
SAT-Based Proof Search in Intermediate
Propositional Logics

Camillo Fiorentini1 and Mauro Ferrari2(B)

1 Department of Computer Science, Università degli Studi di Milano, Milan, Italy
2 Department of Theoretical and Applied Sciences,
Università degli Studi dell’Insubria, Varese, Italy

mauro.ferrari@uninsubria.it

Abstract. We present a decision procedure for intermediate logics rely-
ing on a modular extension of the SAT-based prover intuitR for IPL
(Intuitionistic Propositional Logic). Given an intermediate logic L and a
formula α, the procedure outputs either a Kripke countermodel for α or
the instances of the characteristic axioms of L that must be added to IPL
in order to prove α. The procedure exploits an incremental SAT-solver;
during the computation, new clauses are learned and added to the solver.

1 Introduction

Recently, Claessen and Rosén have introduced intuit [4], an efficient decision
procedure for Intuitionistic Propositional Logic (IPL) based on the Satisfiability
Modulo Theories (SMT) approach. The prover language consists of (flat) clauses
of the form

∧
A1 →

∨
A2 (with Ai a set of atoms), which are fed to the SAT-

solver, and implication clauses of the form (a → b) → c (a, b, c atoms); thus,
we need an auxiliary clausification procedure to preprocess the input formula.
The search is performed via a proper variant of the DPLL(T) procedure [16],
by exploiting an incremental SAT-solver; during the computation, whenever a
semantic conflict is thrown, a new clause is learned and added to the SAT-solver.
As discussed in [9], there is a close connection between the intuit approach and
the known proof-theoretic methods. Actually, the decision procedure mimics the
standard root-first proof search strategy for a sequent calculus strongly con-
nected with Dyckhoff’s calculus LJT [5] (alias G4ip). To improve performances,
we have re-designed the prover by adding a restart operation, thus obtaining
intuitR [8] (intuit with Restart). Differently from intuit, the intuitR pro-
cedure has a simple structure, consisting of two nested loops. Given a formula
α, if α is provable in IPL the call intuitR(α) yields a derivation of α in the
sequent calculus introduced in [8], a plain calculus where derivations have a sin-
gle branch. If α is not provable in IPL, the outcome of intuitR(α) is a (typically
small) countermodel for α, namely a Kripke model falsifying α. We stress that
intuitR is highly performant: on the basis of a standard benchmarks suite, it
outperforms intuit and other state-of-the-art provers (in particular, fCube [6]
and intHistGC [12]).

c© The Author(s) 2022
J. Blanchette et al. (Eds.): IJCAR 2022, LNAI 13385, pp. 57–74, 2022.
https://doi.org/10.1007/978-3-031-10769-6_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-10769-6_5&domain=pdf
http://orcid.org/0000-0003-2152-7488
http://orcid.org/0000-0002-7904-1125
https://doi.org/10.1007/978-3-031-10769-6_5

58 C. Fiorentini and M. Ferrari

In this paper we present intuitRIL, an extension of intuitR to Interme-
diate Logics, namely propositional logics extending IPL and contained in CPL
(Classical Propositional Logic). Specifically, let α be a formula and L an axiom-
atizable intermediate logic having Kripke semantics; the call intuitRIL(α,L)
tries to prove the validity of α in L. To this aim, the prover searches for a set
Ψ containing instances of Ax(L), the characteristic axioms of L, such that α
can be proved in IPL from Ψ . Note that this is different from other approaches,
where the focus is on the synthesis of specific inference rules for the logic at
hand (see, e.g., [17]). Basically, intuitRIL(α,L) searches for a countermodel K
for α, exploiting the search engine of intuitR: whenever we get K, we check
whether K is a model of L. If this is the case, we conclude that α is not valid
in L (and K is a witness to this). Otherwise, the prover selects an instance ψ
of Ax(L) falsified in K (there exists at least one); ψ is acknowledged as learned
axiom and, after clausification, it is fed to the SAT-solver. We stress that a naive
implementation of the procedure, where at each iteration of the main loop the
computation restarts from scratch, would be highly inefficient: each time the
SAT-solver should be initialized by inserting all the clauses encoding the input
problem and all the clauses learned so far. Instead, we exploit an incremental
SAT-solver, where clauses can be added but never deleted (hence, all the sim-
plifications and optimisations performed by the solver are preserved); note that
this prevents us from exploiting strategies based on standard sequent/tableaux
calculi, where backtracking is required.

If the call intuitRIL(α,L) succeeds, by tracking the computation we get a
derivation D of α in the sequent calculus CL (see Fig. 1); from D we can extract
all the axioms learned during the computation. We stress that the procedure is
quite modular: to handle a logic L, one has only to implement a specific learning
mechanism for L (namely: if K is not a model of L, pick an instance of Ax(L)
falsified in K). The main drawback is that there is no general way to bound the
learned axioms, thus termination must be investigated on a case-by-case basis.
We guarantee termination for some relevant intermediate logics, such as Gödel-
Dummett Logic GL, the family GLn (n ≥ 1) of Gödel-Dummett Logics with
depth bounded by n (GL1 coincides with Here and There Logic, well known
for its applications in Answer Set Programming [15]) and Jankov Logic (for a
presentation of such logics see [2]). As a corollary, for each of the mentioned
logic L we get a bounding function [3], namely: given α, we compute a bounded
set Ψα of instances of Ax(L) such that α is valid in L iff α is provable in IPL
from assumptions Ψα; in general we improve the bounds in [1,3]. The intuitRIL
Haskell implementation and other additional material (e.g., the omitted proofs)
can be downloaded at https://github.com/cfiorentini/intuitRIL.

2 Basic Definitions

Formulas, denoted by lowercase Greek letters, are built from an enumerable set of
propositional variables V, the constant ⊥ and the connectives ∧, ∨, →; moreover,
¬α stands for α → ⊥ and α ↔ β stands for (α → β) ∧ (β → α). Elements of
the set V ∪ {⊥} are called atoms and are denoted by lowercase Roman letters,

https://github.com/cfiorentini/intuitRIL

SAT-Based Proof Search in Intermediate Propositional Logics 59

uppercase Greek letters denote sets of formulas. By Vα we denote the set of
propositional variables occurring in α. The notation is extended to sets: VΓ is
the union of Vα such that α ∈ Γ ; VΓ,Γ ′ and VΓ,α stand for VΓ∪Γ ′ and VΓ∪{α}
respectively. A substitution is a map from propositional variables to formulas.
By [p1
→ α1, . . . , pn
→ αn] we denote the substitution χ such that χ(p) = αi if
p = pi and χ(p) = p otherwise; the set {p1, . . . , pn} is the domain of χ, denoted
by Dom(χ); ε is the substitution having empty domain. The application of χ to
a formula α, denoted by χ(α), is defined as usual; χ(Γ) is the set of χ(α) such
that α ∈ Γ . The composition χ1 ·χ2 is the substitution mapping p to χ1(χ2(p)).

A (classical) interpretation M is a subset of V, identifying the propositional
variables assigned to true. By M |= α we mean that α is true in M ; M |= Γ
iff M |= α for every α ∈ Γ . Classical Propositional Logic (CPL) is the set of
formulas true in every interpretation. We write Γ �c α iff M |= Γ implies
M |= α, for every M . Note that α is CPL-valid (namely, α ∈ CPL) iff ∅ �c α.

A (rooted) Kripke model is a quadruple 〈W,≤, r, ϑ〉 where W is a finite
and non-empty set (the set of worlds), ≤ is a reflexive and transitive binary
relation over W , the world r (the root of K) is the minimum of W w.r.t. ≤, and
ϑ : W
→ 2V (the valuation function) is a map obeying the persistence condition:
for every pair of worlds w1 and w2 of K, w1 ≤ w2 implies ϑ(w1) ⊆ ϑ(w2); the
triple 〈W,≤, r〉 is called (Kripke) frame. The valuation ϑ is extended to a forcing
relation between worlds and formulas as follows:

w � p iff p ∈ ϑ(w), ∀p ∈ V w � ⊥ w � α ∧ β iff w � α and w � β

w � α ∨ β iff w � α or w � β w � α → β iff ∀w′ ≥ w, w′ � α implies w′ � β.

By w � Γ we mean that w � α for every α ∈ Γ . A formula α is valid in the
frame 〈W,≤, r〉 iff for every valuation ϑ, r � α in the model 〈W,≤, r, ϑ〉. Proposi-
tional Intuitionistic Logic (IPL) is the set of formulas valid in all frames. Accord-
ingly, if there is a model K such that r � α (here and below r designates the root
of K), then α is not IPL-valid; we call K a countermodel for α. We write Γ �i δ
iff, for every model K, r � Γ implies r � δ; thus, α is IPL-valid iff ∅ �i α.

Let L be one of the logics IPL and CPL; then, L is closed under modus
ponens ({α, α → β} ⊆ L implies β ∈ L) and under substitution (for every χ,
α ∈ L implies χ(α) ∈ L). An intermediate logic is any set of formulas L such
that IPL ⊆ L ⊆ CPL, L is closed under modus ponens and under substitution. A
model K is an L-model iff r � L; if r � α, we say that K is an L-countermodel for
α. An intermediate logic L can be characterized by a set of CPL-valid formulas,
called the L-axioms and denoted by Ax(L). An L-axiom ψ of Ax(L) must be
understood as a schematic formula, representing all the formulas of the kind
χ(ψ); we call χ(ψ) an instance of ψ. Formally, IPL + Ax(L) is the intermediate
logic collecting the formulas α such that Ψ �i α, where Ψ is a finite set of
instances of L-axioms from Ax(L). A bounding function for L is a map that,
given α, yields a finite set Ψα of instances of L-axioms such that Ψα �i α. If L
admits a computable bounding function, we can reduce L-validity to IPL-validity
(see [3] for an in-depth discussion). Let F be a class of frames and let Log(F)
be the set of formulas valid in all frames of F ; then, Log(F) is an intermediate
logic. A logic L has Kripke semantics iff there exists a class of frames F such
that L = Log(F); we also say that L is characterized by F . Henceforth, when we

60 C. Fiorentini and M. Ferrari

mention a logic L, we leave understood that L is an axiomatizable intermediate
logic having Kripke semantics.

Example 1 (GL). A well-known intermediate logic is Gödel-Dummett logic
GL [2], characterized by the class of linear frames. An axiomatization of GL
is obtained by adding the linearity axiom lin = (a → b) ∨ (b → a) to IPL. Using
the terminology of [3], GL is formula-axiomatizable: a bounding function for GL
is obtained by mapping α to the set Ψα of instances of lin where a and b are
replaced with subformulas of α. In [1] it is proved that it is sufficient to consider
the subformulas of α of the kind p ∈ Vα, ¬β, β1 → β2. In Lemma 4 we further
improve this bound tacking as bounding function the following map:

AxGL(α) = { (a → b) ∨ (b → a) | a, b ∈ Vα } ∪ { (a → ¬a) ∨ (¬a → a) | a ∈ Vα }
∪ { (a → (a → b)) ∨ ((a → b) → a)) | a, b ∈ Vα }

Thus, if Vα = {a}, the only instance of lin to consider is (a → ¬a)∨(¬a → a),
independently of the size of α (the other instances are IPL-valid and can be
omitted). As pointed out in [3], GL is not variable-axiomatizable, namely: it is
not sufficient to consider instances of lin obtained by replacing a and b with
variables from Vα. As an example, let α = ¬a ∨ ¬¬a; α is GL-valid, the only
variable-replacement instance of lin is ψα = (a → a) ∨ (a → a) and ψα �i α. ♦

We review the main concepts about the clausification procedure described
in [4]. Clauses ϕ and implication clauses λ are defined as

ϕ :=
∧

A1 →
∨

A2 |
∨

A2 ∅ ⊂ Ak ⊆ V ∪ {⊥}, fork ∈ {1, 2}
λ := (a → b) → c a ∈ V, {b, c} ⊆ V ∪ {⊥}

where
∧

A1 and
∨

A2 denote the conjunction and the disjunction of the atoms
in A1 and A2 respectively (

∧
{a} =

∨
{a} = a). Henceforth,

∧
∅ →

∨
A2 must

be read as
∨

A2; R, R1, . . . denote sets of clauses, X, X1, . . . sets of implication
clauses. Given a set of implication clauses X, the closure of X, denoted by (X)�,
is the set of clauses b → c such that (a → b) → c ∈ X.

The following lemma states some properties of clauses and closures.

Lemma 1. (i) R �i g iff R �c g, for every set of clauses R and every atom g.
(ii) X �i b → c, for every b → c ∈ (X)�.
(iii) Γ �i α iff α ↔ g, Γ �i g, where g �∈ VΓ,α.

Clausification. We assume a procedure Clausify that, given a formula α, com-
putes sets of clauses R and X equivalent to α w.r.t. IPL. Formally, let α be a
formula and let V be a set of propositional variables such that Vα ⊆ V . The
procedure Clausify(α,V) computes a triple (R,X, χ) satisfying:

(C1) Γ, α �i δ iff Γ,R,X �i δ, for every Γ and δ such that VΓ,δ ⊆ V .
(C2) Dom(χ) = VR,X \ V and Vχ(p) ⊆ V for every p ∈ Dom(χ).
(C3) R,X �i p ↔ χ(p) for every p ∈ Dom(χ).

SAT-Based Proof Search in Intermediate Propositional Logics 61

Fig. 1. The sequent calculus CL.

Basically, clausification introduces new propositional variables to represent sub-
formulas of α; as a result we obtain a substitution χ which tracks the mapping
on the new variables. Condition (C1) states that α can be replaced by R ∪ X in
IPL reasoning. By (C2) the domain of χ consists of the new variables introduced
in the clausification process. The following properties easily follow by (C1)–(C3):

(P1) R,X �i α. (P2) R,X �i β ↔ χ(β) for every formula β.

We exploit a Clausify procedure essentially similar to the one described
in [4], with slight modifications in order to match (C3). As discussed in [4], in IPL
we can use a weaker condition (either R,X �i p → χ(p) or R,X �i χ(p) → p
according to the case). It is not obvious whether the weaker condition should be
more efficient; in many cases strong equivalences are more performant, maybe
because they trigger more simplifications in the SAT-solver.

Example 2. Let α = (a → b)∨ (b → a) and V = {a, b}. The call Clausify(α,V)
introduces the new variables p̃0 and p̃1 associated with the subformulas a → b
and b → a respectively. Accordingly, the obtained sets R and X must satisfy
R,X �i p̃0 ↔ (a → b) and R,X �i p̃1 ↔ (b → a). We get:

R = { p̃0 ∨ p̃1, p̃0 ∧ a → b, p̃1 ∧ b → a } χ = [p̃0
→ a → b, p̃1
→ b → a]
X = { (a → b) → p̃0, (b → a) → p̃1 }

♦

3 The Calculus CL

Let L be an intermediate logic; we introduce the sequent calculus CL to prove
L-validity. We assume that L is axiomatized by a set Ax(L) of L-axioms; by

62 C. Fiorentini and M. Ferrari

. . .

. . .

Rn−1 c g
ρn = cpl0Rn−1, Xn−1 ⇒ g
ρn−1

Rn−2, Xn−2 ⇒ g

...
R1, X1 ⇒ g

ρ1
R0, X0 ⇒ g

ρ0 = Claus0⇒ α

∀i ∈ {1, . . . , n − 1}, ρi = cpl1 or ρi = Claus1

π(D) = Ψ0 ∪ · · · ∪ Ψn , χ0 · . . . · χn

where Ψj , χj = π(ρj)

Fig. 2. A CL-derivation of ⇒ α.

Ax(L, V) we denote the set of instances ψ of L-axioms such that Vψ ⊆ V . The
calculus relies on a clausification procedure Clausify satisfying conditions (C1)–
(C3) and acts on sequents Γ ⇒ δ such that:

– either Γ = ∅ or Γ = R ∪ X and (X)� ⊆ R and δ is an atom.

Rules of CL are displayed in Fig. 1. Rule cpl0 (initial rule) can only be applied
if the condition R �c g holds; if this is the case, the conclusion R,X ⇒ g is an
initial sequent, namely a top sequent of a derivation. The other rules depend on
parameters that are made explicit in the rule name. A bottom-up application of
cpl1 requires the choice of an implication clause λ = (a → b) → c from X, we
call the main formula, and the selection of a set of atoms A ⊆ VR,X,g such that
R,A �c b, where b is the middle variable in λ. As discussed in [8,9], cpl1 is a
sort of generalization of the rule L →→ of the sequent calculus LJT/G4ip for
IPL [5,18]. Rules Claus0 and Claus1 exploit the clausification procedure. Rule
Claus0 requires the clausification of the formula α ↔ g, with g a new atom
(g �∈ Vα); in rule Claus1, the clausified formula ψ is selected from Ax(L,VR,X,g).
In both cases, the clauses returned by Clausify are stored in the premise of
the applied rule and the computed substitution χ is displayed in the rule name;
moreover, Claus0 is annotated with the new atom g and Claus1 with the chosen
L-axiom ψ. To recover the relevant information associated with the application
of a rule ρ, in Fig. 1 we define the pair π(ρ) = 〈Ψ, χ〉, where Ψ is a set of instances
of L-axioms and χ is a substitution. CL-trees and CL-derivations are defined as
usual (see e.g. [18]); a sequent σ is provable in CL iff there exists a CL-derivation
having root sequent σ. Let us consider a CL-derivation D of ⇒ α (see Fig. 2).
Reading the derivation bottom-up, the first applied rule is Claus0. After such
an application, the obtained sequents have the form σk = Rk,Xk ⇒ g, where
Rk ∪ Xk is non-empty, thus rule Claus0 cannot be applied any more; the rule
applied at the top is cpl0. Note that D contains a unique branch, consisting of
the sequents ⇒ α, σ0, . . . , σn−1. In Fig. 2 we also define the pair π(D) = 〈Ψ, χ〉:
Ψ collects the (instances of) L-axioms selected by rule Claus1, χ is obtained by
composing the substitutions associated with the applied rules. The definition of
π(T), with T a CL-tree, is similar. By T (α;R,X ⇒ g) we denote a CL-tree
having root ⇒ α and leaf R,X ⇒ g. Given a CL-tree T , VT is the set of
variables occurring in T . We state some properties about CL-trees:

SAT-Based Proof Search in Intermediate Propositional Logics 63

Lemma 2. Let T = T (α;R,X ⇒ g) and let π(T) = 〈Ψ, χ〉.

(i) Vχ(p) ⊆ Vα, for every p ∈ VT .
(ii) R,X �i β ↔ χ(β), for every formula β.
(iii) If R,X, Γ �i g and VΓ ⊆ Vα, then Γ, χ(Ψ) �i α.

Proposition 1. Let D be a CL-derivation of ⇒ α and let π(D) = 〈Ψ, χ〉. Then,
Vχ(Ψ) ⊆ Vα and χ(Ψ) �i α.

Proof. Since D is a CL-derivation, D has the form
depicted on the right where T = T (α;R,X ⇒ g);
note that π(T) = π(D) = 〈Ψ, χ〉. Since R �c g, by
Lemma 1(i) we get R �i g, hence R,X �i g. We
can apply Lemma 2 and claim that Vχ(Ψ) ⊆ Vα and
χ(Ψ) �i α. ��

D =

R �c g
cpl0R, X ⇒ g

... T
⇒ α

Given a CL-derivation D of ⇒ α, Prop. 1 exhibits how to extract a set
of instances Ψα of the L-axioms such that Ψα �i α. If D does not contain
applications of rule Claus1, Ψα is empty, and this ascertains that α is IPL-valid;
actually, D can be immediately embedded into the calculus for IPL introduced
in [8]. As an immediate consequence of Prop. 1, we get the soundness of CL: if
⇒ α is provable in CL, then α is L-valid.

Even though CL-derivations have a simple structure, the design of a root-
first proof search strategy for CL is far from being trivial. After having applied
rule Claus0 to the root sequent ⇒ α, we enter a loop where at each iteration
k we search for a derivation of σk = Rk,Xk ⇒ g. It is convenient to firstly
check whether Rk �c g so that, by applying rule cpl0, we immediately close the
derivation at hand. To check classical provability, we exploit a SAT-solver; each
time the solver is invoked, the set Rk has increased, thus it is advantageous to use
an incremental SAT-solver. If Rk �c g, we have to apply either rule cpl1 or rule
Claus1, but it is not obvious which strategy should be followed. First, we have to
select one between the two rules. If rule cpl1 is chosen, we have to guess proper λ
and A; otherwise, we have to apply Claus1, and this requires the selection of an
instance ψ of an L-axiom. In any case, if we followed a blind choice, the procedure
would be highly inefficient. To guide proof search, we follow a different approach
based on countermodel construction; to this aim, we introduce a representation
of Kripke models where worlds are classical interpretations ordered by inclusion.

Countermodels. Let W be a finite set of interpretations with minimum M0,
namely: M0 ⊆ M for every M ∈ W . By K(W) we denote the Kripke model
〈W,≤,M0, ϑ〉 where ≤ coincides with the subset relation ⊆ and ϑ is the identity
map, thus M � p (in K(W)) iff p ∈ M . We introduce the following realizability
relation �W between elements of W and implication clauses:

M �W (a → b) → c iff (a ∈ M) or (b ∈ M) or (c ∈ M) or

(∃M ′ ∈ W s.t. M ⊂ M ′ and a ∈ M ′ and b �∈ M ′) .

64 C. Fiorentini and M. Ferrari

By M �W X we mean that M �W λ for every λ ∈ X. We state the crucial
properties of the model K(W):

Proposition 2. Let K(W) be the model generated by W and let w ∈ W . Let ϕ
be a clause and λ = (a → b) → c an implication clause.

(i) If w′ |= ϕ, for every w′ ∈ W such that w ≤ w′, then w � ϕ.
(ii) If w′ |= b → c and w′ �W λ, for every w′ ∈ W such that w ≤ w′, then w � λ.

Let K(W) be a model with root r, and assume that every interpretation w in
W is a model of R; our goal is to get r � R ∪ X (where (X)∗ ⊆ R), possibly by
filling W with new worlds. To this aim, we exploit Prop. 2. By our assumption
and point (i), we claim that r � R. Suppose that there is w ∈ W and λ =
(a → b) → c ∈ X such that w�W λ; is it possible to amend K(W) in order to
match (ii) and conclude r � X? By definition of �W , none of the atoms a, b, c
belongs to w; moreover K(W) lacks a world w′ such that w ⊂ w′ and a ∈ w′ and
b �∈ w′. We can try to fix K(W) by inserting the missing world w′; to preserve (i),
we also need w′ |= R. Accordingly, such a w′ exists if and only if R,w, a �c b.
This can be checked by querying a SAT-solver; moreover, if R,w, a �c b, the
solver also computes the required w′. This completion process must be iterated
until K(W) has been saturated with all the missing worlds or we get stuck. It
is easy to check that the process eventually terminates. This is one of the key
ideas beyond the procedure intuitRIL we present in next section.

4 The Procedure intuitRIL

We present the procedure intuitRIL (intuit with Restart for Intermediate
Logics) that, given a formula α and a logic L = IPL + Ax(L), returns either a
set of L-axioms Ψα or a model K(W) with the following properties:

(Q1) If intuitRIL(α,L) returns Ψα, then Ψα ⊆ Ax(L,Vα) and Ψα �i α.
(Q2) If intuitRIL(α,L) returns K(W), then K(W) is an L-countermodel for α.

Thus, α is L-valid in the former case, not L-valid in the latter. If intuitRIL(α,L)
returns Ψα, by tracing the computation we can build a CL-derivation D of ⇒ α
such that Ψα = χ(Ψ), where 〈Ψ, χ〉 = π(D); this certificates that Ψα �i α.

The procedure is described by the flowchart in Fig. 3 and exploits a single
incremental SAT-solver s: clauses can be added to s but not removed; by R(s)
we denote the set of clauses stored in s. The SAT-solver is required to support
the following operations:

– newSolver(R) creates a new SAT-solver initialized with the clauses in R.
– addClauses(s, R) adds the clauses in R to the SAT-solver s.
– satProve(s, A, g) calls s to decide whether R(s), A �c g (A is a set of

propositional variables). The solver outputs one of the following answers:
• Yes(A′): thus, A′ ⊆ A and R(s), A′ �c g;
• No(M): thus, A ⊆ M ⊆ VR(s) ∪ A and M |= R(s) and g �∈ M .

In the former case it follows that R(s), A �c g, in the latter R(s), A �c g.

SAT-Based Proof Search in Intermediate Propositional Logics 65

Fig. 3. Computation of intuitRIL(α, L).

The computation of intuitRIL(α,L) consists of the following steps:

(S0) The formula α ↔ g, with g new propositional variable, is clausified. The
outcome (R′,X ′, χ′) is used to create a new SAT-solver s and to prop-
erly initialize the global variables X (set of implication clauses), Ψ (set of
L-axiom instances), V (set of propositional variables) and χ (substitution).

(S1) A loop starts (main loop). The SAT-solver s is called to check whether
R(s) �c g. If the answer is Yes(∅), the computation stops yielding
χ(Ψ). Otherwise, the output is No(M) and the computation continues at
Step (S2).

(S2) We set r = M (the root of K(W)) and W = {r}.
(S3) A loop starts (inner loop). We have to select a pair 〈w, λ〉 such that w ∈ W ,

λ ∈ X and w�W λ. If such a pair does not exist, the inner loop ends and
next step is (S4), otherwise the inner loop continues at Step (S6).

(S4) As we show in Lemma 3, at this point K(W) is a countermodel for α. If
all the axioms in Ax(L, V) are forced at the root r of K(W), then K(W)
is an L-countermodel for α and the computation ends returning K(W).
Otherwise, we select ψ from Ax(L, V) such that r � ψ and the computation
continues at Step (S5); we call ψ the learned axiom.

66 C. Fiorentini and M. Ferrari

(S5) We clausify ψ and we update the global variables. The computation restarts
from Step (S1) with a new iteration of the main loop (semantic restart).

(S6) Let 〈w, (a → b) → c〉 be the pair selected at Step (S3). The SAT-solver s is
called to check whether R(s), w, a �c b. If the result is No(M), the inner
loop continues at step (S7). Otherwise, the answer is Yes(A); the inner
loop ends and the computation continues at Step (S8).

(S7) The interpretation M is added to W and the computation continues at
Step (S3) with a new iteration of the inner loop.

(S8) The clause ϕ (learned basic clause) is added to the SAT-solver s and the
computation restarts from Step (S1) (basic restart).

Intuitively, intuitRIL(α,L) searches for an L-countermodel K(W) for α. In the
construction of K(W), whenever a conflict arises, a restart operation is triggered.
A basic restart happens when it is not possible to fill the set W with a missing
world (see the discussion after Prop. 2). A semantic restart is thrown when
K(W) is a countermodel for α but it fails to be an L-model. In either case, the
construction of K(W) restarts from scratch. However, to prevent that the same
kind of conflict shows up again, new clauses are learned and fed to the SAT-solver
(this complies with DPLL(T) with learning computation paradigm [16]). If the
outcome is χ(Ψ), by tracing the computation we can build a CL-derivation D
of ⇒ α such that π(D) = 〈Ψ, χ〉. The derivation is built bottom-up. The initial
Step (S0) corresponds to the application of rule Claus0 to the root sequent ⇒ α;
basic and semantic restarts bottom-up expand the derivation by applying rule
cpl1 and Claus1 respectively. We stress that the procedure is quite modular; to
treat a specific logic L one has only to provide a concrete implementation of
Step (S4). For L = IPL, Step (S4) is trivial, since the set Ax(IPL, V) is empty.
Actually, intuitRIL applied to IPL has the same behaviour as the procedure
intuitR introduced in [8].

Example 3. Let us consider Jankov axiom wem = ¬a ∨ ¬¬a [2,13] (aka weak
excluded middle), which holds in all frames having a single maximal world (thus,
wem is GL-valid). The trace of the execution of intuitRIL(wem,GL) is shown
in Fig. 4. The initial clausification yields (R0,X0, g̃), where X0 consists of the
implication clauses λ0, λ1 in Fig. 4 and R0 contains the 7 clauses below:

g̃ → p̃2, p̃0 → p̃2, a ∧ p̃0 → ⊥, p̃1 → p̃2, p̃0 ∧ p̃1 → ⊥, p̃2 → g̃, p̃2 → p̃0 ∨ p̃1.

Each row in Fig. 4 displays the validity tests performed by the SAT-solver
and the computed answers. If the result is No(M), the last two columns show
the worlds wk in the current set W and, for each wk, the list of λ such that
w�W λ; the pair selected for the next step is underlined. For instance, after
call (1) we have W = {w0}, w0�W λ0 and w0�W λ1; the selected pair is 〈w0, λ0〉.
After call (2), the set W is updated by adding the world w1; we have w1 �W λ0,
w1 �W λ1, w0 �W λ0 and w0�W λ1. Whenever the SAT-solver outputs Yes(A),
we display the learned clause ψk. The SAT-solver is invoked 18 times and there
are 6 restarts (1 semantic, 5 basic). After (3), we get W = {w0, w1, w2} and no
pair 〈w, λ〉 can be selected, hence the model K(W) (displayed in the figure) is

SAT-Based Proof Search in Intermediate Propositional Logics 67

a countermodel for wem. However, K(W) is not a GL-model (indeed, it is not
linear), hence we choose an instance of the linearity axiom not forced at w0,
namely ψ0, and we force a semantic restart. The clausification of ψ0 produces 6
new clauses and the new implication clauses λ2, λ3, λ4. After each restart, the
sets Rj are:

R1 = R0 ∪ { p̃3 → p̃4, a → p̃5, p̃3 ∧ p̃5 → a, a ∧ p̃4 → p̃3, a ∧ p̃3 → ⊥, p̃4 ∨ p̃5 }
Rj = Rj−1 ∪ {ψj−1} for 2 ≤ j ≤ 6 (the ψ′

js are defined in Fig. 4).

The CGL-derivation of ⇒ ¬a ∨ ¬¬a extracted from the computation is:

R1, a, p̃0 �c ⊥
R2, a, p̃0 �c ⊥

R3, a, p̃3 �c ⊥
R4, p̃0, p̃5 �c ⊥

R5, a, p̃4 �c ⊥
R6 �c g̃

cpl0R6, X1 ⇒ g̃
cpl1(λ1)

R5, X1 ⇒ g̃
cpl1(λ0)

R4, X1 ⇒ g̃
cpl1(λ1)

R3, X1 ⇒ g̃
cpl1(λ0)

R2, X1 ⇒ g̃
cpl1(λ3)

R1, X1 ⇒ g̃
Claus1(ψ0, χ1)

R0, X0 ⇒ g̃
Claus0(g̃, χ0)⇒ ¬a ∨ ¬¬a

♦
Now, we discuss partial correctness and termination of intuitRIL. Let us

denote with ∼c classical equivalence (α ∼c β iff �c α ↔ β) and with ∼i

intuitionistic equivalence (α ∼i β iff �i α ↔ β). We introduce some notation.

(†) The following terms refer to the configuration at the beginning of iteration
k (k ≥ 0), just after the execution of Step (S2):
– Φk is the set collecting all the learned basic clauses;
– Rk is the set of clauses stored in the SAT-solver s;
– Xk, Ψk, Vk, χk, rk are the values of the corresponding global variables.

In Fig. 5 we inductively define the CL-tree Tk, having the form T (α;Rk,Xk ⇒ g).
In the application of rule Claus0, g and χ′ are defined as in Step (S0). In rule
cpl1, λ is the implication clause selected at iteration k − 1 (of the main loop)
in the last execution of Step (S3); A is the value computed at Step (S6) of
iteration k − 1. In the application of rule Claus1, ψ and χ′ are defined as in the
execution of Step (S4) and (S5) of iteration k − 1. One can easily check that the
applications of the rules are sound. If Step (S1) yields Yes(∅), we can turn Tk

into a CL-derivation by applying rule cpl0.
Next lemma states some relevant properties of the computations of

intuitRIL.

Lemma 3. Let us consider the execution of iteration k of the main loop (k ≥ 0).

(i) (Xk)� ∪ Φk ⊆ Rk.
(ii) Vk = VTk

and Ψk ⊆ Ax(L, Vk) and π(Tk) = 〈Ψk, χk〉.
(iii) Vχk(p) ⊆ Vα, for every p ∈ Vk, and Rk,Xk �i β ↔ χk(β), for every β.

68 C. Fiorentini and M. Ferrari

@SAT Answer W λ s.t. w Wλ

Start (1) R0 c g̃ ? No(w0) w0 λ0, λ1

(2) R0, w0, p̃0 c ⊥ ? No(w1) w1 ∅
w0 λ1

(3) R0, w0, a c ⊥ ? No(w2) w2 ∅
w1 ∅
w0 ∅

Semantic
failure

w0 : ∅

w1 : g̃, p̃0, p̃2 w2 : a, g̃, p̃1, p̃2 Learned axiom:
ψ0 = (a → ¬a) ∨ (¬a → a)

SRest 1 (4) R1 c g̃ ? No(w3) w3 λ0, λ1, λ3, λ4

(5) R1, w3, p̃0 c ⊥ ? No(w4) w4 λ3, λ4

w3 λ1, λ3, λ4

(6) R1, w4, p̃3 c a ? No(w5) w5 ∅
w4 λ3

w3 λ1, λ3

(7) R1, w4, a c ⊥ ? Yes({ a, p̃0 }) ψ1 = p̃0 → p̃3

BRest 2 (8) R2 c g̃ ? No(w6) w6 λ0

(9) R2, w6, p̃0 c ⊥ ? Yes({ a, p̃0 }) ψ2 = a → p̃1

BRest 3 (10) R3 c g̃ ? No(w7) w7 λ0, λ1

(11) R3, w7, p̃0 c ⊥ ? No(w8) w8 ∅
w7 λ1

(12) R3, w7, a c ⊥ ? Yes({ a, p̃3 }) ψ3 = p̃3 → p̃0

BRest 4 (13) R4 c g̃ ? No(w9) w9 λ0, λ1, λ2, λ3

(14) R4, w9, p̃0 c ⊥ ? Yes({ p̃0, p̃5 }) ψ4 = p̃5 → p̃1

BRest 5 (15) R5 c g̃ ? No(w10) w10 λ0, λ1, λ3, λ4

(16) R5, w10, p̃0 c ⊥ ? No(w11) w11 ∅
w10 λ1, λ3

(17) R5, w10, a c ⊥ ? Yes({ a, p̃4 }) ψ5 = p̃4 → p̃0

BRest 6 (18) R6 c g̃ ? Yes(∅) Proved

λ0 = (p̃0 → ⊥) → p̃1 λ1 = (a → ⊥) → p̃0

λ2 = (a → p̃3) → p̃4 λ3 = (a → ⊥) → p̃3 λ4 = (p̃3 → a) → p̃5

w0 = ∅ w1 = {g̃, p̃0, p̃2} w2 = {a, g̃, p̃1, p̃2} w3 = {p̃4} w4 = {g̃, p̃0, p̃2, p̃4}
w5 = {g̃, p̃0, p̃2, p̃3, p̃4} w6 = {a, p̃5} w7 = {p̃3, p̃4} w8 = {g̃, p̃0, p̃2, p̃3, p̃4}
w9 = {p̃5} w10 = {p̃4} w11 = {g̃, p̃0, p̃2, p̃3, p̃4}
χ0 = [g̃ a ∨ ¬¬a, p̃0 a, p̃1 a, p̃2 a ∨ ¬¬a]
χ1 = [p̃3 a, p̃4 a → ¬a, p̃5 a → a]

Fig. 4. Computation of intuitRIL(¬a ∨ ¬¬a, GL).

SAT-Based Proof Search in Intermediate Propositional Logics 69

Fig. 5. Definition of Tk (k ≥ 0).

(iv) At every step after (S2), w |= Rk, for every w ∈ W .
(v) At every step after (S2), rk is the root of K(W) and rk � Rk and rk � g.
(vi) At Step (S4), rk � Rk ∪ Xk ∪ Ψk and rk � g (in K(W)).
(vii) Assume that iteration k ends with a basic restart and let ϕ be the learned

basic clause. For every ϕ′ ∈ Φk, ϕ �∼c ϕ′.
(viii) Assume that iteration k ends with a semantic restart and let ψ be the

learned axiom. For every ψ′ ∈ Ψk, χk(ψ) �∼i χk(ψ′).

Proof. We only sketch the proof of the non-trivial points.
(iii). By Lemma 2 applied to Tk.
(v). Every interpretation M generated at Step (S6) is a superset of rk, thus

after Step (S2) rk is the minimum element of W and the root of K(W). By (iv)
and Prop. 2(i), rk � Rk. Since g �∈ rk, we get rk � g.

(vi). At Step (S4), w �W λ for every w ∈ W and λ ∈ Xk. Since (Xk)� ⊆ Rk,
by Prop. 2(ii) we get rk � Xk. Let ψ ∈ Ψk; then, ψ has been learned at some
iteration k′ < k. Let (R′,X ′, χ′) be the output of Clausify(ψ,V) at Step (S5)
of iteration k′ . Since R′ ⊆ Rk and X ′ ⊆ Xk, it holds that rk � R′ ∪X ′. By (P1)
R′,X ′ �i ψ, hence rk � ψ, which proves rk � Ψk.

(vii). Let ϕ′ ∈ Φk; we show that ϕ �∼c ϕ′. Let ϕ =
∧

(A \ {a}) → c; then,
there are w ∈ W and λ = (a → b) → c ∈ Xk such that 〈w, λ〉 has been selected
at Step (S3) and the outcome of satProve(s,w ∪ {a},b) at Step (S6) is Yes(A).
Note that w�W λ, hence c �∈ w; since A ⊆ w ∪ {a}, we get w �|= ϕ. On the other
hand, w |= ϕ′, since ϕ′ ∈ Φk and Φk ⊆ Rk. We conclude ϕ �∼c ϕ′.

(viii). Let ψ′ ∈ Ψk and let K(W) be the model obtained at Step (S4) of
iteration k. By (iii) Rk,Xk �i ψ ↔ χk(ψ) and Rk,Xk �i ψ′ ↔ χk(ψ′). Since
rk � ψ and rk � ψ′ (indeed, ψ′ ∈ Ψk and rk � Ψk) and rk � Rk ∪ Xk, we get
rk � χk(ψ) and rk � χk(ψ′). We conclude χk(ψ) �∼i χk(ψ′). ��

The following proposition proves the partial correctness of intuitRIL:

Proposition 3. intuitRIL(α,L) satisfies properties (Q1) and (Q2).

Proof. Let us assume that the computation ends at iteration k with output
Ψα. Then, the call to the SAT-solver at Step (S0) yields Yes(∅), meaning that
Rk �c g. We can build the following CL-derivation D of ⇒ α:

70 C. Fiorentini and M. Ferrari

D =

Rk �c g
cpl0Rk,Xk ⇒ g

... Tk

⇒ α

π(D) = π(Tk) = 〈Ψk, χk〉

Note that Ψα = χk(Ψk). Accordingly, by Prop. 1 we get (Q1).
Let us assume that the output is the model K(W), having root r. Then, K(W)

is an L-model (otherwise, Step (S4) should have forced a semantic restart). By
Lemma 3(vi) we get r � R0∪X0 and r � g. Since at Step (S0) we have clausified
the formula α ↔ g, by (P1) we get R0,X0 �i α ↔ g, which implies r � α ↔ g.
We conclude that r � α, hence (Q2) holds. ��

It seems challenging to provide a general proof of termination, and each logic
must be treated apart. We can only state some general properties about the
termination of the inner loop and of consecutive basic restarts.

Proposition 4. (i) The inner loop is terminating.
(ii) The number of consecutive basic restarts is finite.

Proof. Let us assume, by absurd, that the inner loop is not terminating. For
every j ≥ 0, by Wj we denote the value of W at Step (S3) of iteration j of
the inner loop; note that the value of the variable V does not change during the
iterations. We show that Wj ⊂ Wj+1, for every j ≥ 0. At iteration j, the outcome
of Step (S6) is No(M). Thus, there are w ∈ Wj and λ = (a → b) → c ∈ X such
that the pair 〈w, λ〉 has been selected at Step (S3); accordingly, w�Wj

λ and
w ∪ {a} ⊆ M and b �∈ M . We have M �∈ Wj , otherwise we would get w �Wj

λ, a
contradiction. Since Wj+1 = Wj ∪ {M}, this proves that Wj ⊂ Wj+1. We have
shown that W0 ⊂ W1 ⊂ W2 This leads to a contradiction since, for every
j ≥ 0 and every w ∈ Wj , w is a subset of V and V is finite. We conclude that
the inner loop is terminating, and this proves (i).

Let us assume, by contradiction, that there is an infinite sequence of consec-
utive basic restarts. Then, there is n ≥ 0 such that, for every k ≥ n, the iteration
k of the main loop ends with a basic restart. Let ϕk be the clause learned at
iteration k. Note that an iteration ending with a basic restart does not introduce
new atoms, thus Vϕk

⊆ Vn for every k ≥ n (where Vn is defined as in (†)). We
get a contradiction, since Vn is finite and, by Lemma 3(vi), the clauses ϕk are
pairwise non ∼c-equivalent; this proves (ii). ��

Lemma 3(vii) guarantees that the learned axioms are pairwise distinct, but this
is not sufficient to prove termination since in general we cannot set a bound on
the size and on the number of learned axioms. In next section we present some
relevant logics where the procedure is terminating.

SAT-Based Proof Search in Intermediate Propositional Logics 71

5 Termination

Let GL = IPL + lin be the Gödel-Dummett logic presented in Ex. 1; we show
that every call intuitRIL(α,GL) is terminating. To this aim, we exploit the
bounding function AxGL(α) presented in the mentioned example.

Lemma 4. Let us consider the computation of intuitRIL(α,GL) and assume
that at iteration k of the main loop Step (S4) is executed and that the obtained
model K(W) is not linear. Then, there exists ψ ∈ AxGL(α) such that rk � ψ.

Proof. Let us assume that K(W) has two distinct maximal worlds w1 and w2;
note that w1 ⊆ Vk and w2 ⊆ Vk (with Vk defined as in (†)). We show that:

(a) w1 ∩ Vα �= w2 ∩ Vα.

Suppose by contradiction w1 ∩ Vα = w2 ∩ Vα; let p ∈ Vk and β = χk(p) (with
χk defined as in (†)). By Lemma 3(iii), Rk,Xk �i p ↔ β; by Lemma 3(vi)
we get w1 � p ↔ β and w2 � p ↔ β. Since Vβ ⊆ Vα (see Lemma 3(iii)) and
we are assuming w1 ∩ Vα = w2 ∩ Vα, it holds that w1 � β iff w2 � β, thus
w1 � p iff w2 � p, namely p ∈ w1 iff p ∈ w2. Since p is any element of Vk, we
get w1 = w2, a contradiction; this proves (a). By (a) there is a ∈ Vα such that
either a ∈ w1 \ w2 or a ∈ w2 \ w1. We consider the former case (the latter one
is symmetric), corresponding to Case 1 in Fig. 6. We have w1 � a and w2 � ¬a;
setting ψ = (a → ¬a) ∨ (¬a → a), we conclude rk � ψ.

Assume that K(W) has only one maximal world; since it is not linear, there
are three distinct worlds w1, w2, w3 as in Case 2 in Fig. 6, namely: w1 is an
immediate successor of w2 and w3 (i.e., for j ∈ {2, 3}, wj < w1 and, if wj < w,
then w1 ≤ w), w2 �≤ w3, w3 �≤ w2. Reasoning as in (a), we get:

(b) w2 ∩ Vα �= w3 ∩ Vα. (c) w2 ∩ Vα ⊂ w1 ∩ Vα and w3 ∩ Vα ⊂ w1 ∩ Vα.

By (b) there is a ∈ Vα such that either a ∈ w2 \ w3 or a ∈ w3 \ w2. Let us
consider the former case (the latter one is symmetric). By (c), there is b ∈ Vα

such that b ∈ w1 \ w2. If b ∈ w3 (Case 2.1 in Fig. 6), we get a ∈ w2, b �∈ w2,
a �∈ w3, b ∈ w3. Setting ψ = (a → b) ∨ (b → a), we conclude rk � ψ. Finally,
let us assume b �∈ w3 (Case 2.2). We have {a, b} ⊆ w1, a ∈ w2, b �∈ w2, a �∈ w3

and b �∈ w3. It is easy to check that w3 � a → b (recall that w3 < w implies
w1 ≤ w), thus w3 � (a → b) → a. On the other hand w2 � a → (a → b). Setting
ψ = (a → (a → b)) ∨ ((a → b) → a), we get rk � ψ. ��
We exploit Lemma 4 to implement Step (S4). If K(W) is linear, then K(W) is a
GL-model and we are done. Otherwise, the proof of Lemma 4 hints an effective
method to select an instance ψ of lin from AxGL(α).

Proposition 5. The computation of intuitRIL(α,GL) is terminating.

Proof. Assume that intuitRIL(α,GL) is not terminating. Since the number of
iterations of the inner loop and of the consecutive basic restarts is finite (see
Prop. 4), Step (S4) must be executed infinitely many times. This leads to a
contradiction, since the axioms selected at Step (S4) are pairwise distinct (see
Lemma 3(vii)) and such axioms are chosen from the finite set AxGL(α). ��

72 C. Fiorentini and M. Ferrari

Fig. 6. Proof of Lemma 4, case analysis.

As a corollary, we get that AxGL(α) is a bounding function for GL:

Proposition 6. If α is GL-valid, there is Ψα ⊆ AxGL(α) such that Ψα �i α.

Other proof-search strategies for GL are discussed in [10,14]. This technique
can be extended to other notable intermediate logics. Among these, we recall
the logics GLn (Gödel Logic of depth n), obtained by adding to GL the axioms
bdn (bounded depth) where: bd0 = a0 ∨ ¬a0, bdn+1 = an+1 ∨ (an+1 → bdn).
Semantically, GLn is the logic characterized by linear frames having depth at
most n. We are not able to prove termination for the logics IPL + bdn, but we
can implement the following terminating strategy for GLn. Let K(W) be the
model obtained at Step (S4) of the computation of intuitRIL(α,GLn):

– If K(W) is not linear, we select the axiom ψ from AxGL(α).
– Otherwise, assume that K(W) is linear but not a GLn-model. Then, K(W)

contains a chain of worlds w0 ⊂ w1 ⊂ · · · ⊂ wn+1. The crucial point is
that wj+1 \ wj contains at least a propositional variable from Vα, for every
0 ≤ j ≤ n. Thus, we can choose a proper renaming of bdn as ψ.

Another terminating logic is the Jankov Logic (see Ex. 3); actually, also in this
case the learned axiom can be chosen by renaming the wem axiom. In general,
all the logics BTWn (Bounded Top Width, at most n maximal worlds, see [2])
are terminating. An intriguing case is Scott Logic ST [2]: even though the class
of ST-frames is not first-order definable, we can implement a learning procedure
for ST-axioms arguing as in [7] (see Sec. 2.5.2). Some of the mentioned logics
have been implemented in intuitRIL1.

One may wonder whether this method can be applied to other non-classical
logics or to fragments of predicate logics (these issues have been already raised
in the seminal paper [4]). A significant work in this direction is [11], where the
procedure has been applied to some modal logics. However, the main difference
with the original approach is that it is not possible to use a single SAT-solver,
but one needs a supply of SAT-solvers. This is primarily due to the fact that
forcing relation of modal Kripke models is not persistent; thus worlds are loosely
related and must be handled by independent solvers.
1 Available at https://github.com/cfiorentini/intuitRIL.

https://github.com/cfiorentini/intuitRIL

SAT-Based Proof Search in Intermediate Propositional Logics 73

References

1. Avellone, A., Moscato, U., Miglioli, P., Ornaghi, M.: Generalized tableau systems
for intermediate propositional logics. In: Galmiche, D. (ed.) TABLEAUX 1997.
LNCS, vol. 1227, pp. 43–61. Springer, Heidelberg (1997). https://doi.org/10.1007/
BFb0027404

2. Chagrov, A.V., Zakharyaschev, M.: Modal Logic, Oxford Logic Guides, vol. 35.
Oxford University Press (1997)

3. Ciabattoni, A., Lang, T., Ramanayake, R.: Bounded-analytic sequent calculi and
embeddings for hypersequent logics. J. Symb. Log. 86(2), 635–668 (2021)

4. Claessen, K., Rosén, D.: SAT modulo intuitionistic implications. In: Davis, M.,
Fehnker, A., McIver, A., Voronkov, A. (eds.) LPAR 2015. LNCS, vol. 9450, pp.
622–637. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48899-
7 43

5. Dyckhoff, R.: Contraction-free sequent calculi for intuitionistic logic. J. Symb. Log.
57(3), 795–807 (1992)

6. Ferrari, M., Fiorentini, C., Fiorino, G.: fCube: an efficient prover for intuitionistic
propositional logic. In: Fermüller, C.G., Voronkov, A. (eds.) LPAR 2010. LNCS,
vol. 6397, pp. 294–301. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-16242-8 21

7. Fiorentini, C.: Kripke completeness for intermediate logics. Ph.D. thesis, Università
degli Studi di Milano (2000)

8. Fiorentini, C.: Efficient SAT-based proof search in intuitionistic propositional logic.
In: Platzer, A., Sutcliffe, G. (eds.) CADE 2021. LNCS (LNAI), vol. 12699, pp. 217–
233. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-79876-5 13

9. Fiorentini, C., Goré, R., Graham-Lengrand, S.: A proof-theoretic perspective on
SMT-solving for intuitionistic propositional logic. In: Cerrito, S., Popescu, A. (eds.)
TABLEAUX 2019. LNCS (LNAI), vol. 11714, pp. 111–129. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-29026-9 7

10. Fiorino, G.: Terminating calculi for propositional dummett logic with subformula
property. J. Autom. Reason. 52(1), 67–97 (2013). https://doi.org/10.1007/s10817-
013-9276-7

11. Goré, R., Kikkert, C.: CEGAR-tableaux: improved modal satisfiability via modal
clause-learning and SAT. In: Das, A., Negri, S. (eds.) TABLEAUX 2021. LNCS
(LNAI), vol. 12842, pp. 74–91. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-86059-2 5

12. Goré, R., Thomson, J., Wu, J.: A history-based theorem prover for intuitionistic
propositional logic using global caching: IntHistGC system description. In: Demri,
S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS (LNAI), vol. 8562, pp.
262–268. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08587-6 19

13. Jankov, V.: The calculus of the weak “law of excluded middle.”. Math. USSR 8,
648–650 (1968)

14. Larchey-Wendling, D.: Gödel-dummett counter-models through matrix computa-
tion. Electron. Notes Theory Comput. Sci. 125(3), 137–148 (2005)

15. Lifschitz, V., Pearce, D., Valverde, A.: Strongly equivalent logic programs. ACM
Trans. Comput. Log. 2(4), 526–541 (2001)

16. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories:
from an abstract Davis-Putnam-Logemann-Loveland procedure to DPLL(T). J.
ACM 53(6), 937–977 (2006)

https://doi.org/10.1007/BFb0027404
https://doi.org/10.1007/BFb0027404
https://doi.org/10.1007/978-3-662-48899-7_43
https://doi.org/10.1007/978-3-662-48899-7_43
https://doi.org/10.1007/978-3-642-16242-8_21
https://doi.org/10.1007/978-3-642-16242-8_21
https://doi.org/10.1007/978-3-030-79876-5_13
https://doi.org/10.1007/978-3-030-29026-9_7
https://doi.org/10.1007/s10817-013-9276-7
https://doi.org/10.1007/s10817-013-9276-7
https://doi.org/10.1007/978-3-030-86059-2_5
https://doi.org/10.1007/978-3-030-86059-2_5
https://doi.org/10.1007/978-3-319-08587-6_19

74 C. Fiorentini and M. Ferrari

17. Schmidt, R.A., Tishkovsky, D.: Automated synthesis of tableau calculi. Log. Meth-
ods Comput. Sci. 7(2) (2011)

18. Troelstra, A.S., Schwichtenberg, H.: Basic Proof Theory, Cambridge Tracts in The-
oretical Computer Science, vol. 43, 2nd edn. Cambridge University Press, Cam-
bridge (2000)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	SAT-Based Proof Search in Intermediate Propositional Logics
	1 Introduction
	2 Basic Definitions
	3 The Calculus CL
	4 The Procedure intuitRIL
	5 Termination
	References

