
Theoretical Computer Science 969 (2023) 114049
Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Iterated uniform finite-state transducers on unary

languages ✩,✩✩

Martin Kutrib a, Andreas Malcher a, Carlo Mereghetti b,∗, Beatrice Palano b

a Institut für Informatik, Universität Giessen, Arndtstr. 2, 35392 Giessen, Germany
b Dipartimento di Informatica “Giovanni Degli Antoni”, Università degli Studi di Milano, via Celoria 18, 20133 Milano, Italy

a r t i c l e i n f o a b s t r a c t

Article history:
Received 18 March 2022
Received in revised form 3 March 2023
Accepted 21 June 2023
Available online 26 June 2023
Communicated by E. Formenti

Keywords:
Iterated transducers
Descriptional complexity
Unary languages
Cellular automata

An iterated uniform finite-state transducer executes the same length-preserving transduction
in iterative sweeps. The first sweep occurs on the input string, while any subsequent sweep
works on the output of the previous one. All sweeps always start from the sole initial state.
The device accepts upon halting in an accepting state at the end of a sweep.
We consider devices with one-way sweep motion and two-way sweep motion, i.e., sweeps
are either from left to right only, or strictly alternate from left to right and from right to
left. In addition, devices may work deterministically or nondeterministically.
We focus on iterated uniform finite-state transducers accepting unary languages, i.e.,
languages built over single-letter alphabets.
We show that any unary regular language can be accepted by a deterministic iterated
uniform finite-state transducer with at most max{2 ·�, p} +1 states, where � and p are the
greatest primes in the factorization of the, respectively, pre-periodic and periodic part of
the language. Such a state cost cannot be improved by using two-way motion, and it turns
out to greatly outperform in the worst case the state costs of equivalent classical models
of finite-state automata.
Next, we give a characterization of classes of unary languages accepted by non-constant
sweep-bounded iterated uniform finite-state transducers in terms of time-bounded one-
way cellular automata. This characterization enables both to exhibit interesting families
of unary nonregular languages accepted by iterated uniform finite-state transducers,
and to prove the undecidability of several questions related to iterated uniform finite-
state transducers accepting unary languages with an amount of sweeps that is at least
logarithmic.

© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the
CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

The notion of an iterated uniform finite-state transducer (iufst) has been introduced in [15]. Basically, it consists of
a length-preserving finite-state transducer that works in iterative sweeps from left to right on its input tape. In the first

✩ This article belongs to Section C: Theory of natural computing, Edited by Lila Kari.
✩✩ A preliminary version of this work was presented at the 47th International Conference on Current Trends in Theory and Practice of Computer Science (SOFSEM),
January 25–29, 2021, Bolzano-Bozen, Italy [17].

* Corresponding author.
E-mail addresses: kutrib@informatik.uni-giessen.de (M. Kutrib), andreas.malcher@informatik.uni-giessen.de (A. Malcher), carlo.mereghetti@unimi.it

(C. Mereghetti), palano@di.unimi.it (B. Palano).
https://doi.org/10.1016/j.tcs.2023.114049
0304-3975/© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://
creativecommons .org /licenses /by /4 .0/).

https://doi.org/10.1016/j.tcs.2023.114049
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2023.114049&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:kutrib@informatik.uni-giessen.de
mailto:andreas.malcher@informatik.uni-giessen.de
mailto:carlo.mereghetti@unimi.it
mailto:palano@di.unimi.it
https://doi.org/10.1016/j.tcs.2023.114049
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

M. Kutrib, A. Malcher, C. Mereghetti et al. Theoretical Computer Science 969 (2023) 114049
sweep the input string is processed, while any further sweep operates on the output of the previous sweep. The model is
uniform in that every sweep always starts from the sole initial state on the leftmost tape symbol, and operates the same
transduction rules in each sweep. An input string is accepted whenever the transducer halts in an accepting state at the
end of a sweep.

A theoretical investigation of iufsts is motivated by the fact that iterated or cascade transductions show up in several
fields of computer science. For example, in the context of natural language processing, cascades of finite-state transducers
are used in [6] to extract information from natural language texts. In compiler design, the lexical analysis is often done by
a finite-state transducer whose output is subsequently processed by a pushdown transducer implementing the syntactical
analysis. Again, from a theoretical perspective, the Krohn-Rhodes decomposition theorem states that every regular language
can be represented as a cascade of several finite-state transducers with a simple algebraic structure [7,9]. Finally, cascades
of deterministic pushdown transducers as language accepting devices have been studied in [4]. Yet, in [1,21], iterated finite-
state transducers as language generating devices have been proposed. These devices start with some symbol in the initial
state of the transducer, iteratively apply in multiple sweeps the transducer to the output produced so far, and eventually
halt in an accepting state of the transducer after a last sweep. These iterated finite-state transducers, which in general are
not length-preserving, are quite powerful since their nondeterministic version can generate non-recursive languages with
only three states. Additionally, in the deterministic case, one state suffices to generate the class of D0L Lindenmayer systems
and two states are sufficient to generate languages which are neither context-free nor in 0L. It might be worth noticing
that [1,21] are the only contributions that introduce a notion of “uniformity” on iterated transductions, in the sense that
always the same transducer is iteratively applied.

Deterministic and nondeterministic iufsts (the nondeterministic model being abbreviated as niufst) have been deeply
studied in [18,19]. In case of a constant number of sweeps, iufsts and niufsts characterize the class of regular languages.
Therefore, in both papers, the comparison with standard automata models as well as a detailed investigation of the descrip-
tional power of constant sweep-bounded iufsts and niufsts have been carried on. Moreover, the state cost of removing
nondeterminism and sweeps and of some language operations, as well as the computational complexity of decidability
questions have been studied. In case of a non-constant number of sweeps, nonregular languages can be accepted as soon
as an at least logarithmic number of sweeps is provided, and infinite proper language hierarchies depending on the sweep
complexity are shown. Finally, non-constant sweep-bounded niufsts are proved to be strictly more powerful than their
deterministic variant if an at least logarithmic amount of sweeps is allowed.

Recently, in [16], iufsts and niufsts have been enhanced with the possibility of two-way motion, implying a strict sweep
alternation from left to right and from right to left, always starting from the sole initial state. The resulting devices ab-
breviate as 2iufst and 2niufst, respectively. When performing a constant amount of sweeps, 2iufsts and 2niufsts still
characterize regular languages. Thus, the descriptional power of constant sweep-bounded 2iufsts and 2niufsts has been
investigated and compared with that of classical models of finite-state automata. In addition, natural questions in descrip-
tional complexity such as the cost of removing nondeterminism and two-way motion from constant sweep-bounded 2iufsts
and 2niufsts have been analyzed. On the other hand, it has been proved in [20] that 2iufsts and 2niufsts are able to accept
even nonregular languages whenever provided with an at least logarithmic amount of sweeps. Moreover, for the same and
at least logarithmic sweep complexity, it has been shown that 2niufsts and niufsts share the same accepting capability,
while 2iufsts are strictly more powerful than iufsts.

It is worth remarking that, in [16], an initial investigation of iterated transducers working on unary languages, i.e., lan-
guages built over single-letter alphabets, has been proposed. Unary acceptance is a classical framework, e.g., to test the
descriptional power of models of computation (see [2,27,26]). It turns out that, quite often, meaningful differences with the
general alphabet case show up when investigating the unary world. A particular family of unary languages has been defined
in [16], whose acceptance by iterated transduction cannot benefit – from the point of view of the number of states and
sweeps – from the usage of two-way motion. On the other hand, it has been shown that iufsts accepting such a unary
language family greatly outperform equivalent classical models of finite-state automata from a state complexity point of
view.

In this paper, we continue our investigation on iterated transduction on unary languages in all generality, not focusing on
particular unary languages only.

In Section 3, we tackle the problem of constructing succinct iterated transducers for general unary regular languages. We
provide our construction step by step, starting from finite unary languages. We show that finite unary languages consisting
of words with length up to � can be accepted by an iufst with 2 ·� states, � being the greatest prime in the factorization of
�. Next, we switch to unary periodic (or cyclic) languages, and prove that any n-periodic unary language can be accepted by
an iufst featuring p states, p being the greatest prime in the factorization of n. By combining these two results, we show
that any unary regular language can be accepted by an iufst with at most max{2 · �, p} + 1 states, where � and p are the
greatest primes in the factorization of the, respectively, pre-periodic and periodic part of the language. We then show that
these state costs cannot be improved by using two-way motion, and that they turn out to be drastically lower in the worst
case than the state costs of equivalent classical models of finite-state automata.

In Section 4, we provide a tight connection between the non-constant sweep complexity of iufsts and the time com-
plexity of one-way cellular automata (ocas), when both models work on unary inputs. Precisely, we show that a unary
language is accepted by an n + r(n) time-bounded oca if and only if it is accepted by an r(n) + 1 sweep-bounded iufst. This
characterization directly brings some interesting consequences. First of all, it enables to exhibit a rich class of unary nonreg-
2

M. Kutrib, A. Malcher, C. Mereghetti et al. Theoretical Computer Science 969 (2023) 114049
ular languages accepted by �(ln n) sweep-bounded iufsts, together with some closure properties. Furthermore, it implies
the undecidability of some classical problems – such as emptiness, finiteness, infiniteness, inclusion, and equivalence – for
�(ln n) sweep-bounded iufsts accepting unary languages.

2. Definitions and preliminaries

2.1. Numbers and languages

We denote the set {0, 1, 2, ...} of positive integers and zero by N . The Fundamental Theorem of Arithmetic establishes
that any integer n > 1 can be uniquely expressed as a product n = pα1

1 · · · · · pαs
s , where p1 < · · · < ps are primes, and

α1, α2, . . . , αs are positive integers. For any n > 1, we let Zn = {0, 1, . . . , n − 1} be the ring of integers modulo n. By ln n we
denote the logarithm of n to base e, and by ld n we denote the logarithm of n to base 2. More generally, we let logb n be
the logarithm of n to any given base b > 1. Set inclusion is denoted by ⊆ and strict set inclusion by ⊂. Given a set S , we
write 2S for its power set and |S| for its cardinality.

Let �∗ denote the set of all words over the finite alphabet �. The empty word is denoted by λ and �+ = �∗ \ {λ}. The
length of a word w is denoted by |w|, and its reversal by w R .

2.2. Iterated transduction

Roughly speaking, an iterated uniform finite-state transducer is a finite-state transducer which processes the input in
multiple passes (also sweeps). In the first pass, it reads the input word preceded and followed by endmarkers and emits an
output word. In the following passes, it reads the output word of the previous pass and emits a new output word. It should
be noted that: (i) all passes always start from the same sole initial state, (ii) the transducer may alter the two endmarkers
as well. The number of passes taken, the sweep complexity, is given as a function of the length of the input. Here, we are
interested in weak processing devices: we will consider length-preserving finite-state transducers, also known as Mealy
machines [23], to be iterated.

Formally, we define a nondeterministic iterated uniform finite-state transducer (niufst) as a system T = 〈Q , �, �, q0, �, �,

δ, F 〉, where Q is the set of internal states, � is the set of input symbols, � is the set of output symbols, q0 ∈ Q is the
initial state, � ∈ � \ � and � ∈ � \ � are the left and right endmarkers, respectively, F ⊆ Q is the set of accepting states, and
δ : Q × (� ∪ �) → 2Q ×� is the partial transition function. Notice that since the transduction is applied in multiple passes,
that is, in any but the initial pass it operates on an output of the previous pass, the transition function depends on symbols
from � ∪ �. We let T (w) be the set of possible outputs produced by T in a complete sweep on input w ∈ (� ∪ �)∗ .

We distinguish between one-way and two-way computations. In a one-way computation all sweeps are from left to right,
whereas in a two-way computation the sweeps strictly alternate from left to right and from right to left. So, during a
computation on input w ∈ �∗ , the niufst T produces a sequence of words w1, . . . , wi, wi+1, . . . ∈ (� ∪ �)∗:

• if the computation is one-way, then w1 ∈ T (�w�) and wi+1 ∈ T (wi) for i ≥ 1,
• if the computation is two-way, then w1 ∈ T (�w�) and wi+1 ∈ T (wi) for even i ≥ 2, while w R

i+1 ∈ T (w R
i) for odd i ≥ 1.

We denote an iterated uniform finite-state transducer operating in one-way (resp., two-way) mode by niufst (resp.,
2niufst).

An iterated uniform finite-state transducer is said to be deterministic (iufst, 2iufst) if and only if |δ(p, x)| ≤ 1, for all
p ∈ Q and x ∈ (� ∪�). In this case, we simply write δ(p, x) = (q, y) instead of δ(p, x) = {(q, y)} assuming that the transition
function is a mapping δ : Q × (� ∪ �) → Q × �.

We emphasize that both in the one-way and in the two-way iterated transduction, all sweeps always start from the sole
initial state.

Now we turn to language acceptance. With respect to nondeterministic computations and some complexity bound, in
the literature several acceptance modes are considered. For example, a machine accepts a language in the weak mode, if
for any input w ∈ L there is an accepting computation that obeys the complexity bound. Language L is accepted in the
strong mode, if the machine obeys the complexity bound for all computations (accepting or not) on all inputs. Here we deal
with the number of sweeps as (computational) complexity measure. The weak mode seems too optimistic for this measure,
while the strong mode seems too restrictive. Therefore, here we consider an intermediate mode, the so-called accept mode.
A language is accepted in the accept mode if all accepting computations obey the complexity bound (see [24] for separation
of these modes with respect to space complexity).

The niufst T halts whenever the transition function is undefined or T enters an accepting state at the end of a sweep.
The input word w ∈ �∗ is accepted by T if at least one computation on w halts at the end of a sweep in an accepting state.
Otherwise it is rejected. Indeed, the output of the last sweep is not used. The language accepted by T is the set L(T) ⊆ �∗
defined as L(T) = { w ∈ �∗ | w is accepted by T }.

Given a function s : N → N , an iterated uniform finite-state transducer T is said to be of sweep complexity s(n) if for
all w ∈ L(T) all accepting computations on w halt after at most s(|w|) sweeps. In this case, we add the prefix s(n)- to the
3

M. Kutrib, A. Malcher, C. Mereghetti et al. Theoretical Computer Science 969 (2023) 114049
notation of the device. It is easy to see that 1-iufsts (resp., 1-niufsts) are essentially deterministic (resp., nondeterministic)
finite-state automata (dfas and nfas, respectively).

Throughout the paper, two accepting devices are said to be equivalent if and only if they accept the same language.

2.3. Unary languages

A language L is said to be unary whenever it is built over a single-letter alphabet, i.e., L ⊆ �∗ and |�| = 1. In this case,
we usually let L ⊆ 0∗ or L ⊆ a∗ .

A unary language L ⊆ 0∗ is n-periodic (or n-cyclic) whenever there exists a set R ⊆ Zn such that L = { 0c·n+R | c ≥
0 and R ∈ R }. We will always be assuming that n is the minimal value defining L. This is usually referred to as L being
properly n-periodic. To emphasize periodicity and the set R of remainders modulo n, we will express L in the form Ln,R .

Concerning state requirements to accept periodic languages on classical models of finite-state automata, the following is
known from the literature:

• By using standard pumping arguments, it can be shown that n states are necessary and sufficient for dfas and nfas to
accept Ln,R . In particular, the transition digraph of the minimal dfa for Ln,R consists of a single cordless cycle of n
states, with an initial state and final states settled according to R.

• For n factorizing as n = pα1
1 · pα2

2 · · · · · pαs
s , we have that

∑s
i=1 pαi

i states are necessary and sufficient for any two-way
dfa and nfa [26, Thm. 9], and any isolated cut-point probabilistic finite automaton (pfa) [25, Thm. 2.8] to accept Ln,R .

It is well known that any (infinite) unary regular language can be seen as the disjoint union of a finite language and an
ultimately periodic language (very roughly speaking, membership in an ultimately periodic language becomes periodic from
a certain point on). More precisely, a unary regular language can be defined by three parameters �, n, and R ⊆Zn as

L�,n,R = L� ∪ {0�+c·n+R | c ≥ 0 and R ∈ R }.
The language L� , called the pre-periodic part of L�,n,R, is a (possibly empty) finite unary language containing strings of
length less than or equal to �. Instead, the set { 0�+c·n+R | c ≥ 0 and R ∈ R } is called the periodic part of L�,n,R. As usual,
we assume the parameters � and n are the smallest possible defining L�,n,R. Notice that the transition digraph of the
minimal dfa for L�,n,R consists of an initial path of � states joined to a cordless cycle of n states.

Clearly, the above recalled state lower bounds for two-way dfas and nfas, or isolated cut-point pfas for Ln,R carry over
to L�,n,R as well. By simulation results in [2,27], we have that if L�,n,R is accepted by a b-state nfa or two-way nfa, then
we can assume � = O (b2) and n = e
(

√
b·ln b) .

2.4. An example of iterated transduction on unary languages

In [16], we designed an n-state k-2iufst for the unary language Ln,k = { ac·nk | c ≥ 0 }. Here, for the sake of completeness
and to clarify the notion of acceptance by iterated transduction, we provide a first improvement of the construction of
the 2iufst in [16] by removing the two-way feature. As a further improvement on the state number, we will show in
Subsection 3.1 how to accept Ln,k on a constant sweep-bounded iufst with less than n states.

Example 1. For any n, k > 0, the unary language Ln,k = { ac·nk | c ≥ 0 } is accepted by the n-state k-iufst T =
〈Q , �, �, q0, �0, �0, δ, F 〉, where

Q = {q0,q1, . . . ,qn−1},
� = {a},
� = {a,
,#,�0,�1, . . . ,�k−1,�0,�1, . . . ,�k−1},
F = {q0}.

To explain the definition of the transition function δ, we first implement the behavior of T on the endmarkers. In general,
the sweep number is identified by the indexes of the endmarkers. Since q0 is the accepting state, the last step of all but the
last sweep sends T into state q1 to avoid to accept accidentally:

(1) δ(q0,�i) = (q0,�i+1) for 0 ≤ i ≤ k − 2,

(2) δ(q0,�i) = (q1,�i+1) for 0 ≤ i ≤ k − 2.

In the first sweep, T verifies that the length of the input is divisible by n and rewrites the input as a sequence of consecutive
blocks of the form #
n−1:

(3) δ(q0,a) = (q1,#),

(4) δ(qi,a) = (qi+1,
) for 1 ≤ i ≤ n − 2,

(5) δ(q ,a) = (q ,
).
n−1 0

4

M. Kutrib, A. Malcher, C. Mereghetti et al. Theoretical Computer Science 969 (2023) 114049
In the following k − 1 sweeps, T verifies that the number of # symbols is divisible by n and rewrites the input such that,
from each n symbols #, one remains and n − 1 are replaced by
:

(6) δ(qi,
) = (qi,
) for 0 ≤ i ≤ n − 1,

(7) δ(qi,#) = (qi+1,
) for 0 ≤ i ≤ n − 2,

(8) δ(qn−1,#) = (q0,#).

Finally, in the last sweep the endmarkers do not have to be rewritten by new symbols. Moreover, if the divisibility check is
positive, the last step sends T into state q0, and thus T halts accepting:

(9) δ(q0,�k−1) = (q0,�k−1).

(10) δ(q0,�k−1) = (q0,�k−1).

By construction, T accepts if all divisibility checks are positive. Let m be the length of an input from language Ln,k . After
the first sweep all blocks have length n, thus, there are m/n symbols # in the output. After the ith sweep there are m/ni

symbols # in the output. So, after the kth sweep it is verified the length of the input is a multiple of nk . On the other hand,
the sole accepting state q0 is never entered at the end of the first k − 1 sweeps. So, accepting is only possible after the
last sweep. To see that no input of incorrect length is accepted it is sufficient to look at the states reached at the end of
a sweep. If it turns out that the length of the input is not divisible by n (first sweep) or the number of # symbols is not
divisible by n (remaining sweeps), the sweep ends in some state unequal to q0 on the endmarker. However, the transition
function is undefined for such situations and T halts in a non-accepting state. �

3. Iterated transduction and unary regular languages

We already gave hints in [16], of the higher descriptional power of unary iterated transducers over classical models of
finite-state automata by focusing on a particular family of unary periodic languages. Namely, �(p) being the product of all
primes not exceeding a given prime p, we introduced the unary regular language L�(p) = { 0c·�(p) | c ≥ 0 }. We designed an
iufst for L�(p) , featuring p states and (p/ ln p) sweeps whereas any equivalent dfa or nfa needs at least �(p) ∼ ep states,
and any 2dfa, 2nfa or isolated cut-point pfa needs at least p2/ ln p states.

In this paper, we are going to tackle in a more systematic way the general problem of constructing small-size iterated
transducers for any given unary regular language. It should be mentioned that here we focus on the number of states as
complexity measure disregarding, for example, the number of output symbols. To consider the descriptional complexity in
its entirety, the sizes of all parameters in the definition of iterated transducers have to be combined.

For a better understanding, we will show our construction step by step, dealing one at a time with meaningful families
of unary regular languages. We will start with unary periodic languages, pass through unary finite languages, and finally
get to designing iterated transducers for general unary regular languages. Among others, the constructions we are going to
present will lead to improving from a state viewpoint the device proposed in Example 1 for the unary language Ln,k .

3.1. Unary periodic languages

For reader’s ease of mind, we start by considering a particular family of unary periodic languages, which is actually a
generalization of L�(p) languages above recalled. For any n ≥ 1, we let

Ln = {0c·n | c ≥ 0 }.

Theorem 2. Let n ≥ 2 factorize as n = pα1
1 · · · · · pαs

s , with αi > 0. The language Ln can be accepted by a ps-state r-iufst with
r = ∑s

i=1 αi sweeps.

Proof. To accept Ln , we design the iufst T = 〈Q , �, �, q0, �, �, δ, F 〉, where

Q = {q0,q1, . . . ,qps−1},
� = {0},
� = {�,1,2, . . . , s} ∪ {�i

j | 1 ≤ i ≤ s and 1 ≤ j ≤ αi }
∪ {∗i

j,
i
j | 1 ≤ i ≤ s and 1 ≤ j ≤ αi − 1 },

F = {q0}.
Informally, the computation of T runs through s consecutive phases. During the ith phase, for 1 ≤ i ≤ s, the iufst T checks
whether or not the length of the input string is divisible by pαi

i ; assume for the moment αi > 1. Along this phase, αi

sweeps are performed. During the jth sweep, for 1 ≤ j ≤ αi , the divisibility of the input length by pi
j is checked. The input

string is accepted if and only if at the end of the s phases, all the
∑s

i=1 αi many sweeps witness input length divisibility by
prime powers, as explained.
5

M. Kutrib, A. Malcher, C. Mereghetti et al. Theoretical Computer Science 969 (2023) 114049
Let us define the transition function δ by first modeling the behavior of T on the endmarkers. Since q0 is the accepting
state, the last step from q0 of all but the last sweep of the last phase sends T into the non-accepting state q1, to avoid
premature incorrect acceptance. Whereas, if the divisibility check is positive at the end of the last sweep of the last phase,
the last step from q0 keeps T in q0, and so T may halt and accept:

(1) δ(q0,�) = (q0,�),

(2) δ(q0,�) = (q1,�1
1),

(3) δ(q0,�i
j) = (q1,�i

j+1) for 1 ≤ i ≤ s − 1 and 1 ≤ j ≤ αi − 1,

(4) δ(q0,�i
αi

) = (q1,�i+1
1) for 1 ≤ i ≤ s − 1,

(5) δ(q0,�s
j) = (q1,�s

j+1) for 1 ≤ j ≤ αs − 2,

(6) δ(q0,�s
αs−1) = (q0,�s

αs
).

For 1 ≤ i ≤ s, in the first sweep of the ith phase, during which phase the divisibility of the input length by pαi
i is to be

checked, T verifies that the input length is divisible by pi , while rewriting the input as a sequence of consecutive blocks
of the form (
i

1)
pi−1 ∗i

1. This is achieved by (7)–(8) below. It is worth noticing that at the end of the (i − 1)st phase
(2 ≤ i ≤ s) every input symbol has been replaced by the symbol ‘i − 1’. The detailed transitions implementing this latter
symbol replacement are defined in (12)–(14) below.

(7) δ(qk, i − 1) = (qk+1,
i
1) for 0 ≤ k ≤ pi − 2,

(8) δ(qpi−1, i − 1) = (q0,∗i
1).

In each of the following αi − 2 sweeps of the ith phase, T verifies whether or not the number of ‘∗i
j ’ symbols, for 1 ≤ j ≤

αi − 2, is divisible by pi . While doing this, T rewrites the tape so that, for each group of pi many symbols ‘∗i
j ’ encountered,

the last is replaced by the symbol ‘∗i
j+1’, while each of the previous pi − 1 many symbols ‘∗i

j ’ is replaced by the symbol

i

j+1. Moreover, all symbols
i
j are replaced by the symbol
i

j+1. So, the last sweep of this ith phase is easily seen to globally
check the divisibility of the length of the input string by pαi

i , while replacing each tape symbol by the symbol ‘i’:

(9) δ(qk,
i
j) = (qk,
i

j+1) for 0 ≤ k ≤ pi − 1,

(10) δ(qk,∗i
j) = (qk+1,
i

j+1) for 0 ≤ k ≤ pi − 2,

(11) δ(qpi−1,∗i
j) = (q0,∗i

j+1),

(12) δ(qk,
i
αi−1) = (qk, i) for 0 ≤ k ≤ pi − 1,

(13) δ(qk,∗i
αi−1) = (qk+1, i) for 0 ≤ k ≤ pi − 2,

(14) δ(qpi−1,∗i
αi−1) = (q0, i).

If αi = 1, i.e. the ith phase consists of a single sweep, the instructions for δ are those here provided for the last sweep of
the ith phase for the case αi > 1, the only difference being the input symbols which are now ‘i − 1’.

It is not hard to verify that the iufst T accepts if and only if the length of the input string is divisible by every pαi
i , i.e.,

if and only if the input string belongs to Ln . Indeed, T features ps states and
∑s

i=1 αi sweeps. �
It may be worth noticing that, applying the construction in Theorem 2 for the target language L�(p) (a particular case of

Ln by letting n = �(p)) would return an iufst T which is identical to that originally proposed in [16]. This is basically due
to the fact that each phase in the resulting T collapses to a single sweep, since each exponent in the prime factorization of
�(p) is clearly 1.

The minimality – in terms of number of states – of the iufst for Ln designed in Theorem 2 is provided in the following
theorem:

Theorem 3. Let n ≥ 2 factorize as n = pα1
1 · · · · · pαs

s with αi > 0, and let k ≥ 1 be an integer. Then any k-iufst accepting Ln must use
at least ps states.

Proof. In [15, Thm. 3], it is proved that, for any given prime p, the language Lp = { 0c·p | c ≥ 0 } cannot be accepted by any
k-iufst with less than p states. The proof goes by contradiction, assuming the existence of a k-iufst T accepting L p with
less than p states. A string 0c·p ∈ Lp , for c large enough, is then taken. By a fooling argument, it is shown that T accepts
0c·p if and only if it accepts the string 0c·p−α as well, α being a product of numbers all strictly less than p. This contradicts
the fact that 0c·p−α cannot belong to Lp , whence the result.

This approach here adapts to the language Ln as follows. We suppose, by contradiction, the existence of a k-iufst T for
Ln with less than ps states. Now, we take the string 0c·n ∈ Ln , for c large enough, as a fooling string. As above, it turns
6

M. Kutrib, A. Malcher, C. Mereghetti et al. Theoretical Computer Science 969 (2023) 114049
out that T accepts 0c·n if and only if it accepts the string 0c·n−α , where α is a product of numbers all strictly less than ps .
Clearly, 0c·n−α cannot belong to Ln , whence a contradiction and the claimed result. �

Let us now briefly account on comparing the size of iterated transducers, and that of classical automata on accepting the
language Ln , with n = pα1

1 · · · · · pαs
s :

(i) As addressed in Section 2.3, n states are necessary and sufficient for dfas and nfas to accept Ln , while
∑s

i=1 pαi
i states

are necessary and sufficient for 2dfas, 2nfas and isolated cut-point pfas.
(ii) By Theorem 2 and Theorem 3, we have that ps states are necessary and sufficient for constant sweep-bounded iufsts.

We quickly address the state economy of accepting the language Ln by two-way iterated transduction:

• By combining the ideas employed in the construction of the 2iufst provided in [16] for Ln,k and those in the construc-
tion proposed in Theorem 2 above for the language Ln , with a little formal work one may obtain a 2iufst accepting Ln

with ps states and
∑s

i=1 αi sweeps.
• Again, the pumping argument in Theorem 3 can be adapted to show that ps is the minimum amount of states to accept

Ln on constant sweep-bounded 2iufsts.

As a final remark, we emphasize a state improvement on accepting the unary regular language Ln,k = { ac·nk | c ≥ 0 }, for
which an n-state k-iufst is designed in Example 1. By noticing that Ln,k = Lnk , a direct application of Theorem 2 leads to an
iufst accepting Ln,k with ps states and k · ∑s

i=1 αi sweeps, ps being the greatest prime in the factorization of n.

3.1.1. Sweep reduction
Concerning the number of sweeps to accept Ln on constant sweep-bounded iufsts with ps states, i.e. the minimum

possible amount of states by Theorem 3, our construction in Theorem 2 can actually be improved to return ps-state iufsts
which in some cases exhibit less than

∑s
i=1 αi sweeps. Let us explain the key idea:

Let n = pα1
1 · · · · · pαs

s . Consider the phase in which the divisibility of the input length by pαi
i is checked by using

αi sweeps and involving pi of the ps total states. Let γi = max{ h ∈ N | ph
i ≤ ps } = �logpi

ps� ≥ 1. Clearly, αi = γi ·
�αi/γi� + (αi mod γi). It is not hard to see that:

(i) By performing �αi/γi� sweeps involving pγi
i of the ps total states, we can check whether or not the length of the

input string is a multiple of pγi ·�αi/γi�
i .

(ii) Subsequently, by a single final sweep that involves p(αi mod γi)

i of ps total states, we can check whether or not
the length of the input string is a multiple of pγi ·�αi/γi�

i · p(αi mod γi)

i = pαi
i . This final sweep is avoided in case αi

mod γi = 0.

By using this enhancement in our construction algorithm, we still obtain constant sweep-bounded iufsts with ps states for
the language Ln , but now the number of sweeps can be evaluated with more precision. To this aim, for 1 ≤ i ≤ s, we let:

φi =
⌊

αi

γi

⌋
+ σi, where σi =

{
1 if αi mod γi �= 0
0 otherwise.

Then, it is easy to see that the number of sweeps allowed by the enhanced construction is actually
∑s

i=1 φi . Clearly, we
have s ≤ ∑s

i=1 φi ≤ ∑s
i=1 αi .

As a matter of fact, different sweep reduction strategies can be designed and possibly combined. For instance, suppose a
set of indexes S ⊆ {1, . . . , s − 1} in the prime factorization of n can be found, satisfying

∏
j∈S p

α j

j = P < ps . Then, a single
sweep involving P of the ps total states suffices to check the divisibility of the length of the input string by P . This enables
to save

∑
j∈S α j − 1 sweeps.

Let us now move on to a slightly different version of Ln . Precisely, for any n ≥ 1 and a fixed remainder R ∈Zn \{0}, we let

Ln,R = {0c·n+R | c ≥ 0 }.
The next theorem shows that this modification of Ln does not increase the state and sweep complexity of acceptance on
iufsts.

Theorem 4. Let n ≥ 2 factorize as n = pα1
1 · · · · · pαs

s with αi > 0. The language Ln,R can be accepted by a ps-state r-iufst with
r = ∑s

i=1 αi sweeps.
7

M. Kutrib, A. Malcher, C. Mereghetti et al. Theoretical Computer Science 969 (2023) 114049
Proof. To simplify our reasoning, we begin by considering the particular case where n = pα , for a prime p and a positive
integer α. Thus, we consider the language Lpα,R = { 0c·pα+R | c ≥ 0 }, with R ∈Zpα \ {0}.

In this case, we can construct a p-state α-iufst T consisting of a single phase (recall from the proof of Theorem 2,
a phase consists of a sequence of sweeps) where T checks whether the input length modulo pα yields R . We make this
single phase work as in Theorem 2, but now at every sweep T stores in its states a digit of the representation in base p
of R < pα . More precisely: let rαrα−1 · · · r1 be the representation of R in base p, with r1 being the least significant digit.
According to Theorem 2, the set of states of T is {q0, q1, . . . , qp−1} and, for 1 ≤ i ≤ α, the digit ri will be represented by the
state qri , which will be entered at the end of the ith sweep if and only if the input string belongs to L pα ,R .

To show this, consider the string 0m ∈ Lpα,R and let qxi be the state reached by T on the ith sweep before reading the
right endmarker. We are going to show that qxi = qri by induction on i. For i = 1, the property follows trivially. Otherwise,
according to the construction in Theorem 2, it is not hard to see that, before reading the right endmarker on the ith sweep,
T will represent in its states the number mi mod p where, for a given k, we have

mi = m

pi−1
−

i−1∑
j=1

r j

pi− j
= 1

pi−1

⎛
⎝k · pi +

i∑
j=1

r j · p j−1

⎞
⎠ −

i−1∑
j=1

r j

pi− j

= k · p +
i∑

j=1

r j

pi− j
−

i−1∑
j=1

r j

pi− j
= k · p + ri .

So, xi = mi mod p = ri , whence the result follows. This property enables us to define the transition function δ of T on the
right endmarkers only in those situations where the sequence rαrα−1 · · · r1 of remainders correctly shows up along the α
sweeps, eventually accepting the input string. In all the other situations, we let δ undefined, thus leading to rejection.

Let us now consider the general case, where n = pα1
1 · · · · · pαs

s . For every 1 ≤ i ≤ s, we let Ri = R mod pαi
i . The Chinese

Remainder Theorem states that R is the only non-negative integer less than n satisfying the system of modular equations
{Ri = m mod pαi

i }1≤i≤s , with m being the unknown. All the other solutions are of the form m = c · n + R , for any c > 0. So,
to check whether an input string 0m belongs to Ln,R , it suffices to check whether m mod pαi

i = Ri , for every 1 ≤ i ≤ s. From
a set theoretical point of view, this implies that the language Ln,R can be expressed as

Ln,R =
s⋂

i=1

Lp
αi
i ,Ri

where each of the languages involved in the intersection has already been dealt with in the first part of this proof. Therefore,
we can construct an iufst with ps states and

∑s
i=1 αi sweeps implementing the following recognition algorithm:

1: input(0m);
2: for i = 1 to s do
3: if 0m /∈ Lp

αi
i ,Ri

then

4: reject by undefined δ;
5: end if
6: end for
7: accept.

The test 0m /∈ Lp
αi
i ,Ri

at line 3 is performed according to the single phase algorithm for the language L pα,R outlined at
the beginning of this proof. However, for i > 1, the test actually takes as input the string (i − 1)m which is the output of
the previous phase, as described in the proof of Theorem 2. �

Finally, we come to tackle the acceptance of a general unary n-periodic language Ln,R , for a fixed set R ⊂Zn:

Ln,R = {0c·n+R | c ≥ 0 and R ∈ R }.

Theorem 5. Let n ≥ 2 factorize as n = pα1
1 · · · · · pαs

s , with αi > 0. The language Ln,R can be accepted by a ps-state r-iufst with
r = ∑s

i=1 αi sweeps.

Proof. Let the set of remainders be R = {R(1), . . . , R(h)}. As in the proof of Theorem 4, for every 1 ≤ t ≤ h, we let R(t)
i = R(t)

mod pαi
i for 1 ≤ i ≤ s. Thus

Ln,R =
h⋃(

s⋂
L

p
αi
i ,R(t)

i

)
.

t=1 i=1

8

M. Kutrib, A. Malcher, C. Mereghetti et al. Theoretical Computer Science 969 (2023) 114049
This formula suggests a direct construction of an iufst for Ln,R with ps states and h · ∑s
i=1 αi sweeps, which activates,

one after the other, the h iterated transducers for the languages
⋂s

i=1 L
p
αi
i ,R(t)

i
. Each one of these h iterated transducers is

designed in the proof of Theorem 4. However, we are able to exhibit an alternative construction featuring only i phases
(one per each pαi

i), globally resulting in
∑s

i=1 αi sweeps. The ith phase aims to reveal xi = m mod pαi
i , where m is as usual

the length of the input string.
We say that xi is compatible with the remainder R(t) ∈ R whenever xi = R(t)

i . Moreover, we let Xi = { R(t) ∈
R | xi is compatible with R(t) }. For the sake of simplicity, we start by considering the case where all αi ’s are 1. The
general case of αi ’s being greater than 0 will be addressed at the end of the proof.

The key idea is to use right endmarker symbols to store the subsets of the set R of remainders which are compatible
with xi ’s singled out phase after phase. (Notice that, since we are assuming αi = 1, a phase here consists of a single sweep.)
More precisely, the right endmarker symbols will be of the form �C

i , for 1 ≤ i ≤ s and a nonempty set C ⊆R of compatible
remainders. We set the initial right endmarker to �C0

0 , with C0 = R. Now, let Ci−1 ⊆ R be the superscript of the right
endmarker before the beginning of the ith phase. At the end of the ith phase, after singling out xi , the superscript of the
right endmarker will be updated as Ci = Ci−1 ∩ Xi . By iterating this processing, at the end of the sth phase we will be able
to decide whether or not an input string 0m belongs to Ln,R by focusing on the cardinality of Cs . In fact, if Cs = {R(t)} for a
fixed 1 ≤ t ≤ h, then m mod n = R(t) and hence 0m ∈ Ln,R . Otherwise, we have that Cs = ∅ and clearly 0m /∈ Ln,R .

Let us now consider the case where αi ’s can be greater than 1. The form of right endmarker symbols modifies as �C
i, j

for 1 ≤ i ≤ s and 1 ≤ j ≤ αi . By considering the construction in Theorem 4, it is not hard to understand the usage of the
new subscript j for accounting the digits of the representation in base pi of xi . The updating of the superscript of the right
endmarker, denoting the set of remainders compatible with the xi ’s so far computed, cannot be done once at the end of
every phase only. In fact, along the ith phase, the transducer cannot store every digit of the representation in base pi of xi .
So, the updating of the superscript of the right endmarker must be done at each one of the αi many sweeps the ith phase
consists of. Without going into technical details, this can be suitably hardwired in the definition of the transitions function
δ. �

We conclude by observing that, again from Theorem 3, one may obtain that any constant sweep-bounded iufst accepting
Ln,R must use at least ps states. Moreover, reductions on the number of sweeps may possibly be obtained as previously
explained in Subsection 3.1.1.

As recalled in Section 2.3, we remark that n states are necessary and sufficient for dfas and nfas to accept Ln,R , while ∑s
i=1 pαi

i states are necessary and sufficient for two-way dfas, nfas, and isolated cut-point pfas.1

3.2. Unary finite languages

For any positive integer �, let L� be any unary language whose longest word has length �. In what follows, we assume
� ≥ 2. The case � = 1 can be trivially managed by a 2-state dfa seen as a transducer.

Theorem 6. Let � ≥ 2 factorize as � = �
β1
1 · · · · · �βr

r , with βi > 0. (Notice that here �i stands for the ith prime in the factorization of
�). The language L� can be accepted by a (2 · �r)-state t-iufst with t = ∑r

i=1 βi sweeps.

Proof. We let L� ⊆ a∗ . We define the set of states of an iufst T for L� as Q = { qi | 0 ≤ i ≤ �r − 1 } ∪ { ̄qi | 0 ≤ i ≤ �r − 1 },
barred states being accepting. Again, for the sake of simplicity, we consider the case where all βi ’s equal 1, and hence the
total number of sweeps will be r. On input am , the iufst T acts as follows:

• The first sweep counts m modulo �1 by using states qi ’s, while writing blocks of the form “0 1 · · · �1 − 1”. Clearly, the
last symbol written before the right endmarker is m mod �1.

• The second sweep counts m modulo �2 by using states qi ’s, but this time the output consists of two tracks: in the
first track, the output of the previous sweep is copied, while in the second track blocks of the form “0 1 · · · �2 − 1” are
written. Again, the last symbol of the second track written before the right endmarker is m mod �2.

• This dynamic is repeated for r − 1 sweeps, the ith sweep adding a new track where the last symbol written before the
right endmarker is m mod �i .

• Along the rth sweep, we copy all the r − 1 tracks previously written and we add a last track where we count modulo
�r while writing blocks of the form “0 1 · · · �r − 1”. However, this time we use both states qi ’s and q̄i ’s, as we are now
going to explain. Notice that, along this last sweep, the output symbol written after consuming an input prefix of length
κ turns out to be (κ mod �1, . . . , κ mod �r) which, by the Chinese Remainder Theorem, uniquely identifies κ up to
congruence modulo �. So, if aκ ∈ L� , the transition function leads to q̄κ mod �r , otherwise we reach qκ mod �r . This way
of defining the transition function δ enables to reach the right endmarker on a barred state if am belongs to L� . So, to
decide acceptance, it suffices that δ on the right endmarker let the transducer in the current state. Instead, to reject

1 Recall that Ln,R is properly n-periodic, i.e., n is the minimal value defining Ln,R .
9

M. Kutrib, A. Malcher, C. Mereghetti et al. Theoretical Computer Science 969 (2023) 114049
any word of length exceeding �, we leave δ undefined as soon as the written symbol is the sequence of remainders
representing � + 1.

Let us now consider the case where βi ’s can be greater than 1. Without going into technical details, we have that a phase of
βi sweeps (instead of a single sweep, as previously explained) is used for the prime factor �βi

i . The remainder m mod �
βi
i is

now represented in base �i by βi digits. This multiple-digit remainder encoding can be suitably managed by the transition
function, so that the key idea used in the last sweep does not change. �

We conclude by observing that � states are easily seen to be necessary on classical models of finite-state automata to
accept L� . Again, a pumping argument as in Theorem 3 may be used to show that not less than �r states are needed on
constant sweep-bounded iufsts and 2iufsts.

3.3. General unary regular languages

Finally, let us put things together. As addressed in Section 2, a general (infinite) unary regular language consists of the
disjoint union of a (possibly empty) finite pre-periodic language and an ultimately periodic language. More precisely, it can
be defined by three parameters �, n, and R ⊆Zn as

L�,n,R = L� ∪ {0�+c·n+R | c ≥ 0 and R ∈ R },
where, with a slight abuse of notation with respect to the definition of L� stipulated in Section 3.2, we now intend L� as
a finite unary language that is accepted by an �-state dfa. So, differently from Section 3.2, here and from now on L� does
not necessarily contain the unary word of length �. In the following theorem, we consider �, n ≥ 2. Otherwise, we have
languages that can be trivially dealt with by our constructions in this paper.

Theorem 7. Let �, n ≥ 2 factorize, respectively, as n = pα1
1 · · · · · pαs

s with αi > 0, and � = �
β1
1 · · · · · �βr

r with βi > 0. The unary
language L�,n,R can be accepted by an x-state t-iufst, where x = max {2 · �r, ps} + ξ with ξ = 0 if �r < ps, 1 otherwise, and
t = ∑s

i=1 αi + ∑r
i=1 βi .

Proof. We use in cascade the transducer, say T ′ , provided in Theorem 6 and the transducer, say T ′′ , designed in Theorem 5.
However, T ′ is slightly modified to take into account that T ′′ must be activated only for inputs of length exceeding �. To
this aim, T ′:

(i) on input words of length less than or equal to � not in L� , it now halts on the right endmarker by undefined δ,
(ii) it accepts words in L� by the original construction,

(iii) for words of length exceeding �, it enters a “new” non-accepting state sweeping the rest of the input; such a new state
can be q�r whenever �r < ps .

A further modification of T ′ is the fact that on the last sweep any input symbol is rewritten by 0, so that T ′′ can start
working on a string of 0’s, as assumed in Theorem 5. Even T ′′ needs a slight tuning. In fact, the remainders in R must be
updated to consider the initial segment of length �. Precisely, any R(t) ∈R will be replaced by (R(t) + �) mod n. The reader
may easily obtain the claimed number of states and sweeps for the transducer described so far. �

Again, the pumping argument in Theorem 3 can be adapted to show that not less than max{�r, ps} states can be used
to accept L�,n,R on constant sweep-bounded iufsts and 2iufsts. On the other hand, as recalled in Section 2.3, we have that
� + n states are necessary and sufficient for a dfa to accept L�,n,R, whereas not less than

∑s
i=1 pαi

i states on two-way dfas
and nfas, and on isolated cut-point pfas are needed. Yet, some sweeps may be saved in the iufst proposed in Theorem 7
for L�,n,R, by using the techniques outlined in Subsection 3.1.1.

3.4. Some concluding remarks on unary iterated transduction

There are many different measures that have been considered in descriptional complexity from the very beginning. Some
of them are related to the length of the description, that is roughly the length of some encoding of a system. Others are
not, for instance, the well-studied number of nonterminals in context-free grammars. In [10], measures that are recursively
related to length are called s-measures. So, it is distinguished between measuring sizes of systems and measuring resources
of systems. Here, for our iufsts accepting unary regular languages, we focused on measuring the computational resources
“number of states and sweeps”, in order to get comparisons with classical finite-state automata.

Nevertheless, it would be an interesting research to study the size of iufsts with respect to an s-measure. From this
point of view, in addition to the amount of states and sweeps, it is well worth pointing out the cardinality of the output
alphabet � of our iufst T for a general unary regular language L�,n,R, provided in Theorem 7. By adopting notations there
stated, and following the sequence of constructions culminating in T , we get
10

M. Kutrib, A. Malcher, C. Mereghetti et al. Theoretical Computer Science 969 (2023) 114049
Fig. 1. Initial configuration of a unary one-way cellular automaton with input a5.

|�| ≤
(

2 + 2|R|) ·
s∑

i=1

αi + 4 − s +
r∏

i=1

�i .

We again emphasize that only the number of states and sweeps were at stake here, so reducing |�| is well worth pursuing,
e.g., by combining the modules T consists of in a smarter way. More generally, it would be interesting to deepen tradeoffs
among the amounts of states, sweeps, and output symbols in iterated transduction.

4. Beyond constant sweep complexity

In this section, we will discuss the case of iufsts working on a unary input and having a non-constant sweep complexity.
Since for sweep bounds of order o(ln n) deterministic and nondeterministic iufsts in the one-way case as well as in the
two-way case accept regular languages only (see [15,8,29]), it remains to consider sweep bounds of order �(ln n).

4.1. Characterizing sweep complexity by one-way cellular automata time complexity

The purpose of this subsection is to establish a meaningful relation between the sweep complexity of a unary iufst and
the time complexity that is needed by a one-way cellular automaton beyond real time. In this way, the sweep complexity
can be characterized by the time complexity of a massively parallel device.

In detail, a one-way cellular automaton (oca) is a linear array of identical deterministic finite automata, called cells,
where each cell except the leftmost one is connected to its left neighbor. The transition of a cell depends on its current
state and the current states of its neighbor, where the leftmost cell receives information associated with a boundary symbol
on its free input line. The cells work synchronously at discrete time steps. The input mode for ocas is called parallel. One
can suppose that all cells fetch their input symbol during a pre-initial step.

More formally, an oca is a system M = 〈S, #, A, δ, F 〉, where S �= ∅ is the finite set of cell states, # /∈ S is the permanent
boundary symbol, A ⊆ S is the input alphabet, F ⊆ S is the set of accepting cell states and δ : (S ∪ {#}) × S → S is the local
transition function. A configuration of an oca at some time step t ≥ 0 is a mapping ct : {1, 2, . . . , n} → S , for n ≥ 1, which
maps the single cells to their current states. The computation starts at time 0 in a so-called initial configuration, which is
defined by the given input w = x1x2 · · · xn ∈ A+ as c0(i) = xi , for 1 ≤ i ≤ n. As an example, Fig. 1 depicts an oca when
starting its computation on the unary string a5.

Let ct , with t ≥ 0, be a configuration. Its successor configuration ct+1 is defined as ct+1(i) = δ(ct(i − 1), ct(i)) for i ∈
{2, 3, . . . , n} and ct+1(1) = δ(#, ct(1)). An input w is accepted by an oca M if at some time step during the course of its
computation the rightmost cell enters an accepting state.

Let t :N →N be a mapping. If all w ∈ L(M) are accepted within at most t(|w|) time steps, then M is said to be of time
complexity t . Since in general ocas do not halt, this implies also that all w /∈ L(M) are not accepted, that is, rejected at time
t(|w|). Clearly, the identity function n is the least time complexity for non-trivial computations. So, if t(n) = n acceptance is
said to be in real time (see, for example, [13] for further information about cellular automata as language acceptors).

The next lemma shows that a non-constant number of sweeps significantly increase the computational power of iufsts
even in the unary case. In particular, they increase the computational power in the same way as adding the same amount
of time to a real-time oca.

Lemma 8. Let r : N → N be a mapping and M be a unary oca obeying the time complexity n + r(n). Then an equivalent
(r(n) + 1)-iufst can effectively be constructed.

Proof. Let M = 〈S, #, {a}, δM , F M〉 be an oca. By a straightforward modification we can always achieve that M does not
accept before time step n and that the input state a is never entered again. Fig. 2 displays the time-space diagram of a
computation of M .

One may easily see that all cells that did not receive any information from the left border are in the same state in any
configuration. Moreover, these states can be computed as a1 = δM(a, a), a2 = δM(a1, a1), and so on. Now the basic idea of
the construction of an equivalent iufst T = 〈Q , {a}, �, q0, �, �, δT , F T 〉 is as follows. In a first sweep, T reads the a’s and
emits the first diagonal of the space-time diagram that consists of states on which the left border may had an effect (the
green diagonal in Fig. 2). To this end, T enters in every step a state that is actually a pair of states of M , that is, the state
on the diagonal and the state to the right of the diagonal. In subsequent sweeps, T reads the states of a diagonal and emits
the states of the next diagonal. To achieve this, it enters the states on the diagonal.
11

M. Kutrib, A. Malcher, C. Mereghetti et al. Theoretical Computer Science 969 (2023) 114049
Fig. 2. Space-time diagram of a schematic computation of an oca on input an with n = 7, that accepts at time n + r(n) = 7 + 6.

More formally, we set Q = {q0, q+} ∪ S ∪ S2, � = {�, �} ∪ S , F T = {q+}, and specify δT as follows:

(1) δT (q0,�) = (q0,�),

(2) δT (q0,a) =
((

δM(#,a), δM(a,a)
)
, δM(#,a)

)
,

(3) δT ((s,a′),a) =
((

δM(s,a′), δM(a′,a′)
)
, δM(s,a′)

)
,

(4) δT ((s,a′),�) = (q0,�) if s /∈ F M ,

(5) δT ((s,a′),�) = (q+,�) if s ∈ F M ,

(6) δT (q0, s) = (
δM(#, s), δM(#, s)

)
,

(7) δT (s′, s) = (
δM(s′, s), δM(s′, s)

)
,

(8) δT (s′,�) = (q0,�) if s′ /∈ F M ,

(9) δT (s′,�) = (q+,�) if s′ ∈ F M .

Finally, T accepts if it simulates an accepting state of M when reading the right endmarker. In this case, the rightmost cell
of M has entered an accepting state and so M has accepted. If M never accepts then T will never accept. Thus, both devices
accept the same language. Moreover, the state of the rightmost cell of M at time n + r(n) is simulated at the end of the
(r(n) + 1)st sweep of T . �

Now we turn to the converse simulation of Lemma 8.

Lemma 9. Let T be an s(n)-iufst with unary input alphabet. Then an equivalent oca obeying the time complexity n + s(n) − 1 can
effectively be constructed.

Proof. Let T = 〈Q , {a}, �, q0, �, �, δT , F T 〉 be an iufst. By a straightforward modification we can always achieve that T
rewrites the left endmarker only by itself which means that the left endmarker is left unchanged. So, we consider a fixed
state s0 = δT (q0, �) in which T starts to scan the tape symbol next to the left endmarker. Moreover, we may safely assume
that T will never halt rejecting. This behavior can be obtained by adding a non-accepting dummy state in which the
sweep continues. Then the right endmarker is labeled appropriately, which prevents accepting in subsequent sweeps. The
underlying idea of the construction of an equivalent oca M = 〈S,#, {a}, δM , F M〉 is similar to that of the proof of Lemma 8,
where the iufst simulates the states on diagonals of the space-time diagram by sweeps. Now the oca simulates the sweeps
12

M. Kutrib, A. Malcher, C. Mereghetti et al. Theoretical Computer Science 969 (2023) 114049
on diagonals. More precisely, assume that T enters state p on emitting symbol x at tape position i in its kth sweep. Then
the ith cell of the oca to be constructed will enter state (p, x) in the configuration at time i + k − 1. This behavior can
be implemented since the next step of T is the application of δT (p, y) on tape position i + 1 carrying symbol y. Then the
(i + 1)st cell of the oca is in state (q, y) in the configuration at time i + k − 1, for some q ∈ Q . So, a simulation of δT (p, y)

by cell i + 1 of the oca is possible and this cell can enter the state δT (p, y) in the configuration at time i + k.
There is still a technical problem to be settled, caused by the fact that T may rewrite its right endmarker. Therefore,

the symbol at the position of the right endmarker has to be simulated by the rightmost cell of the oca. However, the
cells of the oca cannot know whether or not they are at the right border. So, all cells have to simulate a possible end-
marker to their right, but only the simulation by the true rightmost cell plays a role for acceptance. More formally, let
E R ⊆ � be the set of symbols that may appear at the position of the right endmarker. We set S = {a} ∪ (Q × � × E R),
F M = { (p, x, e) | δT (p, e) ∈ F T }, and specify δM as follows:

(1) δM(a,a) = a,

(2) δM(#,a) = (p′,a′,�) where (p′,a′) = δT (s0,a),

(3) δM((p, x, e),a) = (p′,a′,�) where (p′,a′) = δT (p,a),

(4) δM(#, (q, y, f)) = (p′,a′, e′) where (p′,a′) = δT (s0, y) and

(p′′, e′) = δT (q, f) for some p′′ ∈ Q ,

(5) δM((p, x, e), (q, y, f)) = (p′,a′, e′) where (p′,a′) = δT (p, y) and

(p′′, e′) = δT (q, f) for some p′′ ∈ Q .

Now, M accepts if and only if its rightmost cell n enters a state (p, x, e) such that δT (p, e) ∈ F T . By the construction idea
this means that T enters state p on emitting symbol x at tape position n where e is the symbol on position n + 1 of the
endmarker. Since the next symbol read by T is e, we conclude that M accepts if and only if T accepts. Finally, if the nth
cell of M accepts at time t = n + k − 1 then T enters state p at tape position n where e is the symbol on position n + 1 in
sweep k. �

The previous lemmas prove the following characterization:

Theorem 10. Let r :N →N be a mapping. A unary language is accepted by an oca obeying the time complexity n + r(n) if and only
if it is accepted by an iufst with sweep complexity r(n) + 1.

This characterization opens the door to a rich family of unary languages that can thus be accepted by iufsts. It is
known that the family of languages accepted by ocas obeying time complexity (1 + ε)n, where ε is an arbitrarily small
positive number, coincides with the reversals of languages accepted by two-way cellular automata in real time (see, for
example, [13]). Since the reversal of a unary language is the language itself, all unary languages accepted by two-way
cellular automata in real time are accepted by (εn + 1)-iufsts. This language family is very rich (see, e.g., [5,22,30,31]).
Examples are:

• { ank | n ≥ 1 }, for all k ≥ 1,
• { akn | n ≥ 1 }, for all k ≥ 1,
• { an! | n ≥ 1 },
• { ap | p is prime },
• { an | n is a Fibonacci number }.

Moreover, the class of these languages is closed under several language operations applied to the functions that give the
word lengths [5,12,22].

4.2. Reducing sweeps on unary languages

In this subsection, we show a general result on sweep reduction for unary languages accepted by s(n)-iufsts with
s(n) ∈ O (n). In detail, it is shown that the sweep complexity can be exponentially reduced at the price of accepting a
modified language. However, the modification does not change the size, i.e., the number of words in the language. This
feature will be essential for the undecidability results given in the next subsection. Our main result in this subsection is the
following translational lemma:

Lemma 11. Let a unary language L be accepted by an s(n)-iufst with sweep complexity s(n) ∈ O (n). Then, the language L′ = { a2m |
am ∈ L } is accepted by an s′(n)-iufst with s′(n) ∈ O (ln n).
13

M. Kutrib, A. Malcher, C. Mereghetti et al. Theoretical Computer Science 969 (2023) 114049
Fig. 3. Output protocol of an iufst accepting aaa after six sweeps.

Proof. Let L be accepted by some s(n)-iufst T . We assume that s(n) ≤ c · n for some integer constant c ≥ 1. By introducing
additional states we may also assume that T halts only at the end of a sweep on the endmarker. The basic idea is to check
whether the input length is 2m for some m ≥ 1, in parallel with checking whether T accepts on input am . To construct an
s′(n)-iufst T ′ accepting L′ , we divide each output tape cell into c + 1 components, called tracks. Hence, we can speak of
track 1, track 2, . . . , track c + 1. Additionally, each of the tracks track 2, track 3, . . . , track c + 1 is divided into two subtracks.

Now, track 1 will be used to check that the input length is a power of two by implementing the idea of iteratively
dividing by two. To this end, in every sweep every odd unmarked a is suitably marked. The input length is 2m if and only if
in sweep m + 1 the last a of the input is the only unmarked a. At this moment, it can be decided whether the input length
is a power of two. Whenever T ′ finds that the input length is not a power of two, it halts non-accepting.

In addition to the above marking procedure, we can use another marking to tag in every sweep the first untagged a.
Hence, after m + 1 sweeps the first m + 1 positions of the input are tagged and indicate together with the left endmarker
exactly the positions in which T should be simulated on �am�. For this simulation we have to take into account the
fact that T ′ is uniform and starts every sweep in its initial state. Hence, we do not know that the exact position of the
right endmarker is the position m + 1. Thus, we use the first subtrack of track 2, track 3, . . . , track c + 1 to simulate the
computation of T under the assumption that the initial input symbol was an a, whereas the second subtrack is used to
simulate the computation of T under the assumption that the initial input symbol is the endmarker �. Additionally, we
enter some permanent state f+ and emit it whenever T would enter an accepting state on the endmarker �. Similarly,
some permanent state f− is entered and emitted whenever T would halt non-accepting on the endmarker �.

Now, the dynamics of T ′ can be sketched as follows. In its first sweep, T ′ starts the computation in track 1 and performs
the first division by two.

In the next c sweeps of T ′ , c sweeps of T are consecutively simulated in tracks 2, 3, . . . , c + 1. In the next sweep, the
next division by two is performed in track 1 and in the next c sweeps another c sweeps of T are consecutively simulated in
tracks 2, 3, . . . , c + 1. This behavior is iterated until either there is some sweep working on track 1 that halts non-accepting
or it is detected in sweep (1 + c)m + 1 while reading the right endmarker that the input length is 2m . In the latter case,
T ′ enters an accepting state if the simulation of T ended up in the state f+ in some second subtrack at position m + 1.
Since in sweep (1 + c)m + 1 exactly the position m + 1 is tagged, the states of T ′ can carry the information whether or not
the state f+ has been entered in some second subtrack at position m + 1 to the right endmarker. Otherwise, T ′ halts in a
non-accepting state.

By construction, clearly T ′ accepts an input a2m
if and only if T halts accepting on �am�. Moreover, we have that T ′

performs (1 + c)m + 1 sweeps on input length n = 2m . Hence, s′(n) = (1 + c)(ld n) + 1 belongs to O (ln n). �
To illustrate the construction in the proof of Lemma 11, we provide the following example.

Example 12. We consider the computation of an s(n)-iufst T with s(n) = 2n on input aaa whose output protocol is depicted
in Fig. 3. Let us assume that the input is accepted after s(3) = 6 sweeps.

In Fig. 4 we depict the output protocol of an s′(n)-iufst accepting a8 after s′(n) = (1 + c)(ld n) + 1, here, s′(8) = 10
sweeps according to the construction in the proof of Lemma 11. The number of the sweep performed by the s′(n)-iufst is
indicated in the first column. To avoid overloading the picture, for every sweep only the track in which changes are made
is shown. The shown track is indicated in the second column. A marked input symbol a is denoted by a′ and a tagged a′
is denoted by a′ . The tracks 2 and 3 are divided into two subtracks where the upper component denotes the first subtrack
and the lower component denotes the second subtrack. Finally, an output symbol given by the transition function of T but
not relevant for the current example is denoted by ‘·’. �
14

M. Kutrib, A. Malcher, C. Mereghetti et al. Theoretical Computer Science 969 (2023) 114049
Fig. 4. Output protocol of an iufst accepting a8 after ten sweeps. Note that for every sweep only the track in which changes are made is depicted. The
number of the track is indicated in the second column.

4.3. Undecidability results

Concerning decidability questions it is shown in [19] that all commonly studied decidability questions such as emptiness,
finiteness, infiniteness, inclusion, and equivalence are undecidable for s(n)-iufsts with s(n) ∈ �(ln n). Obviously, these unde-
cidability results carry over to the stronger models with nondeterministic moves and/or two-way motion. Taking a look on
the proof of these results it is clear that the underlying languages used in the proof are not unary. Thus, the question arises
whether the above-mentioned decidability questions become decidable in case of iufsts working on unary inputs. For ex-
ample, it is known for one-way multi-head finite automata (see, e.g., [11]) that all above-mentioned decidability questions
are undecidable in general, but become decidable in case of unary languages. However, for iufsts we can show in what
follows that the decidability questions for iufsts remain undecidable even if only unary inputs are considered.

The way to obtain these results is to first show that the questions of emptiness, finiteness, infiniteness, inclusion, and
equivalence are undecidable for ocas working in linear time and accepting a unary input. Using the results of Subsection 4.1
we can construct an equivalent s(n)-iufst with s(n) ∈ O (n). Using then the construction from Subsection 4.2 we can con-
struct an s′(n)-iufst with s′(n) ∈ O (ln n) and translate the undecidability results for unary linear-time ocas to undecidability
results for iufsts having a sweep complexity in �(ln n).

Theorem 13. For linear-time ocas accepting unary languages, the problems emptiness, finiteness, infiniteness, inclusion, and equiva-
lence are undecidable.

Proof. For the undecidability results we will use the well-known fact that it is undecidable whether or not a deterministic
counter machine having two counters that are initially zero and starting with empty input will eventually halt [28]. Thus,
the basic idea is to construct a linear-time oca that simulates a two-counter machine C on empty input and accepts some
input if and only if C halts on empty input. The simulation is realized by using the states of the cells to encode the current
values of both counters.

We define the language LC = { an | C halts on empty input after n steps } and first show that LC is accepted by a real-
time ca which is defined similarly as an oca with the difference that every cell is connected with its left and right neighbor.
It is known (see, e.g., [13]) that for any unary language accepted by a real-time ca an equivalent linear-time oca can be
constructed.

A real-time ca A accepting LC simulates in two tracks two binary counters which are realized by storing the binary
encoding of the current value of each counter in their cells. Basically, in each track each cell stores one bit, where the
rightmost cell stores the least significant bit. Due to the finite neighborhood it is impossible to obtain configurations that
are binary representations literally. Instead, carry-overs are sent from cell to cell until they can be processed. On the other
hand, the test for zero requires to mark the cell carrying the most significant bit, and this mark may move. Hence, carry-
overs are transported by sending information from right to left, and the cell carrying the most significant bit can be marked
by sending information from left to right. In this way, the number of cells needed to store in real time the current values of
the binary counters can suitably be increased and decreased if necessary. (See, e.g., [14] for a similar construction.) In the
rightmost cell of A the simulation of C is started with both counters being zero. The simulation of both counters is suitably
15

M. Kutrib, A. Malcher, C. Mereghetti et al. Theoretical Computer Science 969 (2023) 114049
updated and the current state of C is carried in the rightmost cell. In addition, in the first time step the leftmost cell starts
a signal with maximum speed to the right. When this signal reaches the rightmost cell at the moment when a halting state
of C is entered then A accepts; A rejects in all other cases. It is clear that A accepts LC in real time and, moreover, L(A) is
not empty if and only if C halts.

Similarly, a real-time ca A′ can be constructed that accepts

L′
C = {am | m ≥ n and C halts on empty input after n steps }.

The basic modification is that the rightmost cell enters an accepting state if and only if a halting state of C is entered before
or at the arrival of the right-moving signal. Then, we have that L(A′) is infinite if and only if C halts.

Since any real-time ca accepting a unary language can be converted to an equivalent linear-time oca, we can construct
linear-time ocas T and T ′ accepting LC and L′

C . Hence, L(T) is not empty and L(T ′) is infinite if and only if C halts. Since
the halting problem on empty input is undecidable for counter machines, we therefore obtain that emptiness, finiteness,
and infiniteness are undecidable for unary linear-time ocas. The fact that the empty set is accepted by a linear-time oca

and the result that emptiness is undecidable for unary linear-time ocas immediately imply the undecidability of inclusion
and equivalence for unary linear-time ocas. �

Using the results of Subsections 4.1 and 4.2 we are able to prove undecidability results for s(n)-iufsts accepting unary
languages with s(n) ∈ �(ln n).

Theorem 14. Let s(n) ∈ �(ln n). Then for s(n)-iufsts accepting unary languages, the problems emptiness, finiteness, infiniteness,
inclusion, and equivalence are undecidable.

Proof. First, we note that owing to a speed-up result for linear-time ocas (see, e.g., [13]) we may always assume that
linear-time ocas work in time t(n) = 2n. Then, due to Lemma 8 we know that for every unary linear-time oca accepting a
language L with time complexity 2n an equivalent (n + 1)-iufst can effectively be constructed. By applying Lemma 11 we
can construct an s′(n)-iufst T with s′(n) ∈ O (ln n) that accepts L′ .

Let us now assume that emptiness is decidable for an s(n)-iufst with s(n) ∈ �(ln n). Then, we can decide the emptiness
of T accepting L′ . Hence, we can decide the emptiness of L, since L′ is empty if and only if L is empty. This implies the
decidability of emptiness for linear-time ocas which is a contradiction to Theorem 13.

Similarly, we can show that both finiteness and infiniteness are undecidable, since L′ is finite if and only if L is fi-
nite. Finally, the fact that the empty set is accepted by an s(n)-iufst with s(n) ∈ �(ln n) and the result that emptiness is
undecidable imply that the questions of inclusion and equivalence are undecidable as well. �
Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgement

The authors gratefully acknowledge comments and suggestions by the anonymous referees which significantly con-
tributed to improving the paper.

References

[1] H. Bordihn, H. Fernau, M. Holzer, V. Manca, C. Martín-Vide, Iterated sequential transducers as language generating devices, Theor. Comput. Sci. 369
(2006) 67–81.

[2] M. Chrobak, Finite automata and unary languages, Theor. Comput. Sci. 47 (1986) 149–158, Errata: [3].
[3] M. Chrobak, Errata to “Finite automata and unary languages”, Theor. Comput. Sci. 302 (2003) 497–498.
[4] C. Citrini, S. Crespi-Reghizzi, D. Mandrioli, On deterministic multi-pass analysis, SIAM J. Comput. 15 (1986) 668–693.
[5] P.C. Fischer, Generation of primes by a one-dimensional real-time iterative array, J. ACM 12 (1965) 388–394.
[6] N. Friburger, D. Maurel, Finite-state transducer cascades to extract named entities in texts, Theor. Comput. Sci. 313 (2004) 93–104.
[7] A. Ginzburg, Algebraic Theory of Automata, Academic Press, 1968.
[8] J. Hartmanis, Computational complexity of one-tape Turing machine computations, J. ACM 15 (1968) 325–339.
[9] J. Hartmanis, R.E. Stearns, Algebraic Structure Theory of Sequential Machines, Prentice-Hall, 1966.

[10] M. Holzer, M. Kutrib, Descriptional complexity—an introductory survey, in: C. Martín-Vide (Ed.), Scientific Applications of Language Methods, Imperial
College Press, 2010, pp. 1–58.

[11] M. Holzer, M. Kutrib, A. Malcher, Complexity of multi-head finite automata: origins and directions, Theor. Comput. Sci. 412 (2011) 83–96.
16

http://refhub.elsevier.com/S0304-3975(23)00362-6/bibBECF98BDE00FD3FE85B21DFE7B106D1Ds1
http://refhub.elsevier.com/S0304-3975(23)00362-6/bibBECF98BDE00FD3FE85B21DFE7B106D1Ds1
http://refhub.elsevier.com/S0304-3975(23)00362-6/bibD2F1FCD25B29CC6DA269E4ABC921DC70s1
http://refhub.elsevier.com/S0304-3975(23)00362-6/bib5E3766325285B18E2068579B403858FDs1
http://refhub.elsevier.com/S0304-3975(23)00362-6/bib7529A4D5D0096CB5433B9190B66B5803s1
http://refhub.elsevier.com/S0304-3975(23)00362-6/bib3738AF93340709547EFCD692173FD971s1
http://refhub.elsevier.com/S0304-3975(23)00362-6/bibA77BD18AFF8FC52377D5C1D4B1ED8486s1
http://refhub.elsevier.com/S0304-3975(23)00362-6/bibC8980F74F9B0806437113FB14BFEBF7Ds1
http://refhub.elsevier.com/S0304-3975(23)00362-6/bib565F387DD2C97F573C9E2138E0C1B86Fs1
http://refhub.elsevier.com/S0304-3975(23)00362-6/bibEB960E2071AE7AD9C878EA439A53FCA6s1
http://refhub.elsevier.com/S0304-3975(23)00362-6/bibF8BFD143C23601F27245CC6493890DEAs1
http://refhub.elsevier.com/S0304-3975(23)00362-6/bibF8BFD143C23601F27245CC6493890DEAs1
http://refhub.elsevier.com/S0304-3975(23)00362-6/bibB67C29DBE79353B6931C0DE57DBE275Ds1

M. Kutrib, A. Malcher, C. Mereghetti et al. Theoretical Computer Science 969 (2023) 114049
[12] M. Kutrib, Cellular automata - A computational point of view, in: G.B. Enguix, M.D. Jiménez-López, C. Martín-Vide (Eds.), New Developments in Formal
Languages and Applications, vol. 113, Springer, 2008, pp. 183–227.

[13] M. Kutrib, Cellular automata and language theory, in: R. Meyers (Ed.), Encyclopedia of Complexity and System Science, Springer, 2009, pp. 800–823.
[14] M. Kutrib, A. Malcher, Cellular automata with limited inter-cell bandwidth, Theor. Comput. Sci. 412 (2011) 3917–3931.
[15] M. Kutrib, A. Malcher, C. Mereghetti, B. Palano, Descriptional complexity of iterated uniform finite-state transducers, in: M. Hospodár, G. Jirásková, S.

Konstantinidis (Eds.), Descriptional Complexity of Formal Systems (DCFS 2019), in: LNCS, vol. 11612, Springer, 2019, pp. 223–234.
[16] M. Kutrib, A. Malcher, C. Mereghetti, B. Palano, Iterated uniform finite-state transducers: descriptional complexity of nondeterminism and two-way

motion, in: G. Jirásková, G. Pighizzini (Eds.), Descriptional Complexity of Formal Systems (DCFS 2020), in: LNCS, vol. 12442, Springer, 2020, pp. 117–129.
[17] M. Kutrib, A. Malcher, C. Mereghetti, B. Palano, Iterated uniform finite-state transducers on unary languages, in: T. Bures, R. Dondi, J. Gamper, G.

Guerrini, T. Jurdzinski, C. Pahl, F. Sikora, P.W.H. Wong (Eds.), Theory and Practice of Computer Science (SOFSEM 2021), in: LNCS, vol. 12607, Springer,
2021, pp. 218–232.

[18] M. Kutrib, A. Malcher, C. Mereghetti, B. Palano, Computational and descriptional power of nondeterministic iterated uniform finite-state transducers,
Fundam. Inform. 185 (2022) 337–356, https://doi .org /10 .3233 /FI -222113.

[19] M. Kutrib, A. Malcher, C. Mereghetti, B. Palano, Descriptional complexity of iterated uniform finite-state transducers, Inf. Comput. 284 (2022) 104691,
https://doi .org /10 .1016 /j .ic .2021.104691.

[20] M. Kutrib, A. Malcher, C. Mereghetti, B. Palano, Iterated uniform finite-state transducers: descriptional complexity of nondeterminism and two-way
motion, J. Autom. Lang. Comb. (2023), in press.

[21] V. Manca, On the generative power of iterated transductions, in: M. Ito, G. Păun, S. Yu (Eds.), Words, Semigroups, and Transductions - Festschrift in
Honor of Gabriel Thierrin, World Scientific, 2001, pp. 315–327.

[22] J. Mazoyer, V. Terrier, Signals in one-dimensional cellular automata, Theor. Comput. Sci. 217 (1999) 53–80.
[23] G.H. Mealy, A method for synthesizing sequential circuits, Bell Syst. Tech. J. 34 (1955) 1045–1079.
[24] C. Mereghetti, Testing the descriptional power of small Turing machines on nonregular language acceptance, Int. J. Found. Comput. Sci. 19 (2008)

827–843.
[25] C. Mereghetti, B. Palano, G. Pighizzini, Note on the succinctness of deterministic, nondeterministic, probabilistic and quantum finite automata, RAIRO

Inform. Théor. 35 (2001) 477–490.
[26] C. Mereghetti, G. Pighizzini, Two-way automata simulations and unary languages, J. Autom. Lang. Comb. 5 (2000) 287–300.
[27] C. Mereghetti, G. Pighizzini, Optimal simulations between unary automata, SIAM J. Comput. 30 (2001) 1976–1992.
[28] M.L. Minsky, Recursive unsolvability of Post’s problem of ‘tag’ and other topics in the theory of Turing machines, Ann. Math. 74 (1961) 437–455.
[29] G. Pighizzini, Nondeterministic one-tape off-line Turing machines and their time complexity, J. Autom. Lang. Comb. 14 (2009) 107–124.
[30] H. Umeo, N. Kamikawa, A design of real-time non-regular sequence generation algorithms and their implementations on cellular automata with 1-bit

inter-cell communications, Fundam. Inform. 52 (2002) 257–275.
[31] H. Umeo, N. Kamikawa, Real-time generation of primes by a 1-bit-communication cellular automaton, Fundam. Inform. 58 (2003) 421–435.
17

http://refhub.elsevier.com/S0304-3975(23)00362-6/bibB6B6B4220DA848C714F869D05F87D6A9s1
http://refhub.elsevier.com/S0304-3975(23)00362-6/bibB6B6B4220DA848C714F869D05F87D6A9s1
http://refhub.elsevier.com/S0304-3975(23)00362-6/bib3A0813E2ECB4DABC45F0511BE7E11F62s1
http://refhub.elsevier.com/S0304-3975(23)00362-6/bib552FC94D68922B3B291B601B0673FAABs1
http://refhub.elsevier.com/S0304-3975(23)00362-6/bibA48D27789211784AC6ED41B1A07D25FCs1
http://refhub.elsevier.com/S0304-3975(23)00362-6/bibA48D27789211784AC6ED41B1A07D25FCs1
http://refhub.elsevier.com/S0304-3975(23)00362-6/bibE711377BD4946DA538071DEB111C46FAs1
http://refhub.elsevier.com/S0304-3975(23)00362-6/bibE711377BD4946DA538071DEB111C46FAs1
http://refhub.elsevier.com/S0304-3975(23)00362-6/bib4A76A5C7456BBB6B57DE5FE433DB7514s1
http://refhub.elsevier.com/S0304-3975(23)00362-6/bib4A76A5C7456BBB6B57DE5FE433DB7514s1
http://refhub.elsevier.com/S0304-3975(23)00362-6/bib4A76A5C7456BBB6B57DE5FE433DB7514s1
https://doi.org/10.3233/FI-222113
https://doi.org/10.1016/j.ic.2021.104691
http://refhub.elsevier.com/S0304-3975(23)00362-6/bib0A9C3875FD29A89F6DF0288119E1FC13s1
http://refhub.elsevier.com/S0304-3975(23)00362-6/bib0A9C3875FD29A89F6DF0288119E1FC13s1
http://refhub.elsevier.com/S0304-3975(23)00362-6/bibB5089F211C1264D6C0EEB5688505D43Bs1
http://refhub.elsevier.com/S0304-3975(23)00362-6/bibB5089F211C1264D6C0EEB5688505D43Bs1
http://refhub.elsevier.com/S0304-3975(23)00362-6/bib597A31BDDCB2E6BBAAE4278FF60C77F6s1
http://refhub.elsevier.com/S0304-3975(23)00362-6/bibBB0348981460805D136E415111511898s1
http://refhub.elsevier.com/S0304-3975(23)00362-6/bibEBF12492A9A8C37B9B86D8A0F055246Ds1
http://refhub.elsevier.com/S0304-3975(23)00362-6/bibEBF12492A9A8C37B9B86D8A0F055246Ds1
http://refhub.elsevier.com/S0304-3975(23)00362-6/bib786DC08665EC301DFA569D69FAE281FCs1
http://refhub.elsevier.com/S0304-3975(23)00362-6/bib786DC08665EC301DFA569D69FAE281FCs1
http://refhub.elsevier.com/S0304-3975(23)00362-6/bibBEC7C704145C24955AA0566CFB501E90s1
http://refhub.elsevier.com/S0304-3975(23)00362-6/bib80733CB604E9FDC9A0392FF656726801s1
http://refhub.elsevier.com/S0304-3975(23)00362-6/bib32C60A97DE9149612D7FE17D14C3A8C6s1
http://refhub.elsevier.com/S0304-3975(23)00362-6/bibAE45BB89A9F082A04443B962CCEA2354s1
http://refhub.elsevier.com/S0304-3975(23)00362-6/bib4D0D5A8F0FAB88392A994B7CFB98A3B2s1
http://refhub.elsevier.com/S0304-3975(23)00362-6/bib4D0D5A8F0FAB88392A994B7CFB98A3B2s1
http://refhub.elsevier.com/S0304-3975(23)00362-6/bib99C1C527D2DCE88341E7B91CAC478D2Ds1

	Iterated uniform finite-state transducers on unary languages
	1 Introduction
	2 Definitions and preliminaries
	2.1 Numbers and languages
	2.2 Iterated transduction
	2.3 Unary languages
	2.4 An example of iterated transduction on unary languages

	3 Iterated transduction and unary regular languages
	3.1 Unary periodic languages
	3.1.1 Sweep reduction

	3.2 Unary finite languages
	3.3 General unary regular languages
	3.4 Some concluding remarks on unary iterated transduction

	4 Beyond constant sweep complexity
	4.1 Characterizing sweep complexity by one-way cellular automata time complexity
	4.2 Reducing sweeps on unary languages
	4.3 Undecidability results

	Declaration of competing interest
	Data availability
	Acknowledgement
	References

