Yj is smooth (Lemma[3.26) and if P C X, is a prime divisor with fo(P) C Y, then
its transform P C X is different from Dy, ..., D,, thus f (15) C Y is a prime divisor different from
Gi,...,G,and fo(P) = k(f(P)) C Y, is a prime divisor.

Finally, locally around p;, diagram (5.29) is isomorphic to diagram (5.10), therefore dim £, ' (p;) =
1 foreveryi =1,...,r, as shown in the proof of Lemma (3.9l |

5.34. Since f, is special, it has at most isolated 2-dimensional fibers; outside these, f; is a conic
bundle (see Prop. 2.12).

The discriminant divisor of fj is By, and (fy)* By has two irreducible components, which are the
transforms of £ and E5 in X,. Indeed f and f; coincide on Y \ Exc(k) and Yy \ {p1,...,p:}
respectively, thus this follows from [5.5]and Lemma[5.23] Similarly, since B is smooth outside the
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images of the 2-dimensional fibers of f, we see that B is smooth outside (possibly) py, ..., p, and
the images of the 2-dimensional fibers of fj.

Lemma 5.35. The cone NE( fy) has two extremal rays, both of type (3, 2), with exceptional divisors
the transforms of E; and Es.

Proof. We proceed as in the proof of Lemma [5.6} in particular we have shown there that F; does
not contain exceptional planes.

Since f and fo coincide on the general fibers over B and By respectively, fo contracts some curve
ey with EY - e; < 0, where EY C X is the transform of F; C X. Thus NE(fy) has an E}-negative
extremal ray R, and R is K -negative because fj is. It is enough to show that R is not small.

Suppose by contradiction that /2 is small. By Th. for every irreducible component L of
Locus(R) we have (L, —Kx,|) = (P?, Op2(1)). Consider the birational map X --» X, and note
that the indeterminacy locus of its inverse has dimensione one, so that it cannot contain L. By
Prop. we conclude that L is disjoint from this indeterminacy locus; in particular L C (X)),
and L is contained in the open subset where the map X --» X is an isomorphism. Thefore L is an
exceptional plane by Th.[2.8] and its transform in X gives an exceptional plane contained in E, a
contradiction. |

5.36. Forevery i = 1,...,r the fiber f;!(p;) is isomorphic to a reducible conic, with a component
in the transform of £ and one in that of Es.

Indeed, since p; € B, (Lemma [5.20) and dim f;'(p;) = 1 (Lemma 533), f;*(p;) must be
isomorphic to a singular conic. On the other hand f;!(p;) cannot be a double line, otherwise the
class of (5! (p;))rea should belong to both extremal rays of NE(f;).

5.37. No D; is of type (3,0)"".
Indeed o(D;) € f;(p;) (Lemma5.28) and f;'(p;) is isomorphic to a reducible conic by
therefore o(D;) is contained in an integral curve I" of anticanonical degree one. This is impossible

in the case (3, 0)*", as the transform of I" in X would have anticanonical degree < —2, contradicting

Lemma [2.13((0).

5.38. Consider the transform of E; in X,, for j € {1,2}. This is a fixed prime divisor in X,
therefore D; is adjacent to E; in X forevery ¢ = 1,...,r (see p.[L0land [Cas22, Lemma 4.4]). We
also note that BN G; # () in Y by Lemma thus £, N D; # () in X, and the same must be
in X, because the indeterminacy locus of {71: X --» X has dimension one (Lemma 2.13[a)). By
Lemma[2.17 we conclude that E; - Cp, = 1if D; is of type (3,0)%, while E; - Cp, € {0,1} if D; is
of type (3, 1)
Fori=1,...,r we denote by Cg, C G; aline in G; = P2.

Lemma 5.39. Foreveryi=1,...,rletx; € X be the singular point of the reducible conic fy *(p;)
(see[5.36). One of the following holds:

(a) =Ky = 2B, —Ky, = 2By, By is smooth at py,...,p,, Xo is smooth, every D; is of type

(3,1)*, and (E, + E,) - Cp, = 1. Moreover, for every i, o blows-up the component of f;*(p;)
contained in 0(E;), where j € {1,2} is such that E; - Cp, = 1;
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(b) =Ky = B, —Ky, = By, Sing(Xy) = {1,..., 2.}, and every D; is of type (3,0)%. Moreover
B - Cg, = 2 and By has at p; a rational double point of type Ay or As, foreveryi =1,...,r.

Proof. By Lemmal[5.20l we have — Ky = AB and — Ky, = A\Bj for some A € Q. Then

k*(_KYO) = _KY+22G2 and k’*(BQ) :B+Z(BCGz)G“
i=1 i=1
which yields 2 = AB - Cg, forevery i = 1,...,r. Recall also that I'; := B N G; C B, for every
i=1,...,r(seel3l).

Consider Cp, C D; C X. We have G, - f.(Cp,) = f*(G;) - Cp, = D; - Cp, = —1, therefore
f*(CDz> = CGZ.. Then B - CGi =B f*(CDz> = f*(B) . CDi = (El + Eg) . CD'L'

If By is smooth at some p;,, then B - C;, = 1 for every 4, and B is smooth at every p;; moreover
A=2and (B, + E,) - Cp, = 1. By Rem.[3.9, X, is smooth at z;, thus X is smooth along f; ' (p;)
and D; must be of type (3, 1), so we get (a).

Otherwise B is singular at every p;, and again by Rem. X is singular at z;, and D; must be
of type (3,0)%. Then F; - Cp, = 1 forevery j = 1,2 and i = 1,...,7 by[5.38] hence B - Cg, =
(Ey + Es) - Cp, = 2. This also implies that A = 1, B € | — Ky |, and By € | — Ky;|.

Moreover I'; = BN G, is a conic in G; & P?, B is smooth along I';, and I'; -y I'; = G; - T, = —2.
In particular T'; cannot be non-reduced, otherwise 4|T'2. If T'; is smooth, then it is a (—2)-curve in
B, and p; is a node for By. If I'; is a reducible conic, each component is a (—2)-curve for B, and B,
has a singularity of type A, at p;. [ |

Remark 5.40. Let us give a more explicit description of : X --» X and of the divisors D;’s.
Recall diagram (5.29). In case (a), in X we have D; = Ppi (02 @ O(1)) = By, P? for every
1=1,...,r. Then X < dom(¢)~!) is the union of 7 exceptional lines, the transforms of the second
components of f; ' (p;) (contained in o( E;) such that E; - Cp, = 0). Moreover in X we have D; =
Bl tine IP3, D, contains one exceptional plane L; in the indeterminacy locus of 1, and fiz,: Li — G
is an isomorphism.

In case (b), in X each D; is isomorphic to a quadric @, smooth or a cone over P! x P'. Moreover
X~ dom(¢)!) is the union of 2r exceptional lines, the transforms of the components of f; ' (p;).
Finally in X we have D; = Bly s Q = Bl conic IP3, and D; contains two exceptional planes in the
indeterminacy locus of 1, both isomorphic to GG; via f. The conic can be smooth or reducible and
is isomorphic to I'; = BN G,.

5.41. Let us consider a factorization of f; in elementary steps:

fo

T T
Xo =55 Wo == Yo

where «y is an elementary contraction of type (3,2) with exceptional divisor the transform of E
(see Lemma[3.33), and set Sy := ap(Exc(ag)) C Wo; note that my(Sy) = By.

Let T C Y, be the finite set given by the images of the 2-dimensional fibers of 7(; set Uy := Yo\T'
and UW = Wal(Uy).
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5.42. We have k(Exc(y)) C Uy.

Indeed if y € T, then dim 7, ' (y) = 2, hence dim f; ' (y) = 2. In particular y # p; for every i =
1,...,r (Lemmal5.33), y' := k~!(y) € Y is a point, and f~(y') = f; ' (y), thus dim f~1(y/) = 2.
Therefore we have ¢’ ¢ Exc(y) by[5.14l and y & k(Exc(yp)).

Set Fy := 7y (p;) C Wy fori=1,...,r.

Lemma 5.43. The 4-fold W, is locally factorial and has at most nodes as singularities, Uy, is
smooth, and m, : Uy — Uy is a smooth morphism with fiber P'. Moreover p; € Uy and
F;, C Uy foreveryi=1,...,r.

Proof. First of all we note that dim F; = 1 because f; ' (p;) = oy ' (F;) has dimension 1 by Lemma
[5.33] therefore F; C Uy .

Every fiber of 7y over Uy is an integral rational curve. Indeed if y € Uy ~ By, then m; ' (y) =
fot(y) 2 PL Ify € Uy N By, then f; *(y) is a reducible conic with one irreducible component in
the transform of Ej, which is contracted to a point by ap; thus 7 ' (y) is again irreducible. Then
To|uy, 18 smooth by [Kol96, Th. I1.2.8], and since Uy is smooth (see Lemma [5.26), Uy, is smooth.

Finally, since a(Sing(Xy)) C {ao(z1), ..., a0(z,)} (Lemmal[5.39), outside these points W) is
locally factorial and has at most nodes, at the images of 2-dimensional fibers of ag (see Th.[2.6). On

the other hand «(x;) € F; C Uy, thus W, is smooth at ag(z;) forevery i = 1,..., 7. |
Set w; = Oé()(.Ti) for: = 1, o T
5.44. Forevery i = 1,...,r we have F; N Sy = w;, mo(w;) = p;, and mo|s,: So — By is birational

and an isomorphism around w;.

Indeed clearly w; € F;, and w; € Sy because x; € Exc(qy) (see[3.36). For any one-dimensional
fiber F' of my over By, not contained in Sy, let FcC X be its transform. We have — Ky, - F>0
because fj is K -negative (see Lemma[5.32), Exc(ay) . F > 0 because F'NS, # (), and — Ky, - F=
—Kyw, - F — Exc(ag) - F = 2 — Exc(ag) - F, thus Exc(ag) - F = 1. Then Tolsy - S0 — Bo is
birational and is an isomorphism around the point F' N Sy. Moreover note that F; ¢ S, otherwise
fo*(ps) = ag ' (F;) would have dimension 2, contradicting Lemma[5.33]

5.45. Recall cases (a) and (b) from Lemma[5.39] In case (a), Sy is smooth at wy, . .., w,. In case
(b), Sp has rational double points of type A; or As at wy, . .., w,.
This follows immediately from [3.44] and Lemma [3.39

We recall from Lemmal[5.6/that o.: X — W (respectively a: X - W) is an elementary contrac-
tion of type (3, 2) with exceptional divisor E; (respectively F).

Lemma 5.46. The birational map cgoc oo (&)~ t: W --» W, factors as a SOM by, : W -—> W
followed by a divisorial contraction o, : W — W), with exceptional divisors the transforms D, ;
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of D;, and Dy, ; C /ng, foreveryi=1,....r

I

><>

(5.47) =X - — Xo

L
Wo_2 = Wy | o
l "

0

Yy

Recall cases (a) and (b) from Lemma(3.39

In case (a) every Dy, ; can be of type either (3,0)*" with o, (Dy ;) = w; = F;NSy (if E1-Cp, = 1;
in this case oy, blows-up w;), or (3,1)"" with o,,(Dw,) = F; = 7o (ps) (if By - Cp, = 0, in this
case oy, blows-up F;), and the two cases are interchanged by contracting F instead of E in the
factorization of fq as in[5.41]

In case (b) every Dy, ; is of type (3,0)", with oy, (D, ;) = w; = F; N So, thus oy, blows-up
Wiy .oy Wy

Proof. By[5.38] D; is adjacent to E; foreveryi =1,...,rand j = 1,2, and if D; is of type (3, 1)*"
we have E; - Cp, € {0,1}. Note that ap o o: X - W, contracts first D+, ..., D, and then E;.

Suppose that we are in case (a). Then by Lemma every D; is of type (3,1)", and either
E,-Cp, =1and E,-Cp, = 0, or viceversa. In the first case, F; and D; are as in Lemma[2.17|(7), in
the second as in Lemma[2.17)(i7) (and conversely for E5). Then the statement follows from Lemmas
and that describe how the divisors £} and D; intersect and how they can be contracted in
different orders. -

Recall the geometric description of D; and ¢ given in Rem. If £,-Cp, = 1,then&(D;) C W
is isomorphic to Bl,, P, and still contains an exceptional plane &(L;), that lies in the indeterminacy
locus of 9y,. Then Dy,; C W is isomorphic to P3, and is contracted to w; € Wy. If instead
E; - Cp, = 0, then &(D;) C W is isomorphic to P? x P!, and is contained in dom(¢)y,), so that
Dy C W is still isomorphic to P? x P! and is contracted to £; C W.

Suppose instead that we are in case (), so that every D; is of type (3,0)9. Then D; and E;
are as in Lemma [2.17|(7i7), and similarly as before the statement follows from Lemma In
this case &(D;) C W is isomorphic to Bl,, P* and contains one exceptional plane, that lies in the

indeterminacy locus of ¢,. Then Dy,; C W is isomorphic to IP3 and is contracted to w; € W,. M

We set ¢ 1= by 0 &t W ——» W. Recall from Lemma 5.6 that S := a(EB]) C W.

Lemma 5.48. The 4-fold W is locally factorial, has at most nodes as singularities, and can contain
finitely many pairwise disjoint exceptional lines. If C C W is an irreducible curve that is not an
exceptional line, then — Ky - C > 1, and if —Ky; - C' = 1, then C does not meet any exceptional
line.

Moreover the surface S C W' is contained in dom(().
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With a slight abuse of notation, we still denote by S the transform of .S in W; note that ow(S) =
So-

Proof. By Lemma [5.6] W is Fano, is locally factorial, and has at most nodes at images of some
2-dimensional fibers of a.

Let R be a small extremal ray of NE(1W). By Th. for every irreducible component L of
Locus(R) we have (L, — K1) = (P?, Op2(1)). Therefore Prop. 2. 10 implies that either LN.S = (),
or L = S. This last case would give dim NV, (S, W) = ppz = 1 and dim N; (Exc(a), X) < 2 (see
Rem. 2.3)), impossible because px > 7 and dx < 2 (see[5.4). We conclude that Locus(R) N S = 0,
thus Locus(R) C W, and Locus(R) is a finite disjoint union of exceptional planes by Th. 2.8

Let us consider now the SQM ¢: W --» W. The same proof of [Cas13, Rem. 3.6] can be applied
here: since W is Fano, ¢ can be factored as a sequence of K -negative flips; the locus of each flip is
contained in the smooth locus, and the loci of the flips are all disjoint. Therefore W~ dom(¢™1) is
a finite disjoint union of exceptional lines, contained in ﬁ/\mg. IfC c W is an irreducible curve such
that C N dom(¢™1) # 0, and C C W is its transform, we have Kz -C > =Ky - C > 1, and

—Ki-C > —Ky- C if C meets some exceptional line. Finally S C dom(() by what precedes. W

Lemma 5.49. If Y is Fano, then Wy, is Fano, otherwise Wy has a SQM which is Fano. If { C Wy is
an exceptional line, then — Ky, - mo(¢) = 0, and p; & mo({) for everyi=1,...,r. IfC C Wy is an
irreducible curve that is not an exceptional line, then — Ky, - C > 1.

Proof. This is similar to the proof of Lemma We keep the same notation as in the proof of
Lemma[5.48] If Yj is Fano, then the SQM (: W --» Wisa sequence of K -negative flips, each
negative for some Dy, ; in W. Therefore every exceptional line in W has positive intersection with
some Dyy;. Then we consider oy, (—Kw,) = —Kg + >, m;iDy ;, where m; = 2 (respectively,
m; = 3) if Dy, ; is of type (3, 1)*" (respectively, (3,0)"), and we show that — K + >, m; Dy, ; is
nef and that (— K + >, m; Dy ;)= N NE(W) = NE(oy ). This shows that 1 is Fano.

If instead Y} is weak Fano with py, = 2, then there is a K -positive flip 1y, : Wy --» W such that
W is Fano; the indeterminacy locus of 7y, is given by the exceptional lines a (o (¢;)), in the notation
of the proof of Lemma[5.32 In particular, if ¢ C T is an exceptional line, then ¢ = ag (o (¢;)) for

some j, and my(¢) = fo(c(¢;)) = C; a curve of anticanonical degree zero in Yj, so that p; & m(¢)
foreveryi = 1,...,r by Lemmal[5.15[(0). [ |

5.50. Recall from Lemma [5.43] that 7o, : Uw — Uy is a smooth morphism with fiber P!. Since
Y} is rational (see Lemma [5.26)), its Brauer group Br(Yj) is trivial, and since Y ~\ Uy is finite, we
have Br(Uy) = Br(Yp) = 0 by purity [Gab81|, Th. 2/ p. 131]. We conclude that Uy, = Py, (€) for
some rank two vector bundle £ on Uy (see for instance [Deb24, §6.3]). Moreover det £ € Pic(Uy)
extends to a line bundle L € Pic(Yj).

Lemma 5.51. Leti € {1,...,r}, and suppose that C' C Y is a smooth rational curve with — Ky, -
C =2andp; € C. Then p; & C for every j # 1, and one of the following holds:

(i) L-Cisodd ny'(C) = Fy, and oy, blows-up Fy;

(ii) L - C is even, my *(C) = P' x P!, and o, blows-up w;.
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Proof. Since the transform of C' in Y has anticanonical degree zero, we have C' C Uy by
moreover p; & C for every j # i, otherwise — Ky would not be nef.

Set S = m,'(C) = F, with e € Z>o. We apply Rem. and keep the same notation; in
particular L - C' = e mod 2. We have — Ky, - I'" = 2 — e and my(I'~) = C, therefore by Lemma
54917 is not an exceptional line and e € {0, 1} .

Suppose that oy, blows-up F;. Since F; N\ T'~ # (), and — Ky, - '~ = 2 — e, the transform of I'~
in W has anticanonical degree —e, which implies that e = 1 (see Lemmal[5.48)), and L - C'is odd.

If instead o, blows-up w;, we claim that e # 1, because in that case we would have — Ky, -I'™ =
land — Ky, - Tt = 3. If w; € T, then the transform of T~ in W has anticanonical degree —2,
impossible by Lemma[5.48] Otherwise, we can assume that w; € I'", and then the transform of I'*
has degree zero, again impossible. Hence e = 0 and L - C' is even. |

Lemma 5.52. Suppose that C C Y is a smooth rational curve with — Ky, - C = 4 and p;,p; € C,
with i # j. Then py & C for every k # i, j, and one of the following holds:

(i) L-Cis odd and o, blows-up either F; and F;, or w; and w;;

(t3) L - C' is even and oy, blows-up either F; and w;, or w; and F}.

Proof. Again, since the transform of C' in Y has anticanonical degree zero, we have C' C Uy by
and p;, & C for every k # i, j. Similarly as before we apply Rem. 2.3 we have 7, (C) = F,
with L-C = e mod 2, =Ky, - I'" = 4 —e¢,and —Ky, - I'" = 4 + e; moreover I~ is not an
exceptional line by Lemma[5.49] therefore e € {0, 1,2, 3}.

If oy, blows-up [ and [, then I'™ meets both fibers and its transform in W has anticanonical
degree —e, which yields e = 1 (see Lemma[5.48]), and we have (7).

If oy, blows-up F; and w;, then the transform of [ in W is an exceptional line. We show that
e = 0, which gives (ii). If e > 0, then — Ky, -I'~ < 3;since ' N F; # 0, if w; € I'", the transform
of I in W would have anticanonical degree —e — 1, impossible by Lemma[5.48] Then w; ¢ ',
and we can assume that w; € I'*, so that the transforms of I'~ and I'* have degrees, respectively,
2 — e and e — 1, which yields e = 3. Then the transforms of I'~ and F}; are exceptional lines in /W,
but they intersect, which is again impossible.

Finally suppose that oy, blows-up w; and w;. We show that I'™ cannot contain any of these two
points. Indeed I'~ can contain at most one of them, say w;. Then the transform of I'~ in W has
degree 1 — e, which implies e € {0, 2} (see Lemma[5.48). If ¢ = 0, then S = P! x P!, and there is a
section of 7|5, containing w; and w;, of degree 4 or 6, in both cases impossible by Lemmal[5.48 as
its transform would have degree —2 or O respectively. If e = 2, then both the transforms of I'~ and
F} are exceptional lines in /W, but they intersect, which is again impossible by Lemma[3.48l Thus

Wi, Wy g .
Therefore ¢ > 0 and we can choose I'"" containing both points. Then its transform has degree
e — 2, hence e € {1,3} (see Lemma[5.48)), and we have again (7). [

We recall that, up to flops, Y, belongs to the list of six 3-folds given in Lemma[5.26)

Lemma 5.53. Suppose that Y is isomorphic to Pp2(Tp2) or to a linear section of Gr(2,5). If there
exists a smooth rational curve C' C Yy with —Ky, - C =4 and py,ps € C, then L - C' is odd.



40 C. CASAGRANDE AND S.A. SECCI

Proof. In both cases there exist smooth rational curves I';,I'y C Yy withI'y =I'y, — Ky, - I'; = 2,
and p; € T, fori = 1, 2. Indeed for Ppz(Tp2) we just consider the fibers of one of the P*-bundles
onto IP? (note that p; and p, cannot be contained in the same fiber, see Lemmal[5.51)). For the linear
section of Gr(2, 5), it is well-known that it is covered by an irreducible family of lines in the Pliicker
embedding Gr(2,5) C P?, see for instance [San14, §2.2].

Setd := L -T';. By Lemmal[3.51 if d is odd, then o, blows-up F; and F5, while if d is even, then
oy blows-up wy and ws. Thus L - C' is odd by Lemma[5.52l [

Lemma 5.54. Y; % Pp2(Tp2).

Proof. Assume by contradiction that Yy = Pp2(Tp2). Fori = 1,2 let m;: Yy — P2 be a P!'-bundle,
and I'; C Y} a fiber of ;.

We show that there exists a smooth rational curve C' C Y, with C' = T'; + I'y and containing
p1 and p,. Note that 7;(p;) # m;(ps) for i = 1,2, otherwise Bl,, ,, Yo would not be weak Fano.
We consider the line £ := m(p;)m1(p2) C P? and the surface S := 7, '(¢). Then S = F,, and
Tois: S — IP? is a blow-up with exceptional curve Ty C S, withTy =Ts.

Ifp, € T, then Ty and the fiber of m, through p, would give two intersecting curves of anti-
canonical degree zero in Bl,, ,, Y5, contradicting Lemma [5.15(b). Thus none of p;, p, is contained
in Ty, and we can find in S a smooth rational curve C' such that py, p, € C' and C = I'; 4+ I'y, hence
—Kyo . C - 4

Setd; := L -I'; for j = 1,2. Note that every p; is contained both in a fiber of 7; and in a fiber
of 7y, hence by Lemma 5.51] we have d; = dy mod 2. Then L - C = d; + ds is even, but this
contradicts Lemma[5.53] [ |

Lemma 5.55. Y is not isomorphic to a linear section of Gr(2,5).

Proof. By contradiction suppose that Y; is isomorphic to a linear section of Gr(2,5) C P% The
Hilbert scheme of conics in Yj is studied in detail in [San14} §2.3]; in particular it is irreducible, and
Y) also contains double lines ([San14) Prop. 2.44]), so that if C' C Yj is a conic, L - C' must be even.
By [San14, Cor. 2.43], there exists a conic C' C Y, containing p; and po; we have — Ky, - C' = 4.
By Lemma[5.53] C' cannot be smooth.

The two points p; and p, cannot be contained in the same component of C', thus C' = C; U C5
with p; € C;, p; # C1 N Cy, and —Ky, - C; = 2, for i = 1,2. Then the transforms of C; and
Cs in Bl,, ,, Y, are two curves of anticanonical degree zero which intersect, contradicting Lemma
5.15(0). [ |

Lemma 5.56. Y| is not isomorphic to a divisor of degree (1,2) in P? x P2

Proof. Assume by contradiction that Yy, C P? x P? is a divisor of degree (1,2). Let 7;: Yy — P2,
for 1 = 1, 2, be the restrictions of the two projections, and C; C Yj a general fiber of 7;. Note that
7, is a P!-bundle, while 7, is a conic bundle, with discriminant a cubic curve in P2, In particular, if
I'1 C Y is a component of a reducible fiber of 71, then C, = 2T';.

Let D C Y, be the pullback of the discriminant curve of 7, in P2, so that D is covered by rational
curves of anticanonical degree one. Note that D € |7} Op2(3)|, thus D - Cy = 3.
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We show that also the divisor 7j(D) in W) is covered by curves of anticanonical degree one.
Indeed let I' C D be a component of a general reducible conic. Since I is general, we have I' C Uy
(recall from [5.41] and Lemma [5.43] that Uy is the open subset of Y where 7 is smooth, and that
Y ~\ Uy is finite); consider S := 7, *(I') C W, and apply Rem. Note that, since Y is Fano,
Wy is Fano by Lemma [5.49 and — Ky, - '~ = 1 — e, where S = F.. Hence we have e = 0,
S = P! x P!, and the horizontal curves in S have anticanonical degree one; thus (D) is covered
by curves of anticanonical degree one.

There exist fibers C; and C5, of 7w and 7y respectively, containing p;; note that C'; must be a
smooth fiber, otherwise Bl,,, ¥, would not be weak Fano. We have L - C; = 2L - I'; even; then
Lemma[5.5Tlimplies that o, blows—up wy, and that L - Cy is even too.

Let us consider now S’ := 7, *(Cy). Since L - O, is even, by Lemma [5.51] we have again
S’ ~ P! x P!, and the horlzontal curves have anticanonical degree 2 in Iy (see Rem. 2.5). Let
C’2 be the horizontal curve containing w; € S’. Then 7§ (D) - 02 = D - Cy > 0; on the other hand
wy & wh(D ) (because w; cannot be contained in a curve of anticanonical degree one, by Lemma
[5.48)), thus 02 must intersect 7 (D) in some point different from w,, and C’2 intersects some curve
I' with — Ky, - I' = 1.

Then the transform of C» in w gives an exceptional line which meets a curve of anticanonical
degree one, contradicting Lemma [5.48] [

Lemma 5.57. Y} is Fano.

Proof. By Lemma[5.26] if Y is not Fano, then py, = 2 and up to flops Y is isomorphic to one of
the weak Fano 3-folds in [JPOS| Th. 3.5(3), Th. 3.6(1)].

We consider first [JPO8, Th. 3.6(1)], where Yy = Pp2(F) with F a rank 2 vector bundle. There
is a flop Yy --» Y where Y is [JPO8, Th. 3.5(4)], namely Yy C P’ := Pp (O & O(1)™) is a
general divisor in the linear system |21 — F'|, i) the tautological class and F a fiber of the P3-bundle
P’ — P!. The P3-bundle restricts to a quadric bundle Yj — P!. Moreover P’ — P! has a section
¢ C P’ with normal bundle Op:(—1)%3, in fact ¢ is an exceptional line in P’, and ¢’ C Y} is the
flopping curve. There is a flip P --» P’ where P = Pp2(O & O(1)%?) is a Fano 4-fold containing
Y}, and the P!-bundle 7: Yy — IP? is given by the restriction of the P2-bundle P — P2,

The fibers C' C Y, of 7 are the transforms of the lines in the fibers of the quadric bundle Y — P*
which intersect /. If I' C Y is the transform of a general line in a fiber of the quadric bundle, one
can check that I' = C' + ¢, where ¢ C Y} is the flopping curve.

Recall that p; & ¢ for every i (see Lemma[5.15](0)), thus / is contained in the open subset where
k:Y — Yj is an isomorphism, and f~!(k71(0)) = (fo)~1(¢) (see (3.29)). By [5.14] we conclude
that f;'(¢) 2 F, and ¢ C Uy (see[5.41]and Lemma[5.43)), thus L - £ is odd by Rem. We denote
by p) the image of p; in Y{]. Consider the fiber F' of the quadric bundle through p/, and let T'CF
be a line through p/. Then T' N ¢ =0, otherwise in Bl,; Y these curves would be two intersecting
curves of anticanonical degree zero, contradicting Lemma [5.15(b).

Let T C Y, be the transform of T'. Consider now the point p; € Y, and let C be the fiber of 7
containing p;. We have —Ky, -T' = 2, p; € T, and T = C + /. In particular we see that L - T and
L - C have different parity, but this contradicts Lemma[5.51
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The case where Yj is isomorphic to the weak Fano 3-fold in [JPO8, Th. 3.5(3)] is similar. Now
Yo C Ppi(O%* @ O(1)*?) in the linear system |27, and Y, — P! is a quadric bundle. Moreover,
considering the flop Y, --» Y[/, we have that Y] is of the same type as Yj. In this case Y{ has two
flopping curves ¢, and /s, with ¢; = /5, both sections of the quadric bundle (¢; and ¢, are disjoint
for Y, general, but possibly ¢; = ¢, for some special Yj). Similarly as in the previous case, using
lines in the fibers of the quadric bundles on Y, and Y|, we construct two smooth rational curves
C,T' C Yy through p; with[' = C' + ¢, and — Ky, - [' = — Ky, - C' = 2; here C'is a line in the fiber
of the quadric bundle Yy — P! through p;, while T is a section. In the end we obtain a contradiction
with the parity of the intersection of L with these curves. |

5.58. We have Y, = P3, Y = Bl, ,, P, and W) is Fano.
Indeed in Lemmas [5.534] - [5.37] we have excluded all the other cases of Lemma[3.26] Then W} is
Fano by Lemmal[5.49

Lemma 5.59. Let { C P2 be a line. Then L - { is odd, and o, blows-up either r points or r fibers.

Proof. Indeed if o blows-up both points and fibers, since » > 3 we can find three points p;, p;, P
such that o, blows-up w;, w;, F}, (or conversely F;, F;, wy). Then by Lemmal[5.52| we have L - p;p;
odd and L - p;pi, even, a contradiction. Therefore o, blows-up either r points, or r fibers, and L - ¢
is odd again by Lemma(3.52] [

5.60. Up to switching E and Es, from now on we assume that o, blows-up r points.

Indeed, suppose that oy, blows-up r fibers. This means that every D, ; is of type (3,1)*", so by
Lemma [5.46 we are in case (a) and, if we change the factorization of f, in[5.41] by contracting Es
instead of £}, in the new factorization every Dy, ; is of type (3, 0)*", namely o, blows-up  points.

Lemma 5.61. The morphism my has no 2-dimensional fibers.

Proof. Recall that F} is a smooth fiber of 7, (see Lemma@ We consider the blow-up o7 : Wl —

W, of the first point wy € Fy C Wy; the transform of £} in W/ is an exceptional line, and we have
a diagram:

Wi - =W, 2= W

By,

Y P

where ﬁ/\l --» W, flips the transform of Fj, which is contained in (ﬁ/\l)reg (see Lemma [5.46).

The exceptional divisor D, ; = Exc(oy) C W, is isomorphic to P3, and its transform Dy ¢ Wy
is isomorphic to B, P?, so that 7y : D} — G is a P'-bundle, where G; = P* C Y] is the
exceptional divisor over p;.

Since m; and 7, are isomorphic over Y; \. G and P? \ {p1} respectively, it is enough to show
that 7y has no 2-dimensional fibers.

We have Y; = Bl,, P? and there is a P!-bundle 3: Y; — P?. Moreover Y; is Fano, thus T is
Fano too, because if ¥, contained an exceptional line, its image in Y; would have anticanonical
degree zero (see Lemma[5.49).
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We note that since 7; has at most finitely many 2-dimensional fibers, and it is smooth outside
these fibers, the composition  := 3 o 7, : W; — IP? has at most finitely many reducible fibers, and
is equidimensional. Moreover # has a second factorization in elementary contractions:

W, ——~ A

N
Y, — s p2
Since ( has one-dimensional fibers, and 7 is finite on fibers of v, we see that v has fibers of
dimension at most 1.

We show that ~y is of fiber type. By contradiction, suppose that ~y is birational. Since W is
Fano with at most isolated, locally factorial, and terminal singularities (see Lemma [5.43]), v must
be divisorial by Th. thus it is of type (3,2). Let £ C W be the exceptional divisor. We cannot
have O(E) = {pt}, because 0 is equidimensional. If §(F) is a curve in P2, then every fiber of 6 over
this curve is reducible, again a contradiction. Therefore 6(E) = P2.

Set ¢ := B(p2) € P?and C := 7 '(q) C Yi; then C is a smooth rational curve with — Ky, -C' = 2
and p, € C. As in Lemma[5.5]] we see that C' is contained in the open subset where 7 is smooth,
and that S := 7 1(C) = P! x P!, because by [5.60 o, blows-up w,. On the other hand S = 6~1(q),
and ~s 1s a non-trivial birational map, thus we have a contradiction.

Therefore ~ is of fiber type, and has fibers of dimension at most 1, so dim A = 3. We note
that A is Q-factorial and log Fano, and §: A — P? is an elementary contraction, thus it must be
equidimensional. Now if /' C W] is a fiber of 7y, then + is finite on F', and ~y(F) is a fiber of J.
Therefore dim F' = dim v(F') = 1, and this concludes the proof. [

-----

is the Fano model of B, 1 ;s P* (see Ex.[72).
We denote by o, : Wy — P* the blow-up map, and set ¢; := o, (w;) € P* fori=1,...,r.

Proof. Since 7y has no 2-dimensional fiber by Lemma we have T' = () and Wy = Uy is
smooth (see and Lemma [5.43]). Moreover Wy = Pps(E) where the vector bundle £ has odd
degree by Lemma

Since W, is Fano (see [3.38)), the possible vector bundles £ have been classified in [SW9O0,
Th. (2.1)]; there is only one case where £ is not decomposable (the so-called null-correlation bun-
dle) and it has even degree, so it cannot occur here. Therefore £ is decomposable of odd degree,
and Wy = Pps (O @ O(b)) with b € {1, 3}.

If b = 3, the negative section of W, — P?3 is a fixed prime divisor £ covered by curves of
anticanonical degree one, corresponding to lines in P3. Consider the composite birational map
X --» W,. By Prop.2.10l F must be contained in the open subset where this map is an isomorphism,
and the transform Ex C X of E is a fixed prime divisor with Ey = P? and N, /5 = Ops(—3),
contradicting Th.-Def.

Thus b = 1 and Wy = Pps(O @ O(1)) = Bl,, P Let 0,,: Wy — P* be the blow-up map.
Note that Exc(o,,) is covered by curves of anticanonical degree 3, thus w; ¢ Exc(o,,), otherwise
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the transform in W of such a curve containing w; would have anticanonical degree 0, contradicting
Lemmal[5.48] Hence ¢; := 0, (w;) # qo foreveryi =1,...,r,and W = Bl 4, .. P~

Finally W is Fano by Lemma[5.6] and there isa SQM (: W --» W (see (3.47)), so we get the
statement. [

5.63. The points qq, . .., g, € P* are in general linear position.

In fact if a line in P* contains 3 points among the ¢;’s, then its transform in W has anticanonical
degree —4, which is impossible by Lemma[5.48] Similarly, if 4 (respectively, 5) among the ¢;’s are
contained in a plane (respectively, a hyperplane), we consider a conic (respectively, a twisted cubic)
containing them, and get again a contradiction.

Lemma 5.64. We have r < 6 and px < 9.

Proof. By Lemma [5.62] W is the Fano model of Bl, 1, P*; in particular pyr < 9, see Ex.
Moreover, when py = 9, W does not have non-trivial contractions of fiber type by [CCE19,
Prop. 1.7]. On the other hand by Lemma [5.22] there is a contraction of fiber type W — Z where Z
is the anticanonical model of Y. We conclude that py; < 8, hence px = pw + 1 < 9 (see Lemma
B6)andr = py — 3 < 6. [ |

Recall cases (a) and (b) from Lemma [5.39] and [5.45] and that Sy = ao(Exc(ag)) C Wy (see
[5.41)). For the reader’s convenience, we report here diagram (3.47).
(5.65)

Xo

a
o @0

Wos-— - o Wos- - LW =Bl P 5SS Bl, P D S —% P 5 A

-
-
™ o ~
~
~ R

Y =Bl, , P>B P3 > By

Lemma 5.66. Set A := 0,,(So) C PY. Then qq, ..., q, € A, and at these points A is smooth in case
(a), has rational double points of type Ay or A in case (b).

Proof. Fori =1,...,r we have w; € Sy (see[5.44) thus ¢; = o,,(w;) € A. Moreover, since gy # ¢,
at ¢; the surface A is locally isomorphic to Sy at w;, and we deduce the statement from [3.43]

We are left to prove the behaviour of A at the point go. The map 7: W — Y (see (3.63)) is a
P!-bundle induced by the projection 7, : P* --» P? from go. The projection of A is the surface
By C P? which has degree 2 or 4 by Lemma[3.39 in particular A cannot be a plane. If A is a cone,
up to exchanging ¢; and ¢, we can assume that ¢; is not the vertex.

Let us consider now the projection 7, : P* --» P? from ¢y, and the corresponding P!-bundle
mp: Wi = Bl, P* — P3. If p), p, ..., p. € P3 are the images of qo, gz, . . ., q, € P* via 7,,, we
consider Y’ := Bl . P and the composite maps W= Bl o P*-—>Y and fi: X --» Y’

p07p/27"'7
(compare with diagram (3.63)); W --+ Y” is an elementary rational contraction, and f?, is a rational
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contraction with px — py: = 2.

— U;/V

X-—>W W) —P*

N | s
N

\ l Wél % g

fx 8y y T
Y ——P3

We show that f, is again special (Def.[3.1land 3.10) . If D C X is a prime divisor different from
E1, then its transform in Wis a prime divisor, and its image in Y’ is either Y, or a prime divisor.
On the other hand the image of £} C X in Y” is the transform, in Y”, of the projection of A from ¢,
in P2, Since A is not a cone with vertex ¢, this projection is a surface.

Therefore we can replace f with f/., and get the statement for ¢q too. [ |

Recall from Lemma [5.48] that S C W is the transform of Sy C Bl,, P* and hence of A C P*,
and we still denote by S its transform in W and in V. Moreover og: S — A is the blow-up of
qo0,---59r € A

5.67. We have dim \V; (S, W) = pyy.
Indeed A contains qq, . . ., g, therefore S C W meets along a curve every exceptional divisor
of the blow-up W — P4, thus A(S, W) = N;(IW). Moreover S is contained in dom(ty,) (see

—~ —

Lemmal[5.48), therefore dim N1 (S, W) = dim N1(S, W) = pw, see [Cas13, Rem. 3.13(1)].

Lemma 5.68. Assume that we are in case (a). Then A is either a cubic scroll, or a cone over a
twisted cubic; moreover [ and fo have some 2-dimensional fiber.

Proof. By Lemma [3.39]in case (a) the surface By C P? is a quadric, and it is the projection of
A C P* from the smooth point ¢, (see Lemma 5.66)), thus A has degree 3. Moreover A cannot
be contained in a hyperplane, because the points qq, ..., q. € A are in general linear position (see
[5.63). By the classification of projective varieties of minimal degree, we conclude that A is either a
cubic scroll, or a cone over a twisted cubic.

In both cases there is a line through ¢, contained in A, thus 7, is not finite on Sy, and f, and f
have some 2-dimensional fiber. |

5.69. Assume that we are in case (a). If A is a cubic scroll, then S is smooth, because S =
BlQOa---er A'

5.70. Assume that we are in case (a) and that A is a cone over a twisted cubic. Then by Lemmal[5.66]
qo, - - - , ¢, are distinct from the vertex v of the cone, and S = Bl,, . A has one singular point v,
which is of type $(1,1). Then o' (v) = a~'(v) = P? by [AW98, Th. on p. 256]. Moreover B, is a
quadric cone with vertex v’ # p; fori = 1,...,r, which givesanode v' € B C Y. The fiber 771 (v)
is the transform of the line gy C A, it is contained in S C W, and f~'(v’) has two irreducible
components, both of dimension 2, given by &@~!(v) and by the closure of &' (771(v') \ {v}).

Lemma 5.71. Assume that we are in case (b). Then « has no 2-dimensional fiber, o and & are of
type (3,2)", S is smooth, Sing(Sy) = {w1, ..., w,}, and Sing(A) = {qo, - - -, ¢ }-
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Proof. Let us consider both factorizations of f; in elementary contractions:

(5.72) Xo —2 W/

By Lemmal[5.46]in case (b) the situation is symmetric, and both oy, and o{;, blow-up r points. Thus
we can apply Lemmal[5.61and deduce that both 7, and 7, have no 2-dimensional fibers. In turn this
implies that «y and af, do not have 2-dimensional fibers either, because if F' were such a fiber (for
instance for ay), then af, would be finite on F" and af(F") would be a 2-dimensional fiber of 7.

By Lemma [5.30) every fiber of f over G; has dimension one, and 7~ !(G;) = a(D;), therefore
every fiber of & over S N &(D;) C W has dimension one. Moreover S is contained in dom(¢y,)
(Lemma [5.48)), and o, is an isomorphism between W~ U, Dy, ; and Wy ~\ {wy, ..., w,}, hence &
and oy are isomorphic over S\ U;&(D;) and So ~ {wy, ..., w,} (see diagram (3.63)). We conclude
that & has only one-dimensional fibers, and the same holds for « (see Lemma[5.6)).

Then o and & are of type (3,2)*", and S is smooth, by Th. This also implies that Sy
{wy, ..., w,} is smooth, and finally A \ {qo, ..., ¢} is isomorphic, via o,,, to an open subset of
So ~ {wz, ..., w,}, hence it is smooth too. [ |

Lemma 5.73. Assume that we are in case (b). Then S is a smooth K3 surface, B is a nodal K3
surface, and mg: S — B is birational and may contract some smooth fiber of 7 to nodes b € B.
This happens if and only if dim f~1(b) = 2; in this case f~'(b) = P! x PL

Proof. Recall from [5.44] that 7q|g,: Sy — By is birational, with exceptional locus the fibers of
contained in Sy, and it is an isomorphism around wy, . . . , w,.

By Lemma[5.39 the surface B, C IP? is a quartic with isolated singularities, so that it is a normal
K3 surface. If 7 is finite on Sy, then Sy = By, Sing(By) = {p1,...,p-} by Lemma[5.71] and
similarly S = B are smooth K3 surfaces, so we have the statement.

Suppose that there is a fiber Iy := 7, 1(b) contained in Spy; note that £y = P!, Then b # p; and
w; & Iy for every 4, hence Fyy C (Sp),, by Lemma[3.71l Since Kp, = 0, we have Kg, - Fy = mF¢
for some m € Z, F¢ < 0, and by the genus formula —2 = (1 + m)Fg, thus F¢ € {—1, —2}.

We claim that iy = —2. By contradiction, if FZ = —1, then — K, - Fy = 1, while — Ky, - F = 2,
thus (det Mg, /w, ) Fo = 1. By Lemmal5.71land Th. 2.6 in Wy~ {ws, ..., w, } ay is just the blow-up
of the smooth surface Sy~ {w1, ..., w,}, hence R := oy (Fy) = P, (NY 1 )jr- By Rem. 2.3 we

0/Wo
get R = F, with e € Z~( odd. Hence (aj) |z must be birational (see diagram (5.72)) and the proof
of Lemma[5.71)), and af,(R) is a 2-dimensional fiber of 7(,, a contradiction. Therefore Fy = —2 and

bis a node for By; moreover m = 0, f; '(b) = P! x P!, and K, = 0.
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We have a diagram of birational maps:

ow|s 9aq01S0
S——=5,—=A

Wsl lﬂos
kB

B—>BO

where on the first row S is smooth, Sy has rational double points of type A; or A at wy, ..., w,
(Lemma[5.71] and [5.43)), and A has rational double points of type A; or As at qq, ..., q,. Moreover
By has rational double points of type A; or Ay at py,...,p, and nodes at the points b; such that
75 ' (b;) C Sp, and the map kjp: B — By resolves pi, ..., p, (531, while it is an isomorphism
around the nodes b;. Therefore B can have at most nodes at the inverse images of b;, and mg: S —
B is a minimal resolution of singularities. Since B € | — Ky| (Lemma[5.39), B is a nodal K3
surface, and S is a smooth K3 surface.

Conversely, if ¥ € B is such that dim f~1(0/) = 2, then &/ ¢ Exc(k) (Lemma [3.30) and if
V' = k(b'), then dim f; ' (b") = 2, but both 7y and o, have only one-dimensional fibers (Lemma
[5.71). Therefore we must have 7, ' (V") C Sy and b = b; for some j. [ |

Lemma 5.74. Assume that we are in case (b). Thenr = 4 and px = 7, and A C P* is a (singular)
sextic K3 surface.

Proof. Since A has a double point at gy by Lemma[3.66, and the projection of A from ¢ is a quartic
surface By C P? (Lemma [5.39), A must have degree 6. Then A is contained in a unique quadric
hypersurface (), it is the complete intersection of () with a cubic hypersurface M (see for instance
[Bea96, Ex. VIII.14]), and has trivial canonical class.

We note that () must be smooth at ¢; for every ¢ = 0,...,r. Indeed if () is singular at g;, then
it is a cone, and its projection from ¢; is a quadric in P3. On the other hand A cannot be a cone,
because Sing(A) = {qo,..., ¢} (see Lemma [5.71). Then, as observed in the proof of Lemma
the projection 7, : P* --» P3 induces a different special rational contraction X --» Y with
px — pyi = 2, to which our results apply. In particular the projection of A from ¢; must be again a
quartic surface in IP3, but this is impossible as A C ). Therefore () must be smooth at ;.

Since A has double points at g, .. ., g, (Lemma[5.66), in turn the cubic /M must have a double
point at each g;.

Suppose by contradiction that r > 4, let ¢ € M be a general point, and let I' C P* be the rational
normal quartic through qo, q1,...,q5,q. ThenI' - M = 12, and " and M intersect with multiplicity
>1lingand > 2inq,. .., qs, thus ' C M. Moreover [ intersects the quadric @) in qo, . . ., g5 plus
two addmonal pomts a and b, that belong to A.

LetT C W I'y C W, and I'xy C X be the transforms of I". Then — K7 - T'=20—18 = 2,
and T intersects S in two points, corresponding to a and b. Recall that S' C dom(C ~1) (see Lemma

(5.48), thus I'yy still intersects .S in two points. Moreover — Ky - I'yy < — K - T = 2 (see [Cas13]
Rem. 3.6]), thus —K x - I'x < 0, a contradiction. [ |

This concludes the proof of Th. 3.1l n
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6. THE CASE dx = 2 AND THE ELEMENTARY CASE

In this section we treat Fano 4-folds with Lefschetz defect 2, and Fano 4-folds with an elementary

rational contraction onto a 3-fold. For the case where dx = 2, we show the following more refined
version of Th.[L.8l

Theorem 6.1. Let X be a smooth Fano 4-fold with 6x = 2. Then 3 < px < 6, and one of the
following holds:
(1) there is a special rational contraction X --+Y onto a smooth 3-fold with px — py = 2;

(i1) there is a quasi-elementary contraction X — S where either S = P? and px = 4, or S =
P! x P! or F, and px = 5.

A contraction X — S is quasi-elementary if for every fiber F C X we have dim N (F, X) =
px — ps; we refer the reader to [Cas08,, §3] for more details.

The bound py < 6 improves the previous bound px < 12, see [Casl7, Th. 2.12 and references
therein], and is sharp, by the example (Bl IP’Q)2 (see Rem. 2.I). On the other hand we are not
aware of other examples of Fano 4-folds with 0x = 2 and px = 6, while for px = 4,5 we provide
several (known and new) examples in and §7.60 Fano 4-folds with 0x = 2 and px = 3 are
classified and studied in [Sec23]], there are 28 families.

Proof of Th.16.1l By [[Cas14, Th. 5.2 and its proof] one of the following holds:

(1) there exist a SQM X --» X, a special, K -negative contraction f: X - Y, and a prime
divisor D C X such that Y is smooth, dimY = 3, px — py = 2, codim N(D, X) = 2, and
f(D)=Y;

(2) there is a quasi-elementary contraction ¢): X — S with dim S = 2 and px — ps = 3.

Assume first that we are in (1), and suppose by contradiction that px > 7. Then the study made

in Section[3]applies to X --+ Y; let us consider the factorization of f as in Lemma[5.6l and [5.60

f
X 7/@ Y
where @ is an elementary contraction of type (3, 2) with £y = Exc(@) C Xand S = a(E)) C cW.
We show that Ny (S, W) C Ny (W), which contradicts 5.67]
Since f(D) =Y, we have f,(Ny(D, X)) = N;(Y), but dim NV (D, X) = dim N (Y) = px — 2,
therefore N7 (D, X) Nker f, = {0}, in particular NE(&) ¢ N;(D, X). This implies that & must be

finite on D.
If DN E; # (), then D - NE(&) > 0, so that D meets every non-trivial fiber of &, and the prlme

divisor @(D) contains S. We have N(a(D), W) = a,(N.(D, X)), thus dim NV, (&(D), W) <
dimAN; (D, X) = px — 2 = pw — 1, and Ni(S,W) C Ni(a (D), W) C Ny(W). If instead
DN E; =0, then &(D) NS = 0, thus Ny (S, W) C a(D)* C Ny (W) (see Rem. 22).

We conclude that in case (1) we have px < 6, therefore we get (7).

Assume now that we are in (2). By [Cas08, Th. 1.1] S is a smooth del Pezzo surface, so if
ps < 2 we have (ii). If instead ps > 3, then again by [[Cas08, Th. 1.1] we have X = S x I’ where
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F = Bly,s P?, and dx = max{ps — 1, pr — 1} (see Rem. 2.1)). Hence ps — 1 < dx = 2, which
gives ps = 3and S = F, and we have again (i) with the contraction S x S — P! x S. [ |

Corollary 6.2. Let X be a smooth Fano 4-fold that is not isomorphic to a product of surfaces. If
O0x > 2, then px < 6.

Proof. Since X is not a product of surfaces, by Th.[L6land [[.7] we have 6x < 3, and if §x = 3, then
px < 6. Moreover if dx = 2, then again px < 6 by Th.[L.8l [ |

In the case of an elementary rational contraction onto a 3-fold, we show the following.

Theorem 6.3. Let X be a smooth Fano 4-fold that is not isomorphic to a product of surfaces, and
having an elementary rational contraction X --» Y withdimY = 3. Then px < 9.

The bound is sharp, as shown by the Fano model of Blg,, P4, see Ex.

Proof of Th. Since X is not a product of surfaces, by Th. and we have 0y < 3, and if
dx = 3, then px < 6. Therefore we can assume that X has Lefschetz defect §xy < 2.

We follow [[Cas13, §4, in particular the proof of Th. 4.4]; the strategy is the same as the beginning
of the proof of Th.[5.1l We know that Y has at most isolated, locally factorial, canonical singu-
larities. Moreover Y is log Fano, — Ky is big, and if g: Y — Y| is an elementary contraction of
fiber type, then —Ky - NE(g) > 0. By [Casl3} Lemma 4.5], if g: Y — Y{ is a small elementary
contraction, then Ky - NE(g) = 0.

Assume now that px > 6. Then by [Casl3, Lemma 4.6], if g: Y — Y| is a divisorial elementary
contraction, then — Ky - NE(g) > 0 and g is the blow-up of a smooth point (note that in loc. cit. the
map X --+ Y is assumed to be non-regular, but this is used only to deduce that 6x < 2, which we
already know). In particular Y is weak Fano, and as in[5.14] we show that if Y is not Fano, then its
anticanonical map is small.

As in [Cas13] p. 622] we consider all divisorial extremal rays of NE(Y") and get a map

k:Y — Y,

which is the blow-up of r distinct smooth points. Moreover Yj is weak Fano, has the same singular-
itiesas Y, py = py, +r,and (—Ky)? = (—Ky,)? — 8r.

As in the proof of Lemma[5.16/ we show that, up to increasing the number r of blown-up points,
and up to replacing Y and Y, with SQM'’s, we can reduce to the case where py, < 2 and, if py, = 2,
then Y} has two distinct elementary rational contractions of fiber type. Moreover as in Lemma[5.13]
we show that, if Y} is not Fano, then its anticanonical map is small, with exceptional locus contained
in (%)r@g-

If py, = 1, then Y} is Fano, and Lemma[.1l yields —Kf’/o < 64. Thus

0<—Kjp=—K} —8 <64—8r

which givesr < 7, py =71+ py, < 8, and px = py + 1 < 9. If instead py, = 2, then by Lemma
4.2 and Prop. B3] we have either Yy = P? x P!, or Yy = Ppi (O @ O(1)%?), or =K}, < 48. The
blow-up of P? x P! or Pp: (O @ O(1)%?) at a point (not lying on the curve of anticanonical degree
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zero) has a divisorial elementary contraction of type (2, 1), which is excluded as in Lemma
Therefore —K%O < 48, and as above we getr < 5, py < 7,and px < 8. [ |

As in the proof of Lemmal5.26l we also get the following.

Corollary 6.4. Let X be a smooth Fano 4-fold and X --+ Y an elementary rational contraction
with dimY = 3. Assume that px > 6, 0x < 2, and that Y is smooth.
Then'Y is weak Fano and, up to flops, Y = Bl, ,,, Yo where Y is one of the following.

H Yo | K5, | v | | |
P3 64 1 Fano px < 9,7 =px — 2
Pp2 (Tp2) 48 2 Fano px <8 r=px—3
[JPOS, Th. 3.6(1)] 40 2 |weak Fano | px < 7,7 =px — 3
linear section of G(2, 5) 40 1 Fano px =6,r =4
[JPOS, Th. 3.5(3)] 32 2 | weak Fano px =6,r =3
divisor of degree (1,2) inP? x P*| 30 | 2 Fano px =6,r=3

Proof of Th. Since X is not a product of surfaces, by Cor.[6.2]if 6 x > 2 then px < 6. Therefore
we can assume that X has Lefschetz defect dx < 1.

By Prop. 3.11] we can assume that the rational contraction X --+ Y is special. Then px — py €
{1,2} by Lemma[3.12] because dx < 1. Thus the statement follows from Th. and[5.1] [ |

Proof of Th. Since px > 7 and X is not a product of surfaces, Cor. [6.2] implies that 0x < 1.
As in the proof above, we see that there is a special rational contraction X --+ Y withdimY = 3
and px — py € {1,2}. Then Y is weak Fano with at most isolated, locally factorial, and canonical
singularities, by the proofs of Th.[6.3]and 5.1l (in particular[5.4] and [5.12)). [

7. NEW FAMILIES AND EXAMPLES

In this section we construct several new families of Fano 4-folds, with Picard number between 2 and
7, all having a rational contraction onto a 3-fold. Our strategy is inspired by the classification result
in Th. and more generally by the study in Section [3] of Fano 4-folds with a special rational
contraction X --» Y with px — py = 2.

In and §7.3| respectively, we show that cases (i) and (i) of Th. do happen for py €
{3,...,7}. This proves Prop.[L.9 and leaves open case (iii), as follows.

.....

(see Ex.[Z2). Let A C P* be a general cone over a twisted cubic containing q, . . ., q,. Let S C W
be the transform of A, and X — W the blow-up of S. Is X is a smooth Fano 4-fold?

We also leave open the existence of case (i) of Th. for px = 8,9, see Question[7.6l

We also give other constructions. In we adapt case (a) from Section [3 to get examples of
Fano 4-folds with Lefschetz defect 2 and p € {3,4,5}. Then in §7.3 we show that the examples
from §7.2] have a different blow-down to a smooth Fano 4-fold Z with p; € {2,...,6}, and we
give an explicit description of Z thanks to a result in [Lan98]). Finally in §7.6 we recall some other
known examples.
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For all the new families we compute the main numerical invariants, using Lemma[2.4land [CCF19,
Lemma 6.25], see Tables 7.2} [7.3 [7.4]

In most cases these new families are obtained as blow-ups of the Fano model of B, P* along a
surface, so let us start by recalling this example.

Example 7.2 (the Fano model of B, P*). Let o: W — P4 be the blow-up at 7 + 1 general points

qos - - - G, With € {0,...,7}. For r > 1 the 4-fold W is not Fano, but there is a SQM W --» W
such that IV is smooth and Fano, with py, = r + 2 € {2,...,9}; we refer to IV as the Fano model
of Bl 1 s P*.

The blow-up W contains exceptional lines given by the transforms of the lines g;q;, and (for
r = 6,7) of the rational normal quartics through 7 points among qo, . . ., ¢,; these curves are the
indeterminacy locus of the map W --» W (see Lemma 2.13la)).

We note that W is toric if and only if » < 4; in the classification of toric Fano 4-folds in [Bat99],
these are Bs3, Dy, M, 3.5.8(ii1), and 3.5.8(ii). We refer the reader to [AC17] for more details on
the case r = 6, and t(l\[CCF 19] for the case r = 7. For r > 8 it has been shown by Mukai
[MukO1, Muk04] that W is not a Mori dream space, and this is a necessary condition to have a
SQM that is smooth and Fano.

Consider the projection P* --s P from ¢, (an analogous construction can be made for the other
points g;), let p; € P? be the image of ¢; fori = 1,...,r, and let k: Y — P? be the blow-up of
p1, - - -, pr Then the composition W --+ Y is an elementary rational contraction. More precisely,
there is an intermediate SQM W s W, that flips the transforms of the lines qoq; fori =1,... 7,
such that 7: W — Y is a P'-bundle (see for instance [CCF19, Rem. 6.12]).

For r = 7 we have py = 9, thus this example shows that the bounds on p in Th. [[.3]and [6.3] are
sharp.

We report in Table [/. 1| the main numerical invariants of W.

[rTow [ K& T K - cxV) [ba(W) = BZ2(W) [ bs(W) [ BO(W, —Kw) [ x(Tw) |

0] 2 | 544 232 2 0 111 20
1] 3 | 464 212 4 0 96 16
2|1 4 ]38 190 7 0 81 12
3|1 5 | 307 166 11 0 66 8
41 6 | 230 140 16 0 o1 4
o 7 | 154 112 22 0 36 0
6 8 | 80 80 30 0 21 —4
719 | 13 34 45 0 6 -8

TABLE 7.1. Numerical invariants of the Fano model W of B, P4
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7.1. SET-UP FOR BLOW-UPS OF W

In [7.3] and[7.4] we are going to construct families of Fano 4-folds X as blow-ups of TV along
a smooth surface; we set up here acommon notation.

Let W be the Fano model of W = qu0 o P we keep the same notation as in Ex.[Z.2] Let
A C P* be an irreducible surface and S C W its transform. In all our examples S will be smooth
and contained in the open subset where the map W --» Wisan isomorphism; we still denote by
S C W its transform.

Let a: X — W be the blow-up of S, and ¥ C X the exceptional divisor.

We denote by H the transform of 0*Op4(1) in W, and by Hy its pullback in X.

As in Ex. [Z.2 consider the projection P4 --» P3 from ¢, and the associated P1-bundle 7: W —
Y =Bl,, , P2 Letk: Y — P? be the blow-up map, G; C Y the exceptional divisor over p;, and

.....

Hy = k*Ops(1). We assume that A is not a cone with vertex qo; let By C P? be the projection of
A (so that dim By = 2), and B C Y its transform. We still denote by S C W the transform of A;
then B = 7(95).

Leta: X — W be the blow-up of S, and f := 7w o a: X — Y. The induced map X --+ Xisa
SQM.

-----

(7.3) X- =X
al dl f
W--sWt-sW-—2=pP!
|
Wl |
& Y
Y P3

Remark 7.4. The composition X --» Y is a special rational contraction with pxy — py = 2. In
particular we deduce from Th.[5.1]that X is not Fano when py > 9 and r > 6.

Let D C W be the exceptional divisor of the blow-up o: W — P4 over ¢, and D; C W,
D; C W its transforms.

Let T := 7 YB) C W and T C X its transform; since S is a smooth surface contained in
T, we have T = T. Note that T is the transform of the cone in P* over A with vertex ¢o. In
all our examples, 7" will be contained in the open subset where the birational map W ——s W
is an isomorphism. Similarly, T is contained in the open subset where the map X --» X isan
isomorphism; we still denote by 7" C W and T C X the transforms.

Suppose now that » < 4; then W is toric and W= Py (€) with

£=0y®O0y(Hy - G).

Let moreover J C W be the transform of a hyperplane .J, C P* through ¢i,...,q.; then .J is
the section of 7 corresponding to the projection & — Oy (Hy — Y ; G;), and n = Op(J) =
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OW(IA{T — 2;21 5,) is the tautological class, where H is the transform of 0*Op4(1); moreover
ns = Oy(Hy — Y1 Gy).

We also have T' = Pg(& ), with tautological class nr = Or(Jr), and we set 77 := mp: T —
B.

7.2. NEW FAMILIES FROM CASE (a)

We keep the notation as in §7.1] and assume that r < 6 (see Rem.[Z.4). Let A C P* be a general

cubic rational normal scroll containing qq, ..., q. (such a scroll exists, see for instance [Cos06,
Ex. A]); recall that A = [F;. Then S C W is a del Pezzo surface with ps = r + 3, and it is disjoint
from the transforms of the lines ¢;q; and, for r = 6, of the rational normal quartic through gy, . . ., gs.

We will show the following.
Proposition 7.5. Forr € {0,...,4}, X is Fanowith px =r+3 € {3,...,7}.
Question 7.6. Is X Fano forr = 5,67

The surface By C P3 is a smooth quadric surface containing py, . .., p,, B is a smooth del Pezzo
surface with pp = r + 2, and —Ky = 2B. Moreover mg: S — B is the blow-up of a point y € B,
with exceptional curve the transform I" of the line in A containing ¢o. Every fiber of f over Y \ {y}
is one-dimensional, while f~!(y) = a~}(T") = F,.

Note that 7 C W is the transform of the quadric cone () C P*, containing A, with vertex ¢q.
Then 7' is disjoint from the transforms of the lines ¢;g; for 1 <4 < j < r, thus it is contained in the

open subset where the map W --» Wisan isomorphism.

Lemma 7.7. Forr € {0,...,4}, —Ky 5 is ample.

~Y

Proof. We treat the case » > 0, the case r = 0 being similar and simpler. We have —K X7 =
—Kgﬁ, thus it is enough to show that —Kgﬁ is ample.

Let us fix some notation in B. We have B = Bl, _, By = Bl P2. We denote by
es,...,e, C B the exceptional curves over ps,...,p, € By, so that ¢; are lines in G; = P2
Then we denote by ey, e; C B the transforms of the two lines through p; in the quadric By, and
by Cg, C B the exceptional curve over p;, again a line in G. There is a birational map B — P?
contracting e, ey, . . ., €., let h € Pic(B) be the pullback of Op2(1). Then C, ~ h — ey — e;.

We have 030(1) = OBO(/{?(eo) + /{7(61)), Hy‘B = (]{I|B)*(/{Z(€0) + k(el)) =€y + e + 20@1 ~
2h — €y — €1, and

(Hy—;Gi)BN(2h—eo—el)—(h—eo—el)—62—-~-—er:h—62—-~-—er.
Thusf%T:]P’B(é]B) with5|B:(’)B€B(’)B(h—62—-~-—er).

In T we have S ~ nr + 77:(M) for some M € Pic(B). Moreover —Kp = n;(—=Kp — h +
es+ -+ e) +2np, and &*(T) = T + E where E = Exc(@) C X. Finally ' = 7*(B) and
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—Ky = 2B, thus Oy (B)p = —Kp and Og(T);r = Or(77:(—Kp)). Then
Ox(T ) = Ox(a(T) - E) == Op(T)r ® Op(—S), and hence:
Ox(~Kg)5 = 0z(—Kz) ® Ox(T) 7 = Or(=Kr — ) @ O (T)
~ Or(mp(—2Kp —h+ex+ - +e) +2nr — 5)
:OT(ﬂ' (—Kp+2h—ey—e; — M) +77\T)'

Therefore — K NG is isomorphic to the tautological class for

ﬁz

T:PB((’)B(—KB—i—Qh—eO — €1 —M) @OB(—QKB — M)),

and we have to show that both linear summands are ample on 5.
We compute M by restricting to 7' N J = B the relation S ~ 17 + m7(M) of divisors in 7. We
have

Nras = (0)rns = (HY Zl G )IB h —ey — e
Now we need to compute the class of SN .Jin T N .J. Since @ C P* is a quadric cone with
vertex qg, () N Jy is a quadric surface containing ¢4, . . ., g,, isomorphic to By via the projection from
¢o. Moreover C' := AN J, is a twisted cubic in J; = P3, and as a curve in Q N Jy = P! x P! it
has degree (2, 1) (see for instance [Har92, Ex. 2.16]). The map ojrny: TN J — @ N J blows-up
q1,---,q- The transformof C'in TN J = Bis SN J, and has class:

U‘*TOJO(Z,I)—CGI —ey— - —e,

~2(eg+Cq)+(e1+Cq)—Cq —ea—--—e, =

=2Cqg, +2¢p+e1—eg—--—e, ~2h—e — - —e,.
We conclude that M ~ 2h —ey —---— e, — (h—ey — -+ —¢,) = h — e;. Finally
—KB+2h—60—€1—MN—KB+h—€0 and —QKB—MN—KB+2h—60—62—"'—€T.
Now h —eq and 2h —eg —eg — - - - — e, are nef (since r < 4) and — K 5 is ample, so both summands
are ample. |

Lemma 7.8. Forr € {0,...,4}, —Kx|g is ample.

Proof. We show that Ng/y ® Og(—Kg) is ample; this implies the statement by Lemma[2.4l Since

S is contained in the open subset where the map W --+ W is an isomorphism, it is equivalent to
show that Ng 3 ® Og(—Ks) is ample.

Let us consider S C 7' C W and the associated normal bundle sequence:
0— NS/T (059 Os(—KS) — NS/W X OS(—Ks) — NT/W|S X OS(—Ks) — 0.

Recall from the proof of Lemma [Z7, whose notation we keep, that O (T) ;7 = Op(n;(—Kp)).
Then we have N 7 = O ()5 = Os(mjs(—Kp)) nefin S, thus Ny, 577, ® Og(—Ks) is ample.
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Still from the proof of Lemma[Z.7] we have that S ~ 7 4 7}.(M) is a tautological divisor for

T = ]P)B(g\B X M) = ]P)B(OB(}L - 61) D OB(2h — € — " — er)).
Both h — e and 2h — e¢; — --- — ¢, are nef in B (since r < 4), thus S is nef in 7', and NS/T ®
Os(—Ks) = Or(S))s ® Os(—Ks) is ample.
From the exact sequence above we conclude that Ng i @ Os(—Kg) is ample. |

Proof of Prop.[Z3l Fori =0, ...,r letus consider the transform 7; C W of the quadric cone in P4
containing A and with vertex g;.

In W wehave T, ~ 2H — 37" (Dj — Di, Y0 Ti ~2(r + )H — (r +2) 377 Dj, —Kw =
5H — 3% Dy, and (r + 2)(—Kw) = (4 — r)H + 3%7_, T;. We also have o*(T;) = T} + E,
where T; C X is again the transform of T}, and o*(— Ky ) = —Kx + E, which gives

(7.9) (r+2)(-Kx) = (4—r)Hx +3> Ti+ (2r + 1)E.
i=0

We have — K x| ample by Lemma [7.8] and in the notation of Lemma[7.7] we have T = TO and
-K X ample. By considering the projection from ¢; instead of ¢o, again by Lemma [7.7] we get
—KXm ample forevery 1 =0,...,r.

Since 0*Opa(1) is nef in W, for its transform H in W we have H - T' > 0 for every irreducible
curve [' not contained in the indeterminacy locus of W --» w.

Let us consider an irreducible curve C € X. If C C E,orif C C T; for some 7, then — K x-C > 0
by what precedes. Assume that C' ¢ E and C' ¢ T; for every 7, and let Cyy C W be the transform
of C.IFCNE=0,then —Kx-C =Ky -Cw >0.If CNE # (), then Cyy NS # (), therefore
Cy 1s not contained in the indeterminacy locus of the map W --» W. Then H x-C=H-Cy >0,
ﬁ- -C' > 0foreveryi, F-C >0, and finally —Kx - C > 0 by (Z.9).

This shows that —K'x is strictly nef. Moreover one can check directly that K5 > 0 (see Table
[1.2)), so that — Ky is big, and it is ample by the base point free theorem. |

H r ‘ PX ‘ Kgl( ‘ K?( - (X)) ‘ by(X) = hQ’Q(X) ‘ bs(X) ‘ hO(X7 —Kx) ‘ x(Tx) H

0] 3 |303 174 3 0 66 4
1] 4 |256 160 8 0 o7 2
21 5 (210 144 12 0 48 0
316|165 126 17 0 39 -2
41 7 121 106 23 0 30 —4

TABLE 7.2. Numerical invariants of the Fano 4-folds from

Remark 7.10. For r = 0, X is the blow-up of W, := Bl,, P* along the transform S, of A. Let
F, C Xybe t}ie transfgrm of the line qoq; C P4, fori = 1,...,7, and let X — X, be the blow-up of
the r curves I, ..., F,. Then X is a SQM of X, compare diagram (3.47).
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7.3. NEW FAMILIES AS IN CASE (b)

We keep the notation as in Let Q C P* be a general quadric hypersurface containing qq, . . ., ¢,
Moreover let M/ C P* be a general cubic hypersurface with double points at g, . . ., ¢, and such that,
if A:= @ N M, then A is a reduced and irreducible surface with Sing(A) = {qo, . .., ¢,}, having
rational double pomts of type A; or A, in g; for every 7; Ais a sextlc (singular) K3 surface.

Let Q and M Qw and My, be the transforms of () and M in W and W respectively; then Q is
contained in the open subset where the map W --» Wis an isomorphism.

The transform S C W of A is a smooth K3 surface, and since S C CA), S is contained in the open
subset where the map W --» Wis an isomorphism. We will show the following.

Proposition 7.11. The 4-fold X is Fano if and only if r € {0,...,4}; in these cases we have
px =r+3€{3,...,7}

Remark 7.12. For » = 0 and px = 3, this Fano 4-fold is the same as [BEMT21, K3-50].

The surface B, is a quartic surface with double points at py, . .., p,, and B is a smooth K3 surface
with B € | — Ky|. We note that, by generality of () and M, A does not contain lines through
qo, - - -, ¢r» the projection from ¢y is finite on A, and mg: S — B is an isomorphism. This also

implies that every fiber of f: X — Y is one-dimensional.

Set i := (0*Opa(1))|s nef and big on S, and set C; := ﬁi‘g. Note that C; is a conic in D; = IP3,
smooth if g; is of type A; for A, reducible if of type As. Moreover C; is a (—2)-curve in S if ¢; is of
type Ay, the union of two (—2)-curves if of type As.

Lemma 7.13. Let r € {0, . ,4}. We have NS/W = Os(2h — Z::O Cl) S7) Os(3h -2 22:0 CZ),
and Ngw is ample.

Proof. Since @ is contained in the open subset where the map W --» Wis an isomorphism, we
have S = Qw N My in W, and Ng/w = Ow (Qw)js ® Ow (Mw ) s = Op(Q) s @ O (M)s.

We note that M has multiplicity 2 at each g;, therefore Qs ~ 2h — >"'_, C; and Mg ~ 3h —
23", C;, which yields the first statement.

We show ampleness of both linear summands of Ng/y. We have —K; = 0*Opa(5) =3 )7 D,
thus

(—Kw)js = (=Kg)is =5h—3) G
=0
is ample in .S, because I is Fano. Hence

3Q)s ~ 3(2h - Zc) =+ (5h - 3i@-)
=0 1=0

is ample in S.

For the second summand, we treat the case » = 4 maximal, the other cases being simpler. We
recall that W is a toric Fano 4-fold, thus it has an explicit combinatorial description, see [Bat99,
3.5.8(iii)]. In particular the cone NE(117) has 20 extremal rays, all small. The loci of 10 of these
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rays R; are the exceptional planes in the indeterminacy locus of the map W --» W, corresponding
to the exceptional lines ¢;; C W given by the transforms of the lines g;q; C P*. The loci L. of
the remaining 10 extremal rays R, are exceptional planes given by the transforms of the planes P,
spanned by q,, ¢s, ¢ in P*. The birational map L. --+ P is a standard Cremona map, and a line
in Ly, corresponds to a conic in P, through q,, g, q..

Let us consider now Oy, (My) € Pic(IW). We have M - l;; = —1in W, thus My, - R; > 0.
On the other hand the previous description of L. implies that My, - R, = 0, therefore My if nef
in W, and it defines a contraction 5: W — W) such that NE(/3) is generated by the 10 extremal
rays R}, and Exc(f) contains all the L. We claim that J is birational and small, with exceptional
locus equal to the union of all the L,,.. Indeed one can check that E?:O D; - R; = —2 for every
1, therefore if I' C W is an irreducible curve contracted by 3, we must have Z?:o D;-T' < 0and
hence I' C D; for some j. We have D; = Bly,, P*, and Bip, is precisely the blow-up of 4 points in
P3, so that I' C L. with a, b, ¢ # j.

Now we show that Sy N Ly, = () for every a, b, c. Set for simplicity P := P,,, C P%. Then
P N Q@ is aconic in P through q,, ¢, g., which must be smooth because the points are not aligned
and, being general, ) does not contain any line g;¢;. On the other hand P N M = @,q, Uqaq: U Gc;
in partlcular set-theoretically P N A = {qa, @, 4.}

Let P C W be the transform of P, and consider the exceptional divisor D Then P N D =T

line in Da =~ 3, and MAT = {zp, x.} where z; := Da N{,; fori = b, c. Moreover Q N1I'is a point,
corresponding to the tangent direction to the conic P N () at q,. For @ = b, c this conic contains g;,

thus q,¢; is not tangent to PN(), and @ﬁf # ;. We conclude that Si; NI" = @ﬁ]\?ﬁf‘ = (), namely
SW N PN D, =0, and finally that SVAV N P = (). Since S is contained in the open subset where the

map W ——» Wisan isomorphism, we still have Sy N Ly = 0 in W. We get Sy N Exc(8) = 0,
therefore (M )|s,, is ample. [

We note that 7' C W is the transform of the cone over A in P4 with vertex qo, and it is disjoint
from the transforms of the lines g;q; for 1 <7 < j < r, thus it is contained in the open subset where

the map W --» Wisan isomorphism.
Lemma 7.14. Forr € {0, ..., 4}, —Ky 5 is ample.

Proof. We have —KX@ = —K)?ﬁ, thus it is enough to show that —K;fo is ample.

Since mg: S — B is an isomorphism, with a slight abuse of notation we still denote by C; the
image of C; C S'in B;fori =1,...,r we have C; = G;g.

The K3 surface S = B has a map to P* with image the sextic A4, and we denote by / the pullback
of Op4(1), and a map to P* with image the quartic By, and we denote by h the pullback of Ops(1);
we have ho h — CO Hy‘B

We have ns = O’“(H El 1 D )|S = OS( Z;:l Cl), and if L := OB(h — E;:l CZ) €
Pic(B), the section S of p: T' — B corresponds to a surjection ¢: £ — L. This implies that:

Or(9)s = Ngjr 2 ker(¢) ' ® L = det(€5) " ® L,
and also that in 7" we have S ~ np + 77.(L — det &p).
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Similarly to the proof of Lemmaf[7.7] we also have:

Bip ~ (—Ky)p = 4hg —2) Ci=4h—4C, —2) C;,

i=1 i=1
’T“lf ~ 15 (B)p — S = —np + (B + det &3 — L),
_KT = W}(— det 8|B) -+ 27)\T7

Ky =Kz + Tz 2+ (B — L) = e + 5 (3h ~3C -y C) and
=0

Ep = O0p®Oplhg— Y C) =05 ®0p(h—Y _Ci).
=0

i=1

We conclude that — i X|F is isomorphic to the tautological class for

(7.15) T%IP’E;(O(?)h—iCi—?)CO) @O(4h—2i0,~—300)>.
1=0

=0

In B we have h - Cy = 0 and C = —2, thus hy - Cy = (h — Cy) - Cy = 2, and Cy C B is the
transform of a conic I'y C By C IP? not containing any p;; we have 'y = Cy, thus I’y is reduced,
either smooth or reducible. Let IT C IP3 be the plane containing 'y, so that g, =T+ I'{, where
I'; is another conic in II, and (T'y)? = —2 in By, in particular I'j, cannot be a double line. Moreover
pi € I, for every i, otherwise we would not have K ~ 0. Let C{, C B be the transform of I,

Set i := h — Cy + C| = ho + C{;in B. We have hy ~ Cy + Cj ~ h' — C(, Cy ~ h' — 2C}, and
Bh— Y Ci=3Co~20 —CH—> C;, 4h—2) Ci—3Cy~3h —2C5—-2> Ci.
i=0 i=1 1=0 =1

Therefore by (Z.15) — K y 7 is isomorphic to the tautological class for:
(7.16) T=Py(O0N - Cj— > C) o OBN - 205 -2 ;).
i=1 i=1

We have h’-C}, = 0 and (h/)? = 6, thus 1 is nef and big, and Riemann Roch yields 2°(B, I') = 5.
Since hg is base point free, the linear system |h’| can have base points only along C{;. On the
other hand H'(B, hy) = 0 by Kawamata-Viehweg vanishing, thus the restriction H°(B,h') —
H°(C, Ocy) = C is surjective, and no point on Cj is a base point.

We conclude that /' is base-point-free; moreover for every irreducible curve I' C B we have
h'-T = (ho+ C{) -T' = 0if and only if I is among C{,, C1, . . ., C... Finally, since the linear system
|ho| = |’ — C}| defines a birational map, |1’| defines a birational map o’ : B — P* with exceptional
locus C{, C4, . .., C,, whose image is a sextic surface A’ with isolated singularities at ¢, := 0’3 (C{)
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and ¢; := 05 (C;) fori = 1,...,r. Thus o} factors through k|z:
75
T T
B~——= By——= A’
where the map By — A’ contracts I'j; to ¢(, and its inverse A’ --» B, is the projection from ¢,. We

conclude that A’ does not contain lines through ¢, and that ¢, . . ., ¢ are in general linear position

in P4, because py, ..., p, are in general linear position in P>. We also note that by generality of A,
pip; ¢ Bo, thus qjq; ¢ A’ forevery i, j with 1 < i < j <.
______ q. P* and its Fano model WW’. Note that since » < 4, these

are toric varieties, and W = /W, W' = W. The transform S’ C W is isomorphic to B, and it
is contained in the open subset where the map W' --> W'is an isomorphism; we still denote by
S’ C W its transform. Then as in the proof of Lemma[Z.13] we see that Op(2h' — C{ — > 7, C})
and Op(3h' —2C) — 2", C;) are both ample on B, and we get the statement by (Z.16). |

Proof of Prop.[Z11l If X is Fano, then px < 7 by Rem. [Z.4and Th. [L.T1I(é7).

Conversely, let us assume that » < 4, and we show that X is Fano. We proceed similarly to
the proof of Prop. Let T; C W be the transform of the cone in P* over A with vertex ¢;, for
1=0,...,7.

In W we have T; ~ 2(2H — E;:o D; — D), YioTi ~ 4(r+1)H — 2(r + 2) Z;:o D;,
—Kw =5H—3%"_(D;,and 2(r + 2)(—Kw) =24 —r)H+ 3> _, T

Finally let i C X be the transform of 7;; then o*(T;) = ﬁ + F, and we get

(7.17) 2(r +2)(—Kx) =2(4—1)Hx +3Y T, + (r — 1)E.
=0

Since S is a K3 surface and Kg ~ 0, by Lemmas [Z.13] and 2.4 we have that — K x| is ample.
Moreover in the notation of Lemma [Z.14] we have T' = Ty and — K X ample. By considering
the projection from g¢; instead of ¢y, again by Lemma we get that — K X is ample for every
1=0,...,7.

Letr € {1,...,4}. Then as in the proof of Prop.[Z.5] using (Z.17) we show that — Kx is strictly
nef. Moreover K% > 0 (see Table[Z3), which gives the statement. The case r = 0 is simpler and is

left to the reader. n
L7l px | Kx | KX - co(X) [ A**(X) [ RV3(X) [ 03(X) [ (X, —Kx) | x(Tx) |
0| 3 | 180 144 22 1 0 43 —18
1| 4 | 150 132 24 1 0 37 —17
21 5 | 121 118 27 1 0 31 —16
31 6 | 93 102 31 1 0 25 —15
41 7 | 66 84 36 1 0 19 —14

TABLE 7.3. Numerical invariants of the Fano 4-folds from §[7.3|
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7.4. NEW FAMILIES WITH 0x = 2 FROM CASE (a)

We keep the notation as in Let A C P* be a general quadric surface containing qi, . . ., ¢, and
not ¢, in particular A is contained in a hyperplane not passing through q; recall that A = P! x P!,
Then S C W is a del Pezzo surface with pg = r + 2, and it is disjoint from the transforms of the

lines ¢,q;, thus S is contained in the open subset where the map W --+ W is an isomorphism. We
will show the following.

Proposition 7.18. The 4-fold X is Fano if and only if r € {0,1,2}. In these cases we have px =
r+3€{3,4,5}and §x = 2.

Remark 7.19. For » = 0 and px = 3, this Fano 4-fold is the same as [Sec23, X17,2].

The surface By = A is a smooth quadric surface through p, ..., p,, and B is a smooth del Pezzo
surface with pp = r 4+ 2 and —Ky = 2B (this is the same as in §[7.2); moreover S = B.

We note that 7' C W is the transform of the quadric cone Q C P*, containing A, with vertex .
Then T’ is disjoint from the transforms of the lines g;¢; for 1 < ¢ < j < r, thus it is contained in the

open subset where the birational map W --» W is an isomorphism.
Lemma 7.20. — K X|F IS ample.

Proof. We treat the case » > 0, the case r = 0 being already in [Sec23], see Rem. We have
—KX@ = _K)?\T’ thus it is enough to show that —K;Qf is ample.

We follow the same notation for B as in the proof of Lemmal[7.7] that is we have B = Bl,,,
Bl pis P? with exceptional divisors eg, ey, ..., e, over P2, Let h € Pic(B) be the pullback of
Op2(1); then we have T = T’ = Pp(&p) with g = Op ® Og(h —ey — -+ - —¢,).

We can choose the hyperplane J, C P* containing ¢i, ..., . as the hyperplane containing A.
Then S C W is the complete intersection of J and T, hence nr = Or(Jir) = Op(S). By
construction and adjunction we have

—K)N(ITN —K’VVIT—S%WFT(—QKB—(}?/—GQ——er))+77|T

and —2Kp — (h—ey— -+ —¢,) = —Kp + 2h — ey — e, thus —Kgﬁ is a tautological divisor of
T~ Pu(O(—Kp+2h—ey—e1)®O(—2Kp)). We have that —K 5 and 2h — ey —e; are respectively
an ample and a nef divisor on B, thus their sum is ample on B, and this concludes the proof. [
Lemma 7.21. —Kxg is ample if and only if r € {0, 1,2}.

Proof. Again we treat the case » > 0, the case r = 0 being already in [Sec23]], see Rem. We
show that Ng;, @ Ow (—Kw)s is ample if and only if r € {0, 1, 2}; this implies the statement by
Lemma[2.4]l Since S is contained in the open subset where the map W --» W is an isomorphism,
it is equivalent to work with NSV/W ® O (—K57) -

We keep the same notation as in the proof of Lemma To compute N /7> We note that S'is
the complete intersection of ./ and 7', so that

Ngjiw = Os(Jis) ® Os(Tjs) = Op(h —e; — -+ —e;) ® Op(—Kp).
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By adjunction — K o = —Kg + det/\/’s/w ~ _9Kp-+h—ey—--— e, so that
NS\?//W i (—K)is = Op(—2Kp) © Op(—Kp +h —ey — -+ —e;).

Now —Kp is ample, and both h and h — e, are nef, thus /\/’v ® O (—K5))s is ample if
r € {1,2}. If instead r > 3, let I' C B be the transform of the line through the images of e, and eg
inP% thenl' ~h—ey;—esand (—Kp+h—ey—--+—¢,)-T =0, thus/\/g/w ® O (— K 18
not ample. |

Proof of Prop. If X is Fano, then r» < 2 by Lemma[Z.21]

For the converse, we set r = 2, and show that X is Fano. The proof of the ampleness of — K x for
r < 1is similar and easier, and we omit it.

We note that DO C W is the section of 7 Correspondmg to the projection of Oy ® Oy (Hy — G —
Gs) onto Oy then DoNJ = () and —Ky ~J+ Dy + 2T.

Let ;; C W be the transform of the line g;g; C P*. The map W --» W is the flip of £y, and
lp 2, while the map W -—s W is the flip (of the transform) of ¢ », which is an exceptional line
contained in .J and disjoint from S. Thus DO is contained in the open subset where the birational
map W --» Wisan isomorphism. We denote by J' C W the transform of J C W, so that J --> J'
is the flop of ¢y 5, and — Ky ~ J'+ Dy + 2T.

Lastly, S C W is the complete intersection of .J' and T, and so

(7.21) —Kyx ~J + D)+ 2T +2F,

where .J' , D{, C X are the transforms of J', Dy C W.

We have — Ky ample by Lemma [Z.20/and —K x|z ample by Lemma [Z.21] and we show here
below that —K'x|p; and — Ky 7 are ample as well. Then as in the proof of Prop. (7.3l using (Z.21)
and that TV is Fano, we show that — K'x is strictly nef. Finally, one can check directly that K35 > 0
(see Table [Z.4), which gives the statement.

7.22. _KX|D6 is ample.

In fact Dy is disjoint from J, thus from S, therefore _KX|D6 = _KW\EO ~ 3Hy — G1 — Gy
ample on Y = Bl,, ,,, P? (this can be checked directly, as Y is toric, and NE(Y") is generated by the
classes of the lines C¢;; C G fori = 1, 2, and of I'; » transform of the line p1p5).

7.23. —KX|], is ample.

We have J' = J' =2 Y’ where Y --» Y is the flop of I'; 5. Again Y is toric, and NE(Y”) is
generated by the classes of the flopping curve I and of the transform F; of a line through p; in P3,
fori =1, 2.

Moreover —KX‘j, = — Ky — S is the transform of _KWIJ — S =5Hy —3(G1 + Gs) —
3Hy — 2(G1 + Gz) Since (3Hy — 2(G1 + Gz)) . FLQ = -1, this gives KX F = 1fori = 1 2
and — Ky - IV > 0, hence —KX‘j, is ample.

Lastly, we show that dx = 2. It is not difficult to see that codim/\fl(jo, X) = 2, thus 6y > 2.
Moreover X cannot be a product of surfaces, because IV is not (see for instance [Rom19a, Lemma
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2.10]), thus 6x < 3 by Th.[L6l If §x = 3, then px > 5 by Th.[L7 therefore px = 5 and r = 2. By
classification we see that there are no correspondences between the numerical invariants of X and
those of Fano 4-folds with § = 3 and p = 5 (see Table [Z.4] and [CR22| Table 3.4]). Thus dx = 2
and this concludes the proof. |

H r ‘ PX ‘ Kgl( ‘ K?( - (X)) ‘ by(X) = hQ’Q(X) ‘ bs(X) ‘ hO(X7 —Kx) ‘ x(Tx) H

0] 3 |350 188 4 0 75 7
1| 4 |303 174 7 0 66 3
2| 5 | 257 158 11 0 o7 3

TABLE 7.4. Numerical invariants of the Fano 4-folds from §[7.4]

7.5. NEW FAMILIES WITH AN ELEMENTARY RATIONAL CONTRACTION ONTO A 3-FOLD

Let Z, C P? x P be a general divisor of type (1,1), and my: Zy — P? the projection. Then Z; is
a Fano 4-fold with pz, = 2, and there is a point yy € P? such that 7, is smooth with fiber P! over
P? < {yo} and wgl(yo) >~ P2, see [Kac97, Ex. 11.1].

Letr € {0,...,7} and let 7 — Z be the blow-up of r general fibers of my; note that m induces

an elementary contraction 7: 7Y = = Bl P3 (in fact 7 CP?x Y), and that there is y € Y
such that 7 is smooth with fiber P! over Y \ {y} and 7! (y) = P2

Proposition 7.24. Forr € {0, ..., 4} there is a SOM Z --» Z such that Z is a smooth Fano 4-fold
withpy; =1+ 2 € {2,...,6}, and Z --+ Y is an elementary contraction.

Question 7.25. Does Prop. hold for r =5,6,7 too?
We note that Prop. [7.24] cannot hold for » > 8 by Th.[L.3l

Remark 7.26. For r = 2 and py; = 4, the Fano 4-fold Z has the same numerical invariants as
[FTT24, Fano 4-7] (see Table[7.3). However we do not know whether the two 4-folds belong to the
same family.

Proof of Prop. Let X be the Fano 4-fold introduced in with 7 € {0,...,4} and px =

r+3 € {3,...,7}; we keep the same notation as in The divisor ' C X is a P*-bundle over
B=~Bl, ., By and By =P x P

Set r = 4, so that px = 7. Let us consider f: X — Y and its two factorizations in elementary
contractions (see diagrams (3.7) and (Z.3)):

X-->X-"%w

| IN

W' == W ——>Y
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By Lemma 5.6, o is an elementary contraction of type (3,2) with Exc(a/) = T, and W is Fano.
Recall from p. 33 that every fiber of f over Y \ {y} is one-dimensional, while f~!(y) = Fy, and
& f-1(y) is a P'-bundle. Therefore &'(f~*(y)) = IP?, every non-trivial fiber of & has dimension one,
and the same holds for o/. By Th. 2.6 W’ is a smooth Fano 4-fold with py» = 6, and o’ is the
blow-up of of a smooth irreducible surface S C W’. We have S’ = B, so that S’ is a del Pezzo
surface with ps; = 6. We also note that 7': W/ — Y is smooth with fiber P! over Y \ {y}, and
(') (y) = P2. We are going to show that W’ = Z (for r = 4).
We have a diagram like (5.47) (see also Rem. [Z.10):

X————>)Z'————>)?—U>X0
o a’ (o))
W =W =W — W} |f Wy =Bl P* — P*
AN K W‘/’J/ /
Y i P3
where oy blows-up the 4 smooth fibers F; := 75 (p;), i = 1,...,4, aj is the blow-up of a surface

S, = By = P! x P!, and o blows-up the transforms of F;, i = 1,...,4 (see Lemma[5.46}; we are in
case (a), with By, F, being E, T).

We note that T/ is smooth, pyy = 2, and W is Fano by Lemma[5.49 Moreover 7, : W — P? is
a scroll in the sense of adjunction theory, namely there exists L € Pic(IW}) such that L - F' = 1 for
a general fiber F' of 7(,. Indeed, let us consider the transform D} C W] of the exceptional divisor
Dy C W, of the blow-up W, — P*. Since the general fiber of 7, is contained in the open subset
where both o and oy are isomorphism, we still have Dy, - F' = 1 in Wy, and we set L := Oy (Dy).

Smooth Fano 4-folds with p = 2 and with a scroll structure over P> have been classified in
[Lan98]], there are 18 possibilities. To identify W/, we compute its numerical invariants, and we get
Ky, 4, = 432 (see Table [Z.3). A simple computation of the anticanonical degrees of the 18 Fano 4-
folds from [Lan98] shows that there is only one case with K4 = 432, and it is precisely Zy C P2 xP3
a general divisor of type (1, 1) (see [Lan98| §9.1.2, case 5]). We conclude that Z = W’ so it has a
SQM to a smooth Fano 4-fold Z = WW’. This shows the statement for » = 4 (and r = 0).

For smaller r the statement follows from the case r = 4. Indeed set Z = Z,.. Forany r € {1,2,3}
there is a birational map Z, --» Z, given by a SQM followed by the blow-up of 4 —r smooth curves
(transforms of fibers of 7my), where Z,. is a smooth Fano 4-fold which is a SQM of Z, = W.

We conclude that, for any » € {0,...,4}, T C X is the exceptional divisor of the blow-up
o' : X — Z of asmooth irreducible surface S’ C 7, where S’ is a del Pezzo surface with pg: = r+2,
and S’ = P! x P! forr = 0.

We use o’ to compute the invariants of Z from those of X (note that for » = 0 we have Z = 7, =
W{). By the proof of Lemma[7.7] we have that

Ox(~T) ;7 = Ox(~T) 7 = Or(nr + 73(Kp + M))
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is the tautological class for

,_ZA:‘: ]P)B(OB(—2}L+€0 +€2 + "'+€r) @OB(—h+€0))

We conclude that Ng/ )z =2 Op(2h —eg — ey — -+ - — €,) @ Op(h — €p), from which we compute
cs(Nsiyz) = 1, (Kz9)* = 30 — 4r, K¢ - Kzg = 16 — 2r, and finally using Lemma 2.4] and
[CCF19, Lemma 6.25] the invariants in the table below. [ |

[ pz [ KL K2 - oo(Z) [04(2Z) = W*2(2) [ 05(Z) [ W°(Z, —K2) [ x(T7) |

0] 2 |432 204 3 0 90 12
1] 3 |368 188 3 0 78 9
214 1305 170 8 0 66 6
315|243 150 12 0 o4 3
41 6 | 182 128 17 0 42 0

TABLE 7.5. Numerical invariants of the Fano 4-folds from §7.3

7.6. OTHER EXAMPLES

Example 7.27 (Toric Fano 4-folds). We recall that toric Fano 4-folds are classified, see [Bat99,
Sat00]. In the range p < 5, there are several examples with 6 = 2, or with a rational contraction
onto a 3-fold. For p = 6 the only example with § = 21is .S x S, S = Bly,,, P2

Example 7.28 (Products with P!). There are 13 Fano 3-folds Y with py = 4 (see [IP99, §12.5] and
[MMO3]]), among which 4 are toric; they have Lefschetz defect oy = 2 (see [Cas23, Lemma 13]).
For each such Y, X = P! x Y is a Fano 4-fold with px = Hand dxy = 2 (see Rem. .

Example 7.29. Some other examples of Fano 4-folds with 6 = 2 and p € {4, 5} can be obtained
as follows. Consider the classification of Fano 4-folds with 6 = 3 (Th. [L.7ZL [CRS22| Prop. 1.5]).
Excluding the toric ones, and products, there are four families, with p € {5,6}. These families are
obtained by blowing-up a P?-bundle Z — T, where T is P?, P! x P!, or I, along three pairwise
disjoint smooth irreducible surfaces S; fori = 1,2, 3, where S, and S; are sections of the P2-bundle,
and S is a double cover of the base 7. By blowing-up Z only along S; and S;, ¢ € {2, 3}, we geta
(non-toric) Fano 4-fold X with px = pr +3 € {4,5} and §x = 2.

Acknowledgements. C.C. has been partially supported by PRIN 2022L34E7W “Moduli spaces and birational
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