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Abstract: Past evidence has shown that the exogenous administration of GM1 ganglioside slowed neu-
ronal death in preclinical models of Parkinson’s disease, a neurodegenerative disorder characterized
by the progressive loss of dopamine-producing neurons: however, the physical and chemical proper-
ties of GM1 (i.e., amphiphilicity) limited its clinical application, as the crossing of the blood–brain
barrier is denied. Recently, we demonstrated that the GM1 oligosaccharide head group (GM1-OS) is
the GM1 bioactive portion that, interacting with the TrkA-NGF complex at the membrane surface,
promotes the activation of a multivariate network of intracellular events regulating neuronal differen-
tiation, protection, and reparation. Here, we evaluated the GM1-OS neuroprotective potential against
the Parkinson’s disease-linked neurotoxin MPTP, which destroys dopaminergic neurons by affecting
mitochondrial bioenergetics and causing ROS overproduction. In dopaminergic and glutamatergic
primary cultures, GM1-OS administration significantly increased neuronal survival, preserved neurite
network, and reduced mitochondrial ROS production enhancing the mTOR/Akt/GSK3β pathway.
These data highlight the neuroprotective efficacy of GM1-OS in parkinsonian models through the
implementation of mitochondrial function and reduction in oxidative stress.

Keywords: GM1 ganglioside; GM1 oligosaccharide; Parkinson’s disease; MPTP; neuroprotection;
plasma membrane signaling

1. Introduction

Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterized by
the overtime loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc),
the accumulation of α-synuclein (αS)-containing aggregates, and dopamine (DA) deficit in
the striatum [1]. Although the disease has been known for more than 200 years, most drugs
just relieve symptoms temporarily to ameliorate patient’s quality of life, but a therapy that
slows the course of the disease is not available yet [2].

More than 95% of PD forms are idiopathic and the etiopathogenetic causes of the
disease are not known. PD is a multifactorial disease with aging, and mitochondrial
and lysosomal failure recognized among the most accredited causes of the disease’s on-
set [3–5]. In addition, the imbalance of lipid metabolism is another factor linked to PD
etiopathogenesis [6] and, in this context, GM1 ganglioside has gained significant attention.
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GM1 is a sialic acid-containing glycosphingolipid, enriched in the brain and abundant
in the neuronal plasma membrane. It is essential for neuronal homeostasis and has a
bioactive function modulating multiple cellular processes comprising survival pathways,
calcium signaling, neuronal firing, and mitochondrial activity [7–10]. Reduced levels of
GM1 ganglioside and GM2/GD2 synthase, the enzymes responsible for GM1 synthesis,
have been found in post-mortem brain tissues (SNpc and striatum) of PD patients, with re-
spect to age-matched non-affected subjects [9,11–14]. These findings reveal the relationship
between reduced GM1 levels and PD pathogenesis.

Accordingly, mice with subnormal GM1 content due to haploinsufficiency of GM2/GD2
synthase, spontaneously develop all the neurological features typical of human PD, demon-
strating that deficient GM1 levels cause PD neurological defects [8,11,12,15,16].

Strategies aimed at increasing GM1 levels have been attempted as replacement therapy
in PD. However, systemic administration of exogenous GM1 showed low efficacy due to
the low penetrance of GM1 across the blood–brain barrier (BBB) [17–19].

In recent years, our group has discovered that the GM1 oligosaccharide (GM1-OS) con-
stitutes the bioactive moiety of the ganglioside, and the biological properties are retained
even when the saccharide is separated from the amphiphilic tail (ceramide). Specifically,
interacting with the plasma membrane TrkA receptor, GM1-OS modulates neuronal differ-
entiation, development, and protection from insults [20]. Importantly, in the GM1-deficient
mouse model of PD, GM1-OS systemic administration led to DA neurons survival in SNpc,
cleared αS aggregates, normalized striatal DA levels, and recovered motor symptoms [21].

1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrocholoride (MPTP) is a potent neu-
ronal toxin that, when injected in humans and animals, induces parkinsonian symp-
toms [22,23]. Once in the blood stream, MPTP crosses the BBB and reaches the central
nervous system (CNS). Here, astrocytes and other glial cells convert MPTP into the neuro-
toxic active metabolite 1-methyl-4-phenylpyridinium (MPP+). MPP+ enters DA neurons via
the dopamine transporter (DAT) and inhibits the complex I of the respiratory chain, causing
energy deficit and overload of reactive oxygen and nitrogen species, ultimately leading to
neurodegeneration [24–27]. Defects in mitochondrial function have long been implicated
in the onset of PD and wide evidence supports a central role of mitochondria alterations in
PD progression [28–30]. GM1 has been reported to regulate mitochondrial activity and to
protect DA neurons in MPTP models [31–34]. Notably, we found that GM1-OS protects
neuroblastoma cells from MPTP damage and modulates mitochondria functions [32,35].

In this work, we aimed to study the potential protective effect of GM1-OS against
MPTP in primary neurons. Our data indicate that GM1-OS sustained the survival of
primary neurons by enhancing the mammalian target of rapamycin (mTOR)/RAC-alpha
serine/threonine-protein kinase (Akt)/Glycogen synthase kinase-3β (GSK-3β) pathway
and limiting the overload of mitochondrial reactive oxygen species (ROS).

2. Materials and Methods
2.1. Materials

Phosphate buffered saline (PBS), Calcium Magnesium Free (CMF)-PBS, glucose,
RNAase-free water, paraformaldehyde (PFA), sodium orthovanadate (Na3VO4), phenyl-
methanesulfonylfluoride (PMSF), aprotinin, protease inhibitor cocktail (IP), horseradish per-
oxidase (HPR), o-phenylenediamine tablets, bovine serum albumin (BSA), cytarabine (Ara-
c), ethylenediaminetetraacetic acid (EDTA), DNase I (used for neuronal culture), Trypsin,
MPP+, sodium dodecyl sulfate (SDS), 2-propanol, formic acid, 3-(4,5,-dimethylthiazole-
2yl)-2,5-diphenyletrazolium bromide (MTT), lactate dehydrogenase (LDH) release assay
(MAK380), and DPX Mountant (06522) were from Sigma-Aldrich (St. Louis, MO, USA).
Fetal Bovine Serum (FBS), Fetal Calf serum (FCS), L-Glutamine, penicillin/streptomycin
(P/S) solution, and Hanks’ balanced salt solution (HBSS) were from EuroClone (Paignton,
UK). MitoSOX™ Red superoxide indicator (M36008), Hoechst solution (33342), Neurobasal
A medium, B27 Supplement and 4′,5-Diamidina-2-phenylindole (DAPI) were from Thermo
Fischer Scientific (Waltham, MA, USA). 4–20% Mini-PROTEAN® TGX™ Precast Protein
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Gels, Turbo Polyvinylidene difluoride (PVDF) Mini-Midi membrane and DC™ protein
assay kit were from BioRad (Hercules, CA, USA). Leibovitz (L15) medium, Dulbecco’s
modified Eagle’s medium (DMEM), Neurobasal medium, B27 Supplement, brain-derived
neurotrophic factor (BDNF), and glial-derived neurotrophic factor (GDNF) were from Life
Technologies (St. Christophe, France).

Antibodies

For immunofluorescence analyses of DA neurons, the following antibodies were used:
primary mouse monoclonal anti-tyrosine hydroxylase (TH) antibody (RRID:AB_477560)
and secondary goat anti-mouse IgG (H+L), coupled with an Alexa Fluor 488 antibody
(RRID:AB_2532075) purchased from Sigma-Aldrich (St. Louis, MO, USA).

For western blotting (WB) analyses on cerebellar granule neurons (CGNs) lysates, the
following antibodies were used: rabbit anti-mTOR (RRID:AB_330978), anti-phospho-mTOR
(Ser2448, RRID AB_330970), rabbit anti-Akt (RRID:AB_329827), mouse anti-phospho-Akt
(Ser473, RRID:AB_331158), rabbit anti-GSK-3β (RRID:AB_490890), anti-phospho-GSK-
3β (Ser9, RRID:AB_2798546) primary antibodies, goat anti-rabbit IgG secondary anti-
body (RRID: AB_2099233) and goat anti-Mouse IgG (H+L) secondary antibody (RRID:
AB_228307) were from Cell Signaling Technologies (Danvers, MA, USA).

2.2. Primary Cultures
2.2.1. Primary Culture of DA Neurons

Rat DA neurons were cultured as previously described [24,25]. Briefly, 15-day-old
pregnant female rats (Wistar, Janvier, France) were sacrificed using a deep anesthesia
with CO2 chamber and a cervical dislocation. Fifteen-day-old rat embryos midbrain were
dissected under a microscope. Embryonic midbrains were removed and placed in ice-
cold L15 medium containing 2% P/S solution (penicillin 10,000 U/mL and streptomycin
10 mg/mL) and 1% of BSA. The ventral portion of the mesencephalic flexure, a region
rich in DA neurons, was used for cell preparations. Middle brains were disassociated by
trypsinization (20 min at 37 ◦C, 0.05% trypsin and 0.02% EDTA solution). The reaction
was stopped by the addition of DMEM containing DNase I grade II (0.5 mg/mL) and
FCS (10%). Then, cells were mechanically dissociated by three passes through a 10 mL
pipette, centrifuged at 180× g (10 min, 4 ◦C) on a layer of BSA (3.5%) in L15 medium.
The supernatant was discarded and the cell pellets were resuspended in a specific culture
medium of Neurobasal supplemented with 2% B27, 2 mM L-glutamine, 2% P/S solution,
10 ng/mL BDNF, and 1 ng/mL GDNF, allowing to obtain a near pure neural cultures
(<0.5% glia) with ~1–5% TH-positive cells on the total number of cells.

Viable cells were counted in a Neubauer cytometer using the trypan blue exclusion assay.
Cells were seeded at a density of 40,000 cells/well in 96-well plates (poly-L-lysine pre-

coated) and maintained in a humidified incubator at 37 ◦C in 5% CO2/95% air atmosphere.
Further, 24 h after seeding, in order to obtain enriched cultures of primary rat neuron,
cytarabine was added to a final concentration of 7.5 µM to suppress glial proliferation.
Every 2 days, half of the medium was changed to fresh medium.

2.2.2. Primary Culture of CGNs

CGNs were prepared as previously described [36]. Briefly, 5-day-old C57BL/6J pups
were sacrificed by decapitation to extract the cerebellum. CGNs were dissociated from
cerebellar pool by mechanic trituration with blade (70 times in perpendicular directions),
followed by incubation with 1% Trypsin and 0.1% DNase I in 0.2% CMF-PBS-glucose
(1 mL/5 cerebella) for 3.5 min at 23 ◦C. The reaction was stopped by centrifugation of
the cell mixture (1000× g, 10 s) and the supernatant was removed. The cell pellet was
suspended in the 0.04% Trypsin inhibitor and 0.1% DNase I 0.1% in 0.2% CMF-PBS-glucose
(1 mL/5 cerebella). The cells were finally dissociated by repeated passages in Pasteur
glass of decreasing caliber. The reaction solution was removed by centrifugation (1000× g,
5 min) and cells were washed with 0.2% glucose in CMF-PBS before being resuspended
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in Neurobasal A medium containing 25 mM KCl, 1% B27 Supplement, 1% L-Glutamine
and 1% P/S solution. Cells were counted using a Burker chamber, plated at a density
of 315,000 cells/cm2 on plastic or glass coverslips, both precoated with poly-L-lysine
(10 µg/mL for 2 h at 37 ◦C) and maintained at 37 ◦C in a humidified atmosphere of
95% air/5% CO2.

2.3. Cell Treatments

On day 14 of the culture, GM1-OS was dissolved in H2O at a stock concentration of
2 mM, further diluted in the culture medium at the final concentration of 100 µM [36].
Then, 1 h after GM1-OS incubation, MPP+ was added to a final concentration 4 µM (for
DA neurons) or 50 µM (for CGNs) [25,37]. Control cells were incubated under the same
experimental conditions but received vehicle (H2O) instead of GM1-OS and MPP+.

2.4. Cell Immunostaining

DA neurons were fixed by a solution of 4% PFA in PBS (pH = 7.3) for 20 min at
23 ◦C. They were washed twice again in PBS. The cell membranes were permeabilized
and non-specific sites were blocked with a solution of PBS containing 0.1% of saponin and
1% of FCS, for 15 min at 23 ◦C. Cells were incubated with a mouse monoclonal anti-TH
(1/1000 in PBS containing 1% FCS, 0.1% saponin) for 2 h at 23 ◦C. This antibody recognizes
specifically DA neurons and neurites, allowing the study of their cell survival and neurite
network [24]. This antibody was revealed with secondary antibody goat anti-mouse IgG
coupled with an Alexa Fluor 488 (1/400 in PBS containing 1% FCS, 0.1% saponin), for 1 h
at 23 ◦C.

For each condition, 20 pictures per well were automatically taken using ImageXpress
(Molecular Devices) at 10X magnification. All images were generated using the same
acquisition parameters. From images, analyses are directly and automatically performed
by MetaXpress® (Molecular Devices).

The following read-outs were investigated: (i) DA neuron survival (number of TH-
positive neurons); (ii) and total neurite network of DA neurons (length of TH-positive
neurites in µm).

2.5. MitoSOX Red Staining

After treatments, cultured CGNs were incubated with 1 µM MitoSOX™ Red reagent
in HBSS with Ca2+ and Mg2+ for 10 min at 37 ◦C. At the end of the incubation, the cells
were rinsed in PBS and fixed in 4% PFA (in PBS) for 20 min at 23 ◦C. Nuclei counterstaining
was performed by Hoechst dye (0.0002% v/v in PBS, 5 min, 23 ◦C) and slides were mounted
with DPX reagent. To assess the specific staining of mitochondrial O2

•−, the morphology
of stained intracellular structures was verified by analyzing CGNs with a NikonEclipse Ni
upright microscope with a 100× objective (Supplementary Figure S1). For the quantitative
analyses, images were acquired using a 40× objective and the red signal was quantified
with ImageJ software developed at the National Institutes of Health [38]. At least 10 fields
for each condition were acquired for each experiment.

2.6. Morphological Analysis

Cultured CGNs, treated or not with GM1-OS, in the absence or presence of MPP+,
were observed by phase contrast microscopy (20×magnification, Olimpus BX50 microscope,
Olympus, Tokyo, Japan). At least 10 fields from each well were acquired for each experiment.

2.7. MTT Assay

Cell viability was determined by the MTT method in cultured CGNs, treated or not
with GM1-OS, with or without of MPP+ [32,39]. Briefly, at the end of incubation, 2.4 mM
MTT (4 mg/mL in PBS) was added to each well for 4 h at 37 ◦C. The medium was carefully
removed and replaced with 2-propanol: formic acid, 95:5 (v/v). Plates were gently shaken
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prior to reading the absorbance at 570 nm with a microplate spectrophotometer (Wallac
1420 VICTOR2TM, Perkin Elmer, Waltham, MA, USA).

2.8. LDH Assay

The MPP+ cytotoxicity and GM1-OS cell protection were evaluated by an LDH release
assay (MAK380) following manufacturer instructions (Sigma-Aldrich (St. Louis, MO,
USA). Briefly, the cells plated into 96 mw were centrifuged at 600× g for 10 min to let
cells precipitate, and 100 µL of cell supernatant was moved to a new 96 mw. A total of
100 µL of LDH Reaction Mix was added to each well, mixed, and incubated for 30 min at
23 ◦C. At the end of the incubation, 10 µL of Stop Solution was added to each well and the
absorbance values at 450 nm were acquired with a microplate spectrophotometer (Wallac
1420 VICTOR2TM, Perkin Elmer, Waltham, MA, USA).

2.9. WB Analysis

CGNs incubated in the presence or not of MPP+ and GM1-OS were washed twice
with cold PBS containing Na3VO4 (1 mM) and lysed with Na3VO4 (1 mM) PMSF (1 mM),
aprotinin (2%), and IP (1%) in cold PBS. Proteins in equal amounts were denatured, run on
4–20% precast polyacrylamide gels by SDS-PAGE, and transferred onto PVDF membranes
using the Trans-Blot® Turbo™ Transfer System (Bio-Rad, Hercules, CA, USA).

The presence of mTOR, mTORP-Ser2448, Akt, AktP-Ser473, GSK-3β, and GSK-3βP-Ser9 was
determined by specific primary antibodies (diluted 1/1000 in 5% BSA in TBS-0.1% tween),
followed by reaction with secondary HPR-conjugated antibodies (diluted 1/2000 in 5% BSA
in TBS-0.1% tween). The data acquisition and analysis were performed using Alliance
Uvitec (Eppendorf, Hamburg, Germany).

2.10. GM1-OS Preparation

The GM1-OS was prepared by ozonolysis of GM1 followed by alkaline degradation
as previously described [35,36,40]. Briefly, GM1 was dissolved in methanol and slowly
saturated with ozone at 23 ◦C. Methanol was then evaporated under vacuum and the
residue was immediately brought to pH = 10.5–11.0 by triethylamine addition. After 3 days,
triethylamine was evaporated and GM1-OS was purified using chloroform:methanol:2-
propanol:water (60:35:5:5 v:v) as an eluent by flash chromatography. The oligosaccharide
was dissolved in methanol and stored at 4 ◦C. Altogether, nuclear magnetic resonance,
mass spectrometry, and high performance thin layer chromatography analyses showed a
homogeneity over 99% for the prepared oligosaccharide [21].

2.11. Protein Determination

Protein concentrations of samples were assessed using a DC™ protein assay kit accord-
ing to the manufacturer’s instructions, using known concentrations of BSA as standards.

2.12. Statistical Analysis

All values are expressed as mean ± standard error of the mean (SEM). Statistical
analysis was performed by one-way ANOVA, followed by a Tukey’s multiple comparisons
test. p < 0.05 was considered significant.

3. Results
3.1. GM1-OS Protection from MPTP in DA Neurons

We previously demonstrated that the GM1-OS was able to reduce the oxidative stress
and confer protection against MPTP neurotoxicity by activating the TrkA signaling at
a plasma membrane level in mouse neuroblastoma cells [32]. Given the evidence of a
potential role of GM1-OS in counteracting the MPTP-induced toxicity, we aimed to assess
whether GM1-OS was directly capable of protecting the DA neurons, the primary MPTP-
target, and the specific neuronal population affected in PD.
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As expected, we found that MPP+ exposure significantly reduced DA neurons survival,
assessed by a significant reduction in the number of TH-positive neurons and their neurite
network (Figure 1a,b). Importantly, MPP+-injured DA neurons pre-treated with GM1-OS
showed less loss of cellular TH signal (Figure 1a). Furthermore, the GM1-OS administration
preserved the neurite network of MPP+-injured DA neurons (Figure 1c).
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Figure 1. Neuroprotective effects of GM1-OS in primary cultures of rat DA neurons injured with
MPP+. On day 6 of culture, primary DA neurons were pre-incubated with GM1-OS (100 µM) for
1 h, before MPP+ exposure. Next, MPP+ (4 µM) was added to the culture medium. After 48 h,
TH immunofluorescence was performed as described in the methods section. (a) Representative
immunofluorescence images of TH-positive neurons (10X magnifications); (b) number of TH-positive
neurons expressed as fold change over untreated control (CTRL) cells, as read-out of DA neuron
survival; (c) length of TH-positive neurites in µm, expressed as fold change over untreated CTRL cells,
for neurite network of DA neurons. All values are expressed as mean ± SEM (n = 6, **** p < 0.0001;
*** p < 0.001; ** p < 0.01; One-way ANOVA followed by Tukey’s multiple comparisons test).

These experiments highlighted the GM1-OS protective role in DA neurons, the highest
sensitive neuronal population to MPTP-induced parkinsonism.

3.2. GM1-OS Protection from MPTP in CGNs

PD manifestation begins with dopaminergic dysfunction in the nigrostriatal pathways
and progresses to heterogeneous impairment due to diffused involvement of the cerebral
cortex, and other tissutal districts such as the cerebellum [41–43]. Considering the evolution
of PD with the involvement of cerebellar neurons, we decided to continue our studies
on the effects, mechanisms, and processes underlying GM1-OS protection against MPTP
toxicity in mouse CGN. This neuronal population is the most abundant in the whole brain
and in the cerebellum [44,45], which makes these neurons ideal for further biochemical
evaluations where a high number of cells is required.

First, as reported in Supplementary Information, we assessed the MPP+ concentration
that induced neuronal toxicity in CGNs by exposing cells to incremental MPP+ concentrations.
The MTT viability assay highlighted that the toxic effect of MPP+ was concentration- and
time-dependent with an EC50 of 25 µM at 24 h and EC50 of 50 µM at 48 h (Supplementary
Figure S2a). The treatment with GM1-OS significantly increased the neuronal survival when
CGNs were injured with 25 µM, 50 µM, and 100 µM MPP+ for 24 h. However, when CGNs
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received MPP+ concentrations higher than 100 µM, GM1-OS treatment no longer showed any
protective effect (Supplementary Figure S2b). Further morphological analysis showed that
MPP+ at 25, 50, and 100 µM caused a progressive destruction of the CGNs neurite network,
which was saved in the presence of GM1-OS (Supplementary Figure S2c). For subsequent
evaluations, we chose the experimental paradigm using 50 µM MPP+ for 24 h.

By contrast phase imaging, we confirmed that MPP+-injured CGNs showed neurite
fragmentation, which was preserved in the presence of GM1-OS (Figure 2a).
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Figure 2. GM1-OS protected mouse CGNs injured with MPP+. On day 14 of culture, primary CGNs
were pre-incubated with GM1-OS (100 µM) or water (CTRL) for 1 h before MPP+ exposure. Next,
MPP+ (50 µM) or water was added to the culture medium for 24 h. (a) Phase contrast images of CGNs
(20X magnification). Images are representative of four independent experiments (n = 4); (b) Viability
assays: on the left LDH release, on the right MTT assay. All values are expressed as mean ± SEM
(n = 4 independent experiments. *** p = 0.0005, **** p < 0.0001, one-way ANOVA followed by Tukey’s
multiple comparisons test).

Moreover, GM1-OS improved the survival rate of intoxicated CGNs, and reduced the
cell membrane permeability of MPP+-injured CGNs, as assessed by MTT and LDH assays,
respectively (Figure 2b).

In order to evaluate the molecular factors modulated by GM1-OS in increasing neu-
ronal survival, we focused on the mTOR/Akt/GSKβ pathway, which, in physiological
conditions, sustains neuronal viability [46,47]. Specifically, mTOR activates Akt by phos-
phorylating the serine 473 residue (Ser473) through mTOR complex 2. Subsequently, P-Akt
inhibits its downstream substrate GSK-3β, by phosphorylating the Ser9 residue. To note,
GSK-3β signaling was previously reduced in DA neurons injured by MPTP and other
insults [48,49]. Thus, we evaluated whether GM1-OS promoted neuronal survival by
regulating the mTOR/Akt/GSK-3β signaling pathway. As shown in Figure 3, MPP+ ad-
ministration decreased the phosphorylation level of both mTOR and Akt in CGNs. This
effect was already observed after 6 h from MPP+ exposure. However, GM1-OS treatment
alleviated the inhibitory effect on the mTOR and Akt phosphorylation caused by MPP+

and reversed the P-mTOR/mTOR and P-Akt/Akt ratio significantly. Similarly, MPP+

administration induced the activation of GSK3β, reducing the levels of phosphorylation at
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Ser9 residue, and GM1-OS treatment abolished the MPP+-induced activation of GSK-3β
after 24 h (Figure 3). No significant changes in total mTOR, Akt and GSK-3β were ob-
served after MPP+ and GM1-OS treatments, at any time point analyzed. Overall, these
findings indicate that GM1-OS sustained neuronal survival by regulating the intracellular
mTOR/Akt/GSK-3β signaling.
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Figure 3. GM1-OS modulation of mTOR/Akt/GSK-3β pathway. WB of factors sustaining cell sur-
vival after 6 h and 24 h of MPP+ exposure: mTORP-Ser2448, AKTP-Ser473, GSK3βP-Ser9, and respective
total proteins. Top: WB representative images; bottom: semiquantitative analysis of WB bands
represented as fold change over CTRL. All values are expressed as mean ± SEM (n = 4 indepen-
dent experiments. *** p = 0.0002, **** p < 0.0001, one-way ANOVA followed by Tukey’s multiple
comparisons test).

3.3. GM1-OS Lowered the Excess of Mitochondrial Superoxide (O2
•−) Induced by MPTP

In target neurons, MPP+ affects mitochondrial function by inhibiting the respiratory
complex I, disrupting the natural flow of electrons transport chain [30]. In this way, MPP+

causes an acute ATP deficiency and an increased leakage of ROS, particularly O2
•− from

the respiratory chain [30].
We previously showed that GM1-OS was able to protect Neuro2a neuroblastoma

cells from MPTP-induced mitochondrial oxidative stress by modulating mitochondrial
biogenesis and functionality [32,35]. Considering that GM1-OS sustained the viability and
neuronal integrity in DA and CG neurons injured with MPP+, we evaluated the levels of
mitochondrial O2

•−. Mitochondrial O2
•− was identified with the specific MitoSOX Red

dye [32], after 1 h and 6 h of MPP+ exposure, two time points preceding the loss of cell
viability (Figure 4). MPP+ significantly increased the O2

•− levels immediately after 1 h after
administration. Importantly, GM1-OS treatment lowered mitochondrial O2

•− overload in
MPP+ CGNs, at both analyzed time points (Figure 4). These results suggest that GM1-OS
has neuroprotective properties against the parkinsonian pathogenesis induced by MPTP
involved the modulation of mitochondrial activity.
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Figure 4. GM1-OS counteracted mitochondrial O2
•− increase induced by MPP+. On day 14 of culture,

primary CGNs were pre-incubated with GM1-OS (100 µM) or water (CTRL) for 1 h before MPP+

exposure. Next, MPP+ (50 µM) or water was added to the culture and mitochondrial O2
•− was

evaluated by MitoSOX Red reagent. (a) Representative fluorescence images of CGNs after 1 h (top)
or 6 h (bottom) of MPP+ administration (40× magnification). For each condition the small quadrants
show single channel images with MitoSOX in red and Nuclei in blue and the big quadrant is the
overlayed image (Scale bar: 50 µm); (b) quantification of the MitoSOX Red signal over nuclei number.
All values are expressed as mean ± SEM (n = 3 independent experiments. * p < 0.01, *** p = 0.0006
**** p < 0.0001, one-way ANOVA followed by Tukey’s multiple comparisons test).

4. Discussion

It was previously reported that methods to increase GM1 levels, either by the brain
infusion of Vibrio Cholera sialidase or by exogenous GM1 injection, were effective in
sparing DA neurons of the SNpc in MPTP mice [31].

Here, using the most sensitive neuronal population affected in PD we showed that
GM1-OS protected primary mouse DA neurons exposed to the active metabolite of MPTP
(MPP+). In fact, GM1-OS sustained the TH immunosignal, drastically reduced by the MPP+

toxin in DA neurons (Figure 1). Previous studies employing rat mesencephalic cultures
injured with MPP+ found that exogenous GM1 partially rescued the levels of TH-positive
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neurons [50,51]. The protetive effect of GM1-OS sparing the TH signal in rat DA neurons is
an additional in vitro demonstration of GM1-OS ability to retain the biological function of
the parental ganglioside.

To further investigate the biochemical mechanisms underlying GM1-OS neuropro-
tection against MPP+, we used mouse CGN, another neuronal population implicated in
PD [41–43,52]. Notably, to induce substantial damage in CGNs, higher MPP+ concentra-
tions (25–100 µM) than those employed in DA neurons (4 µM) were required (Figure 1 and
Supplementary Figure S2). This indicates that DA neurons are more sensitive to MPP+ in
line with the fact that they belong to the most affected neuronal populations in PD. As for
DA neurons, GM1-OS increased the survival of CGNs and their neurite network (Figure 2).

It has been previously reported that the mTOR/Akt/Gsk3β pathway is critical for
neuronal survival [46,47]. Exposure to MPP+ and other PD-related insults decreased
the Akt phosphorylation and increased GSK3β activation leading to neurodegeneration.
In MPP+-damaged CGNs, GM1-OS treatment alleviated the MPP+-induced changes in
phosphorylated mTOR, Akt, and GSKβ levels indicating that mTOR/Akt/GSK3β can
be a neuronal intracellular pathway modulated by GM1-OS (Figure 3). We previously
reported that GM1-OS interacts with TrkA on the cell surface, forming a tripartite complex
together with extracellular NGF, and activating an intracellular cascade of factors involving
MAP kinases and PI3K [20]. Specifically, Akt and GSKβ are downstream of this pathway
and the enhancement of their phosphorylation mediated by GM1-OS in the presence of
MPP+, may likely be a consequence of activated neutrophin signaling at the neuronal
plasma membrane.

Failure of mitochondrial function is another prominent feature characterizing the neu-
rodegeneration accompanying aging and idiopathic PD, as demonstrated by the reduction
in respiratory complex I in the brain of PD patients [53]. The in vivo and in vitro MPTP
models recapitulate this pathogenetic aspect, where chemically induced mitochondrial
deficiency is accompanied by redox imbalance with overproduction of reactive oxygen and
nitrogen species, leading to neurodegeneration [30,54]. Our study demonstrates that GM1-
OS prevented MPP+-induced mitochondrial O2

•− overload in primary neurons (Figure 4).
This finding is consistent with the effect of GM1-OS in reducing mitochondrial ROS in
MPTP-exposed neuroblastoma cells [32].

Althogh the MPTP in vitro and in vivo models do not fully recapitulate the multi-
factorality of PD (i.e., αS aggregation), they recapitulate the pro-inflammatory processes
occuring in PD pathology [23]. In fact MPTP triggers inflammatory processes characterized
by T-cell infiltration into the striatum and SNpc with microglia activation [30,54] and the
release of pro-inflammarory factors (i.e., TNF-a, IL-6, and ROS) [55]. In the future we will
evaluate whether GM1-OS is able to alleviate the inflammatory response of glial cells and
confirm its potential neuroprotective role in MPTP mice.

5. Conclusions

The present study exploits the in vitro MPTP model of parkinsonism providing evi-
dence of GM1-OS neuroprotective and neurorestorative properties of the damaged nigrostri-
atal DA system and glutamatergic neurons, trough the modulation of mTOR/Akt/GSK3β
downstream pathway and reducing mitochondria ROS overproduction. Previously, nu-
merous preclinical in vitro and in vivo studies highlighted the GM1 ganglioside ability to
ameliorate PD associated MPTP-neurotoxic insults. The data reported here confirm that
GM1 properties are due to its oligosaccharide portion.

The capability of GM1-OS to cross BBB more efficiently than GM1 ganglioside [56] and
rescue parkinsonian defects in multiple models of the disease [21], strengthens a possible
clinical application of GM1-OS as PD therapeutic and opens new perspectives over other
neurodegenerative disorders (i.e., Huntington and Alzheimer), where the efficacy of GM1
replacement therapy has been observed [17,19,57].
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•− content in mitochondria by MitoSOX™ red dye;
Figure S2: GM1-OS protected CGNs injured with MPP+.
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Abbreviations

Ganglioside nomenclature is in accordance with IUPAC-IUBB recommendations [58]
αS alpha-synuclein
Akt RAC-alpha serine/threonine-protein kinase
BBB Blood–brain barrier
BSA bovine serum albumin
BDNF brain-derived neurotrophic factor
CGN cerebellar granule neurons
CMF-PBS calcium magnesium free-PBS
CNS central nervous system
CTRL control
DA dopamine
DAPI 4′,5-diamina-2-phenylindole
DAT DA transporter
DMEM Dulbecco’s modified Eagles’ medium
EDTA ethylenediaminetetraacetic acid
FBS fetal bovine serum
FCS fetal calf serum
GDNF glial-derived neurotrophic factor
GM1 II3Neu5Ac-Gg4Cer, β-Gal-(1-3)-β-GalNAc-(1-4)-[α-Neu5Ac-(2-3)]-β-Gal-(1-4)-β-Glc-Cer

GM1-OS
GM1-oligosaccharide, II3Neu5Ac-Gg4, β-Gal-(1-3)-β-GalNAc-(1-4)-[α-Neu5Ac-(2-3)]-
β-Gal-(1-4)-Glc

GSK-3β glycogen synthase kinase-3β
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HBSS Hanks’ balanced salt solution
HPR horseradish peroxidase
IHC immunohistochemistry
IL-6 interleukin 6
IP Protease inhibitor cocktail
LDH lactate dehydrogenase
MAPK mitogen-activated protein kinase
MPTP 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrocholoride
MPP+ 1-methyl-4-phenylpyridinium
mTORs mammalian target of rapamycin
MTT 3-(4,5,-dimethylthiazole-2yl)-2,5-diphenyltetrazolium bromide
Na3VO4 sodium orthovanadate
O2
•- superoxide

p-AKT phospho-AKT
p-GSK-3β phospho-GSK-3β
p-mTOR phospho-mTOR
PBS phosphate-buffered saline
PFA paraformaldehyde
PMSF phenylmethanesulfonyl fluoride
PD Parkinson’s disease
P/S penicillin and streptomycin
PVDF polyvinylidene difluoride
ROS reactive oxygen species
RRID research resource identifier
SDS sodium dodecyl sulfate
SEM standard error of the mean
Ser Serine residue
SNpc substantia nigra pars compacta
TH tyrosine hydroxylase
TrkA neurotrophin tyrosin kinase receptor
WB western blot
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