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Dung’s Argumentation Framework (AF) has been extended in several directions, including 
the possibility of representing uncertainty about the existence of arguments and attacks. 
In this regard, two main proposals have been introduced in the literature: Probabilistic 
Argumentation Framework (PrAF) and Incomplete Argumentation Framework (iAF). PrAF 
is an extension of AF with probability theory, thus representing quantified uncertainty. In 
contrast, iAF represents unquantified uncertainty, that is it can be seen as a special case 
where we only know that some elements (arguments or attacks) are uncertain. In this 
paper, we first address the problem of computing the probability that a given argument is 
accepted in PrAF. This is carried out by introducing the concept of probabilistic explanation 
for any given (probabilistic) extension. We show that the complexity of the problem 
is FP#P-hard and propose polynomial approximation algorithms with bounded additive 
error for PrAFs where odd-length cycles are forbidden. We investigate the approximate 
complexity of the related FP#P-hard problems of credulous and skeptical acceptance 
in PrAF, showing that they are generally harder than the problem of computing the 
probability that a given argument is accepted. Next we consider iAF and, after showing 
some equivalence properties among classes of iAFs, we study iAF as a special case of PrAF 
where uncertain elements have associated a probability equal to 1/2. Finally, given this 
result, we investigate the relationships between iAF acceptance problems and probabilistic 
acceptance in PrAF.

© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

As humans, we use argumentation to explain our reasons for or against claims in our discussions, persuade other peo-
ple, and derive conclusions in a step-wise fashion. Most of the situations where argumentation takes place are inherently 
characterized by the presence of controversial information. Enabling automated systems to process such kind of informa-
tion, much in the same way as organized human discussions are carried out, is an important challenge that has deserved 
increasing attention from the Artificial Intelligence community in the last decades. This has led to the development of an 
important and active research area called formal argumentation [2–4], that has been explored in several application contexts, 

✩ This paper is a substantially revised and expanded version of [1].
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Fig. 1. Probabilistic argumentation framework modeling the robbery case.

e.g. legal reasoning [5], decision support systems [6], E-Democracy [7], healthcare [8], medical applications [9], financial 
analysis [10], explanation of results [11,1], as well as multi-agent systems and social networks [12].

In particular, an abstract Argumentation Framework (AF) is a simple, yet powerful formalism for modeling disputes 
between two or more agents [13]. An AF consists of a set of arguments and a binary attack relation over the set of arguments 
that specifies the interactions between arguments: intuitively, if argument a attacks argument b, then b is acceptable only if 
a is not. Hence, arguments are abstract entities whose role is entirely determined by the interactions specified by the attack 
relation.

Recently, there has been an increasing interest in extending argumentation frameworks to manage uncertain information. 
This has been carried out by either considering quantified uncertainty about the existence of arguments and attacks, thus 
combining formal argumentation with probability theory, or considering unquantified uncertainty by explicitly denoting the 
elements (arguments and attacks) which are uncertain. In fact, Probabilistic Argumentation [14] can be viewed as part of the 
several proposals that have been made in the last decades for extending reasoning tasks in AI frameworks with probabilities. 
These include for instance Probabilistic SAT (PSAT) [15], Probabilistic Logic [16], Probabilistic Logic Programming [17], and 
Probabilistic Databases [18].

One of the most popular approaches based on probability theory for modeling the uncertainty is the so called constella-
tions approach [19–23], where alternative scenarios, called possible worlds, are associated with probabilities. In particular, in 
a Probabilistic Argumentation Framework (PrAF) [23–29] a probability distribution function (PDF) on the set of possible worlds 
is entailed by the probabilities that are associated with arguments and attacks.

Consider for instance the following scenario (inspired by an example in [30] that has been then revisited in [24]), where 
the defense attorney of John and Peter wants to model the situation of a robbery case involving his clients. The arguments 
of the case are the following, where Harry is a potential witness:

• a = John says he was not in town when the robbery took place, and therefore he claims to be innocent.
• b = Peter says he was at home watching TV when the robbery took place, and therefore he also claims to be innocent.
• c = Harry says that he is certain to have seen John outside the bank just before the robbery took place, and he also 

saw a second person outside the bank that could be Peter with probability 20%.

Considering what the three people have declared, the lawyer knows that nobody accused Harry to be involved in the 
robbery, whereas Harry could testify against both John and Peter. However, he is also confident that the probability that 
Harry will testify is 80% since he heard that Harry is a bit reluctant to testify. This can be modeled by means of an 
abstract argumentation framework where arguments and attacks represent probabilistic events, as shown in Fig. 1 where 
probabilities of arguments and attacks are specified only if they are less than 1. Herein, argument a (resp. b) represents the 
fact that John (resp. Peter) is innocent, whereas argument c represents the fact that Harry testifies. Moreover, the attack 
from c to a (resp. from c to b) represents the that fact that Harry blames John (resp. Peter). The probability of a and b is 
1 as they are assumed to be certain, while a probability of 0.8 is associated to c. Moreover, associating probability 1 to the 
attack (c, a) means that argument c attacks a with certainty, while associating probability 0.2 to the attack (c, b) means 
that c attacks b with a degree of uncertainty represented by that probability, since Harry is sure he saw John but he is 
not sure he saw Peter. As it will be clear in what follows, the lawyer can conclude that John (resp. Peter) will be judged as 
innocent with probability 20% (resp. 84%).

Intuitively, PrAF is a combination of two powerful approaches to reasoning and decision making: probabilistic reasoning 
and abstract argumentation. Probabilities are assigned to arguments and attacks to indicate their degree of uncertainty. One 
of the benefits of probabilistic abstract argumentation is its ability to handle quantified uncertainty in the analysis. In fact, 
PrAF can help to model and analyze situations where there is uncertainty by capturing both the relationships between 
arguments and the uncertainty degrees of arguments and attacks. In this regard, it is worth mentioning that the need for 
probabilistic argumentation has been also supported by some empirical evaluations [31].

The next example introduces a PrAF that will be often used in the rest of the paper to explain new concepts and 
definitions.

Example 1. Consider a PrAF � = 〈{fish, meat, white, red}, {(fish, meat), (meat, fish), (meat, white), (white, 
red), (red, white)}, {fish/0.6, white/ 0.8}〉, whose corresponding graph is shown in Fig. 2, where nodes and edges 
represent arguments and attacks, respectively, and probabilities different from 1 are specified nearby them. For the sake 
of brevity, we do not specify the probabilities of certain elements in � (all the other elements different from fish and 
white have probability 1). Intuitively, � describes what a person is going to have for lunch as follows. They will have 
either fish or meat, and will drink either white wine or red wine. However, if they will have meat, then they will not 
2
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Fig. 2. Probabilistic argumentation framework � of Example 1.

Fig. 3. Possible worlds of the probabilistic argumentation framework � of Example 1.

drink white wine. Furthermore, the probability that fish is available is 0.6, whereas the probability that white wine is 
available is 0.8. �

In this paper we do not address the problem of assigning probabilities to arguments or attacks, as instead done e.g. 
in [22,32], and assume they are given.

Several argumentation semantics—e.g. grounded (gr), complete (co), preferred (pr), stable (st), and semi-stable
(sst)—have been defined for AFs, leading to the characterization of σ -extensions, which intuitively consist of the sets 
of arguments that can be collectively accepted under semantics σ . Consider for instance the deterministic version of the 
PrAF in Example 1, obtained by assuming that all arguments are certain (i.e. they have probability 1). Considering the 
preferred semantics, the pr-extensions are E1 = {fish, white}, E2 = {fish, red}, and E3 = {meat, red}.

The semantics of a PrAF is given by considering all possible worlds (i.e. AFs) obtained by removing consistent subsets of 
the probabilistic elements. Here, for consistent subset we mean any subset of probabilistic elements (arguments and attacks) 
whose deletion from the initial framework results in an AF (for instance we cannot delete an argument without also deleting 
the attacks towards or from that argument). Every possible world has associated a probability value derived from the 
probabilities of the elements that have been kept or removed. Moreover, every possible world admits a set of σ -extensions. 
As we shall see, removing elements with probability 1 makes no sense as it would give rise to an AF which would make 
no contribution in the calculation of the probability of acceptance of arguments or of the existence of extensions, being its 
probability (of existing) equal to 0. As shown in the next example, the probability of a possible world w is computed by 
multiplying the probabilities of the elements occurring in w and the complement to 1 of the probabilities of the elements 
not occurring in w (see Equation (1) for the formal definition of probability of a possible world).

Example 2. Continuing with Example 1, the (non-zero probability) possible worlds of � (see Fig. 3) are as follows, where 
arguments are denoted by their initials for the sake of brevity:
• w1 = 〈{f, m, w, r}, {(f, m), (m, f), (m, w), (w, r), (r, w)}〉;
• w2 = 〈{f, m, r}, {(f, m), (m, f)}〉;
• w3 = 〈{m, w, r}, {(m, w), (w, r), (r, w)}〉;
• w4 = 〈{m, r}, {}〉.

For instance, w1 is the AF obtained from � by keeping all the arguments and attacks, while w2 is obtained from �
by removing white and, consistently with this, the attacks towards/from it. The probability of a possible world wi is 
obtained by multiplying the probabilities P (a) of each argument a occurring in wi and the probabilities (1 − P (b)) of every 
argument b not occurring in wi . For instance, the probability of world w2 is P (fish) · P (meat) · (1 − P (white)) · P (red)

= 0.6 · 1 · (1− 0.8) · 1= 0.12. Thus, the probabilities of w1, w2, w3, and w4 are 0.48, 0.12, 0.32, and 0.08, respectively 
(hence they are called non-zero probability possible worlds). Since w1 coincides with the deterministic version of �, its 
pr-extensions are E1, E2, and E3 given earlier. The pr-extensions of w2 are E2 and E3, while w3 and w4 admit only E3
as their preferred extension. �

Interesting problems recently investigated in the context of probabilistic argumentation are probabilistic credulous accep-
tance (PrCA) and probabilistic skeptical acceptance (PrSA) [33,26]. In particular, given a PrAF � whose set of arguments is A, 
a goal argument g ∈ A and a semantics σ , PrCA is the problem of computing the probability PrCAσ

�(g) that the goal g is 
credulously accepted, that is, there is a possible world w of � such that g belongs to a σ -extension of w . Moreover, PrSA is 
3
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the problem of computing the probability Pr SAσ
�(g) that the goal g is skeptically accepted, that is, g is credulously accepted 

and belongs to all σ -extensions of w (the probabilities PrCAσ
�(g) and Pr SAσ

�(g) are formally introduced in Definition 2).
However, the answer to these problems does not reflect our intuition of probability that a goal argument is accepted 

under a given semantics. For instance, considering the PrAF � of Fig. 2, the probability that meat is credulously accepted 
under preferred semantics is 1, whereas the probability that meat is skeptically accepted under preferred semantics is 0.4. 
However, the fact that PrCApr� (meat) = 1 does not mean that the person in our example will surely have meat in any 
scenario (i.e. possible world). In fact, even if meat belongs to at least one preferred extension of every world of �, we 
expect that the probability of acceptance of meat should be lower than 1. Indeed, in any possible world, the presence of 
multiple extensions is an additional source of uncertainty that should be taken into account.

To better grasp the issue behind the probability of credulous acceptance, consider the following AF (where all elements 
are certain): � = 〈{fish, meat}, {(fish, meat), (meat, fish)}〉 saying that fish and meat are mutually exclusive. 
Again, the probability that a person will have meat is 1, under probabilistic credulous acceptance, when considering the 
preferred semantics, whereas we believe that the expected answer should be 0.5. Moreover, if we consider AF w1 of 
Example 2 (that can be obtained from � by adding arguments white and red and attacks (white, red), (red, white)

and (meat, white)) we expect that the probability of having meat does not change.
With the aim of providing more intuitive answers for probabilistic acceptance, in this paper we investigate a new prob-

lem that we call Probabilistic Acceptance (denoted as PrA, or PrA[σ ] when considering a given semantics σ ), i.e. given a PrAF 
� and a goal argument g , compute the probability that g is accepted under semantics σ ∈ {gr, co, pr, st, sst}. In our 
framework, acceptance still relies on σ -extensions but, differently from credulous acceptance, we get rid of the assumption 
that no uncertainty exists at the level of the extensions of a world (i.e. AF). In more detail, PrA[σ ] implicitly assumes that 
a PDF over the set of σ -extensions of any AF (and thus of any possible world of PrAF �) is defined. Thus, a concrete in-
stance of PrA is obtained after defining such a PDF. This can be carried out by exploiting the concept of explanation for an 
extension.

In general, in abstract argumentation an explanation for an extension E can be viewed as a (possibly minimal) subset 
S ⊆ E such that, by assuming that the elements in S are acceptable, it turns out that all elements in E \ S are “univocally” 
determined as acceptable (w.r.t. the underlying semantics). For instance, considering AF w1 of Example 2, for the preferred 
extension E = {meat, red}, the set S1 = {meat} is an explanation for E , whereas the set S2 = {red} is not. In our per-
spective, explanations are sequences of “choices” to be made to justify how an extension is obtained and they provide a 
tool to assign probabilities to extensions. Integrating explanations in argumentation systems is important for enhancing the 
argumentation and persuasion capabilities of software agents [34–36]. For these reasons, several researchers have explored 
how to deal with explanations in formal argumentation [37–39].

In this paper, we explore an instantiation of PrA[σ ] where the PDF over the set of σ -extensions of a world relies on the 
concept of explanation. We call this problem Explanation-based Probabilistic Acceptance, and denote it by PrEA (and PrEA[σ ]
for a specific semantics σ ). Intuitively, an explanation for an σ -extension E is a sequence of arguments occurring in E that 
“justify” E . Every explanation is associated with a probability entailed by the possible choices that can be made when 
building it. These choices must be consistent with an ordering entailed by the strongly connected components of the given 
AF, and they are used to guide the construction of an extension. The sum of the probabilities of the explanations for an 
extension E gives the probability of E . Thus, we still assign to each possible world w of � a probability as in the standard 
way, but in addition propose to distinguish among extensions of a given world w by associating with them a probability 
based on explanations.

Example 3. Continuing with Example 1, take for instance the possible world w1 having probability 0.48. As shown in 
Example 2, w1 has three pr-extensions, namely E1, E2 and E3. As we shall see, in this case, for each extension there is 
only one explanation. In particular, X1 = 〈fish, white〉 is the explanation for E1. The intuition of explanation X1 is that, 
considering that the AF consists of two strongly connected components, we first choose fish (with probability 1/2 as 
we can only choose between fish and meat) in the first component and determine that meat cannot belong to the 
extension; then we choose white (with probability 1/2 as we can only choose between white and red) in the second 
component, obtaining that X1 has probability 1/2 · 1/2= 1/4. Analogously, X2 = 〈fish, red〉 is the only explanation for 
E2 with probability 1/2 · 1/2= 1/4. Considering explanation X3 = 〈meat〉 for extension E3, we have that we first choose 
meat with probability 1/2 as it belongs to the first component, and we can only choose between fish and meat. Next, 
since we determine that fish and white cannot belong to the extension, whereas red does, the probability of X3 turns 
out to be 1/2. Since the probabilities of X1, X2 and X3 are 1/4, 1/4 and 1/2, respectively, the probabilities associated 
with E1, E2 and E3 in the world w1 are 1/4, 1/4 and 1/2, respectively. Moreover, since E1 is not an extension of any 
other possible world, the probability of E1 in � is 1/4 · 0.48= 0.12. In Example 15, we will give the probabilities of the 
pr-extensions of every possible world of the probabilistic AF � of Example 1, from which it turns out that the answer to 
PrEA[pr] for meat is 0.70, while that for fish is 0.30. �

Another argumentation framework extending AF, that has received an increasing attention in the last years and is tightly 
related to PrAF, is that of incomplete AF (iAF) [40]. An iAF consists of arguments and attacks, where some of them are 
uncertain. With respect to PrAF, in iAF we only know that some elements are uncertain. Thus, an iAF can be viewed as a 
4
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Fig. 4. iAF � of Example 4.

directed graph with certain and uncertain elements (from the graphical point of view, uncertain arguments and attacks will 
be depicted by using dashed lines).

The semantics of an iAF is given by considering all completions, i.e. AFs obtained by removing consistent subsets of the 
uncertain elements, and for each completion its extensions under a given semantics σ .

Example 4. The iAF derived from the PrAF of Example 1, by replacing the arguments with probability less than 1 with 
uncertain arguments, is shown in Fig. 4 (where dashed nodes represent uncertain arguments).

For this iAF, there are 4 completions that correspond to the possible worlds w1, w2, w3 and w4 of Example 2. �
Acceptance problems have been recently extended to iAF: an argument g is possibly credulously (resp. skeptically) accepted 

under semantics σ if there exists a completion where it is credulously (resp. skeptically) accepted under σ ; an argument is 
necessarily credulously (resp. skeptically) accepted under semantics σ if for all completions it is credulously (resp. skeptically) 
accepted under σ . In the second part of the paper, we introduce the concept of (explanation-based) probabilistic acceptance 
for iAF, extending our proposal for PrAF to the case of iAF.

Contributions. We make the following main contributions.

• We first formally define the problem of Probabilistic Acceptance PrA[σ ], for any semantics σ ∈ {gr, co, pr, st, sst}. 
Given a PrAF � and an argument g , the problem asks the probability that g is accepted in �, by means of some fixed 
PDF over the σ -extensions of the possible worlds of �.

• We introduce our notion of explanation, and exploit it to provide a PDF over the σ -extensions of an AF. This leads to 
an instantiation of PrA[σ ], dubbed PrEA[σ ].

• We investigate the complexity of PrA[σ ], showing that it is FP#P-hard for σ ∈ {gr, co, pr, st, sst} even for acyclic 
PrAFs and regardless of the way a PDF is defined on σ -extensions. This entails that PrEA[σ ] is as hard as the problem 
of computing credulous and skeptical acceptance (i.e. PrCA[σ ] and PrSA[σ ]) [33]. Moreover, we show that PrEA[σ ]
remains FP#P-hard even for AF (PrAF where all arguments and attacks have probability 1) for σ ∈ {co, pr, st, sst}, 
while PrEA[gr] is polynomial (it is polynomial also if σ ∈ {co, pr, st, sst} and the AF is acyclic). These results are 
summarized in Table 3.

• To deal with the intractability of PrA (and of PrEA), we propose an additive error approximation algorithm for PrEA[σ ]
that works for (i) PrAFs without odd-length cycles and semantics σ ∈ {co, pr, st, sst}, and (ii) general PrAFs (without 
the restriction on odd-length cycles) and grounded semantics.

• We show that our approximation results are the best that can be achieved (under standard theoretical assumptions) 
for σ ∈ {gr, pr, st, sst}, since (i) no relative error approximation algorithm exists for PrA[σ ] (and thus for PrEA[σ ]) 
for σ ∈ {gr, co, pr, st, sst}, even considering acyclic PrAFs, and (ii) if we admit odd-length cycles, then no additive
error approximation algorithm exists for PrA[σ ] (and thus for PrEA[σ ]) with σ ∈ {pr, st, sst}. Table 1 summarizes 
the approximability results for PrEA[σ ].

• We investigate the approximate complexity of PrCA and PrSA. As for the case of PrEA, no relative error approximation 
algorithm exists for PrCA[σ ] and PrSA[σ ] with σ ∈ {gr, co, pr, st, sst}, even considering acyclic PrAFs. The main 
difference with PrEA lies in the approximability via additive schemes. In particular, we can show that PrCA and PrSA
are harder than PrEA in this regard, as no additive error approximation algorithm exists for PrCA[σ ] and PrSA[σ ] with 
σ ∈ {pr, st, sst} even when PrAFs have no odd-length cycles.

• We also study the case where probabilities are given by intervals, instead of specific values. In this case the probabilistic 
acceptance problem gives as a result an interval. We show that all the complexity results still hold for PrAFs where 
probabilities are given by intervals.

• Finally, we study the probabilistic acceptance problem for iAFs. After presenting some equivalence transformations be-
tween iAFs, we introduce the probabilistic acceptance problem for iAFs. Notably, the complexity and approximation 
results obtained for PrAF carry over to iAF. Using the equivalence result between iAF, we investigate the relationships 
between iAF and PrAF and relate the (possible/necessary credulous/skeptical) acceptance problems in iAF to probabilistic 
acceptance in PrAF.

We believe that this paper is relevant for the AI community as it introduces the concept of probabilistic acceptance for 
AF and an approach for defining the acceptance value of an argument. Moreover, we provide a concrete solution to the 
probabilistic acceptance problem by introducing a way for defining the probability of extensions and then our concept of 
explanation for a given extension.

Plan of the paper. The rest of the paper is organized as follows. We first recall the abstract argumentation framework 
(Section 2) and the probabilistic argumentation framework (Section 3). In Section 4 we introduce explanations for extensions 
5
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Table 1
Approximability of PrEA[σ ], depending on the semantics 
σ and on whether the input PrAF admits odd-length cy-
cles. Non-existence (resp., existence) of an FP(A)RAS, i.e. a 
Fully Polynomial-time (Additive) Randomized Approxima-
tion Scheme, is denoted with × (resp., �) in the corre-
sponding column.

General PrAF PrAF w/o odd cycles

FPRAS FPARAS FPRAS FPARAS

gr × � × �
co × open × �
pr × × × �
st × × × �
sst × × × �

and define the probability of explanations, extensions and arguments, under a given semantics. Then, in Section 5, we 
investigate the exact and approximate complexity of PrA and PrEA, and introduce algorithms for classes of PrAFs where 
an additive approximation algorithm for PrEA exists. We also investigate the approximate complexity of PrCA and PrSA
and show that no additive error approximation algorithm exists under semantics σ ∈ {pr, st, sst}. In Section 6 we extend 
the probabilistic framework by considering probabilistic intervals, and show that complexity results obtained for PrAF still 
hold for the extended PrAF. Then, in Section 7, we provide equivalence results between iAF and special classes of iAF, and 
investigate the relationships between iAF and PrAF by relating iAF acceptance problems to probabilistic acceptance in PrAF. 
Related work is discussed in Section 8 where conclusions are drawn and directions for future work are outlined.

This paper refines and substantially extends the work in [1]. In particular, the techniques defined in Section 4 have been 
revised and extended to also deal with the complete semantics. Due to the revision of the proposed technique, the results 
given in Section 5 are significantly different. Sections 6 and 7 are new and we provide the proofs of all results stated in the 
paper. To ease readability, the proofs of the results are given in the appendix.

2. Argumentation frameworks

An abstract Argumentation Framework (AF) is a pair 〈A, �〉, where A is a set of arguments and � ⊆ A × A is a set of 
attacks. An AF can be seen as a directed graph, whose nodes represent arguments and edges represent attacks. We shall use 
the notations a+ and a− for the sets {b | (a, b) ∈ �} and {b | (b, a) ∈ �}, respectively. That is, a+ denotes the set of arguments 
attacked by a, and a− denotes the set of arguments attacking a. Further, for any S ⊆ A, we use S+ and S− to denote the 
sets 

⋃
a∈S a+ and 

⋃
a∈S a− , respectively. We use S∗ to denote S ∪ S+ , that is the set of arguments in S or attacked by (an 

argument in) S .
In the following, given an AF � = 〈A, �〉 and a set S ⊆ A of arguments, we define �↓S = 〈S, � ∩(S × S)〉 as the restriction

of � to the set S .
Different argumentation semantics have been defined leading to the characterization of collectively acceptable sets of 

arguments, called extensions [13]. Given an AF � = 〈A, �〉 and a set S ⊆ A of arguments, an argument a ∈ A is said to be i) 
defeated w.r.t. S iff ∃b ∈ S such that (b, a) ∈ �, and ii) acceptable w.r.t. S iff for every argument b ∈ A with (b, a) ∈ �, there 
is c ∈ S such that (c, b) ∈ �. The sets of arguments defeated and acceptable w.r.t. S are as follows (where � is understood):

• Def (S) = S+ = {a ∈ A | ∃b ∈ S . (b, a) ∈ �};
• Acc(S) = {a ∈ A | ∀b ∈ A . (b, a) ∈ � ⇒ b ∈ Def (S)}.

Given an AF 〈A, �〉, a set S ⊆ A of arguments is said to be conflict-free iff S ∩ Def (S) = ∅. Moreover, S ⊆ A is said to be a 
complete extension iff it is conflict-free and S = Acc(S). A complete extension S for a given AF 〈A, �〉, is said to be:

• preferred (pr) iff it is maximal (w.r.t. ⊆);
• stable (st) iff it is a preferred extension such that S ∪ Def (S) = A;
• semi-stable (sst) iff it is a preferred extension with a maximal set of decided elements, i.e. a preferred extension such 

that S ∪ Def (S) is maximal;
• grounded (gr) iff it is minimal (w.r.t. ⊆).

In the following, if not specified otherwise, σ denotes any semantics in {gr, co, pr, st, sst}. For any AF � and se-
mantics σ , σ(�) denotes the set of σ -extensions of �. Hereafter we say that an argument a is true (resp., false) w.r.t. a 
σ -extension E iff a ∈ E (resp., a ∈ Def (E)). All the above-mentioned semantics except the stable admit at least one exten-
sion (i.e. σ(�) �= ∅ for σ ∈ {gr, co, pr, sst}), and the grounded admits exactly one extension (i.e. |gr(�)| = 1) [13,41]. 
Moreover, the grounded semantics is called deterministic (or unique status), whereas the other semantics are called non-
deterministic (or multiple status). The stable semantics is said to be total as every argument of � belongs to either E or Def (E)
6
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Fig. 5. PrAF equivalent to that of Fig. 1 (obtained using the translation in [43]).

(i.e. it is either true or false) for each extension E ∈ st(�). For any AF �, it holds that st(�) ⊆ sst(�) ⊆ pr(�) ⊆ co(�), 
and gr(�) ⊆ co(�) [42]. With a little abuse of notation, we also use gr(�) to denote the grounded extension of �.

Example 5. Consider the AF � derived from the probabilistic AF of Example 1 by assigning to all arguments probability 
equal to 1 (� coincides with the possible world w1 of Example 2). The set of all complete extensions of � is {∅, {fish}, 
{red}, {fish, white}, {fish, red}, {meat, red}}. Thus, pr(�) = st(�) = sst(�) = {{fish, white}, {meat, red}, 
{fish, red}}, whereas gr(�) = ∅. �

For any AF � = 〈A, �〉, semantics σ , and argument g ∈ A, we say that g is credulously (resp. skeptically) accepted (under 
semantics σ ) if g belongs to at least a σ -extension of � (resp. g is credulously accepted and belongs to every σ -extension 
of �).1 We use CAσ (�, g) (resp. SAσ (�, g)) to denote the fact that g is credulously (resp. skeptically) accepted or not (under 
semantics σ ), that is CAσ (�, g) (resp. SAσ (�, g)) is either true or false.

We use CAσ (resp. SAσ ), or simply CA (resp. SA) whenever σ is understood, to denote the credulous (resp. skeptical) 
acceptance problem, that is, the problem of deciding whether an argument is credulously (resp. skeptically) accepted. Clearly, 
for the grounded semantics, which prescribes exactly one extension, the two problems are identical (i.e. CAgr ≡ SAgr).

Let � = 〈A, �〉 be an AF. A strongly connected component (SCC) of � is a maximal subset C of A such that, for every pair 
of arguments a, b ∈ C , there is a path from a to b along the attack relation in the graph representing �.2

Note that, differently from the standard definition, we use SCC to denote a set of nodes (i.e. arguments), not a subgraph.
An AF is acyclic (resp. odd-cycle free) if the associated graph is acyclic (resp. odd-cycle free). For acyclic AFs all the 

considered semantics coincide.

3. Probabilistic argumentation frameworks

In general, a probabilistic argumentation framework consists of probabilistic arguments and probabilistic attacks [23,24,
26]. However, w.l.o.g. we can focus on Probabilistic Argumentation Frameworks (PrAFs) where only arguments are uncertain 
(and attacks are certain, i.e. their probability is 1), since, as shown in [43], an argumentation framework with probabilities 
on both arguments and attacks can be transformed into an equivalent PrAF (w.r.t. the computational tasks considered in this 
paper). For instance, the PrAF equivalent to that in Fig. 1 is shown in Fig. 5, where the chain of the certain attacks between 
c and b that passes through two new meta-arguments (one of which is probabilistic) replaces the probabilistic attack (c, b)

of the PrAF of Fig. 1.

Definition 1. A Probabilistic Argumentation Framework (PrAF) is a triple 〈A, �, P 〉, where 〈A, �〉 is an AF and P is a function 
assigning a probability value to every argument in A, that is, P : A → (0,1].

Observe that assigning probability equal to 0 to arguments is useless. Basically, the value assigned by P to any argument 
a represents the probability that a actually occurs. Moreover, every attack (a, b) occurs with conditional probability 1, that 
is, a attacks b whenever both a and b occur.

The meaning of a PrAF is given in terms of possible worlds. Formally, given a PrAF � = 〈A, �, P 〉, a possible world of �
is an AF w = 〈A′, �′〉 such that A′ ⊆ A and �′ = � ∩ (A′ × A′). We use pw(�) to denote the set of all possible worlds of �.

An argument a ∈ A can be viewed as a probabilistic event which is independent from the other events associated with 
other arguments b ∈ A (with b �= a).

The interpretation of a PrAF � = 〈A, �, P 〉 is a probability distribution function (PDF) I over the set pw(�) of the 
possible worlds. Each w = 〈A′, �′〉 ∈ pw(�) is assigned by I the probability

I(w) =
∏
a∈A′

P (a) ·
∏

a∈A\A′
(1 − P (a)). (1)

It is worth noting that we can restrict our attention only to possible worlds w such that I(w) > 0, as only these worlds 
contribute to compute probabilistic extensions and probabilistic acceptance of arguments. Therefore, in Equation (1) we can 

1 An alternative definition for skeptical acceptance provided in the literature does not require that g is also credulously accepted. The two definitions give 
different results only for stable semantics when no stable extensions exist. The definition used here is more consistent with the probabilistic acceptance 
discussed in the paper (introduced in Definition 3).

2 If a = b, a path trivially exists.
7
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only consider arguments a ∈ A such that 0 < P (a) < 1, as the deletion of an argument a with P (a) = 1 (resp. the addition 
to an argument a with P (a) = 0) results in a possible world w with I(w) = 0. The next example shows how probabilities 
of possible worlds are computed.

Example 6. The (non-zero probability) possible worlds of the PrAF � of Example 1 are w1, w2, w3 and w4 given in 
Example 2. Then, interpretation I is as follows:
• I(w1) = P (fish) · P (white) = 0.6 · 0.8= 0.48,
• I(w2) = P (fish) · (1 − P (white)) = 0.6 · 0.2= 0.12,
• I(w3) = (1 − P (fish)) · P (white) = 0.4 · 0.8= 0.32,
• I(w4) =(1 −P (fish)) · (1 −P (white))= 0.4 · 0.2= 0.08, and
• I(w) = 0 for any other world w ∈ pw(�) obtained by deleting elements with probability 1. �

Given a PrAF � and a semantics σ ∈ {gr, co, pr, st, sst}, we shall denote by σ(�) = {E | ∃w ∈ pw(�) ∧ I(w) >
0 ∧ E ∈ σ(w)} the set of σ -extensions for �.

As mentioned earlier, relevant problems for AF are those concerning credulous and skeptical acceptance. The analogous 
problems in the context of a probabilistic AF are the following.

Definition 2 (Probabilistic credulous/skeptical acceptance). Given a PrAF � = 〈A, �, P 〉, an argument g ∈ A, the probability 
PrCAσ

�(g) that g is credulously acceptable w.r.t. semantics σ is

PrCAσ
�(g) =

∑
w ∈ pw(�) s.t.

∃E ∈ σ(w) with g ∈ E

I(w). (2)

The probability Pr SAσ
�(g) that g is skeptically acceptable w.r.t. semantics σ is

Pr SAσ
�(g) =

∑
w ∈ pw(�) s.t.

σ(w) �= ∅ ∧ ∀E ∈ σ(w), g ∈ E

I(w). (3)

We use PrCA[σ ] and PrSA[σ ] (or simply PrCA and PrSA whenever σ is understood) to denote the problems 
of computing PrCAσ

�(g) and Pr SAσ
�(g), respectively. Both PrCA[σ ] and PrSA[σ ] are FP#P-hard for all semantics σ ∈

{gr, co, pr, st, sst} [33].3 Considering the PrAF concerning the robbery case discussed in the Introduction, we have 
that PrCAσ

�(a) = Pr SAσ
�(a) = 0.2, PrCAσ

�(b) = Pr SAσ
�(b) = 0.84 and PrCAσ

�(c) = Pr SAσ
�(c) = 0.8, under any semantics 

σ ∈ {gr, co, pr, st, sst}. In this case, the probabilistic credulous and skeptical acceptance coincide under any semantics 
because every possible world is acyclic. A more general case is considered below in Example 7.

As discussed in the introduction, probabilistic credulous and skeptical acceptance does not express the probability that a 
given argument is accepted as both definitions do not properly take into account the probabilistic values associated with the 
elements of the argumentation framework. Therefore, in this paper we study a new problem, called Probabilistic Acceptance, 
which can be intuitively stated as follows. Given a (probabilistic) framework �, a semantics σ , and a goal argument g , 
compute the probability that g is accepted. However, differently from previously proposed probabilistic measures, consider-
ing a possible world w having probability I(w), under the given semantics σ , every extension E ∈ σ(w) has associated a 
probability Pr(E, w, σ) so that 

∑
E∈σ(w) Pr(E, w, σ) = 1 (the sum of the probabilities of the σ -extensions of w is equal to 

1) and Pr(E, w, σ) = 0 for all E /∈ σ(w). In more detail, as stated next, we require that a PDF over the set of extensions is 
given.

Definition 3 (Probabilistic acceptance). Given a PrAF � = 〈A, �, P 〉 and an argument g ∈ A, the probability PrAσ
�(g) that g is 

acceptable w.r.t. semantics σ is

PrAσ
�(g) =

∑
w ∈ pw(�)∧

E ∈ σ(w) ∧ g ∈ E

I(w) · Pr(E, w,σ ) (4)

where Pr(·, w, σ) is a PDF over the set σ(w).

It is worth noting that it makes sense to use the concept of probabilistic acceptance even for standard AF, once we 
have defined the PDF Pr(·, �, σ). Moreover, notice that, if for a given possible world w no extension E ∈ σ(w) exists such 
that g ∈ E , then the contribution of the addend corresponding to that world in the summation of Equation (4) is null. In 

3 It is worth noting that the complexity result for PrSA[st] given in [33] still holds for our definition of PrSA[st], as the PrAF used in their reduction is 
acyclic (thus a stable extension always exists, as required by our definition, and the two variants of the problem coincide).
8
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Table 2
Skeptical, credulous, and probabilistic acceptance for the arguments of 
PrAF � of Example 1 w.r.t. the preferred semantics (assuming a uni-
form PDF over the set of preferred extensions of each possible world 
of �).

Argument g Pr SApr� (g) PrCApr� (g) PrApr� (g)

fish 0.00 0.60 0.38
meat 0.40 1.00 0.62
white 0.00 0.48 0.16
red 0.52 1.00 0.84

particular, if σ = st and � is an AF such that st(�) = ∅, then PrAσ
�(g) = 0 for any argument g , regardless of the chosen 

PDF.

Example 7. Consider the PrAF � of Example 1. The values of skeptical probabilistic acceptance, credulous probabilistic 
acceptance, and probabilistic acceptance, assuming the uniform PDF over the set of extensions, for each argument w.r.t. 
the preferred semantics are reported in the second, third, and fourth columns of Table 2, respectively. For instance, con-
sidering that the probabilities of the (non-zero-probability) possible worlds w1, w2, w3, w4 of � are 0.48, 0.12, 0.32, 
and 0.08 (cf. Example 6), and recalling that the pr-extensions of w1 are E1 = {fish, white}, E2 = {fish, red}, and 
E3 = {meat, red}, the pr-extensions of w2 are E2 and E3, and w3 and w4 have only E3 as their preferred extension, we 
have that PrCApr� (fish) =0.48 · 2/3+0.12 · 1/2= 0.38 (fish belongs to two of the three pr-extensions of w1, and to 
one of the two pr-extensions of w2). �

Considering Example 7, we can observe that, assuming a uniform PDF over the set of extensions, we have that for 
any argument g , PrApr� (g) is in the interval [Pr SApr� (g), PrCApr� (g)]. In some sense, for any semantics σ , Pr SAσ

�(g) and 
PrCAσ

�(g) define a range for each reasonable PrAσ
�(g), whose value depends on the specific PDF. However, the uniform 

distribution used in the previous example could give unintuitive results. Considering the world w1 of our running example 
(cf. Example 2), one expects that the probability of having meat is 1/2 and that it does not change if in our menu there 
are no drinks. However, this does not hold if a uniform PDF over the set of extensions is considered.

Our definition of probabilistic acceptance differs from the notion of (probabilistic) credulous acceptance for deterministic 
argumentation frameworks (i.e. AF) proposed in [44], where a PDF over the set of σ -extensions is assumed to be given. 
Besides considering PrAFs, we propose an approach based on explanations which entails a PDF on the set of σ -extensions 
of a PrAF.

4. Explanations

In this section, we show how the probability Pr(E, �, σ) of an extension E for an AF � under semantics σ can be 
defined. Based on this, we obtain a PDF over the set of σ -extensions for every possible world w of a PrAF that will be then 
used to provide a concrete instantiation for the probabilistic acceptance problem. The idea is to assign, for every possible 
world w , a probability to every extension in σ(w), according to a sequence of choices (called explanation) made to compute 
it. These choices are made by following the topological order of arguments in the graph representing the AF. Once we have 
assigned a probability to possible worlds and extensions of possible worlds, the probabilistic acceptance of an argument a is 
defined as the sum of the products of the probabilities of the possible worlds w and extensions of w containing a. One of 
the innovative aspects of this work is how probabilities are assigned to extensions by exploiting the concept of explanation. 
Compared to the uniform distribution, the proposed PDF assigns probabilities to extensions and arguments (i.e. probabilities 
of being accepted) that appear to be more intuitive. For instance, considering the AF obtained from the deterministic version 
of the PrAF in Fig. 1 (i.e. world w1 shown in Fig. 3 (top-left), and reported for the sake of readability in Fig. 6 (left)), the 
probability of accepting one of the two mutually exclusive arguments fish or meat (under stable/preferred/semi-stable 
semantics) is the same and equal to 1/2. In contrast, under the uniform distribution, the probability of having fish (resp. 
meat) is 2/3 (resp. 1/3). Moreover, as stated in Theorem 6, the proposed PDF based on explanations allows us to obtain a 
tractable sampling strategy for a large class of PrAFs.

To define Pr(E, �, σ) we introduce the concept of explanation consisting of a sequence of necessary suggestions useful 
to construct a given extension E , that is a sequence of choices made to obtain the extension. In particular, the choices we 
consider are guided by an ordering entailed by the strongly connected components (SCCs) of the given AF.

We start by introducing some notations. Given an AF � = 〈A, �〉, a subset � ⊆ A of arguments, and an argument 
a ∈ A \ �, let G = gr(�) be the grounded extension of �, we denote by:

• �∗ , the restriction of � to the set A \ G∗ , that is, �∗ is the AF �↓A\G∗ obtained from � by removing the arguments in 
G or attacked by G (i.e. G+) as well as the attacks involving these arguments;

• �a , the restriction of � obtained through the deletion of attacks whose target is a;
• �∗

a = (�a)
∗ , the restriction of �a obtained by deleting, letting Ga = gr(�a), all arguments (and related attacks) in G∗

a ;
9
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Fig. 6. AF � of Example 5 (left) and AFs �fish (center) and �∗
fish (right) of Example 8, where light (resp. dark) grey-colored arguments are those that 

appear as true (resp. false) in Gfish = gr(�fish).

Fig. 7. AFs � (left) �∗
a (center) and �̂a (right) of Example 9.

• �̂a the AF obtained from �∗
a by adding, letting Ga = gr(�a) and a− be the set of attackers of a w.r.t. �, the (virtual) 

attacks in (a− \ G+
a ) × ((G+

a )+ \ G∗
a), where G+

a = (Ga)
+;

• ��,a = (� ∪ a−) \ G+
a (also denoted as �a whenever � is understood).

Intuitively, � denotes a set of arguments whose status has not yet been determined but, based on previous assumptions, 
will have to be derived as defeated; a is an argument we are assuming to be accepted; and Ga = gr(�) (resp. G+

a ) is the 
set of arguments that are derived to be accepted (resp. defeated) as a consequence of the assumption about a. Moreover, 
�a and �∗

a are the updated set of arguments to be derived as defeated and the updated AF (obtained by removing the 
arguments in G∗

a whose status has been determined), after assuming a is accepted. Indeed, assuming that a is accepted, all 
arguments in a− (i.e. those attacking a) should be defeated and added to � (yielding �a), though the arguments in G∗

a , 
whose status has been determined, are deleted from �a . Moreover, �∗

a is obtained from �a by deleting the arguments in 
Ga = gr(�a) and G+

a whose status (accepted or defeated) has been determined. Finally, virtual attacks are added to �∗
a , 

obtaining the updated AF �̂a , to ensure that if a belonged to a SCC C , after eliminating the arguments in G∗
a and the related 

attacks, the remaining arguments in C \ G∗
a continue to form a SCC in �̂a . Regarding virtual attacks, it is worth noting that, 

since the source arguments must be derived as defeated, they have no real effect on the status of target arguments, but 
ensure that if there was a SCC C in � with a ∈ C , the remaining arguments in C continue to form a SCC of �̂a .

The following examples illustrate the concepts introduced above.

Example 8. Consider the AF � = 〈A, �〉 of Example 5 (that is, possible world w1 of Example 2) shown in Fig. 6 (left). 
The AF �fish , obtained from � by removing attack (meat, fish), is shown in Fig. 6 (center). In the figure, the nodes 
representing the arguments in the grounded extension Gfish = gr(�fish) = {fish} are colored in light-grey, while those 
in G∗

fish = Gfish∪{meat} are colored in light or dark grey. Then, Fig. 6 (right) shows the AF �̂fish = �∗
fish = � ↓A\G∗

fish
=

〈{white, red}, {(white, red), (red, white)}.
As another example, by considering argument meat, we would have Gmeat = gr(�meat) = {meat, red}, G∗

meat =
{meat, red, fish, white} and, thus, �̂meat = �∗

meat = 〈∅, ∅〉. �
Example 9. Consider the AF � = 〈{a, b, c, d, e, f}, {(a, b), (b, c), (c, d), (d, c), (d, e), (e, f), (f, e), (f, a)}〉 shown in Fig. 7
(left). Since the grounded extension of � is empty (i.e. gr(�) = ∅), we have that �∗ = �. Taking argument a, we have that 
a− = {f}, Ga = gr(�a) = {a}, G+

a = {b}, G∗
a = {a, b} and (G+

a )+ = {c}. Consequently, �∗
a (shown in Fig. 7 (center)) is 

obtained by deleting arguments a and b (and related edges), whereas �̂a (shown in Fig. 7 (right)) is derived from �∗
a by 

adding attack (f, c). �
The idea underlying the derivation of �∗

a is that if we assume that argument a is accepted, then we can determine the 
status of other arguments (those in G∗

a ) which can be removed from the AF �. Moreover, to preserve the topology of the AF 
we add attacks from arguments in a− \ G∗

a to arguments in (G+
a )+ \ G∗

a (recall that arguments in G∗
a are not in �∗

a anymore). 
For instance, considering the AF of Example 9 whose graph has only one SCC, after the addition of edge (f, c), the resulting 
graph still consists of a single SCC. It is worth noting that, in the derivation of �̂a , arguments in a− must be defeated and 
arguments in (G+

a )+ are attacked by arguments which have been derived as defeated.
The following proposition states that, for any extension E ∈ σ(�) and argument a ∈ E , let Ga be the grounded extension 

of �a , E \ Ga is a σ -extension for the AF �∗
a . We will rely on this result later in the definition of explanation.

Proposition 1. Let � = 〈A, �〉 be an AF, σ ∈ {co, gr, pr, st, sst} a semantics, E ∈ σ(�) an extension, a ∈ E an argument and 
Ga = gr(�a), Then, E ′ = E \ Ga is a σ -extension of �∗

a .

For instance, considering the AF � of Example 8 and the extension E1 = {fish,white} ∈ pr(�), we have that the set 
E1 \ Gfish = {white} is a preferred extension for �̂fish .
10
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In order to define explanations, we assume that SCCs are linearly ordered according to the topological ordering of the 
graph representing the AF. We use the notation C ≺ C ′ to denote that SCC C precedes SCC C ′ (w.r.t. the fixed linear order). 
The linear order on the SCCs induces a partial order on the arguments, that is a ≺ b only if a ∈ C , b ∈ C ′ and C ≺ C ′ . As it 
will be clear in the following, fixing a linear ordering on the SCCs has no impact on the probabilities assigned to extensions 
by PDF Pr(E, �, σ). Given a set of SCCs C = {C1, ..., Cn}, we say that a SCC Ci ∈ C is the first SCC (in C) if every argument 
in Ci precedes every argument in C j for all j �= i.

Example 10. Consider the AF � = 〈{a, b, c, d}, {(a, b), (b, a), (a, d), (c, d)}〉. There are tree SCCs C1 = {a, b}, C2 = {c} and 
C3 = {d}. Assuming the linear ordering C1 ≺ C2 ≺ C3, the partial order on arguments a≺ c, b≺ c, c≺ d is induced. Alter-
natively, if we had assumed the linear ordering C2 ≺ C1 ≺ C3 then we would have had the partial order c≺ a, c≺ b, a≺ d, 
b≺ d. �

The next definition introduces the concept of explanation for an extension E w.r.t. an AF �, an underlying semantics σ
and a set � of arguments whose status is assumed to be false, i.e. it is assumed that � ⊆ Def (E). The set � is said to be a 
set of assumptions. Initially � is empty and it must be empty at the end of the process determining an explanation, meaning 
that we should end up with no assumptions on the status of arguments (as their status must be determined).

An explanation X = 〈a1, ..., an〉 is a sequence of arguments occurring in E which are assumed to be accepted (in par-
ticular, an argument at each step is considered). In contrast, at each step, � consists of a set of arguments that, on the 
basis of the choices previously made, must be derived as defeated in the next steps, as they attack arguments in X (whose 
status has been assumed to be true); once the status of some of these arguments is determined, they are removed from �. 
Intuitively, � is used for guiding next choices so that assumptions previously made are not retracted.

The explanation is determined recursively for (i) an AF �∗ , which is derived from � by discarding all arguments in the 
grounded extension (which are always accepted) and those attacked by these arguments (which are always defeated), (ii)
an extension E and (iii) an (initially empty) set of arguments �, whose status must be determined as false. It is also worth 
recalling that, for any AF � and extension E ∈ co(�) \ gr(�) there must be some argument a ∈ E occurring in an even 
cycle of � [45].

Let ε be a fresh symbol, not used for arguments names, we define an explanation for an extension as follows.

Definition 4 (Explanation). Let � = 〈A, �〉 be an AF, σ ∈ {co, gr, pr, st, sst} a semantics, E ∈ σ(�), and � ⊂ A a set of 
assumptions about the (false) status of some arguments. A sequence X = 〈a1, . . . , an〉, where ai ∈ E ∪ {ε} (with i ∈ [1...n]), is 
an explanation for E (w.r.t. � and �) if, letting � = �∗ and C be the first SCC of �, one of the following three conditions 
hold:

1. (Final Step) X = 〈〉, � = ∅, and � = 〈∅, ∅〉.
2. (Choice Step) (i) a1 occurs in an even cycle of C , (ii) � �= ∅ ⇒ G+

a1
∩ � �= ∅, and (iii) 〈a2, ..., an〉 is an explanation for 

E ′ = E \ Ga1 w.r.t. �̂a1 and �a1 .
3. (Skip Step) a1 = ε, � = ∅ and 〈a2, . . . , an〉 is an explanation for E w.r.t. � ↓A\C and �.

For any explanation X for E , letting set(X) = {x | x occurs in X}, set(X) ∩ A be an explanation-set for E .

Therefore, an explanation X = 〈a1, ..., an〉 for an extension E ∈ σ(�), w.r.t. a set of (false) assumptions �, is (recursively) 
determined as follows:

1. If � �= ∅, an argument a1 in E occurring in an even cycle is chosen (Item 2.(i)) such that, after removing all attacks 
targeting a, at least one argument in � must be derived as defeated (Item 2.(ii)). Moreover, if � = ∅, either an argument 
in E occurring in an even cycle is chosen (Item 2) or the whole SCC C is skipped, assigning (implicitly) to all its elements 
the undecided truth value (Item 3).

2. After that: (a) compute �a1 from � by adding arguments in a−
1 and then deleting arguments whose status is false in 

the grounded extension of �a1 (i.e. G+
a1

), (b) compute �̂a1 from � by deleting all arguments in G∗
a1

, whose status has 
been determined as accepted or defeated w.r.t. gr(�a1 ), and then adding virtual attacks from arguments in (a−

1 \ G+
a1

) to 
arguments in ((G+

a1
)+ \ G∗

a1
).

As said before, added virtual attacks do not play any role in determining the status of arguments in the resulting AF.
Observe that: (i) when the computation of a SCC terminates, i.e. the status of all arguments in it has been defined, �

becomes empty, (ii) under stable semantics Item 3 of Definition 4 is never applied, and (iii) under preferred semantics Item 
3 is applied only if Item 2 cannot be applied.

Intuitively, an explanation-set set(X) for an extension E (derived from an explanation X) consists of a set of arguments 
which, if assumed to be true, allow us to derive all arguments in E . An explanation defines also an order on the arguments. 
Clearly, an explanation-set may be derived from more than one explanation (see also Example 12).
11
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Example 11. Continuing with the AF � of Examples 5 and 8 (reported in Fig. 6 (left)), recall that it has six complete 
extensions: E0 = ∅, E1 = {fish, white}, E2 = {fish, red}, E3 = {meat, red}, E4 = {red} and E5 = {fish}. E0 is the 
grounded extension, whereas E1, E2 and E3 are preferred, stable and semi-stable extensions (that we also considered in 
Example 3).

For the preferred extension E1 there is only one explanation X1=〈fish, white〉 obtained as described in what follows, 
where superscripts are used to distinguish the different steps. At the beginning we have an empty set of assumptions (i.e. 
�0 = ∅) and, as the grounded extension of � is empty, we have that � = �∗ and, therefore, our initial AF is �0 = �, 
whereas our initial extension is denoted by E0

1 = E1. Then, the following steps are performed.

1. Argument fish is chosen in the first SCC of �0. By removing the attacks toward fish we get the AF �0
fish . Then, we 

compute the grounded extension of �0
fish which is Gfish = {fish} and remove arguments in Gfish from E0

1, obtaining 
E1

1 = {white}, and arguments in G∗
fish from �0

fish , obtaining �0 ∗
fish = 〈{white, red}, {(white, red), (red, white)}〉. 

As fish− \ G∗
fish = ∅, we have that �0

fish = ∅ and �̂0
fish = �0∗

fish .

2. Let �1 = �̂0
fish and �1 = �0

fish , the first SCC of �1 is C = {white, red}. Therefore, the only argument that can be 
chosen is white, obtaining the extension E2

1 = ∅. After removing attacks to white, the grounded extension of the 
resulting AF �1

white is Gwhite = {white}. By further removing arguments in G∗
white , we get the AF �1 ∗

white = 〈∅, ∅〉, 

�1
white = ∅ and �̂1

white = �1 ∗
white .

3. Let �2 = �̂1
white and �2 = �1

white , as E2
2 = ∅, �2 = 〈∅, ∅〉 and �2 = ∅, the process terminates.

Consider now explanation X3 = 〈meat〉 for the preferred extension E3 = {meat, red}. As for the previous case, initially 
we have �0 = ∅, �0 = �∗ = � and E0

3 = E3. Then, we perform the following steps.

1. Argument meat is chosen in the first SCC of �0 obtaining �0
meat by deleting attacks to meat. After having computed 

the grounded extension Gmeat = {meat, red} of �0
meat , and having deleted arguments in Gmeat from E3 and arguments 

in G∗
meat from �0, we get E1

3 = ∅, �0
meat = ∅ and the AF �̂0

meat = �0∗
meat = 〈∅, ∅〉.

2. Let �1 = �̂0
meat and �1 = �0

meat , as E1
3 = ∅, �1 = 〈∅, ∅〉 and �1 = ∅, the process terminates.

Regarding the complete extension E4 = {red}, there is only one explanation 〈ε, red〉 obtained as follows, after setting 
�0 = ∅, �0 = � and E0

4 = E4.

1. At the first step, ε is chosen and we have that E1
4 = {red}, �1 = �0 = ∅ and �1 = �0↓A\C is the AF obtained by deleting 

the first C of �0.
2. At the second step, the only possible choice is red and we get E2

4 = ∅, �2 = �1
red = ∅ and �2 = �̂1

red = 〈∅, ∅〉.
3. Finally, the process terminates with the explanation 〈ε, red〉.

Considering the grounded extension E0, its explanation is 〈ε, ε〉, whereas the corresponding explanation-set is, obviously, 
∅. �

In the previous example, the set � of assumptions remained empty for all explanations considered. The next example 
shows the role of the set of assumptions for deriving explanations.

Example 12. Consider the AF � of Example 9 shown in Fig. 7 (left) and having pr(�) = {E1 = {a, c, e}, E2 = {b, d, f}}. 
As shown next, according to Definition 4, 〈a, e, c〉 is an explanation for E1, whereas 〈a, c, e〉 is not an explanation for E1. 
Initially we have �0 = ∅, �0 = �, as the grounded extension of � is empty, and E0

1 = E1. Then we have the following steps:

1. At the first step, we may choose a. Thus, we derive Ga = gr(�0
a) = {a}, G∗

a = {a, b}, E1
1 = E0

1 \ Ga = {c, e}, �a = a− =
{f}, �0∗

a = 〈A1 = {c, d, e, f}, �1 = {(c, d), (d, c), (e, f), (f, e), (d, e)} (see Fig. 7 (center)), and �̂0
a is derived from �0∗

a
by adding the virtual edge (f, c) (see Fig. 7 (right)) so that the resulting component continues to be strongly connected.

2. At the second step, let �1 = �0
a and �1 = �̂0

a , as �1 �= ∅, we have to choose an argument x ∈ E1
1 such that, (gr(�1

x))
+ ∩

�1 �= ∅. Therefore, the only feasible choice is e and, as gr(�1
e) = {c}, we get E2

1 = E1
1 \ {c}, �1

e = {d} and �1 ∗
e = �̂1

e =
〈{c, d}, {(c, d), (d, c)}〉.

3. At the third step, let �2 = �1
e and �2 = �̂1

e , since �2 �= ∅, the only feasible choice in E2
1 is c and we get E3

1 = ∅, �2
c = ∅

and �2 ∗ = �̂2
c = 〈∅, ∅〉.

4. At the fourth step, let �3 = �2
c and �3 = �̂2

c , as �3 = E3
1 = ∅ and �3 = 〈∅, ∅〉, the process terminates giving explanation 

〈a, e, c〉.
12
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Fig. 8. AF � of Example 13.

For the extension E1, there are three explanations 〈a, e, c〉, 〈c, a, e〉, 〈e, c〉 and only two explanation-set {a, c, e} and 
{e, c}. �

The reason for discarding the sequence 〈a, c, e〉 will be clearer in the next section where we show how to compute 
both explanations and extensions together and, therefore, explanations will be not “guided” by extensions. Recall also that 
explanations are mainly used for assigning probabilities to extensions.

The following example shows that by restricting the choice of arguments to those occurring in even cycles we reduce 
the set of explanations. This restriction does not impact on the computation of the probabilities assigned to extensions.

Example 13. Consider the AF � = 〈{a, b, c, d, e}, {(a, b), (b, c), (c, d), (d, e), (e, a), (a, e), (d, b)}〉 shown in Fig. 8. � has 
two complete extensions E0 = ∅, E1 = {a, c}. E0 is the grounded extension, whereas E1 is a preferred (stable, and semi-
stable) extension. According to Definition 8, E1 has only one explanation X1 = 〈a〉. However, if we had removed the 
restriction in Item 2 that a1 must occur in an even cycle, both sequences X1 = 〈a〉 and X2 = 〈c, a〉 would have been 
explanations for E1. �

In the following, the set of explanations for a σ -extension E of an AF � is denoted by Expσ
�(E). Moreover, Expσ (�) =⋃

E∈σ(�)

Expσ
�(E) is the set of explanations of � under semantics σ .

Proposition 2. Let � be an AF and σ ∈ {gr, co, pr, st, sst} a semantics. Then:

i) for every E ∈ σ(�), Expσ
�(E) �= ∅;

ii) for every Ei, E j ∈ σ(�) with Ei �= E j , Expσ
�(Ei) ∩ Expσ

�(E j) = ∅.

The previous proposition states that the relationship between explanations and extensions is a total and surjective func-
tion from the set of explanations Expσ (�) to the set of extensions σ(�). Thus, under a given semantics σ , every explanation 
identifies a unique extension. In the following, for any explanation X for an extension E under semantics σ , extσ (X) denotes 
the extension associated to X .

The next theorem states that any explanation defines a set of assumptions to be made for computing the extension E it 
explains, in the sense that having some arguments in the explanation means that some other arguments must be assumed 
to be false (that is, in E+).

Theorem 1. Let � = 〈A, �〉 be an AF, σ a semantics in {gr, co, pr, st, sst} and E a σ -extension. Then, for any X ∈ Expσ
�(E) and 

X̃ = set(X) ∩ A we have that E = gr(� X̃ ) and ̃X− ⊆ E+ , where � X̃ is the AF derived from � by deleting attacks to arguments in ̃X.

Since a given extension may have multiple explanations of different length, it is reasonable to assume that some expla-
nations are preferred to others. We now introduce probabilities for explanations. As said before, the grounded semantics has 
a unique explanation which has probability 1. To define probabilities of explanations, we exploit the concept of probabilistic 
trie.

Definition 5. Given an AF � = 〈A, �〉 and a semantics σ , the probabilistic trie for � under semantics σ is the triple 
T σ

� = 〈N, H, π〉 of nodes N and edges H where 〈N, H〉 is the trie of all sequences in Expσ (�), π : N → (0, 1] is the 
function inductively defined as follows:

π(〈〉) = 1 and π(x) = π(parent(x))

|children(parent(x))|
where parent(x) denotes the parent of x, whereas |children(x)| denotes the number of children of x.

Since the set of leaves of the probabilistic trie T σ
� = 〈N, H, π〉 coincides with Expσ (�) (i.e. leaves(T σ

� ) = Expσ (�)) 
hereafter, with a little abuse of notation, we assume that π is a function from Expσ (�) to (0, 1]. By definition, we have 
that 

∑
X∈Expσ (�) π(X) = 1.

As defined next, the probability value associated with a σ -extension E of an AF � is given by the sum of the probabilities 
of the explanations for E under semantics σ .
13
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Fig. 9. Probabilistic trie for the AF � of Example 5 under preferred/stable/semi-stable semantics (left), and complete semantics (right).

Definition 6. Given an AF � = 〈A, �〉, a semantics σ , and an extension E ∈ σ(�), the Explanation-based Probability associated 
with extension E is:

PrE(E,�,σ ) =
∑

X∈Expσ
�(E)

π(X). (5)

The intuition behind the previous definition is that, as extensions do not share explanations, the probability of the 
explanations is carried over to the extensions. As a consequence we have that 

∑
E∈σ(�) PrE(E, �, σ) = 1.

With a little effort, it can be checked that function PrE(·, �, σ) is a PDF over the set of σ -extensions of �. The following 
example illustrates how probabilities are associated to extensions of an AF.

Example 14. Let � be the AF of Example 5. The explanations for the preferred (stable and semi-stable) extensions are rep-
resented by the leaf nodes of the trie shown in Fig. 9 (left), where arguments are denoted by their initials. For instance, the 
probability of (the unique) explanation 〈fish, white〉 for extension E1 = {fish, white} (cf. Example 11) is 1/4, whereas 
the probability of (the unique) explanation 〈meat〉 for extension E3 = {meat, red} is 1/2. Therefore under preferred (stable 
and semi-stable) semantics, the probability of E1 is 1/4, whereas that of E3 is 1/2.

Considering the complete semantics, there are six extensions whose explanations are represented by the leaf nodes of 
the trie shown in Fig. 9 (right). All explanations containing fish have probability 1/9, while 〈meat〉 has probability 1/3, 
and 〈ε, ε〉 and 〈ε, red〉 have probability 1/6. Thus, under complete semantics, since in our example every extension has 
exactly one explanation, the extensions {fish, white}, {fish, red}, and {fish} have probability 1/9, while {meat, red}
has probability 1/3, and the empty set and {ε, red} have probability 1/6. �

The following proposition states that, the fact that we have chosen a fixed but arbitrary linear ordering on the SCCs 
(according to the topological ordering of the graph representing the AF) has no effect on the computation of the explanation-
based probability of extensions.

Proposition 3. Let � = 〈A, �〉 be an AF, σ a semantics in {gr, co, pr, st, sst} and E a σ -extension. Let C and D be two linear 
orderings of the SCCs of � (according to the topological ordering of the graph representing the AF �). Let PrEO(E, �, σ) be the 
probability associated with extension E under a linear ordering O. Then, it holds that PrEC(E, �, σ) = PrED(E, �, σ).

Probabilistic AFs As for probabilistic AF �, we have to consider all AFs w in the set pw(�) of possible worlds. Thus, each 
extension in σ(�) has associated an (explanation-based) probabilistic value defined as follows:

PrE(E,�,σ ) =
∑

w∈pw(�)

I(w) · PrE(E, w,σ ) (6)

Moreover, we define PrEAσ
�(g) as the probability obtained by using PrE(E, w, σ) as an instantiation of the PDF re-

quired in Definition 3. That is, we have obtained an instantiation of our Probabilistic Acceptance problem, that we call 
Explanation-based Probabilistic Acceptance problem, whose output is PrEAσ

�(g). In particular, the Explanation-based Proba-
bilistic Acceptance of a goal argument is as follows.

Definition 7 (Explanation-based probabilistic acceptance). Given a PrAF � = 〈A, �, P 〉, a semantics σ and an argument g ∈ A, 
the probability PrEAσ

�(g) that g is explanation-based acceptable w.r.t. semantics σ is

PrEAσ
�(g) =

∑
E∈σ (�)∧g∈E

PrE(E,�,σ ). (7)

The next example shows how the explanations-based probabilistic acceptance is computed for extensions and for goal 
arguments.
14
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Example 15. Consider the PrAF � of Example 1. As shown in Example 2, for � there are four (non-zero probability) possible 
worlds whose probabilities are given in Example 6.

Let E1 = {fish, white}, E2 = {fish, red} and E3 = {meat, red}. We have that pr(w1) = {E1, E2, E3}, pr(w2) =
{E2, E3}, pr(w3) = {E3}, and pr(w4) = {E3}. The following table reports for each world w the probability I(w) (second 
column) and, for each pair 〈world w , preferred extension E〉, the probability PrE(E, w, pr) w.r.t. the AF w (last three 
columns). Finally, the last row of the table reports, for each E∈ {E1, E2, E3}, the probability PrE(E, �, σ) that E is a pr-
extension of the �. For instance, the probability that E2 is a pr-extension of � is 0.48 ·1/4 +0.12 ·1/2 +0.32 ·0 +0.08 ·0 =
0.18 (see the last row of following table).

PrE(E, w,pr)

w I(w) E1 = {fish,white} E2 = {fish,red} E3 = {meat,red}
w1 0.48 1/4 1/4 1/2
w2 0.12 0 1/2 1/2
w3 0.32 0 0 1
w4 0.08 0 0 1

PrE(E,�,σ ) 0.12 0.18 0.70

According to Definition 7, the probability of acceptance of a goal argument in � is reported in the following table. For 
instance,

PrEApr� (fish) =0.12+ 0.18= 0.30, whereas PrEApr� (meat) =0.70.

fish meat white red

PrEApr� (g) 0.30 0.70 0.12 0.88
�

5. Exact and approximate complexity

In this section, we discuss the exact and approximate complexity of probabilistic AF. We consider semantics σ ∈
{gr, co, pr, st, sst} and concentrate on the following two main problems.

PROBLEM : PrA[σ ]
INPUT : A PrAF � and an argument g.
OUTPUT: The number PrAσ

�(g).

PROBLEM : PrEA[σ ]
INPUT : A PrAF � and an argument g.
OUTPUT : The number PrEAσ

�(g).

We recall that PrA[σ ] is defined after choosing an arbitrary but fixed PDF over the set of extensions of an AF, while 
PrEA[σ ] uses the specific PDF PrE(·, �, σ) of Definition 6, and thus PrEAσ

�(g) is computed according to Definition 7.
The organization of this section is as follows. Section 5.1 provides the exact complexity for general PrAF, as well as 

for acyclic PrAF, AF and acyclic AF (the results obtained are summarized in Table 3). Section 5.2 provides inapproximability 
results for different classes of PrAFs, that are, general PrAF, PrAF without odd cycles, and acyclic PrAF. The results obtained in 
Section 5.2, along with other results discussed below, are summarized in Table 4. Next, for the cases where approximability 
has not been ruled out, approximability is studied in Section 5.3. Finally, we conclude with a comparison with other notions 
of acceptance proposed in the literature in Section 5.4 where inapproximability of the probabilistic credulous and skeptical 
acceptance problems (PrCA/PrSA) are investigated.

5.1. Exact complexity

We show that for all semantics, the above problems are intractable. In particular, we have the following result.

Theorem 2. For σ ∈ {gr, co, pr, st, sst}, PrA[σ ] is FP#P-hard, even for acyclic PrAFs and for any chosen PDF.

Since PrEA is an instantiation of PrA where a specific PDF is used, we obtain the following corollary.
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Table 3
Complexity of PrEA[σ ] with semantics σ ∈ {gr, co, st, pr, sst} for different classes of PrAFs, i.e. gen-
eral PrAF, acyclic PrAF, AF, and acyclic AF.

General PrAF Acyclic PrAF AF Acyclic AF

gr FP#P-h [Corollary 1] FP#P-h [Corollary 1] FP [Corollary 2] FP [Corollary 2]

co,pr,

st,sst
FP#P-h [Corollary 1] FP#P-h [Corollary 1] FP#P-h [Theorem 3] FP [Corollary 2]

Corollary 1. For σ ∈ {gr, co, pr, st, sst}, PrEA[σ ] is FP#P-hard, even for acyclic PrAFs.

Intuitively, the proof of Theorem 2 shows that one of the sources of complexity for PrA (and thus for PrEA) is the 
exponential number of possible worlds to be considered in the computation of PrAσ

�(g) (and thus of PrEAσ
�(g)). However, 

as stated next, this is not the only source of complexity.
The following theorem states that, even if restricting PrAF to be an AF, the complexity of PrEA is still FP#P-hard for all 

semantics except for the grounded.

Theorem 3. For σ ∈ {co, pr, st, sst}, PrEA[σ ] is FP#P-hard for AFs (that is, for PrAFs where all probabilities are set to 1).

Thus, even focusing on a single possible world (i.e. on AF), the proof of Theorem 3 suggests that, under multiple status 
semantics, an additional source of complexity is the exponential number of extensions to be considered in the computation 
of PrAσ

�(g) (and thus of PrEAσ
�(g)).

The following proposition states that for AF the complexity becomes polynomial for the grounded semantics or for acyclic 
frameworks as they admit a single complete extension (coinciding with the grounded extension).

Proposition 4. For any chosen PDF, i) PrA[gr] is in FP for AF, and ii) PrA[σ ] is in FP for σ ∈ {pr, co, st, sst} and acyclic AFs.

Again, since PrEA is an instantiation of PrA where a specific PDF is used, we obtain the following corollary.

Corollary 2. i) PrEA[gr] is in FP for AF, and ii) PrEA[σ ] is in FP for σ ∈ {pr, co, st, sst} and acyclic AFs.

The high computational complexity of PrA[σ ] (and thus of PrEA[σ ]), for all semantics σ , even for very simple settings, 
such as acyclic PrAFs, suggests that one would need to focus on finding efficient algorithms that solve the problem ap-
proximately. Next, we present a quite complete picture of the approximability landscape of our problems, under different 
semantics and approximation schemes.

5.2. Inapproximability results

Before defining the kind of approximation schemes we are going to target, we recall some basic notions. A (discrete) 
probability space is a pair PS = (
, π), where 
 is a finite set, called sample space, and elements therein are called outcomes. 
Furthermore, π : 
 → [0, 1] is a function such that 

∑
θ∈
 π(θ) = 1, called the probability distribution of PS. A subset ξ ⊆ 


is called an event. The probability of an event ξ (w.r.t. 
), denoted Pr
(ξ) is defined as 
∑

θ∈ξ π(θ). When 
 is clear from 
the context, we may simply write Pr. A random variable over PS is a function X : 
 →Q, which intuitively maps outcomes 
to some value of interest. For every x ∈ Q, X ≤ x denotes the event {θ ∈ 
 | X(θ) ≤ x}, i.e. all the outcomes whose value 
of interest, according to X , is at most x. The event X ≥ x, and other more complex events involving inequalities and other 
constraints are defined in a similar way.

An algorithm is randomized if it outputs a random variable over some probability space PS. Equivalently, one can see a 
randomized algorithm as an algorithm that has access to a random stream of bits [46].

Definition 8. Consider a function f : {0, 1}∗ → Q. A fully polynomial-time randomized approximation scheme (FPRAS) for 
f is a randomized algorithm A that given as input x ∈ {0, 1}∗ , and numbers ε > 0, δ ∈ (0, 1), outputs a random variable 
A(x, ε, δ) over some probability space PS such that:

Pr
(
|A(x, ε, δ) − f (x)| ≤ ε · f (x)

)
≥ 1 − δ,

and A runs in polynomial time in |x|, 1/ε , and ln(1/δ).

Intuitively, in the above definition, the function f represents a certain problem (e.g. PrA), where the input x is the 
encoding of the PrAF � and the argument g , and the value f (x) is the probability of accepting g (e.g. the number PrAσ

�(g)). 
An FPRAS for f (x) is thus a randomized algorithm A(x, ε, δ) that computes an approximation of f (x) such that |A(x, ε, δ) −
16
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f (x)| ≤ ε · f (x) with a probability greater than or equal to 1 − δ. Parameters ε and δ in A(x, ε, δ) are used for example to 
determine the size of the sample used to compute the approximated value (cf. Algorithm 1).

Similarly to FPRAS, we can define the notion of additive FPRAS. A fully polynomial-time additive randomized approximation 
scheme (FPARAS) for a function f is defined as in Definition 8, where the inequality |A(x, ε, δ) − f (x)| ≤ ε · f (x) is replaced 
with |A(x, ε, δ) − f (x)| ≤ ε . The difference between FPARAS and FPRAS is in the kind of error guarantee we are asking. 
Indeed, an FPARAS provides additive error guarantees, i.e. the approximated value differs from the exact one by at most ε , 
while an FPRAS provides a relative error guarantee, i.e. the approximated value differs from the exact one by at most an 
(ε · f (x))-factor. In general, FPRAS is preferable to FPARAS as the approximation takes into account the value of the solution 
by a relative error. However, whenever an FPRAS does not exist, an FPARAS is the next natural option to consider.

To start discussing inapproximability results for PrA[σ ] (and PrEA[σ ]) under both FPRAS and FPARAS schemes, we need 
to recall the class of decision problems BPP. A decision problem � is in BPP iff there exists a polynomial-time randomized 
decision procedure A such that, for every instance x ∈ {0, 1}∗ of �, if x is a yes (resp. no) instance of �, then Pr(A(x) = yes)
(resp. Pr(A(x) = no)) is greater than or equal to 2/3. It is known that NP ⊆ BPP implies that the polynomial-time hierarchy 
collapses [47].

The first result states that PrA[σ ] and PrEA[σ ] admits no FPRAS for all semantics σ (see second, fourth and sixth column 
of Table 4).

Theorem 4. Consider a semantics σ ∈ {gr, co, pr, st, sst}. Unless NP ⊆ BPP, there is no FPRAS for PrA[σ ], even for acyclic PrAFs 
and for any chosen PDF.

Next, we show that for all semantics except for the grounded, even approximation algorithms with bounded additive 
error (i.e. FPARAS) cannot be devised for PrAFs. For the proof, we rely on a technical lemma that shows a certain gap 
property of the problem of credulously accepting an argument. We first introduce some further notions.

We say that a pair (�, g) of an AF � and argument g is σ -uniform, for a semantics σ , if the existence of an extension 
E ∈ σ(�) such that g ∈ E , implies that every extension E ∈ σ(�) is such that g ∈ E . In other words, when a pair (�, g) is 
σ -uniform, then credulous and skeptical acceptance of g over � coincide.

Let us now consider the following restriction of the classical credulous acceptance problem, where σ is a semantics.

PROBLEM : UnCA[σ ]
INPUT : A σ -uniform pair (�, g).
QUESTION : Is there E ∈ σ(�) such that g ∈ E?

We show that even when restricting our attention to σ -uniform pairs of AFs and arguments, credulous acceptance is 
NP-hard, for all semantics in {pr, st, sst}. The result is proved by providing a reduction from 3SAT by exploiting and 
adapting the construction (of an AF �) known in the literature for the credulous acceptance [48]. Particularly, we prove that 
� has exclusively non-empty σ -extensions if the given formula is satisfiable, and exclusively empty σ -extensions otherwise.

Lemma 1. For σ ∈ {pr, st, sst}, UnCA[σ ] is NP-hard.

We use the above lemma to prove the inapproximability results stated below.

Theorem 5. Let σ ∈ {pr, st, sst}. Unless NP ⊆ BPP, there is no FPARAS for PrA[σ ], for any chosen PDF.

Corollary 3. Let σ ∈ {pr, st, sst}. There is no FPARAS and no FPRAS for PrA[σ ] for AF (PrAF with probabilities equal to 1) and for 
any chosen PDF.

Theorems 2, 4, and 5 rule out the existence of polynomial-time algorithms for solving PrA[σ ]. In terms of exact and 
approximate computation via FPRASes, this is not possible even for acyclic PrAFs, whereas in terms of approximate compu-
tation via FPARAS, this is not possible for general PrAFs as well as for AFs, for all semantics σ ∈ {pr, st, sst}. Notably, 
our results highlight an intrinsic difficulty in providing efficient procedures (either exact or approximate) for any approach 
assigning a probability to an argument by means of a probability distribution over the extensions.

From the above discussion, it is clear that our efforts should be towards approximation schemes with bounded additive 
error guarantees, i.e. FPARAS. In particular, in the light of Theorem 5, one could still provide an FPARAS when either σ ∈
{gr, co} or some restriction on the input PrAF is assumed. In fact, we are going to show that either when σ = gr or when 
the input PrAF has no odd-length cycles, the use of explanations for devising a PDF over extensions allows us to construct 
an FPARAS.
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Algorithm 1 Apx.
Input: A PrAF � = 〈A, �, P 〉, a semantics σ , a goal argument g ∈ A, error parameter ε > 0, and uncertainty parameter 0 < δ < 1.
Output: a random number p such that PrEAσ

�(g) ∈ [p −ε, p +ε] with probability 1 − δ.
1: n := � 1

2ε2 × ln( 2
δ
)�;

2: c := 0;
3: for i ∈ {1, . . . , n} do
4: Choose w ∈ pw(�) with probability I(w);
5: Choose X ∈ Expσ (w) with probability π(X);
6: if g ∈ ext(X) then
7: c := c + 1;
8: return c

n ;

Algorithm 2
Input: An AF � = 〈A, �〉 and a semantics σ .
Output: An explanation for a σ -extension.

1: Let X = 〈〉; � = ∅; � = ∅; � = �∗;
2: while � �= 〈∅, ∅〉 do
3: Let A′ be the first SCC of � ;
4: Let C = {a ∈ A′ \ � | � �= ∅ ⇒ (� ∩ G+

a ) �= ∅ with Ga = gr(�a)} \ �;
5: if σ = gr then
6: C = {ε};
7: if σ = co∧ � = ∅ then
8: C = C ∪ {ε};
9: Select a ∈ C with probability 1

|C| ;
10: Append a to X ;
11: if a = ε then
12: � = � ∪ {x ∈ A \ A′ | ∃ (y, x) ∈ � with y ∈ A′};
13: � = �↓A\A′ ;
14: else
15: � = �a;
16: � = �̂a;
17: return X

5.3. Devising an FPARAS

We report now an FPARAS for the problem PrEA[σ ] for the cases where either the semantics is the grounded or the 
input PrAF has no odd-length cycles.

The general structure of our algorithm is presented in Algorithm 1. Consider a PrAF �, a semantics σ and an argument g . 
The high-level idea is to perform a number of iterations n, and at each iteration sample a world w of � and an explanation 
X in Expσ (w), and count the fraction of iterations for which the given argument g is in the σ -extension ext(X) explained 
by X .

We point out that, besides line 5, all steps of our algorithm can be easily implemented in polynomial time regardless 
of the shape of the input PrAF and the semantics. Particularly, to prove that Algorithm 1 leads to an FPARAS in the cases 
described above, it suffices to prove that line 5 can be implemented in polynomial time when either σ = gr or � has no 
odd-length cycles. This is done via Algorithm 2 which will be discussed later. Thus, Algorithm 1 enjoys the probabilistic and 
error guarantees of an FPARAS (this can be proved via standard probabilistic inequalities [49]).

Algorithm 2, receives as input an AF � = 〈A, �〉 and a semantics σ , and returns an explanation in Expσ (�〉. It uses 
variables (i) �, containing the set of arguments which must be determined as false in the next steps as they attack argu-
ments which have been assumed to be true, i.e. every time we add an argument a to X we add to � the attackers of a
and then delete the arguments whose status is determined by such a choice, and (ii) �, containing the set of arguments 
whose status cannot be determined as true in the next steps. � is relevant only in computation of complete extensions, as 
for stable (preferred and semi-stable) semantics, arguments are either accepted or defeated.4

It is worth noting that during the computation the AF changes as we delete from it arguments whose status has been 
determined, and add virtual attacks to maintain the topology of the SCCs (as discussed in Section 4)

Algorithm 2 proceeds as follows. At the beginning variables X , � and � are initialized (i.e. X = 〈〉, � = � = ∅), whereas 
� is updated to �∗ by deleting arguments occurring in the grounded extension or defeated by them (line 1). Clearly, if 
the source AF is acyclic we have that � (which is now equal to �∗) is empty and the algorithm terminates, returning the 
empty explanation (with probability 1). Then, it iterates until the current AF � becomes empty (line 2) and the following 
steps are executed iteratively. It determines the set C of arguments in the first SCC, from which it is possible to choose 
the next element (lines 3 and 4). Moreover, if σ = gr, C is set to {ε} (line 6) so that the only possible choice will be ε, 
whereas if σ = co and � is empty, ε is added to C , as it is also an admissible choice (line 8). At this point an element 
a is nondeterministically selected from C with probability 1/|C| (line 9) and it is added to X (line 10). The next steps 

4 Recall that for odd-cycle free AF, preferred, stable and semi-stable semantics coincide.
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Fig. 10. AFs � (left), �′ (center), and �′′ (right) of Example 16.

Fig. 11. Probabilistic trie for the AF � of Example 16 under preferred/stable/semi-stable semantics.

depend on the choice made (line 7). If a = ε all arguments in the first component are deleted from � (line 13) and all 
arguments attacked by these arguments are added to � to remember that their status cannot be true and, thus, they cannot 
be chosen in the next steps (line 12). By deleting the whole components and adding ε to X we are stating that the status 
of all elements in the component is undefined. If the chosen element a is an argument, the following steps are executed: 
i) the attackers of a are added to � as we are assuming that their status must be false, and all elements whose status is 
determined (i.e. those in G+

a ) are deleted from � (line 15); ii) the AF � is updated to �̂a (line 16), by deleting arguments 
in G∗

a (and related attacks) whose status has been determined, and adding virtual attacks from nodes in (a− \ G+
a ) to nodes 

in ((G+
a )+ \ G∗

a), so that the resulting component continues to be strongly connected by reconstructing paths in the graph 
that were broken through the deletion of nodes.

The next two examples illustrate how explanations are computed under preferred and complete semantics, respectively. 
In the examples, superscripts with natural numbers are used to distinguish the values of variables at each iteration.

Example 16. Consider the AF � = 〈A, �〉 shown in Fig. 10 (left) with A = {a, b, c, d, e, f} and � = {(a, b), (b, c), (c, d),

(d, e), (e, f), (f, a), (d, c), (f, e)} whose preferred (and stable and semi-stable) extensions are E1 = {a, c, e} and E2 =
{b, d, f}. The set of possible explanations which can be computed by Algorithm 2 are shown in Fig. 11. Initially, the first 
SCC is C = A and, as �0 = ∅ and �0 = �, there are 6 possible choices with probability 1/6.

The choice of an argument x ∈ {b, d, f} allows to have that Gx = {b, d, f} and, therefore, G+
x = {a, c, e}. Consequently, 

both the updated extension and the updated AF are empty and we have three explanations 〈b〉, 〈d〉 and 〈f〉 for E2, all with 
probability 1/6.

By choosing c (with probability 1/6) we get Gc = {c}, G+
c = {d} and �1 = �0

c = {b}. The derived AF �1= �̂0
c is obtained 

by deleting arguments in {c, d} (i.e. arguments in Gc and G+
c ) and adding the virtual attack (b, e) (see Fig. 10 (center)). 

After this choice we have that C = {a, e} as, since �1 is not empty, we have two possible choices x∈{a, e} such that 
(gr(�x)

+ ∩ �) �= ∅, with probability 1/2. By choosing e we get Ge = {e, a} which is a preferred extension of �1, whereas 
if we choose a, we get Ga = {a}, G+

a = {b} and �2= �1
a = {f}. The derived AF �2= �̂1

a (shown in Fig. 10 (right)) is 
obtained by deleting arguments in {a, b} and adding the edge (f, e) (which was already present). At this point C = {e}
and by choosing e we have that (gr(�2

c ) ∩ �2) �= ∅. Therefore, we derive the explanations 〈c, e〉 and 〈c, a, e〉, both with 
probability 1/12.

By choosing first a we get the explanations 〈a, e, c〉, whereas by choosing e we get the explanation 〈e, c〉 both with 
probability 1/6.
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Table 4
Approximability of PrEA[σ ]/PrCA[σ ]/PrSA[σ ] for σ ∈ {gr, co, pr, st, sst} and different 
classes of PrAFs, i.e. general PrAF, PrAF admitting even-length cycles only, and acyclic PrAF. 
Non-existence (resp. existence) of an FP(A)RAS, i.e. a Fully Polynomial-time (Additive) Ran-
domized Approximation Scheme, is denoted with × (resp. �) in the corresponding column. 
Results for PrA[σ ] coincide with that of PrEA[σ ].

General PrAF PrAF w/o odd cycles acyclic PrAF

FPRAS FPARAS FPRAS FPARAS FPRAS FPARAS

gr ×/×/× �/�/� ×/×/× �/�/� ×/×/× �/�/�
co ×/×/× open/×/� ×/×/× �/×/� ×/×/× �/�/�
pr,st,sst ×/×/× ×/×/× ×/×/× �/×/× ×/×/× �/�/�

Example 17. Considering the AF � = 〈A, �〉 of Example 5 (coinciding with possible world w1 of Example 2) shown in 
Fig. 6 (left). The set of possible explanations which can be computed by Algorithm 2 under complete semantics can be 
represented through the trie shown in Fig. 9 (right), though the sets �, � and their evolution are not there. Initially, as �0

and �0 are empty, and �0 = �, C = {fish, meat, ε} and thus there are 3 possible choices with probability 1/3. The choice 
of argument meat allows to have that Gmeat = {meat, red} which corresponds to the extension E3.

By choosing fish (with probability 1/3) we get Gfish = {fish}, G+
fish = {meat} and � = � = ∅. The derived AF 

�1= �̂0
fish is obtained by deleting arguments in {fish, meat} (i.e. arguments in G∗

fish). After this choice we have that 
C = {white, red, ε}. Thus we have again three possible choices with probability 1/3. By choosing white (resp. red and ε) 
we get Gwhite = {white} (resp. Gred = {red}, and Gε = ∅) and, thus, we end with the three explanations 〈fish, red〉, 
〈fish, white〉 and 〈fish, ε〉.

By choosing ε (with probability 1/3) we get �1 = {white} and the derived AF �1= �0↓A\{fish,meat} is obtained by deleting 
arguments in {fish, meat} (i.e. arguments in the first SCC of �). After this choice we have that C = {red, white, ε} \
�1={red, ε}. Thus we have two possible choices with probability 1/2. By choosing red (resp. ε) we get Gred = {red}
(resp. ∅) and, thus, we end with the two explanations 〈ε, red〉 and 〈ε, ε〉. �
Theorem 6. Algorithm 2 with input an AF � and a semantics σ ∈ {gr, co, pr, st, sst} is such that:

• It outputs an X ∈ Expσ (�) with probability π(X), and
• it runs in polynomial time,

whenever i) σ = gr, or ii) � has no odd-length cycles.

By exploiting the above result and standard probabilistic inequalities [49], we can prove our main approximability result.

Theorem 7. Problem PrEA[σ ], with σ ∈ {gr, co, pr, st, sst}, has an FPARAS if either i) σ = gr, or ii) the input PrAF has no odd 
cycles.

5.4. Inapproximability for credulous and skeptical acceptance

We conclude Section 5 by investigating the approximate complexity of the problems of probabilistic credulous acceptance 
(PrCA) and probabilistic skeptical acceptance (PrSA). As for PrEA, we show that no relative error approximation algorithm 
(i.e. FPRAS) exists for PrCA and PrSA under any semantics, even considering acyclic PrAFs. However, we can show that 
PrCA and PrSA are harder than PrEA in the sense that no additive error approximation algorithm (i.e. FPARAS) exists for 
PrCA and PrSA under preferred, stable, and semi-stable semantics even when PrAFs have no odd-length cycles (in contrast, 
FPARAS schemes exist for PrEA under such conditions, cf. Theorem 7). Approximability results for PrEA, PrCA, and PrSA are 
summarized in Table 4.

We start by formally defining the problems considered in this section. For a semantics σ and a goal argument g , we 
consider the following two problems, where the numbers PrCAσ

�(g) and Pr SAσ
�(g) are defined as shown in Definition 2:

PROBLEM : PrCA[σ ]
INPUT : A PrAF � and an argument g.
OUTPUT : The number PrCAσ

�(g).

PROBLEM : PrSA[σ ]
INPUT : A PrAF � and an argument g.
OUTPUT : The number Pr SAσ

�(g).
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It is known that PrCA[σ ] and PrSA[σ ] are FP#P-hard [33], and this holds even for acyclic PrAFs. As for PrEA[σ ], we can 
show that PrCA[σ ] and PrSA[σ ] admits no FPRAS for all semantics σ (see the second, the fourth and the sixth column of 
Table 4).

Theorem 8. For σ ∈ {gr, co, pr, st, sst}, unless NP ⊆ BPP, there is no FPRAS for PrCA[σ ] and PrSA[σ ], even for acyclic PrAFs.

The main difference with PrEA[σ ] lies in the approximability via FPARAS. In particular, we can show that PrCA[σ ] and 
PrSA[σ ] are harder than PrEA[σ ] in this regard, as no FPARAS exists, for all semantics σ ∈ {pr, st, sst}, even when PrAFs 
have no odd-length cycles (see the third and fifth columns in the last row of Table 4).

Theorem 9. Unless N P ⊆ B P P , i) there is no FPARAS for PrCA[σ ] and for PrSA[σ ] with σ ∈ {pr, st, sst}, even for PrAFs without 
odd-length cycles; and ii) there is no FPARAS for PrCA[co], even for AFs (PrAFs with probabilities all equal to 1).

However, a positive result we can obtain for the problem PrCA[σ ] (resp. PrSA[σ ]) is when σ = gr (resp. σ ∈ {gr, co}). 
In this case, PrEA[σ ] = PrCA[σ ], and PrSA[σ ] = PrCA[gr], and thus we obtain the following corollary from Theorem 7 (see 
the third and the fourth rows of the second column of Table 4).

Corollary 4. PrCA[gr], PrSA[gr] and PrSA[co] admit an FPARAS.

6. Extended PrAFs

This section is devoted to studying an extension of PrAF, called Extended PrAF (EPrAF), where precise probabilities are 
not known, and each element has associated a probability interval. We consider probabilistic AF where only arguments may 
be uncertain. Thus, each argument has associated a probability interval [p1, p2], with p1, p2 ∈ [0, 1]. The importance of 
imprecise probabilities has been observed by numerous researchers [50] and has generated an interest in several contexts, 
including Probabilistic SAT (PSAT) [15], Probabilistic Logic [16], Probabilistic Logic Programming [51], Probabilistic Databases 
[52], Spatio-Temporal Knowledge Bases [53,54]. Thus, inspired by the way of representing probabilities in these approaches, 
we extend the probabilistic argumentation framework so that arguments have associated probabilistic intervals instead of 
specific values.

Definition 9. An Extended Probabilistic Argumentation Framework (EPrAF) is a triple 〈A, �, P I 〉 where 〈A, �〉 is an AF, and 
P I is a function assigning to every argument in A a probability interval [p1, p2] with p1, p2 ∈ [0, 1] and p1 ≤ p2.

Thus, P I (a) is a vector of two elements, which denotes an interval whenever P I (a)[1] ≤ P I (a)[2], where P I (a)[i] denotes 
the i-th element of P I (a).

The (interval) interpretation for an EPrAF � = 〈A, �, P I 〉 is a distribution function II over the set pw(�) of possible 
worlds assigning to each w = 〈A′, �′〉 ∈ pw(�) a probability interval defined as follows:

II (w) =
⎡
⎣∏

a∈A′
P I (a)[1] ·

∏
a∈A\A′

(1−P I (a)[1]),
∏
a∈A′

P I (a)[2] ·
∏

a∈A\A′
(1−P I (a)[2])

⎤
⎦

∗

where [p1, p2]∗ = [p1, p2] if p1 ≤ p2, otherwise [p1, p2]∗ = [p2, p1].
Recalling that the only possible worlds that contribute to compute probabilistic acceptance of arguments are those with 

II (w) > 0, in the above Equation we can only consider arguments a ∈ A such that 0 < P I (a) < 1, as the deletion of an 
argument a with P I (a) = [1,1] (resp. the addition to an argument a with P I (a) = [0,0]) gives rise to a possible world w
with II (w) = [0,0].

Example 18. Consider the EPrAF derived from the PrAF of Example (1) by replacing the probability distribution function 
with the function P I defined as follows: P I (f) = [0.55, 0.65], P I (w) = [0.75, 0.85] (where arguments are denoted by their 
initials for the sake of brevity). Considering the possible worlds w1, w2, w3, w4 of Example 2, the probabilistic intervals of 
each interpretation (after rounding values to the second decimal) are as follows:

• II (w1) = [P I (f)[1] · P I (w)[1], P I (f)[2] · P I (w)[2]]∗
= [0.55 · 0.75,0.65 · 0.85]∗ =[0.41,0.55]∗ = [0.41,0.55];

• II (w2) = [P I (f)[1] · (1-P I (w)[1]), P I (f)[2] · (1-P I (w)[2])]∗
= [0.55 · 0.25,0.65 · 0.15]∗ = [0.14,0.10]∗ = [0.10,0.14];

• II (w3) = [(1-P I (f)[1]) · P I (w)[1], (1-P I (f)[2]) · P I (w)[2]]∗
= [0.45 · 0.75,0.35 · 0.85]∗ = [0.34,0.31]∗ = [0.30,0.34];

• II (w4) = [(1-P I (f)[1]) · (1− P I (w)[1]), (1-P I (f)[2]) · (1-P I (w)[2])]∗
= [0.45 · 0.25,0.35 · 0.15]∗ = [0.11,0.05]∗ = [0.05,0.11]. �
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Analogously to what has been defined for PrAF, each extension in σ(�) has associated an (explanation-based) proba-
bilistic interval defined by considering all possible worlds as follows:

EPr(E,�,σ ) =
⎡
⎣ ∑

w∈pw(�)

II (w)[1] · Pr(E, w,σ ),
∑

w∈pw(�)

II (w)[2] · Pr(E, w,σ )

⎤
⎦

∗
(8)

Clearly, whenever Pr is replaced with PrE we obtain E Pr(E, �, σ), that is the explanation-based probability interval 
associated to σ -extension E of �.

The next definition introduces the extended probabilistic acceptance for EPrAF.

Definition 10 (Probabilistic acceptance for EPrAFs). Given an EPrAF � = 〈A, �, P I 〉 and an argument g ∈ A, the probability 
interval EPrAσ

�(g) that g is acceptable w.r.t. semantics σ is:

EPrAσ
�(g) =

⎡
⎣ ∑

E∈σ (�)∧g∈E

EPr(E,�,σ )[1],
∑

E∈σ (�)∧g∈E

EPr(E,�,σ )[2]
⎤
⎦

∗
(9)

Moreover, we define EPrEAσ
�(g) as the interval probability obtained as above but using the PDF PrE(·, w, σ). The corre-

sponding problem is called Extended Explanation-based Probabilistic Acceptance.

Theorem 10. Given an EPrAF � = 〈A, �, P I 〉, for any PrAF �′ = 〈A, �, P 〉 such that P (a) ∈ P I (a) for all a ∈ A, it holds that 
PrAσ

�′(g) ∈ EPrAσ
�(g) for all g ∈ A, independently of the PDF Pr(·, w, σ) used.

The theorem entails that the complexity results of the previous sections, stated for PrAFs, also hold for EPrAFs.

Example 19. Consider the EPrAF � = 〈A, �, P I 〉 of Example 18 and the PrAF �′ = 〈A, �, P 〉 of Example 1. As we have that 
P (a) ∈ P I (a) for all a ∈ A (with P (a) being the average value of P I (a)[1] and P I (a)[2] ∀a ∈ A), we have that PrAσ

�(g) ∈
EPrAσ

�(g) for all g ∈ A and any chosen PDF.
Indeed, considering the Extended Explanation-based Probabilistic Acceptance (i.e. EPrEA), the following table reports for 

each world w the probability II (w) (second column) and, for each pair 〈world w , preferred extension E〉, the probability 
PrE(E, w, pr) w.r.t. AF w (last three columns). Finally, the last row of the table reports, for each set E , the probability 
interval that E is a pr-extension of the EPrAF �.

PrE(E, w,pr)

w II (w) E1={fish,white} E2={fish,red} E3={meat,red}
w1 [.41, .55] 1/4 1/4 1/2
w2 [.10, .14] 0 1/2 1/2
w3 [.30, .34] 0 0 1
w4 [.05, .11] 0 0 1

[.41/4, .55/4]∗ [.41/4+.10/2, [.41/2+.10/2+.3+.05,

EPrE(E,�,pr) .55/4+.14/2]∗ .55/2+.14/2+.34+.11]∗
=[0.103,0.138] =[0.153,0.208] =[0.605,0.795]

The probability of acceptance of a goal argument in � (resp. �′) is reported in first (resp. second) row of the following 
table. For instance, using Definition 10, we obtain EPrEApr� (fish) = [0.103+ 0.153, 0.138+ 0.208] = [0.258, 0.346].

fish meat white red

EPrEApr� (g) [0.258,0.346] [0.605,0.795] [0.103,0.138] [0.758,1]
PrEApr� (g) 0.30 0.70 0.12 0.88

�

7. Incomplete argumentation framework

Incomplete AF has been introduced in [40] and further investigated in several recent works [55–57].

Definition 11 (Incomplete AF). An incomplete (abstract) Argumentation Framework (iAF) is a tuple � = 〈A, B, R, T 〉, where A
and B are disjoint sets of arguments, and R and T are disjoint sets of attacks between arguments in A ∪ B . Arguments in A
and attacks in R are said to be certain, while arguments in B and attacks in T are said to be uncertain.
22



G. Alfano, M. Calautti, S. Greco et al. Artificial Intelligence 323 (2023) 103967
Certain arguments in A are definitely known to exist, while uncertain arguments in B are not known for sure: they may 
occur or may not. Analogously, certain attacks in R are definitely known to exist if both the incident arguments exist, while 
for uncertain attacks in T it is not known for sure if they hold, even if both the incident arguments exist.

An iAF compactly represents alternative AF scenarios, called completions.

Definition 12 (Completion). A completion for an iAF � = 〈A, B, R, T 〉 is an AF � = 〈A′, R ′〉 where A ⊆ A′ ⊆ A ∪ B and R ∩
(A′ × A′) ⊆ R ′ ⊆ (R ∪ T ) ∩ (A′ × A′).

The set of completions of � is denoted by comp(�). An iAF 〈A, B, R, T 〉 is acyclic (resp. odd-cycle free) iff the AF 〈A ∪
B, R ∪ T 〉 is acyclic (resp. odd-cycle free).

Acceptance problems Credulous and skeptical acceptance for iAF have been proposed in [58], where the goal, i.e. the element 
for which acceptance is checked, is an argument.

Definition 13 (Possible/necessary credulous/skeptical acceptance). Let � = 〈A, B, R, T 〉 be an iAF and σ ∈ {gr, co, st, pr, sst}. 
Then, an argument g ∈ A ∪ B is said to be:

1. possibly credulously accepted under σ , denoted as P CAσ (�, g), iff there exists a completion � of � such that CAσ (�, g)

is true;
2. possibly skeptically accepted under σ , denoted as P SAσ (�, g), iff there exists a completion � of � such that SAσ (�, g) is 

true;
3. necessarily credulously accepted under σ , denoted as NCAσ (�, g), iff for every completion � of � CAσ (�, g) is true;
4. necessarily skeptically accepted under σ , denoted as N SAσ (�, g), iff for every completion � of � SAσ (�, g) is true.

We use PCA[σ ] (resp. PSA[σ ], NCA[σ ], NSA[σ ]), or simply PCA (resp. PSA, NCA, NSA) whenever σ is understood, 
to denote the problem of deciding acceptance according to Item 1 (resp. 2, 3, and 4) of Definition 13. For the grounded 
semantics we have PCA[gr] ≡ PSA[gr] and NCA[gr] ≡ NSA[gr].

Example 20. Consider the iAF � = 〈{a, b, d}, {c}, {(a, b), (b, a)}, ∅〉. � has 2 completions: �1 = 〈{a, b, d}, {(a, b), (b, a)}〉
and �2 = 〈{a, b, c, d}, {(a, b), (b, a)}〉. Under semantics σ ∈ {st, pr, sst}, �1 has two extensions E ′

1 = {a, d} and E ′′
1 =

{b, d}, while �2 has two extensions E ′
2 = {a, c, d} and E ′′

2 = {b, c, d}. Thus, a, b, c, d satisfy PCA, c, d satisfy PSA, a, b, d
satisfy NCA and only d satisfies NSA. �
7.1. Equivalent forms of iAFs

In this section we show that iAFs can be rewritten into equivalent iAFs where uncertainty is restricted to either attacks 
or (unattacked) arguments.

Definition 14 (arg-iAF and att-iAF). An iAF � = 〈A, B, R, T 〉 is said to be argument-incomplete (arg-iAF for short) if T = ∅, 
whereas it is said to be attack-incomplete (att-iAF for short) if B = ∅.

Given an iAF �, we denote by arg(�) the arg-iAF derived from � by replacing every uncertain attack (a, b) with the 
certain attacks (a, αab), (αab, βab), (βab, b), where αab (resp. βab) is a fresh certain (resp. uncertain) argument. Analogously, 
we denote by att(�) the att-iAF derived from � as follows: for each uncertain argument b, make b certain and add an 
uncertain attack (α, b), where α is a fresh certain argument—it is sufficient to add only one fresh argument α.

Example 21. Consider the iAF � = 〈{b, c}, {a}, {(a, b), (b, a)}, {(b, c)}〉 shown in Fig. 12, where dashed nodes (resp. 
edges) represent uncertain arguments (resp. attacks). The arg-iAF derived from � is arg(�) = �′ = 〈{b, c, αbc}, {a, βbc}, 
{(a, b), (b, a), (b, αbc), (αbc , βbc), (βbc, c)}, ∅〉, whereas the att-iAF derived from � is att(�) = �′′ = 〈{b, c, a, α}, ∅, 
{(a, b), (b, a)}, {(b, c), (α, a)}〉. The iAFs arg(�) and att(�) are shown if Fig. 13, where the mapping of uncertain attacks 
in arg(�) and of uncertain arguments in att(�) is shown in blue. �

The transformations described above to eliminate uncertain attacks/arguments are inspired by those proposed in [43] to 
eliminate attacks/arguments with probability less than 1 in probabilistic AF. We now introduce a special class of arg-iAFs.

Definition 15 (farg-iAF). An arg-iAF � = 〈A, B, R, ∅〉 is said to be fact-uncertain (farg-iAF) iff ∀(a, b) ∈ R , b /∈ B .

Thus, in farg-iAFs uncertain arguments are not attacked by other arguments. Given an arg-iAF �, farg(�) denotes the 
farg-iAF derived from � as follows: for each uncertain argument b which is attacked in �, make b certain and add the 
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Fig. 12. Incomplete AF � of Example 21.

Fig. 13. Arg-iAF arg(�) and att-iAF att(�) for the iAF � of Example 21. (For interpretation of the colors in the figure(s), the reader is referred to the web 
version of this article.)

Fig. 14. Farg-iAF farg(arg(�)) for the iAF � of Example 21.

attacks (bu, bc), (bc, b), where bc (resp. bu) is a fresh certain (resp. uncertain) argument. With a little abuse of notation, for 
any iAF � we use farg(�) to denote farg(arg(�)).

Example 22. Consider the iAF � of Example 21. The derived farg-iAF is farg(�) = 〈A = {a, b, c, ac, αbc, βbc, βcbc}, B =
{au , βubc}, R = {(a, b), (b, a), (ac, a), (au, ac), (b, αbc), (αbc, βbc), (βbc, c), (βcbc, βbc), (βubc, β

c
bc)}, T = ∅〉 is shown in 

Fig. 14. �
In order to define the relationship between a given iAF � and a derived iAF ϕ(�), where ϕ ∈ {arg, att, f arg}, we first 

relate the completions of ϕ(�) with the completions of �.
Given an iAF � = 〈A, B, R, T 〉, let ϕ ∈ {arg, att, f arg}, for any �′ = 〈A′, R ′〉 ∈ comp(ϕ(�)), a f�(�′) denotes the AF �′′ =

〈A′′, R ′′〉 ∈ comp(�) with:

• A′′ = A ∪ ((B ∩ A′) \ {a | (α, a) ∈ R ′ ∨ au /∈ A′}), and
• R ′′ = (R ∩ (A′′ × A′′)) ∪ ((T ∩ (A′′ × A′′)) \ {(a, b) | (βab /∈ A′) ∨ (βc

ab ∈ A′ ∧ βu
ab /∈ A′)}).

Herein, the set {a | (α, a) ∈ R ′ ∨ au /∈ A′} is introduced in the formula to avoid considering arguments either (i) attacked 
by α in comp(att(�)) or (ii) always false in comp( f arg(�)) as au /∈ A′ . Analogously, the set {(a, b) | (βab /∈ A′) ∨ (βc

ab ∈
A′ ∧ βu

ab /∈ A′)} is introduced in the formula to avoid considering uncertain attacks that are chosen to not occur in either (i)
comp(arg(�)), as βab /∈ A′ , or (ii) comp( f arg(�)) as (βc

ab ∈ A′ ∧ βu
ab /∈ A′).

Example 23. Consider the iAF � of Example 21 and farg(�) = 〈A, B, R, T 〉 of Example 22 (see Fig. 14). For � = 〈(A ∪ B) \
{βu

bc}, R \ {(βubc, βcbc)}〉 ∈ comp( f arg(�)), containing the uncertain argument au but not βubc , a f�(�) = 〈{a, b, c}, {(a, b), 
(b, a)}〉 ∈ comp(�), that is it contains the uncertain argument a, but does not contain the uncertain attack (b, c). �
Lemma 2. For any iAF � and ϕ ∈ {arg, att, farg}, a f� : comp(ϕ(�)) → comp(�) is a surjective function.

The next theorem states the ‘equivalence’ between iAFs and the iAFs derived by applying the previous mappings.

Theorem 11. Let � = 〈A, B, R, T 〉 be an iAF, σ ∈ {gr, co, st, pr, sst}, and ϕ ∈ {arg, att, farg} and let � ∈ comp(�). Then,

• comp(�) = {a f�(�) | � ∈ comp(ϕ(�))}, and
• σ(�) = {E ∩ (A ∪ B) | �′ ∈ comp(ϕ(�)) ∧ � = a f�(�′) ∧ E ∈ σ(�′)}.

Thus, any iAF � is equivalent to an arg-iAF (resp. farg-iAF, att-iAF) �′ in the sense that there is mapping between the 
completions of ϕ(�) and the completions of �, and for any pair of AFs for which the mapping holds, the two AFs have the 
same (modulo arguments added in the rewriting) set of σ -extensions, for σ ∈ {gr, co, st, pr, sst}. This result entails that 
arg-iAFs (resp. farg-iAF, att-iAF) have the same expressivity of general iAFs, though arg-iAFs (resp. farg-iAF, att-iAF) have a 
simpler structure.

The next example shows that the function a f� is not injective.
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Fig. 15. Incomplete AF of Example 24 (left) and corresponding farg-AF (right).

Fig. 16. (From left to right:) iAF � of Example 25, its completions �1 and �2, and its derived PrAF �p .

Example 24. Consider the iAF � = 〈{b}, {a}, ∅, {(a, b)}〉 shown in Fig. 15 (left). � has three completions: �1 =
〈{a, b}, {(a, b)}〉, �2 = 〈{a, b}, ∅〉, and �3 = 〈{b}, ∅〉.

The derived farg-iAF is �′ = 〈A = {a, b, αab, βab, ac, βcab}, B = {au, βuab}, R = {(a, αab), (αab, βab), (βab, b), (ac, a),

(au, ac), (βcab, βab), (β
u
ab, β

c
ab)}, T = ∅〉 shown in Fig. 15 (right).

�′ has four completions:

• �′
1 = 〈A ∪ B, R〉, • �′

2 = 〈A ∪ {au}, R \ {(βu
ab, β

c
ab)}〉,

• �′
3 = 〈A ∪ {βu

a,b}, R \ {(au,ac)}〉, • �′
4 = 〈A, R \ {(au,ac)(βu

ab, β
c
ab)}〉.

Moreover we have that a f�(�′
1) = �1, a f�(�′

2) = �2 and a f�(�′
3) = a f�(�′

4) = �3. �
7.2. Probabilistic acceptance in iAF

In this section, using the equivalence results given earlier, we investigate the relationships between iAF and PrAF by 
relating iAF acceptance problems to probabilistic acceptance in PrAF.

We start by defining a PrAF �p encoding an arg-iAF �.

Definition 16 (Derived PrAF). Given an arg-iAF � = 〈A, B, R, ∅〉, the PrAF derived from � is �p = 〈A ∪ B, R, P 〉, where P :
A ∪ B → {1/2, 1} with P (a) = 1 for a ∈ A and P (b) = 1/2 for b ∈ B .

It is easy to check that, given an arg-iAF � = 〈A, B, R, ∅〉, for every � ∈ pw(�p), I(�) is equal to either 0 or 1
2|B| . As 

stated next, non-zero probability possible worlds of derived PrAF �p one-to-one correspond to completions of �.

Proposition 5. For any arg-iAF �, comp(�) = {� | � ∈ pw(�p) ∧ I(�) > 0}.

Example 25. Consider the arg-iAF � = 〈A = {a, b, c}, B = {d}, R = {(a, b), (b, a), (b, c), (c, c), (d, a), (d, b)}, ∅〉 shown 
on left hand-side of Fig. 16. The derived PrAF �p = 〈A ∪ B, R, P 〉, with P (x) = 1 for x ∈ {a, b, c} and P (d) = 1/2, is 
shown on the right-hand side of Fig. 16. There are only two possible worlds with probability greater than 0: �1 = 〈A, R \
{(d, a), (d, b)}〉 and �2 = 〈A ∪ B, R〉 with I(�1) = I(�2) = 1/2. �

Therefore, for any arg-iAF � we take the associated probabilistic AF �p and assume that a PDF over pw(�p) is given. 
The probabilistic acceptance of a goal argument g is defined as follows.

Definition 17. Given an arg-iAF � = 〈A, B, R, ∅〉 and an argument g ∈ A ∪ B , the probability PrAσ
�(g) that g is acceptable 

w.r.t. semantics σ is:

PrAσ
�(g) =

∑
�∈pw(�p)∧
E∈σ (�)∧g∈E

I(�) · Pr(E,�,σ ),

where Pr(·, �, σ) is a PDF over the set σ(�).
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Table 5
Explanation-based acceptance probability for 
arguments of iAF of Example 26.

σ a b c d

gr 0 0 0 1/2
co 1/6 1/6 0 1/2
st 0 1/2 0 0
pr 1/4 1/4 0 1/2
sst 0 1/2 0 1/2

The explanation-based acceptance probability PrEAσ
�(g) for a goal argument g is then defined by replacing Pr(E, �, σ)

with the explanation-based probability PrE(E, �, σ) associated with σ -extensions (cf. Definition 6).

Example 26. Consider again the iAF of Example 25. There are only two possible worlds �1 and �2 (see Fig. 16) having both 
probability equal to 1/2. �1 has 3 complete extensions E ′

1 = ∅, E ′′
1 = {a} and E ′′′

1 = {b}; E ′
1 is grounded, E ′′

1 and E ′′′
1 are 

preferred, and E ′′′
1 is stable and semi-stable. As for �2, it has only one complete extension E ′

2 = {d}. With a little effort, it can 
be checked that, for each possible world �i (with i ∈ {1, 2}) and semantics σ , the explanation-based probability associated 
with extensions PrE(·, �, σ) follows a uniform distribution. For instance, under preferred semantics, PrE(E ′′

1, �1, pr) =
PrE(E ′′

2, �1, pr) = 1/2 and PrE(E ′
2, �2, pr) = 1. Therefore, PrEApr� (a) =1/2× 1/2=1/4 since a is only in one of the 

two preferred extensions of �1. The explanation-based acceptance probability for all arguments in the iAF is reported in 
Table 5. �

Given an arg-iAF � and an argument g , the problem of computing the value PrAσ
�(g) (under a given semantics σ ) is 

denoted by PrA[σ ], or simply PrA whenever σ is understood. We recall that PrA[σ ] is defined after choosing an arbitrary 
but fixed PDF over the set of extensions of the possible worlds of the derived PrAF �p (cf. Definition 17). The problem of 
computing the value PrEAσ

�(g) is denoted by PrEA[σ ]; in this case the PDF PrE(·, �, σ) of Definition 6 is used.
As stated next, the results we have for PrAF carry over to iAF. In particular, PrA[σ ] is FP#P-hard, regardless of the chosen 

PDF and semantics σ .

Corollary 5. For σ ∈ {gr, co, pr, st, sst}, PrA[σ ] is FP#P-hard, even for acyclic arg-iAF and for any chosen PDF.

We also have the following inapproximability results for PrA[σ ] (and thus for PrEA[σ ]) under FPRAS and FPARAS 
schemes.

Corollary 6. Consider a semantics σ ∈ {gr, co, pr, st, sst}. Unless NP ⊆ BPP, there is no FPRAS for PrA[σ ], even for acyclic arg-iAFs 
and for any chosen PDF.

Corollary 7. Let σ ∈ {pr, st, sst}. Unless NP ⊆ BPP, there is no FPARAS for PrA[σ ], for any chosen PDF.

Notably, we have the following positive result concerning the computation of explanation-based acceptance probability 
in iAFs.

Corollary 8. Problem PrEA[σ ], with σ ∈ {gr, co, pr, st, sst}, has an FPARAS if either i) σ = gr, or ii) the input arg-iAF has no 
odd cycles.

We conclude this section with the following propositions that highlight some relationships between iAFs and PrAFs, 
assuming that the uniform PDF over the set of extensions is used.

Proposition 6. For any arg-iAF � and argument goal g, we have that:

• P CAσ (�, g) is false iff PrAσ
�p (g) = 0;

• NSAσ (�, g) is true iff PrAσ
�p (g) = 1.

The connection between iAF and PrAF is also investigated in [55], where the PrAF associated to an iAF assigns a proba-
bility in (0, 1) to each uncertain argument. Moreover, PCA, PSA, NCA, and NSA are related to the concept of probabilistic 
credulous/skeptical acceptance [33], which is different from that of probabilistic acceptance of Definition 3. Indeed, the prob-
ability that an argument g is credulously (resp. skeptically) accepted is the sum of the probabilities of the possible worlds 
where g is credulously (resp. skeptically) accepted, according to a given semantics σ . Hence, the probability of a world �
is added to the summation iff g belongs to at least one (resp. every) σ -extension of �. In contrast, with the aim of offering 
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a more granular approach, Definition 3 uses the probabilities assigned to σ -extensions by the PDF Pr(·, �, σ). For instance, 
taking the PrAF �p of Example 25 (see Fig. 16), under the complete semantics the probabilistic skeptical (resp. credulous) 
acceptance of b is 0 (resp. 1/2), while PrAco�p (b) =1/6 as b belongs to one of three extensions of one of the two worlds 
(cf. Table 5).

Although the conditions of Proposition 6 are similar to those identified in [55], they refer to different notions of proba-
bilistic acceptance. In fact, while probabilistic skeptical and credulous acceptance define an interval, Definition 3 provides a 
precise value in that interval.

The following proposition considers acyclic arg-iAFs, a subclass of odd-cycle free iAFs.

Proposition 7. Let � = 〈A, B, R, ∅〉 be an acyclic arg-iAF and g a goal. It holds that:

• P SAσ (�, g) ≡ P CAσ (�, g) and NSAσ (�, g) ≡ NCAσ (�, g);
• P SAσ (�, g) is true iff Pr Aσ

�p (g) ≥ 1
2|B| ;

• NSAσ (�, g) is false iff Pr Aσ
�p (g) ≤ 1 − 1

2|B| .

It is worth noting that, although we transformed an iAF into a PrAF by assigning to each uncertain argument a probability 
equal to 1

2 (cf. Definition 16), we could map—with no impact on our complexity results—an iAF into an EPrAF by assigning 
to each uncertain argument a probability interval ( 1

2 − δ, 12 + δ) with δ ∈ [0, 12 ], that is by assigning to each uncertain 
argument any probability interval contained in (0, 1).

8. Discussion and conclusions

We have explored the problem of computing the probability of acceptance of a goal argument in probabilistic argumen-
tation frameworks. Our approach stems from the fact that, in our view, probabilistic credulous acceptance may not provide 
intuitive answers as it generalizes the classical credulous acceptance problem for AFs in one dimension only, that is, via 
probabilities over possible worlds. Our approach also considers another dimension, i.e. it also assigns probabilities to the 
extensions of each possible world, by exploiting dependencies among arguments (i.e. dependencies among SCCs).5 As shown 
in our running example, this enables more intuitive answers w.r.t. probabilistic credulous or skeptical acceptance (e.g. the 
probabilities of acceptance of mutually conflicting arguments such as fish and meat sum up to 1, but this is not the case 
for probabilistic credulous or skeptical acceptance), as well as probabilistic answers under uniform distribution. Thus, we 
introduced the problem PrA[σ ], where a PDF is assumed over the set of extensions, and devised PrEA[σ ] as a concrete 
instance, where the PDF leverages our notion of explanations for extensions.

An alternative definition for explaining complete extensions has been recently proposed in [45]. It exploits the concept of 
reduct, i.e. a sub-framework obtained by removing true and false arguments w.r.t. a complete extension. Intuitively, given an 
AF �, (gr(�), S1, S2) is a (successful) explanation scheme for a complete extension E ∈ co(�) if E = gr(�) ∪ S1 ∪ S2, where 
S1 is a conflict-free set of arguments in �̂ = 〈 Â, ̂�〉 appearing in even cycles of �̂, S2 = gr

(
�̂↓ Â\S∗

1

)
, and gr(�) ∪ S1 ∪ S2

defends S1—we refer the reader to [45] for further details. Although our approach (which is based on the one introduced in 
[1]) and that proposed in [45] share the same underlying idea of applying the grounded semantics in a step-wise fashion 
as well as choosing from arguments appearing in even cycles, the two approaches may yield different explanations as 
illustrated in the following example. Consider the AF � obtained from that of Example 5 (i.e. the deterministic version of 
the PrAF of Example 1) by adding the argument cake and an attack from white to cake. For the complete extension E =
{meat, red, cake}, we have that X = 〈meat〉 is the only explanation for E (note that 〈meat, red〉 is not an explanation 
for E), while (∅, {meat, red}, {cake}) is an explanation scheme for E .

Another important difference with respect to the approach proposed in [45] is that, given a complete extension E for 
an AF �, by applying Definition 4, we are able to build an explanation X for E in polynomial time, while the approach 
in [45] explicitly requires guessing the set S1 for the explanation scheme (gr(�), S1, S2) for E . Moreover, in our context, 
explanations are sequences of arguments that allow us to assign probabilistic values to extensions.

The concept of strong explanation is proposed in [37], inspired by the related notions introduced in [38,63,39]. In-
tuitively, given an AF � = 〈A, �〉, a set S of arguments is a strong explanation for a set E of arguments if, for each 
AF �′ = � ↓B with S ⊆ B ⊆ A, it holds that E ⊆ E ′ with E ′ ∈ σ(�′). Again, our approach and that in [37] may 
yield different explanations as illustrated in the following example. Consider the AF � = 〈A, �〉 with A = {a, b, c, d}, 
� = {(a, b), (b, a), (a, c), (b, c), (c, d)}. Suppose we want to explain the preferred (and stable) extension E = {a, d}. Then, 
S = {a} is not a strong explanation for E , as for �′ = � ↓{a} we have a unique preferred extension E ′ = {a} and E � E ′ . In 
contrast, in our case, 〈a〉 is the only explanation for extension E .

Integrating explanations in argumentation systems is important for enhancing the argumentation and persuasion capa-
bilities of software agents [34,64,65,35]. For these reasons, several researchers explored how to deal with explanations in 

5 SCCs have been extensively investigated in argumentation since they are inherently related to computational aspects of AFs (e.g. the SCC-
decomposability principle, allowing to evaluate the status of arguments in any SCC independently of that of the attackers [59–62]).
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formal argumentation. Significant work in this field includes [36], where a new argumentation semantics is proposed for 
capturing explanations in AF, and [66] that focuses on ABA frameworks [66–68]. They treat an explanation as a semantics to 
answer why an argument is accepted or not. Thus, an explanation is viewed as a set of arguments, instead of a sequence of 
arguments, needed for explaining such an extension. In [36] an explanation is as a set of arguments justifying a given argu-
ment by means of a proponent-opponent dispute-tree [69]. A similar approach based on debate trees as proof procedure for 
computing grounded, ideal, and preferred semantics, has been proposed in [70]. However, in our perspective, explanations 
provide a tool to assign probabilities to extensions, and an explanation can be viewed as a sequence of choices to be made 
to justify how an extension is obtained.

Analogously to several other computational approaches in formal argumentation, our approach suffers from high com-
putational complexity [71–74]. However, after showing that PrA[σ ] and PrEA[σ ] are FP#P-hard, even for acyclic PrAFs, we 
investigated the existence of polynomial-time algorithms for PrEA[σ ] in terms of approximate computation via FP(A)RASes. 
This is analogous to what is done in [25,75], where Monte-Carlo techniques are proposed to estimate the probability that a 
set of arguments is an extension in PrAF as well as in a form of a structured argumentation framework.

We also found that approximate computation via FPARAS is not possible for general PrAFs and for all the considered 
semantics, besides the grounded. Thus, we proposed an additive error approximation algorithm for solving PrEA[σ ] in 
the cases of probabilistic AFs without odd-length cycles and any semantics σ , and for PrEA[gr] in general PrAFs. Our 
results immediately apply to probabilistic frameworks with uncertain attacks, thanks to the results of [43]. Moreover, we 
investigated the approximate complexity of credulous and skeptical acceptance problems for PrAFs, and related it to that of 
explanation-based probabilistic acceptance. Finally, we introduced the concept of explanation-based probabilistic acceptance 
for iAF, extending our proposal for PrAF and the complexity and approximation results to the case of iAF.

To the best of our knowledge, this is the first piece of work investigating probabilistic acceptance in combination with 
explanations for probabilistic AFs (and incomplete AFs). As a first direction for future work, we plan to extend our notion 
of explanation, and investigate the counterparts of our problems, in other contexts such as weighted AF [76,77] and struc-
tured argumentation [78–80]. In particular, it would be interesting to consider for instance p-ASPIC [20] and Probabilistic 
Assumption-Based Argumentation (PABA) [19,66], the probabilistic versions of ASPIC [81] and ABA [67,82], respectively. To 
this end, exploiting the fact that (flat) ABA admit AF as an instance [83], it would be interesting to investigate how to ex-
tend the notion of Explanation-based Probabilistic Acceptance to (fragments of) PABA by elaborating on the ideas underlying 
our definition of explanation. The complexity of credulous and skeptical acceptance problems in PABA, along with that of 
a novel decision problem concerning strong acceptance with probability 1, has been investigated in [84]. Credulous (resp. 
skeptical) strong acceptance is the problem of checking whether the probabilistic credulous (resp. skeptical) acceptance of 
a given goal literal is equal to 1. In our setting, we could define the explanation-based strong acceptance problem as the 
problem of checking whether the explanation-based probabilistic acceptance of a given goal argument g is equal to 1, that 
is, given a PrAF �, a semantics σ , and an argument g , deciding whether PrEAσ

�(g) is equal to 1. It is worth noting that 
deciding whether PrEAσ

�(g) = 1 corresponds to check whether g is skeptically accepted in every possible world of �, that 
is checking whether Pr SAσ

�(g) = 1. That is, in our setting, deciding the explanation-based strong acceptance problem is 
equivalent to deciding the strong skeptical acceptance problem.

As a second direction, we plan to investigate other ways of defining a PDF over the set of extensions that enable other 
instantiations of PrA[σ ], not necessarily defined using our concept of explanations. Given the strict relationship between 
abstract argumentation semantics and partial stable models of logic programs [85], we believe the concepts in this work 
could be applicable to similar probabilistic approaches for other KR formalisms, such as the well-know ProbLog System, a 
probabilistic version of ProLog [86–88]—this is another interesting direction that we plan to address for future work.
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Appendix A. Proofs

In this appendix we provide the proofs of the results stated in the core of the paper.
To ease readability, we restate the results and organize them in sections by following the same structure as in the paper.

A.1. Explanations

Proposition 1. Let � = 〈A, �〉 be an AF, σ ∈ {co, gr, pr, st, sst} a semantics, E ∈ σ(�) an extension, a ∈ E an argument and 
Ga = gr(�a), Then, E ′ = E \ Ga is a σ -extension for �∗

a .

Proof. As the set of complete extensions forms a complete-meet semilattice (cf. Theorem 25 of [13]), w.l.o.g. let σ = co. 
Recall that E ∈ co(�) iff E = Acc(E) and E is conflict-free.

Let �′ = 〈A′, �′〉 = �∗
a =� ↓A\G∗

a
, it is sufficient to prove that E ′ = E \ Ga = Acc(E ′) as E ′ is clearly conflict-free as it is a 

subset of a conflict-free set. Observe that A′ ⊆ A and �′ ⊆ �; moreover, E ′ ⊆ E and Def (E ′) = E ′+ ⊆ Def (E) = E+ . Reasoning 
by contradiction, suppose that E ′ ⊂ E ′). Thus there exists an argument z ∈ Acc(E ′) \ E ′ , that is, z ∈ {A′ \ E ′ | ∀b ∈ A′.(b, z) ∈
�′ =⇒ b ∈ Def (E ′)}. This implies that z ∈ {A \ E | ∀(b, z) ∈ � =⇒ b ∈ Def (E)}, that is z ∈ Acc(E) \ E , contradiction (E is a 
complete extension of �).

Suppose now that E ′ ⊃ Acc(E ′). Thus there exists z ∈ E ′ and ∃(b, z) ∈ �′ s.t. b /∈ Def (E ′). As Def (E) ∩ A′ = Def (E ′) ∩ A′ it 
also holds that b /∈ Def (E), implying that z ∈ E \ Acc(E), contradiction. �
Proposition 2. Let � be an AF and σ ∈ {gr, co, pr, st, sst} a semantics. Then:

i) for every E ∈ σ(�), Expσ
�(E) �= ∅;

ii) for every Ei, E j ∈ σ(�) with Ei �= E j , Expσ
�(Ei) ∩ Expσ

�(E j) = ∅.

Proof. Item i) follows from Definition 4, where an explanation is always determined for each extension.
Item ii), reasoning by contradiction, assume that Expσ

�(Ei) ∩ Expσ
�(E j) �= ∅, and let X be an explanation in Expσ

�(Ei) ∩
Expσ

�(E j), and X̃ = set(X) ∩ A, where A is the set of arguments of �. Thus, from Theorem 1 (see below), we have that 
Ei = gr(� X̃ ) and E j = gr(� X̃ ), that implies Ei = E j (contradiction). �
Theorem 1. Let � = 〈A, �〉 be an AF, σ a semantics in {gr, co, pr, st, sst} and E a σ -extension. Then, for any X ∈ Expσ

�(E) and 
X̃ = set(X) ∩ A we have that E = gr(� X̃ ) and ̃X− ⊆ E+ , where � X̃ is the AF derived from � by deleting attacks to arguments in ̃X.

Proof. We start by showing that E = gr(� X̃ ). To prove that E = gr(� X̃ ), we show that the following two items hold.

1. E = gr(�E ). We have that E ⊆ gr(�E ) as arguments in E are not attacked in �E and thus they are in gr(�E ). To 
show that gr(�E ) ⊆ E , it is sufficient to prove that gr(� ↓A\(E∪E+)) = ∅. Arguments in � ↓A\(E∪E+) are such that all 
attacks towards them are from undecided arguments w.r.t. E (i.e. they are neither accepted nor defeated w.r.t. E), as 
they are attacked from arguments in E+ or in A \ (E ∪ E+) in �. The first kind of attacks can be removed as they are 
irrelevant [89,90]. As for the second kind of attacks, since each argument a in � ↓A\(E∪E+) is undecided w.r.t. E , there is 
at least an argument b of � ↓A\(E∪E+) that is in turn undecided w.r.t. E and that attacks a. Thus, the grounded extension 
of � ↓A\(E∪E+) is empty.

2. gr(�E ) = gr(� X̃ ). We first show that gr(� X̃ ) ⊆ gr(�E ). Let � X̃ = 〈A X̃ , � X̃ 〉 and �E = 〈AE , �E 〉. Reasoning by con-
tradiction, assume that gr(� X̃ ) � gr(�E ), that is there exists an argument z ∈ gr(� X̃ ) s.t. z /∈ gr(�E ). Thus, there 
is an attack (z′, z) ∈ �E s.t. z′ /∈ E+ . As �E ⊆ � X̃ and X̃+ ⊆ E+ , we have that (z′, z) ∈ � X̃ and z′ /∈ X̃+ , meaning that 
z /∈ gr(� X̃ ), contradiction. We now show that gr(�E ) ⊆ gr(� X̃ ). Reasoning by contradiction, assume gr(�E ) � gr(� X̃ ), 
that is there exists an argument z ∈ gr(�E ) s.t. z /∈ gr(� X̃ ). Thus, z is such that ∀(z′, z) ∈ �E ⇒ z′ ∈ E+ . Moreover, we 
have that ∃(z′′, z) ∈ � X̃ s.t. z′′ /∈ X̃+ . Since � X̃ ⊆ � and X̃+ ⊆ E+ , we have that ∃(z′′, z) ∈ � X̃ s.t. z′′ /∈ X̃+ ⇒ ∃(z′′, z) ∈
� s.t. z′′ /∈ E+ and thus z /∈ E . Since we have shown that E = gr(�E ), z /∈ gr(�E ), contradiction.

Finally, we show that X̃− ⊆ E+ . Let X = 〈a1, . . . , an〉 and Gai = gr(�i) where �i is the AF obtained at step i of Definition 4. 
Observe that, arguments in X̃− appear in either G+

ai
or in �, that in turn consists of arguments that are ‘labeled’ as false in 

the steps j > i. As Definition 4 requires that at the last step of the process (i.e. Item 1) it holds that � = ∅, we obtain that 
X̃− ⊆ E+ . �
Proposition 3. Let � = 〈A, �〉 be an AF, σ a semantics in {gr, co, pr, st, sst} and E a σ -extension. Let C and D be two linear 
orderings of the SCCs of � (according to the topological ordering of the graph representing the AF �). Let PrEO(E, �, σ) be the 
probability associated with extension E under a linear ordering O. Then, it holds that PrEC(E, �, σ) = PrED(E, �, σ).
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Proof. Let C = 〈C1, . . . , Cn〉 and D = 〈D1, . . . , Dn〉 be two linear orderings of the SCCs of �. Let X = 〈x1
1, . . . , x

k1
1 , x1

2, . . . , x
k2
2 ,

. . . , x1
n, . . . , xkn

n 〉 be an explanation for E w.r.t. C such that:

• ⋃k j

j=1 x j
i ⊆ {ε} ∪ Ci for any i ∈ [1, n]; and

• π(x j
i ) = π(parent(x j

i )) · 1
p j

i

where p j
i = |children(parent(x j

i ))|.

We now prove that there exists an explanation Y = 〈y1
1, . . . , y

l1
1 , y1

2, . . . , y
l2
2 , . . ., y1

n, . . . , yln
n 〉 for E w.r.t. D such that Y

(interpreted as a word) is an anagram of X and π(X) = π(Y ).
First observe that, the construction of an explanation according to Definition 4 proceeds component by component and it 

cannot be the case that explanations contain any sequence of elements 〈x1, x2〉 such that x1 and x2 are respectively choices 
made w.r.t. the components Ci and C j with j < i.

For any i-th component (i ∈ [1, n]), if Ci = Di then X[i] = 〈x1
i , . . . , x

ki
i 〉 = Y [i] = 〈y1

i , . . . , y
li
i 〉 and p(x j

i ) = p(y j
i ) for any 

j ∈ [1, ki], as Definition 4 is deterministic, in the sense that all possible explanation choices appear in the trie. Otherwise, 
Ci �= Di , meaning that there is no topological ordering between Ci and Di ; in such a case, there must exist m �= i and 
Y [m] = 〈y1

m, . . . , ylm
m 〉 such that Ci = Dm , X[i] = 〈x1

i , . . . , x
ki
i 〉 = Y [m] = 〈y1

m, . . . , ylm
m 〉 and π(x j

i ) = π(y j
m) for any j ∈ [1, ki]. 

We show that this condition holds by reasoning by contradiction. Assume that there exists no such Y [m] such that X[i] =
Y [m].

If m > i, then there exist either a) at least one x j
i in X[i] which is not in Y [m], or b) at least one yh

m in Y [m] which 
is not in X[i]. Let us first focus on case a); as shown below, in case b) we can reason analogously. If x j

i does not belong 
to Y [m], then there must exists a previous step in the process defined by Definition 4 that refers to a component Dk with 
k < m that computes the status of x j

i , in the sense that there exists some element yz
k in Y [k] such that x j

i ∈ G∗(�yz
k
). This 

implies that the status of x j
i appearing in Ci = Dm depends on that of yz

k . As Dk precedes Dm and Dm = Ci , it follows that 
there must exist a component Cl = Dk with l < i, implying that x j

i cannot be part of X[i]; contradiction. In case b), i.e. yh
m

does not belong to X[i], there must exists a previous step in the process underlying Definition 4 that refers to a component 
Ck with k < i that computes the status of yh

m , and thus there exists some element xz
k ∈ X[k] such that yh

m ∈ G∗(�xz
k
). This 

implies that the status of yh
m appearing in Ci = Dm depends on that of xz

k . As Ck precedes Ci and Dm = Ci , we obtain that 
there must exist a component Dl = Ck with l < m, implying that yh

m cannot be part of Y [m], which is a contradiction.
Clearly, if m < i, we can reason analogously to what is done above, as it suffice to swap the two components considered 

and make analogous considerations.
As what is shown above holds for each i-th component (with i ∈ [1, n]), we have that X and Y (interpreted as words) 

are anagrams. Finally, as this holds for any explanation of E , it follows that π(X) = π(Y ) and thus PrEC(E, �, σ) =
PrED(E, �, σ). �
A.2. Exact and approximate complexity

Theorem 9. For σ ∈ {gr, co, pr, st, sst}, PrA[σ ] is FP#P-hard, even for acyclic PrAFs and for any chosen PDF.

Proof. We show a reduction to our problem from the #P-hard problem #P2CNF [91], that is, the problem of counting the 
number of satisfying assignments of a CNF formula where each clause consists of exactly 2 positive literals. Since a problem 
is FP#P-hard iff it is #P-hard, this suffices to prove the statement.

Let φ = C1 ∧ C2 ∧ · · · ∧ Ck be a P2CNF, where X = {x1, . . . , xn} is the set of its propositional variables. We define an 
(acyclic) PrAF � = 〈A, �, P 〉 as follows:

• The set A consists of: i) an argument ai for each propositional variable xi ∈ X ; ii) an argument ci for each clause Ci

appearing in φ; and iii) an argument ϕ;
• � contains, for each clause Ci = x j ∨ x� (with i ∈ {1, . . . , k}), an attack (ci, ϕ), and two attacks (a j, ci) and (a�, ci).
• Function P assigns probability 1

2 to every argument corresponding to a propositional variable (i.e. ∀i ∈ {1, . . . , n}, P (ai) =
1
2 ), and probability 1 to all the other arguments (i.e. ∀i ∈ {1, . . . , k}, P (ci) = 1, and P (ϕ) = 1).

Finally, we let the goal argument be ϕ .
We first show that there is a bijection β : T → pw(�) between the set T of truth assignments of P2CNF φ and the 

set pw(�) of possible worlds of �. Function β is such that, given a truth assignment τ for the propositional variables of 
φ, the possible world w = β(τ ) = 〈Aw , �w〉 is an AF such that Aw = A \ {a j ∈ A | τ (x j) = f alse} and �w = � \ {(a j, ci) ∈
� | τ (a j) = f alse}.

We now show that for every truth assignment τ for the propositional variables of φ, φ evaluates to true under τ iff the 
goal argument ϕ belongs to the grounded extension of the AF w = β(τ ). Indeed, if φ evaluates to true under τ , then the 
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set E = {ϕ} ∪ {a j | τ (x j) = true} is the grounded extension of w = β(τ ) because it is conflict-free, it is admissible (for each 
ci attacking ϕ , there is a j ∈ E attacking ci ), and contains all the arguments it defends. On the other hand, if ϕ belongs to 
the grounded extension of w = β(τ ) then for each ci attacking ϕ , there must be a j ∈ E attacking ci , meaning that at least 
one variable per clause is assigned to true by τ .

Since the PrAF � = 〈A, �, P 〉 is acyclic, then every AF w ∈ pw(�) is acyclic. Thus the grounded extension of w ∈ pw(�)

is the unique extension of w under any semantics in σ ∈ {gr, co, pr, st, sst}. Given w ∈ pw(�), if extension E is the 
unique σ -extension of w , then for any PDF Pr(·, w, σ), Pr(E, w, σ) = 1.

Therefore, PrAσ
�(ϕ) is the sum of the probabilities I(w) of the possible worlds w ∈ pw(�) where ϕ belongs to the 

unique σ -extension of w , that is the sum of the probabilities of w ∈ pw(�) whose corresponding truth assignment τ =
β−1(w) makes φ true. Since the probability of every possible world w ∈ pw(�) is equal to 1

2n (there are n arguments 
in A having probability equal to 1

2 , and all the other arguments are assigned probability equal to 1), it is the case that 
2n · PrAσ

�(ϕ) is the number of satisfying assignments of φ, which suffices to complete the proof. �
Theorem 3. For σ ∈ {co, pr, st, sst}, PrEA[σ ] is FP#P-hard for AFs (that is, for PrAFs where all probabilities are set to 1).

Proof. We show a reduction to our problem from #P2CNF [91]. Let φ = C1 ∧C2 ∧· · ·∧Ck be a P2CNF, where X = {x1, . . . , xn}
is the set of its propositional variables. We define a PrAF � = 〈A, �, P 〉 as follows:

• The set A consists of: i) a pair of arguments, namely ai and ai , for each propositional variable xi ∈ X ; ii) an argument 
ci for each clause Ci appearing in φ; and iii) an argument ϕ;

• � consists of the following attacks. For each clause Ci = x j ∨ x� (with i ∈ {1, . . . , k}), an attack (ci, ϕ) as well as attacks 
(a j, ci) and (a�, ci) are in �; moreover, for each j ∈ {1, . . . , n}, � contains a pair of mutual attacks, (a j, a j) and (a j, a j).

• Function P assigns probability equal to 1 to every argument in A.

Finally, we let the goal argument be ϕ .
Observe that � is an AF containing n even cycles, one for each propositional variable in X . Moreover, � is coherent [48], 

that is, st(�) = sst(�) = pr(�) where � = 〈A, �〉 is the unique world of �. Thus, in the following, we focus on the 
stable semantics only.

We can show that there is a bijection β : T → st(�) between the set T of truth assignments of φ and the set 
st(�) of stable extensions of �. In particular, function β is such that, given a truth assignment τ for the proposi-
tional variables of φ, the set S = β(τ ) = {a j | τ (x j) = true} ∪ {a j | τ (x j) = f alse} ∪ {ci | Ci = x j ∨ x�, τ (x j) = true ∨ τ (x�) =
true} ∪ {ϕ | τ is a satisfying assignment for φ} is a stable extension of �. In fact, if φ evaluates to true under τ , then S
contains ϕ , no ci is in S as for each ci (attacking ϕ), with Ci = x j ∨ x� being a clause of φ, there is either a j or a� in S
attacking ci ; moreover; either a j or a j in S for each j ∈ {1, . . . , n}. On the other hand, if φ evaluates to false under τ , then 
S contains at least a ci argument as there is a clause Ci whose (positive) variables are assigned false by τ . Also in this case, 
either a j or a j in S for each j ∈ {1, . . . , n}. Thus, S = β(τ ) is conflict-free, admissible, and total, meaning that it is a stable 
extension for each truth assignment τ for φ.

Observe that, for every truth assignment τ for the propositional variables of φ, the goal argument ϕ belongs to the 
corresponding extension β(τ ) ∈ st(�) iff φ evaluates to true under τ .

We now compute PrEAst� (ϕ). Since � has a unique world �, PrEAst� (ϕ) = ∑
E∈st(�)∧ϕ∈E

PrE(E, �, st) where

PrE(E, �, st) = ∑
X∈Expst� (E)

π(X).

Let E ∈ st(�) be an extension such that ϕ ∈ E . As said earlier, such kind of extensions is of the form E = {ϕ} ∪
{a j | τ (x j) = true} ∪ {a j | τ (x j) = f alse}. It can be shown that an explanation X for E is any sequence X = 〈y1, . . . , yn〉 of 
arguments in E \ {ϕ}. In fact, �∗ = � since gr(�) = ∅, and � has n unattacked SCCs (ordered as 〈C1, . . . , Cn〉) consisting 
of the n cycles corresponding to the pairs of the mutual attacks (a j, a j) and (a j, a j) (with j ∈ {1, . . . , n}). Hence, the first 
argument y1 in X belongs to the SCC C1 of �1 = �∗ . Next, the second argument y2 in X belongs to the SCC C2 of the AF 
�2 = �∗

y1
obtained from �1 by removing the attacker of y1 (that is a j if y1 = a j ; a j if y = a j). In general, the jth argument 

yi in X (with j ∈ {2, . . . , n}) belongs to the SCC C j of the AF � j obtained from � j−1 by removing the attackers of y j−1 as 
well as the arguments in the grounded extension of � j−1 or attacked by them.

Consider now an extension E ∈ st(�) such that ϕ /∈ E . This is an extension corresponding to a truth assignment τ =
β−1(E) under which φ evaluates to false. Such kind of extensions is of the form E = {ci | Ci = x j ∨ x�, τ (x j) = f alse, τ (x�) =
f alse} ∪{a j | τ (x j) = true} ∪{a j | τ (x j) = f alse}. Reasoning similarly to the previous case, it can be shown that an explanation 
X for E is any sequence X = 〈y1, . . . , yn〉 of arguments in E \ {ci | Ci = x j ∨ x�, τ (x j) = f alse, τ (x�) = f alse}.

Since an explanation X for any extension E ∈ st(�) is a sequence of n arguments, each of them in {ai j , ai j } (with 
i j ∈ {1, . . . , n}), there is only one explanation for each stable extension E of �.

Moreover, � has 2n stable extensions, one for each truth assignment τ of φ. This leads to a probabilistic trie T st
� for �

consisting of the 2n sequences in Expst(�), and such that π(X) = 1
n since all explanations are of length n.
2
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) =
Therefore, PrEAst� (ϕ) = ∑
X∈Expst� (E)∧E∈st(�)∧ϕ∈E

π(X) = #φ
2n , where #φ is the number of satisfying assignments for φ. That 

is, #φ = 2n · PrEAst� (ϕ).
Finally, as for the considered framework it holds that st(�) = sst(�) = pr(�), the result also holds for the semi-stable 

and preferred semantics.
We now consider the complete semantics (i.e. σ = co). We define a PrAF � = 〈A, �, P 〉 as follows:

• The set A consists of: i) a triple of arguments, namely ai , ai , and cai for each propositional variable xi ∈ X ; ii) an 
argument ci for each clause Ci appearing in φ; and iii) an argument ϕ;

• � consists of the following attacks. For each clause Ci = x j ∨ x� (with i ∈ {1, . . . , k}), an attack (ci, ϕ) as well as attacks 
(a j, ci) and (a�, ci) are in �; moreover, for each j ∈ {1, . . . , n}, � contains a pair of mutual attacks, (a j, a j) and (a j, a j). 
Finally, we have the attacks (cai , ϕ) for each variable xi ∈ X as well as (ai, cai ) and (ai, cai ).

• Function P assigns probability equal to 1 to every argument in A.

Finally, we let the goal argument be ϕ .
We can show that there is a bijection β : T → co(�)∗ between the set T of truth assignments satisfying φ and the set 

co(�)∗ of complete extensions of � containing ϕ . In particular, function β is such that, given a truth assignment τ for 
the propositional variables of φ s.t. τ is a satisfying assignment for φ, the set S = β(τ ) = {a j | τ (x j) = true} ∪ {a j | τ (x j) =
f alse} ∪ {ci | Ci = x j ∨ x�, τ (x j) = true ∨ τ (x�) = true} ∪ {ϕ | τ is a satisfying assignment for φ} is a complete extension of 
� containing ϕ . In fact, as φ evaluates to true under τ , then S contains ϕ , no ci is in S as for each ci (attacking ϕ), 
with Ci = x j ∨ x� being a clause of φ, there is either a j or a� in S attacking ci ; moreover; either a j or a j in S for each 
j ∈ {1, . . . , n}. The same consideration holds for arguments cai . On the other hand, for any complete extension E ∈ co(�)

s.t. ϕ ∈ E , E is also a stable extension and β−1(E) gives a truth assignment τ s.t. τ (xi) = true iff ai ∈ E .
We now compute PrEAco� (ϕ). Since � has a unique world �, PrEAco� (ϕ) = ∑

E∈co(�)∧ϕ∈E
PrE(E, �, co) where PrE(E, �, co

∑
X∈Expco� (E)

π(X). Let E ∈ co(�) be an extension such that ϕ ∈ E . As said earlier, such kind of extensions is of the 

form E = {ϕ} ∪ {a j | τ (x j) = true} ∪ {a j | τ (x j) = f alse}. It can be shown that an explanation X for E is any sequence 
X = 〈y1, . . . , yn〉 of elements in E \ {ϕ} ∪ {ε}. In fact, �∗ = � since gr(�) = ∅, and � has n unattacked SCCs (ordered 
as 〈C1, . . . , Cn〉) consisting of the n cycles corresponding to the pairs of the mutual attacks (a j, a j) and (a j, a j) (with 
j ∈ {1, . . . , n}). Hence, at each step, either ai, ai , or ε can be chosen.

Moreover, � has 3n complete extensions. This leads to a probabilistic trie T co
� for � consisting of the 3n sequences in 

Expco(�), and such that π(X) = 1
3n .

Therefore, PrEAco� (ϕ) = ∑
X∈Expco� (E)∧E∈co(�)∧ϕ∈E

π(X) = #φ
3n , where #φ is the number of satisfying assignments for φ. That 

is, #φ = 3n · PrEAco� (ϕ). �
Proposition 4. For any chosen PDF, i) PrA[gr] is in FP for AF, and ii) PrA[σ ] is in FP for σ ∈ {pr, co, st, sst} and acyclic AFs.

Proof. For AFs the grounded semantics prescribes a unique extension, that can be computed in polynomial time, and for 
acyclic AFs all semantics collapse to the grounded one. Therefore, in both cases there is only one extension whose probability 
is 1. �
Theorem 4. Consider a semantics σ ∈ {gr, co, pr, st, sst}. Unless NP ⊆ BPP, there is no FPRAS for PrA[σ ], even for acyclic PrAFs 
and for any chosen PDF.

Proof. The claim follows from the proof of Theorem 2. In particular, in that proof we show a reduction from #P2CNF 
to PrA[σ ], for every semantics σ ∈ {gr, co, pr, st, sst} and for any chosen PDF. Starting from a P2CNF formula φ, 
the constructed PrAF � and argument g are such that � is acyclic, and #φ = PrAσ

�(g)

2n , where #φ is the number of truth 
assignments satisfying φ, and n is the number of propositional variables of φ. It is well-known that #P2CNF does not admit 
an FPRAS (unless NP ⊆ BPP) [91]. Since #φ and PrAσ

�(g) coincide, up to a multiplicative factor (i.e. 1
2n , which can be easily 

computed in polynomial time), the reduction then shows that PrA[σ ] does not admit an FPRAS, for all σ ∈ {gr, co, pr, st, 
sst}, and for any chosen PDF, even when considering only acyclic PrAFs (unless NP ⊆ BPP). �
Lemma 1. For each σ ∈ {pr, st, sst}, UnCA[σ ] is NP-hard.

Proof. We provide a reduction from the NP-complete problem 3SAT, that is, the problem asking whether a given 3CNF 
formula is satisfiable. We point out that, although the construction is somehow known in the literature, what we are going 
to prove here is that this construction is also a reduction from 3SAT to the restricted problem UnCA[σ ].

Let φ = C1 ∧ C2 ∧ · · · ∧ Ck be a 3CNF, where X = {x1, . . . , xn} is the set of its propositional variables. We define the AF 
� = 〈A, �〉 as follows.
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• The set A contains: i) two arguments ax and ax̄ , for each variable x ∈ X and its negation x̄; ii) an argument ci , for each 
clause Ci of φ; iii) an argument ϕ and an argument ψ ;

• The set � contains: i) for each variable x ∈ X and its negation x̄, two attacks (ax, ax̄) and (ax̄, ax); ii) for each clause 
Ci = �1 ∨ �2 ∨ �3 of φ, an attack (ci, ϕ) and three attacks (a�1 , ci), (a�2 , ci), and (a�3 , ci); iii) for each α ∈ A \ {ϕ}, an 
attack (ψ, α); iv) the attack (ϕ, ψ).

The goal is to prove that, for each σ ∈ {pr, st, sst}, when φ is unsatisfiable, then no extension E ∈ σ(�) contains ϕ , 
and when φ is satisfiable, every extension E ∈ σ(�) contains ϕ .

We start with some considerations.
(1) First, note that no preferred (and thus, no (semi)-stable) extension contains the argument ψ . If this would be the 

case, then, since ψ attacks all arguments in A \ {ϕ}, and ϕ attacks ψ , such an extension would be the singleton {ψ}. 
However, {ψ} �= Acc({ψ}) (as ϕ attacks ψ , but ψ does not attack ϕ).

(2) Second, note that for any preferred (and hence, any (semi)-stable) extension E , if E is non-empty, it must contain ϕ
(and not contain ψ , from (1)). In fact, if some argument in A \ {ϕ, ψ} is in E , since ψ attacks every argument, except for ϕ , 
ϕ must be in E , as it is the one attacking ψ .

We first show that when the formula φ is unsatisfiable, then no preferred extension (and thus, no (semi)-stable exten-
sion) contains ϕ . Assume, towards a contradiction, that there exists a preferred extension E of �, such that ϕ ∈ E . Since 
ϕ ∈ E , no argument ci , for i ∈ {1, . . . , k} is in E , as E would not be conflict-free. Moreover, since each ci attacks ϕ , but ψ /∈ E
(from (1)), some conflict-free subset B of {ax1 , ax̄1 , . . . , axn , ax̄n } must be contained in E , for E to be acceptable w.r.t. itself, 
i.e. E = Acc(E). However, since φ is unsatisfiable, any such a set B will always leave at least one argument ci unattacked, 
and thus E �= Acc(E), obtaining a contradiction.

We now show that when the formula φ is satisfiable, then a (non-empty) stable extension exists. Assume φ is satisfiable, 
and let τ be a truth assignment for the propositional variables of φ, such that τ satisfies φ. We consider the set

Eτ = {ax ∈ A | τ (x) = true} ∪ {ax̄ ∈ A | τ (x) = f alse} ∪ {ϕ}.
We claim Eτ is a stable extension. Clearly, Eτ is a maximal conflict-free set, since one argument ax from each pair {ax, ax̄}
is in Eτ , no argument ci can be in Eτ , as τ satisfies φ and thus all ci ’s are attacked by Eτ . Finally, ψ is not in Eτ from (1). 
What remains to show is that every argument attacking some argument in Eτ , is attacked by some argument in Eτ . In fact, 
every argument of the form ax not in Eτ and attacking ax̄ ∈ Eτ is attacked by ax̄ , and vice versa. Moreover, the argument 
ψ attacking every argument in Eτ is attacked by ϕ . Finally, the fact that every argument of the form ci , for i ∈ {1, . . . , k}, is 
attacked by some argument in Eτ , follows by construction of Eτ and from the fact that τ satisfies φ. Thus, Eτ is a stable 
extension of �. From consideration (2), any non-empty preferred extension of � must contain ϕ . Thus, since at least a 
non-empty stable extension exists when φ is satisfiable (i.e. Eτ ), and thus all stable extensions are non-empty, we conclude 
that when φ is satisfiable, all stable, semi-stable and preferred extensions of � contain ϕ , and the claim follows. �
Theorem 5. Let σ ∈ {pr, st, sst}. Unless NP ⊆ BPP, there is no FPARAS for PrA[σ ], for any chosen PDF.

Proof. From Lemma 1, it suffices to prove that the existence of an FPARAS for PrA[σ ], with a given fixed PDF, implies that 
UnCA[σ ] is in BPP.

Consider a semantics σ ∈ {pr, st, sst}, and assume that A is indeed an FPARAS for PrA[σ ], for some fixed PDF. 
We now show that UnCA[σ ] is in BPP, by means of the following randomized procedure. Let BPPAlgo be the randomized 
decision procedure taking as input an σ -uniform pair (�, g) of an AF � and argument g , and performing the following:

1. Let ε = 1/3 and δ = 1/3;
2. Construct the PrAF � from � by giving probability 1 to all arguments in �;
3. Compute p̂ = A(�, g, ε, δ);
4. if p̂ ∈ [1 − ε, 1 + ε], then return yes;
5. else return no.

Since A runs in polynomial time, so does BPPAlgo. Let now (�, g) be an σ -uniform pair given as input to BPPAlgo. We 
consider two cases.

Assume first that an extension E ∈ σ(�) exists, such that g ∈ E . Then, since (�, g) is σ -uniform, and since every 
argument in the PrAF � constructed in line 2 has probability 1, we conclude that PrAσ

�(g) = 1 (regardless of the chosen 
PDF). Thus, since A is an FPARAS, line 4 of algorithm BPPAlgo is executed (i.e. returns the right answer for UnCA[σ ] with 
input (�, g)) with probability at least 1 − δ = 2/3, and line 5 is executed (i.e. returns the wrong answer) with probability 
at most δ = 1/3.

Assume now that no extension E ∈ σ(�) exists such that g ∈ E . Again, since every argument in the constructed PrAF �
has probability 1, we conclude that PrAσ

�(g) = 0, regardless of the chosen PDF. Since A is an FPARAS, Pr(|A(�, g , ε, δ) −0| ≤
ε) ≥ 1 − δ. Moreover, since ε < 1/2, the events |A(�, g , ε, δ) − 0| ≤ ε and |A(�, g, ε, δ) − 1| ≤ ε are disjoint, and thus 
Pr(|A(�, g, ε, δ) − 1| ≤ ε) is at most the probability that the event |A(�, g, ε, δ) − 0| ≤ ε does not hold, i.e. δ. Hence, line 
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4 of algorithm BPPAlgo is executed (i.e. returns the wrong answer for UnCA[σ ] with input (�, g)) with probability at most 
δ = 1/3, and thus executes line 5 (i.e. returns the right answer) with probability at least 1 − δ = 2/3. Hence, UnCA[σ ] is in 
BPP, as required. �
Corollary 3. Let σ ∈ {pr, st, sst}. There is no FPARAS and no FPRAS for PrA[σ ] for AF (PrAF with probabilities equal to 1) and for 
any chosen PDF.

Proof. As for FPARAS, the claim follows by observing that the proof of Theorem 5 works for AF, as a PrAF with probabilities 
equal to 1 is considered.

Then, the non-existence of an FPARAS implies the non existence of an FPRAS as f (x) ≤ 1 (with function f being the 
output of problem PrA[σ ], cf. Definition 8) and thus Pr (|A(x, ε, δ) − f (x)| ≤ ε) �≥ 1 − δ implies that Pr(|A(x, ε, δ) − f (x)| ≤
ε · f (x)) �≥ 1 − δ. �
Theorem 6. Algorithm 2 with input an AF � and a semantics σ ∈ {gr, co, pr, st, sst} is such that:

• It outputs an X ∈ Expσ (�) with probability π(X), and
• it runs in polynomial time,

whenever i) σ = gr, or ii) � has no odd-length cycles.

Proof. If σ = gr, at each iteration the algorithm i) determines the first SCC, ii) appends ε to X , iii) deletes from the 
current AF � all arguments in the SCC, and iv) adds to � all arguments attacked by the delete ones. Thus, it returns (with 
probability 1) a sequence of symbols whose length is bounded by the number of SCCs, that in turns is bounded by the 
number of arguments.

Consider now the case of σ ∈ {co, pr, st, sst}. Since we are considering AFs � without odd cycles, we have that 
pr(�) = st(�) = sst(�). We first prove the following auxiliary lemma.

Lemma 3. Consider an AF � = 〈A, �〉 without odd-length cycles. Then, the following hold:

• for every argument a in the first SCC of �̂, there exists a complete and stable (and hence preferred and semi-stable) extension E
that contains a.

• Every stable (and hence preferred and semi-stable) extension of � contains at least one argument in the first SCC of �̂.

Proof. (Item 1) Let C be the first SCC of �̂ = 〈 Â, �̂〉. We first show that for every argument a ∈ C , and every argument
b1, b2 ∈ C , such that even-length paths π1, π2 exist from b1 to a and from b2 to a, respectively, it holds that {a, b1, b2}
is conflict-free in �̂. Assume, towards a contradiction, that either 1) {a, b1} is not conflict-free (the case for {a, b2} is 
symmetric) or 2) {b1, b2} is not conflict-free. If 1), then either a attacks b1 or b1 attacks a. Note that a cannot attack 
b1, otherwise the cycle π1, (a, b1) is of odd-length. Thus, it must be that b1 attacks a. However, since a, b1 are in the 
same SCC, there is a path π ′ from a to b1. Moreover, π ′ must be of even-length, as otherwise the cycle π ′, π1 is of odd-
length. However, π ′ cannot be of even-length, otherwise the cycle π ′, (b1, a) is of odd-length. Hence {a, b1} is conflict-free. 
Symmetrically, the same applies to {a, b2}. Assume now that 2) holds. Then, either b1 attacks b2, or vice versa. We focus 
only on the case that b1 attacks b2, as the other case is symmetric. As discussed, any path π ′ , from a to b1 must be 
of even-length. However, the cycle π ′, (b1, b2), π2 is of odd-length, because also π2 is of even-length. Hence {b1, b2} is 
conflict-free.

Consider now an argument a ∈ C . By the above property, the set

Ea = {a} ∪ {b ∈ C | b reaches a with an even-length path}
is conflict-free in �̂. We now show that Ea is a stable extension of �̂↓C , by showing that every argument in C \ E is attacked 
by some argument of Ea . Assume, towards a contradiction, that there is d ∈ C \ Ea such that no argument in Ea attacks d. 
Since d ∈ C , there is a path π from d to a, and this path cannot be of even-length, otherwise d ∈ Ea . Moreover, since no 
argument in Ea attacks d and since d is in a SCC, there must be an argument d′ ∈ C \ Ea attacking d. However, the path 
(d′, d), π is of even-length, which implies that d′ ∈ Ea , obtaining a contradiction. Hence, Ea is a stable extension of C .

Since C is the first SCC of �̂, Ea is a subset of some stable extension of �̂, and the claim follows. In particular, as these 
extensions are also complete, the statement also holds for complete semantics.

(Item 2) The claim follows from the fact that any stable extension E of �̂ must attack any argument a not in E . So, if a ∈ C , 
where C is the first SCC of �̂, the only way of attacking a is by means of an argument b in C . Hence, b ∈ C must be in E . 
Thus, any stable extension of �̂ must contain at least one argument from the first SCC of �̂. �

With the above lemma in place, it is easy to prove that for every stable extension E of �, there is an execution of 
Algorithm 2 that outputs the explanation X s.t. ext(X) = E , or equivalently (cf. Theorem 1) E = gr(� X̃ ). In particular, 
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consider an execution of Algorithm 2 with input �. Let �1 = �, E1 = ∅, and for each iteration i > 0 of the algorithm, we 
let ai be the argument chosen in the first SCC of �̂i , �i+1 = �̂i

ai
is the AF considered at the beginning of iteration i + 1, 

and Ei+1 = Ei ∪ Gai , for Gai = gr(�i
ai

). By Lemma 3, every argument a of the first SCC of �̂i for each i ≥ 0, belongs to 
some stable extension of �̂i and hence of �i . Moreover, since Gai = gr(�i

ai
) belongs to any such extension, we conclude 

that Ei is a subset of a stable extension of �, for each i ≥ 0. Thus, if there is n such that En cannot be further extended, 
which means that no more arguments exist belonging to some stable extension of � (by Lemma 3), we conclude that En is 
a stable extension of �. Moreover, by construction, the sequence 〈a1, . . . , an〉 is an explanation for En .

Regarding the addition of new attacks during the process, since they start from arguments whose status w.r.t. En is 
defeated they are irrelevant [90]. Also, by adding these attacks we obtain that the arguments in the first SCC apart those 
removed (i.e. those in Gai and G+

ai
) still form a SCC.

Let Ci be the set of arguments of the first SCC obtained at some iteration i. We have that the probability of choosing 
ai is 1/|Ci |. Therefore, the probability of choosing a particular sequence X of arguments corresponding to an explanation of 
some E is equal to p = ∏n

i=1 1/|Ci |. This value coincides with the value associated with the leaf node corresponding to X , 
in the probabilistic trie T pr

� .
The algorithm runs in polynomial time as the number of iterations is linear in the number of arguments and each 

iteration performs polynomial time operations. Moreover, computing the grounded extensions Gx is polynomial too.
Considering the complete semantics, a first difference w.r.t. the case of stable (preferred and semi-stable) semantics 

discussed earlier is that now the addition of new attacks can be relevant [90]. However, since the arguments in � will be 
defeated in next steps of the algorithm, in all the complete extension E ′ explained by the explanations constructed in the 
subsequent steps, their status is defeated.

That is, the update of line 14 is irrelevant w.r.t. complete semantics, that is, any extension E ′ continues to be a complete 
extension of the AF being processed [89].

The second difference concerns the use of the set �. As complete extensions may admit arguments that are neither 
accepted nor defeated, it corresponds to making no choice at some step of the algorithm, i.e. no argument x of the i-th SCC 
is accepted. Hence, as complete extension enjoys the directionality property [92],6 the arguments that are attacked from x
(corresponding to �) cannot be selected from the set C at any future step of the algorithm. This corresponds to the choice 
of ε. In this case we remove all the arguments of this SCC. �
Theorem 7. Problem PrEA[σ ], with σ ∈ {gr, co, pr, st, sst}, has an FPARAS if either i) σ = gr, or ii) the input PrAF has no odd 
cycles.

Proof. With Theorem 6 in place, it suffices to prove that Algorithm 1 provides the error and probabilistic guarantees of an 
FPARAS. That is, for some σ ∈ {gr, co, pr, st, sst}, for every PrAF �, argument g , and numbers ε > 0, 0 < δ < 1, it holds 
that

Pr(
∣∣Apx(�, g, ε, δ) − PrEAσ

�(g)
∣∣ ≤ ε) ≥ 1 − δ.

To prove the above, it suffices to note that Apx is a random variable of the form

1

n
·

n∑
i=1

Xi,

where n = � 1
2ε2 · ln(2/δ)�, and each Xi is a random variable with values in {0, 1}, such that Pr(Xi = 1) = PrEAσ

�(g). Thus, 
from Hoeffding’s inequality [49],

Pr(
∣∣Apx(�, g, ε, δ) − PrEAσ

�(g)
∣∣ ≤ ε) ≥ 1 − δ,

for all n ≥ 1
2ε2 · ln(2/δ), and the claim follows. �

A.3. Inapproximability for credulous and skeptical acceptance

Theorem 8. For σ ∈ {gr, co, pr, st, sst}, unless NP ⊆ BPP, there is no FPRAS for PrCA[σ ] and PrSA[σ ], even for acyclic PrAFs.

Proof. This follows by reasoning exactly as in the proof of Theorem 4 where the construction of the proof of Theorem 2
is used. In particular, in the proof of Theorem 2 we show a reduction from #P2CNF to PrA[σ ], for every semantics 

6 We recall that the idea underlying directionality is that the status (accepted, defeated, undecided) of an argument a should be affected only by that of 
its defeaters (which in turn are affected by their defeaters and so on). More formally, an argumentation semantics σ satisfies the directionality property if 
and only if for any argumentation framework � = 〈A, �〉 and set of arguments S ⊆ A receiving no attack in � it holds that {E ∩ S | E ∈ σ(�)} = σ(� ↓S ).
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σ ∈ {gr, co, pr, st, sst} and for any chosen PDF. Since the PrAF � considered in that proof is acyclic, every AF 
w ∈ pw(�) is acyclic. Thus, the grounded extension of w ∈ pw(�) is the unique extension of w under any semantics in 
σ ∈ {gr, co, pr, st, sst}. Thus, PrA[σ ] coincides with PrCA[σ ] and PrSA[σ ], from which the claim follows by reasoning 
as in the proof of Theorem 4. �
Theorem 9. Unless N P ⊆ B P P , i) there is no FPARAS for PrCA[σ ] and for PrSA[σ ] with σ ∈ {pr, st, sst}, even for PrAFs without 
odd-length cycles; and ii) there is no FPARAS for PrCA[co], even for AFs (PrAFs with probabilities all equal to 1).

Proof. We use the fact that checking whether a given argument g is credulously accepted in an AF � is NP-hard, when 
σ ∈ {pr, st, sst}, even for AFs having no odd-length cycles [3]. With this in place, we can reason similarly to what is done 
to prove Theorem 5.

Case i), PrCA. The construction is the same as the one given in the proof of Theorem 5. The only difference is that the 
NP-hard problem of credulous acceptance is solved, via the randomized procedure exploiting an FPARAS for PrCA[σ ].

Case i), PrSA. First observe that UnCA[σ ] for σ ∈ {pr, st, sst} also answers to the problem of checking whether all 
σ -extensions of the σ -uniform AF � contain the goal argument g . Thus, for any semantics σ ∈ {pr, st, sst} determining 
the skeptical acceptance in σ -uniform AFs is still NP-hard. Thus, we can use again the construction given in the proof of 
Theorem 5. The only difference is that the N P -hard problem of determining the skeptical acceptance in σ -uniform AFs is 
solved, via the randomized procedure exploiting an FPARAS for PrSA[σ ].

Case ii). For the proof, we rely on the next lemma that shows a gap property of the problem of credulously accepting 
an argument.

We say that a pair (�, g) of an AF � and argument g is co-empty, if either g is credulously accepted under complete 
semantics or co(�) = {∅}, that is ∅ is the only complete extensions of �.

Let us now consider the following restriction of the classical credulous acceptance problem under complete semantics.

PROBLEM : EmCA[co]
INPUT : An co-empty pair (�, g).
QUESTION : Is there E ∈ σ(�) such that g ∈ E?

Lemma 4. EmCA[co] is NP-hard.

Proof. Consider the construction introduced in the proof of Lemma 1, where a reduction from 3SAT to UnCA[σ ], with σ
∈ {pr, st, sst}, is provided. We use the notation introduced in that proof. We show that if φ = C1 ∧ C2 ∧ · · · ∧ Ck is 
unsatisfiable, then the only complete extension is the empty set. Moreover, if φ is satisfiable, then there is an extension 
E ∈ σ(�) containing ϕ . This is proved in the proof of Lemma 1 for preferred semantics, and thus holds for complete 
semantics (as preferred extensions are a subset of complete extensions).

We now show that if φ is unsatisfiable, then no complete extension contains ϕ . This suffices to prove that the only 
complete extension of � is the empty set. In fact, assume towards a contradiction that there exists a complete extension 
E of �, such that ϕ ∈ E . Since ϕ ∈ E , no argument ci , for i ∈ {1, . . . , k} is in E , as E would not be conflict-free. Moreover, 
since each ci attacks ϕ , and ψ /∈ E , some conflict-free subset B of {ax1 , ax̄1 , . . . , axn , ax̄n } must be contained in E , for E to be 
acceptable w.r.t. itself, i.e. E = Acc(E). However, since φ is unsatisfiable, any such a set B leaves at least one argument ci
unattacked, and thus E �= Acc(E), obtaining a contradiction. �

We can now exploit the above lemma to prove our inapproximability result, similarly to what is done in the proof of 
Theorem 5.

From Lemma 4, it suffices to prove that the existence of an FPARAS for PrCA[co], implies that EmCA[co] is in BPP. 
Assume that A is indeed an FPARAS for PrCA[co]. We now show that EmCA[co] is in BPP, by means of the following 
randomized procedure. Let BPPAlgo be the randomized decision procedure taking as input an co-empty pair (�, g) of an 
AF � and argument g , and performing the following:

1. Let ε = 1/3 and δ = 1/3;
2. Construct the PrAF � from � by giving probability 1 to all arguments in �;
3. Compute p̂ = A(�, g, ε, δ);
4. if p̂ ∈ [1 − ε, 1 + ε], then return yes;
5. else return no.

Since A runs in polynomial time, so does BPPAlgo. Let now (�, g) be an co-empty pair given as input to BPPAlgo. We 
consider two cases.

Assume first that an extension E ∈ co(�) exists, such that g ∈ E . Then, since (�, g) is co-empty, and since every 
argument in the PrAF � constructed in line 2 has probability 1, we conclude that PrCAco(g) = 1. Thus, since A is an FPARAS, 
�
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line 4 of algorithm BPPAlgo is executed (i.e. returns the right answer for EmCA[σ ] with input (�, g)) with probability at 
least 1 − δ = 2/3, and line 5 is executed (i.e. returns the wrong answer) with probability at most δ = 1/3.

Assume now that g is not credulously accepted in � under complete semantics. Again, since every argument in the 
constructed PrAF � has probability 1, we conclude that PrCAco� (g) = 0. Since A is an FPARAS, Pr(|A(�, g , ε, δ) − 0| ≤
ε) ≥ 1 − δ. Moreover, since ε < 1/2, the events |A(�, g, ε, δ) − 0| ≤ ε and |A(�, g, ε, δ) − 1| ≤ ε are disjoint, and thus 
Pr(|A(�, g, ε, δ) − 1| ≤ ε) is at most the probability that the event |A(�, g, ε, δ) − 0| ≤ ε does not hold, i.e. δ. Hence, line 4 
of algorithm BPPAlgo is executed (i.e. returns the wrong answer for EmCA[co] with input (�, g)) with probability at most 
δ = 1/3, and thus executes line 5 (i.e. returns the right answer) with probability at least 1 − δ = 2/3. Hence, EmCA[co] is 
in BPP, as required. �
A.4. Extended PrAFs

Theorem 10. Given an EPrAF � = 〈A, �, P I 〉, for any PrAF �′ = 〈A, �, P 〉 such that P (a) ∈ P I (a) for all a ∈ A, it holds that 
PrAσ

�′(g) ∈ EPrAσ
�(g) for all g ∈ A, independently of the PDF Pr(·, w, σ) used.

Proof. First note that any possible world w ′ of �′ is also a possible world of � and I(w ′) ∈ II (w) where w ∈ pw(�). 
The possible worlds of � are the same as those of �′ . Thus, we have that Pr(E, w ′, σ) gives the same value independently 
if w is a possible world of � or �′ and thus we have that the following formula holds as I(w ′) ∈ II (w ′) for any world 
w ′ ∈ pw(�′).

∑
w ′∈pw(�′)∧
E∈σ (w)∧g∈E

I(w ′) ∈

⎡
⎢⎢⎢⎣

∑
w ′∈pw(�)∧

E∈σ (w ′)∧g∈E

II (w ′)[1],
∑

w ′∈pw(�)∧
E∈σ (w ′)∧g∈E

II (w ′)[2]

⎤
⎥⎥⎥⎦

∗

�

A.5. Incomplete argumentation framework

Lemma 2. For any iAF � and ϕ ∈ {arg, att, farg}, a f� : comp(ϕ(�)) → comp(�) is a surjective function.

Proof. Let � = 〈A, B, R, T 〉 be an iAF, we now show that ∀�′′ ∈ comp(�) ∃�′ ∈ comp(ϕ(�)) s.t. a f�(�′) = �.
Let �′ = ϕ(�) = 〈A∗, B∗, R∗, T ∗〉, �′′ ∈ comp(�) be a completion of �, and �′ = 〈A′, R ′〉 ∈ comp(ϕ(�)) a completion of 

�′ such that:

• (ϕ = arg) A′ consists of all the arguments in �′′ plus the certain arguments αab such that (a, b) ∈ T , and for each attack 
(a, b) in �′′ which is uncertain in iAF �, we have that βab ∈ A′; moreover R ′ = (A′ × A′) ∩ (R∗ ∪ T ∗).

• (ϕ = att) A′ consists of all the arguments in A ∪ B plus the certain argument α. R ′ consists of all the attacks in �′′ and, 
for each argument b which is uncertain in � and does not belong to �′′ , the attack (α, b).

• (ϕ = farg) A′ consists of all the arguments in A ∪ B plus the arguments αab, βab, βc
ab such that (a, b) ∈ T , and for each 

argument b which is uncertain in � the argument bc ; also, for each argument b (resp. attack (a, b)) which is uncertain 
in �, if b (resp. (a, b)) is in �′′ , the argument bu (resp. βu

ab). Finally, R ′ = (A′ × A′) ∩ (R∗ ∪ T ∗).

By using the definition of function a f given in the paper, we can now show that a f�(�′) = �′′ . By following the con-
struction given above, we have the AF �′ = 〈A′, R ′〉 where:

• (ϕ = arg)
– A′ = A′′ ∪ {αab | (a, b) ∈ T } ∪ {βab | (a, b) ∈ (R ′′ ∩ T )}; and
– R ′ = (A′ × A′) ∩ (R∗ ∪ T ∗).
Then, using the definition of function a f given in the paper, we can build the AF a f�(�′) = 〈A�, R�〉 as follows:
– A� = A ∪ ((B ∩ A′) \ ∅) = A′′; and
– R� = (R ∩ (A′′ × A′′)) ∪ ((T ∩ (A′′ × A′′)) \ {(a, b) | (βab /∈ A′) ∨ (βc

ab ∈ A′ ∧ βu
ab /∈ A′)}), that can be rewritten as:

R� = (R ∩ (A′′ × A′′)) ∪ ((T ∩ (A′′ × A′′)) \ {(a, b) | βab /∈ {βab | (a, b) ∈ (R ′′ ∩ T )}} or, equivalently, R� = (R ∩ (A′′ ×
A′′)) ∪ ((T ∩ (A′′ × A′′)) ∩ R ′′), stating that R� contains, for any pair of arguments 〈a, b〉 of �′′ , an attack (a, b)

iff either (a, b) is a certain attack of � or (a, b) is an uncertain attack of � that has been selected in R ′′ . Thus, 
a f�(�′) = 〈A�, R�〉 = 〈A′′, R ′′〉.

• (ϕ = att)
– A′ = A ∪ B ∪ {α}; and
– R ′ = R ′′ ∪ {(α, b) | b ∈ (B \ A′′)}.
Then, using the definition of function a f given in the paper, we can build the AF a f�(�′) = 〈A�, R�〉 as follows:
– A� = A ∪ ((B ∩ A′) \ {a | (α, a) ∈ R ′}), that can be rewritten as:

A� = A ∪ (B \ {a | (α, a) ∈ {(α, b) | b ∈ (B \ A′′)}}) or, equivalently, A� = A ∪ (B ∩ A′′). As A ⊆ A′′ , it holds that A� = A′′ .
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– R� = (R ∩ (A′′ × A′′)) ∪ ((T ∩ (A′′ × A′′)) \ {(a, b) | (βab /∈ A′) ∨ (βc
ab ∈ A′ ∧ βu

ab /∈ A′)}), that can be rewritten as:
R� = (R ∩ (A′′ × A′′)) ∪ ((T ∩ (A′′ × A′′)) \ ∅), or simply, R ′′ . Thus, a f�(�′) = 〈A�, R�〉 = 〈A′′, R ′′〉.

• (ϕ = farg)
– A′ = A ∪ B ∪ {αab, βab, βc

ab | (a, b) ∈ T } ∪ {bc | b ∈ B} ∪{bu | b ∈ B ∩ A′′} ∪ {bu
ab | (a, b) ∈ T ∩ R ′′}; and

– R ′ = (A′ × A′) ∩ (R∗ ∩ T ∗).
Then, using the definition of function a f given in the paper, we can build the AF a f�(�′) = 〈A�, R�〉 as follows:
– A� = A ∪ ((B ∩ A′) \ {a | au /∈ A′}), that can be rewritten as A� = A ∪ (B ∩ A′′) (since au /∈ A′ iff au /∈ (B ∩ A′′)). As 

A ⊆ A′′ , it holds that A� = A′′ .
– R� = (R ∩ (A′′ × A′′)) ∪ ((T ∩ (A′′ × A′′)) \ {(a, b) | (βab /∈ A′) ∨ (βc

ab ∈ A′ ∧ βu
ab /∈ A′)}). Since βab /∈ A′ (resp., βu

ab /∈ A′) 
iff (a, b) /∈ T (resp., (a, b) /∈ (T ∩ R ′′)), it is equivalent to:
R� = (R ∩ (A′′ × A′′)) ∪ ((T ∩ (A′′ × A′′)) \ {(a, b) | ((a, b) /∈ T ) ∨ ((a, b) ∈ T ∧ (a, b) /∈ (T ∩ R ′′))}), that can be rewritten 
as R� = (R ∩ (A′′ × A′′)) ∪ ((T ∩ (A′′ × A′′)) ∩ R ′′)}), or simply, R ′′ . Thus, a f�(�′) = 〈A�, R�〉 = 〈A′′, R ′′〉. �

Theorem 11. Let � = 〈A, B, R, T 〉 be an iAF, σ ∈ {gr, co, st, pr, sst}, and ϕ ∈ {arg, att, farg} and let � ∈ comp(�). Then,

• comp(�) = {a f�(�) | � ∈ comp(ϕ(�))}, and
• σ(�) = {E ∩ (A ∪ B) | �′ ∈ comp(ϕ(�)) ∧ � = a f�(�′) ∧ E ∈ σ(�′)}.

Proof. The first item follows from the result of Lemma 2 that states that a f� is a surjective function, and thus its image 
coincides with its codomain.

As for the second item, first observe that there exists a surjection from comp(ϕ(�)) to comp(�) (Lemma 2). Thus, for 
any � ∈ comp(�) there exists (at least one element) �′ ∈ comp(ϕ(�)), and we now show that they have the same complete 
extensions (modulo arguments/attacks added in the mapping).

In the following, let �′ ∈ comp(ϕ(�)) and � ∈ comp(�) be the AFs described in the proof of Lemma 2 for each mapping 
ϕ , respectively. We first show that their extensions are equivalent. Then, we show that any other �′′ ∈ comp(ϕ(�)) such 
that a f�(�′′) = � and �′′ �= �′ the result still holds.

For ϕ = arg the complete extensions of � are equal to those of �′ if considering only the arguments in A ∪ B . For �
containing a given set of attacks (a, b) ∈ T , �′ contains the corresponding set of arguments βab ∈ B ′ . An argument b is in 
a complete extension of � (resp. �′) only if a (resp. βab) is not; we can reason analogously for (a, b) (resp. βab) not in 
� (resp. �′). The status of arguments b in � and �′ is determined by possibly different arguments but having equivalent 
status w.r.t. a complete extension of � and the corresponding one of �′ .

For ϕ = att , any uncertain argument a ∈ B generates two sets of completions of �, S1 and S2, including or not including 
a. �′ generates S ′

1/S ′
2, equivalent to S1/S2 but excluding or not excluding attack (α, a). The admissible sets of elements of 

S1 and S ′
1 are equal if ignoring α argument (that is admissible as not attacked). An element of S ′

2 is such that a is attacked 
by α and not defended. As α is in all extensions, then every attack from a is defended too, so S2 generates the same 
admissible extensions as that of S ′

2 modulo α argument.
Finally, for ϕ = farg , AF � containing (resp. not containing) a given set of uncertain arguments b ∈ B is equivalent to �′

containing (resp. not containing) the corresponding arguments bu . If b is in a complete extension of �, b is in a complete 
extension of �′ because it is defended by bu (that is not attacked by any argument). If b is not in a complete extension of 
�, b is not in a complete extension of �′ attacked by bc without being defended, meaning that attacks from b in �′ can be 
omitted. Then, extensions are equal modulo meta-arguments added in the transformation.

We now need to prove that for any other �′′ ∈ comp(ϕ(�)) such that a f�(�′′) = � and �′′ �= �′ the result continues to 
hold.

For ϕ = arg , observe that �′′ might only differ from �′ for βxy arguments. Thus, it might be the case that there exists 
an argument βab in �′′ even if a is not an argument of �. However βab would never appear in any complete extension of 
�′′ as it is attacked by αab which in turn can only be attacked by a. As a consequence of the fact that a is not in �′′ , the 
status of b does not depend on that of βab . As observed earlier, an argument b is in a complete extension of � (resp. �′′) 
only if a (resp. βab) is not, and thus, the complete extensions of �′′ are still equal modulo meta-arguments to that of �′ .

For ϕ = att , observe that �′′ might only differ from �′ for the presence of uncertain attacks (a, b) of � even if a is not 
in �. In this case, note that (i) a would never appear in any complete extension of �′′ as it is attacked by α by construction 
of a f�(�′′). As a consequence of the fact that α is not attacked in �′′ , a does never appear in any complete extension of 
�′′ . Thus, the complete extensions of �′′ are equal modulo meta-arguments to that of �′ and the attack from a to b has no 
effect on the status of b.

In the case of ϕ = f arg , observe that �′′ might differ from �′ for βu
xy arguments. Thus, it might be the case that 

there exists an argument βu
ab in �′′ even if a is not an argument of �. However, βab would never appear in any complete 

extension of �′′ as it is attacked by αab which in turn can only be attacked by a. Thus, the complete extensions of �′′ are 
equal modulo meta-arguments to that of �′ (again, attack from a to b has no effect on the status of b).

As complete extensions define a complete-meet semilattice, the results hold for the other semantics obtained by putting 
restrictions on the sets of complete extensions, that is σ ∈ {gr, st, pr, sst}. �
Proposition 5. For any arg-iAF �, comp(�) = {� | � ∈ pw(�p) ∧ I(�) > 0}.
38
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Proof. Let � = 〈A, B, R, ∅〉. The result follows by observing that the power-set of B corresponds to the sample space of the 
events associated with �p having probability greater than 0. �
Corollary 5. For σ ∈ {gr, co, pr, st, sst}, PrA[σ ] is FP#P-hard, even for acyclic arg-iAF and for any chosen PDF.

Proof. The construction given in the proof of Theorem 2 can be used here since that hardness result is shown in the 
specific case of arguments having probability set to 1/2. Thus, we can show a reduction starting from an acyclic arg-iAF 
whose derived PrAF is that in the proof of Theorem 2. �
Corollary 6. Consider a semantics σ ∈ {gr, co, pr, st, sst}. Unless NP ⊆ BPP, there is no FPRAS for PrA[σ ], even for acyclic arg-iAFs 
and for any chosen PDF.

Proof. The claim follows from the proofs of Theorem 2 and Theorem 4. In fact, we can show a reduction from #P2CNF to 
PrA[σ ], for every semantics σ ∈ {gr, co, pr, st, sst} and for any chosen PDF. Starting from a P2CNF formula, we can 
define an acyclic arg-iAF � such that the derived PrAF �p is that of the proof of Theorem 2 (where uncertain arguments 
correspond to arguments having probability 1/2). Given this, it suffices to reason as in the proof Theorem 4 where the result 
is shown for PrAF in order to prove the claim for iAF. �
Corollary 7. Let σ ∈ {pr, st, sst}. Unless NP ⊆ BPP, there is no FPARAS for PrA[σ ], for any chosen PDF.

Proof. The claim follows by reasoning as in the proof of Theorem 5, where a PrAF with all probabilities set to 1 is used, 
that is, it works for arg-iAFs even with no uncertain argument (see also Corollary 3). �
Corollary 8. Problem PrEA[σ ], with σ ∈ {gr, co, pr, st, sst}, has an FPARAS if either i) σ = gr, or ii) the input arg-iAF has no 
odd cycles.

Proof. The claim follows from Theorem 7 since if conditions i) or ii) hold for arg-iAF �, then they hold for the derived PrAF 
�p used in Definition 17. �
Proposition 6. For any arg-iAF � and argument goal g, we have that:

• P CAσ (�, g) is false iff PrAσ
�p (g) = 0;

• NSAσ (�, g) is true iff PrAσ
�p (g) = 1.

Proof. P CAσ (�, g) is false iff ∀� ∈ comp(�), �E ∈ σ(�) s.t. g ∈ E , that is, using Proposition 5, ∀� ∈ pw(�p), �E ∈ σ(�)

s.t. g ∈ E , meaning that PrAσ
�p (g) = 0 (cf. Definition 3). N SAσ (�, g) is true iff ∀� ∈ comp(�), ∀E ∈ σ(�), g ∈ E , that is, 

∀� ∈ pw(�p), ∀E ∈ σ(�), g ∈ E , and thus PrAσ
�p (g) = 1 as Pr is a PDF. �

Proposition 7. Let � = 〈A, B, R, ∅〉 be an acyclic arg-iAF and g a goal. It holds that:

• P SAσ (�, g) ≡ P C Aσ (�, g) and NSAσ (�, g) ≡ NCAσ (�, g);
• P SAσ (�, g) is true iff Pr Aσ

�p (g) ≥ 1
2|B| ;

• NSAσ (�, g) is false iff Pr Aσ
�p (g) ≤ 1 − 1

2|B| .

Proof. Since � is acyclic, each � ∈ comp(�) has exactly one complete extension, thus SAσ (�, g) ≡ CAσ (�, g), from which 
it follows that P SAσ (�, g) ≡ P C Aσ (�, g) and NSAσ (�, g) ≡ NCAσ (�, g). Moreover, P SAσ (�, g) is true iff there is � ∈
comp(�) and its unique extension contains g , or equivalently, there is a non-zero probability world � ∈ pw(�p) and 
its unique extension E contains g , i.e. Pr(E, �, σ) = 1 (cf. Definition 3). Since every non-zero probability world � has 
probability 1

2|B| , Pr Aσ
�p (g) ≥ 1

2|B| . Reasoning analogously, NSAσ (�, g) is false iff there is a non-zero probability world � ∈
pw(�p) and its unique extension does not contain g , from which it follows that Pr Aσ

�p (g) ≤ 1 − 1
2|B| . �
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