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Abstract 

Transposable elements (TEs) are mobile DNA repeats known to shape the evolution of eukaryotic genomes. In complex organisms, they exhibit 
tissue-specific transcription. Ho w e v er, understanding their role in cellular diversity across most tissues remains a challenge, when emplo y - 
ing single-cell RNA sequencing (scRNA-seq), due to their widespread presence and genetic similarity. To address this, we present IRescue 
( I nterspersed Re peats s ingle- c ell q u antifie r), a software capable of estimating the expression of TE subfamilies at the single-cell level. IRescue 
incorporates a unique UMI deduplication algorithm to rectify sequencing errors and emplo y s an Expectation-Maximization procedure to effec- 
tively redistribute the counts of multi-mapping reads. Our study sho w cases the precision of IRescue through analysis of both simulated and 
real single cell and nuclei RNA-seq data from human colorectal cancer, brain, skin aging, and PBMCs during SARS-CoV-2 infection and recovery. 
By linking the expression patterns of TE signatures to specific conditions and biological conte xts, w e un v eil insights into their potential roles in 
cellular heterogeneity and disease progression. 
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ransposable elements (TEs) are mobile genetic elements
resent in the genome of most eukaryotes, constituting around
6% of the human genome ( 1 ). TEs can be hierarchically
ategorized into classes (such as LINE, SINE, LTR), families
like LINE1, Alu, ERVL) and subfamilies (for instance, L1PA2,
luY, HERVL) ( 2 ,3 ). Besides the existence of full-length ele-
ents that permit TE mobilization, the genome is invaded by
E fossils inserted in proximity to or into introns of the ma-

ority of genes, resulting from retrotransposition events that
ad occurred throughout the evolution ( 4 ,5 ). Nevertheless,
hey can still be transcribed within adjacent transcriptional
nits, providing regulatory elements that influence gene ex-
ression and RNA processing ( 6 ,7 ). TEs exhibit tissue-specific
ranscription patterns ( 8 ) and transcripts originating from TEs
lay a role in the epigenetic regulation of cell identity and dif-
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ferentiation ( 9 ,10 ). Next Generation Sequencing (NGS) tech-
nologies were indispensable to identify and annotate TEs in
reference genomes, shedding light on the impact of TEs within
genomic and transcriptional regulatory networks. However,
the repetitive nature and substantial homology between ele-
ments present challenges in the NGS-based study of TEs ( 11 ).
Implementing certain precautions in library design, such as
opting for a paired-end layout, extending read length ( 12 ) and
utilizing specific software ( 13 ,14 ), can significantly enhance
both the mappability of reads and the accuracy of expres-
sion estimates for TEs. Although numerous tools are avail-
able for bulk RNA-Seq analysis ( 15–18 ), there have been lim-
ited efforts in developing methods for quantifying TE expres-
sion in single-cell RNA sequencing (scRNA-seq) datasets ( 19–
21 ). The majority of scRNA-seq libraries in public reposito-
ries originate from droplet-based technologies (e.g. Chromium
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10x, Drop-seq and inDrops kits) ( 22 ), and are consequently
characterized by short reads with a pronounced 3 

′ - or 5 

′ -end
positional bias. Additionally, these reads are effectively single-
end, as only one mate represents the cDNA insert, while the
other carries the cell barcode and unique molecule identifier
(UMI) sequences. The use of tag-based library layouts reduces
read mappability and complicates the precise determination
of the genomic origin of RNA fragments containing trans-
posable elements. Existing tools for quantifying TE subfam-
ilies in UMI-based scRNA-seq data typically employ a sin-
gle alignment per UMI, often selected randomly, neglecting
information from ambiguous alignments across different TE
subfamilies ( 19 ,20 ). Moreover, these tools do not address se-
quencing errors in UMI sequences, which are common and
can lead to overestimating UMI counts ( 23 ). In recent stud-
ies, researchers have started exploring the expression of TEs
within the framework of single-cell heterogeneity in multi-
cellular organisms ( 19 , 24 , 25 ). Nonetheless, the existing state-
of-the-art methods lack the sensitivity required for accurately
quantifying multi-mapping scRNA-seq reads. This limitation
hinders the comprehensive discovery of distinct TE expres-
sion patterns. Here we present IRescue ( I nterspersed Re peats
s ingle- c ell q u antifie r), a command-line tool designed for the
deduplication and quantification of UMIs mapped onto TEs
in scRNA-seq. In comparison to other freely available tools for
quantifying TE subfamilies in scRNA-seq ( 19 ,20 ), IRescue in-
corporates gold-standard procedures for UMI deduplication
that consider UMI frequencies and account for sequencing
errors. It employs a probabilistic assignment method using
an Expectation-Maximization (EM) algorithm to redistribute
counts from multi-mapping reads to distinct TE subfamilies.
We demonstrate the precision of IRescue by evaluating its per-
formance on both simulated and real single-cell and single-
nuclei RNA sequencing data. We analyze TE expression in col-
orectal cancer, human brain, aging and S AR S-CoV-2 infection
and recovery, revealing insights into their heterogeneity. Our
results indicate that IRescue stands out as the most accurate
tool for quantifying TE expression at the subfamily level. 

Materials and methods 

IRescue workflow 

Input and output data 
The only input file required to run IRescue is a binary aligned
map (BAM) file ( 26 ) containing read alignments on a refer-
ence genome, with cell barcode and UMI sequence annotated
as user-defined BAM tags (‘CB’ and ‘UR’ by default). A BAM
file with these requirements can be obtained by widely used
spliced aligners for scRNA-seq, such as Cell Ranger ( 27 ) or
STARsolo ( 28 ,29 ). The genomic coordinates of TEs can be
retrieved automatically by IRescue from the Repeatmasker
annotation hosted at the UCSC servers, by simply indicating
the name of the genome assembly on the command line (e.g.
‘hg38’ for the human genome). Otherwise, custom TE coor-
dinates can be provided as an additional input file in browser
extensible data (BED) format ( 30 ). Unwanted tandem repeats
and repetitive RNA classes are excluded (i.e. Low_complexity,
Simple_repeat, rRNA, scRNA, srpRNA, tRNA). A whitelist
can be provided to filter out invalid cell barcodes and speed
up the workflow; for example, ST ARsolo’ s or Cell Ranger’s fil-
tered barcodes (i.e. the ‘barcodes.tsv’ file). The output of IRes-
cue is a sparse matrix written in a Market Exchange Format
file (MEX), compliant with the 10x Genomics Cell Ranger’s 
output ( 27 ) to ensure compatibility with most toolkits for 
downstream analysis ( 31 ,32 ). 

Mapping alignments on TEs 
The first step of IRescue’s workflow is to map the aligned 

reads to the TE genomic coordinates. Read alignments and TE 

coordinates are processed in parallel by chromosome, up to 

the number of allocated CPUs. The intersection between read 

and TE coordinates is performed by IRescue wrapping bed- 
tools ( 33 ), to take into account eventual deletions and splitting 
events due to splice junctions (i.e. TE loci localized between 

donor and acceptor splicing coordinates are not considered 

mapped), increasing the mapping precision. 

UMI deduplication algorithm 

Reads carrying the same UMI sequence and mapped on the 
same set of TEs are used to build Equivalence Classes ob- 
jects (ECs), preserving the read mappability information (i.e.
whether the reads were uniquely mapped or multi-mapped): 

EC = 

⎛ 

⎝ 

UMI sequence 
Read IDs 
T E names 

⎞ 

⎠ 

For each processed cell barcode, a directed graph is built 
where nodes represent ECs and directed edges represent po- 
tential PCR duplication events, connecting the template to the 
duplicate UMI. In order for two ECs to be connected, the UMI 
sequences must display up to 1 hamming distance (i.e. mis- 
matches), the frequency (or read count) of the template’s UMI 
must be at least double minus one the frequency of the du- 
plicated UMI and at least one TE must be mapped by both.
Formally, a directed edge connects node A to node B if the 
following conditions are satisfied: 

• hamming( A UMI , B UMI ) ≤ 1 

• A f req ≥ 2 × B f req − 1 

• | A T Es ∩ B T Es | ≥ 1 

After building the cell-wide graph, the algorithm finds all 
subgraphs of connected nodes and, for each subgraph, calcu- 
lates the deduplicated UMI count as following: 

1. One or more nodes that do not receive an edge from 

other nodes (i.e. that are not PCR duplicates) are des- 
ignated as parents . 

2. A pathfinder function finds the paths starting from par- 
ent nodes through nodes sharing at least one TE, with 

each node assigned to exactly one path. Multiple config- 
urations of paths can be found in a given subgraph. 

3. The minimum number of paths found in a given sub- 
graph corresponds to the subgraph’s deduplicated UMI 
count, which is added to the respective TE counts (i.e.
the TE contained in the parent nodes). 

4. If a parent node contain more than one TE (i.e. corre- 
sponds to an EC generated by multi-mapping reads), the 
multi-mapped TEs are added to a cell-wide compatibil- 
ity matrix, a logical matrix where rows are TEs, columns 
are UMIs and values of 1 or zero corresponds to the TE 

being mapped or not by each UMI. This matrix is used 

as input for the probabilistic redistribution of the multi- 



Nucleic Acids Research , 2024, Vol. 52, No. 19, e93 PAGE 3 OF 15 

E
T  

r  

t  

p  

i  

s  

b  

m

 

o  

r  

i  

a  

i  

a  

a

 

n  

m  

c

W
T  

a  

b  

t  

t  

t  

w  

c  

a  

c

S

R  

o  

h  

S  

d  

t  

t  

‘  

n  

(  

e  

o  

t  

M
U
-
C
D
0  

o  

p  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the first 10 PCA dimensions with resolution 1.0. The cluster 

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/52/19/e93/7756585 by U

niversità Studi M
ilano - D

ip. Studi Internazionali user on 13 D
ecem

ber 2024
xpectation-maximization 

he cell-wide compatibility matrix then is used as a prior to
edistribute the relative abundance of multi-mapping UMIs to
he corresponding TEs by an Expectation-Maximization (EM)
rocedure. The EM consists in two steps repeated in several
terations: expectation (E) and maximization (M). In the E-
tep, the relative abundance of UMIs to each TE is optimized
y dividing it for the running sum of the counts of the TEs
apped by the UMI: 

R i j = 

M i j ∑ 

k =1 E jk 

Where M is a m × n matrix of the prior relative abundances
f m UMIs across n TEs, R is a m × n matrix of the optimized
elative abundances of UMIs across TEs, i and j indicate the
 th row and jth column of the element of each matrix, E j is
n array containing the counts of TEs mapped by the UMI
n the jth column. The M-step takes R as input and returns
n array of optimized TE counts E by dividing each jth TE’s
bundance by the total UMI count in R : 

E j = 

∑ 

k =1 R k j ∑ 

i =1 

∑ 

j=1 R i j 

The EM procedure recurs until convergence or for a fixed
umber of iterations. Finally, the optimized counts from multi-
apped UMIs are summed to the uniquely mapped UMI

ounts to obtain the cell’s final TE counts. 

riting final TE counts 
he UMI deduplication and TE count estimation procedures
re executed in multiple parallel processes, up to the num-
er of allocated CPUs, to increase processing speed. Then, all
he TE counts from all cells are written in a sparse matrix in
he Market Exchange format (MEX), which is compliant with
he output of Cell Ranger or STARsolo to ensure compatibility
ith several toolkits for single cell downstream analysis. IRes-

ue is written in the Python programming language and lever-
ges on essential open source libraries for efficient scientific
omputing and bioinformatics data wrangling ( 26 ,33–36 ). 

ingle-cell RNA sequencing data processing 

ead alignments and single cell gene counts matrix were
btained by mapping scRNA-seq reads to the reference
uman genome (UCSC hg38 primary assembly) using
TARsolo 2.7.9a ( 28 ,29 ). As genes and splice junction
atabase, we used the Gencode comprehensive anno-
ation v40 ( 37 ) with chromosome names converted to
he UCSC nomenclature (passed to STAR through the
 --sjdbGTFfile ’ parameter). We used the 10x Ge-
omics cell barcodes whitelist for the v2 library kit
passed through the ‘ --soloCBwhitelist ’ param-
ter), and the EmptyDrops algorithm ( 38 ) to filter
ut invalid cell barcodes. Other non-default parame-
ers were: ‘ --outSAMattributes NH HI AS nM NM
D jM jI XS MC ch cN CR CY UR UY GX GN CB 
B sM sS sQ --outFilterMultimapNmax 100 
-winAnchorMultimapNmax 100 --soloType 
B_UMI_Simple --soloCellFilter Empty- 
rops_CR 10000 0.99 10 45 000 90 000 500 
.01 20 000 0.01 10 000 ’. For the 5 

′ PE dataset
f human PBMCs in S AR S-CoV-2 infection, additional
arameters were used: ‘ --soloStrand Forward -
-soloBarcodeMate 1 --clip5pNbases 39 0 - 
-soloUMIdedup 1MM_CR --soloCBmatchWLtype 
1MM_multi_Nbase_pseudocounts ’. For single-nuclei
data, the parameter ‘ --soloUMIlen 12 ’ was added. To
estimate the expression of TEs at single cell level, read
alignments were processed using IRescue 1.1.0, using the
filtered barcodes list produced by STARsolo as cell whitelist
(passed through the ‘ --whitelist ’ parameter), and other
parameters ‘ --genome hg38 --CBtag CB --UMItag
UR --keeptmp --ec-dump ’. To compute TE counts
with scTE 1.0 ( 19 ), the same Repeatmasker and Gencode
annotations were used to build an index, keeping other
parameters as default, and read alignments were counted
with parameters ‘ -CB CB -UMI UR ’. To compute TE counts
with SoloTE 1.09 ( 20 ), we generated the TE annotation
compatible with SoloTE as per author’s documentation and
ran the quantification with default parameters. 

Data simulations and benchmarks 

Simulated scRNA-seq reads, UMI sequences and TE sub-
family counts were obtained adapting the method in
Kaminow et al. ( 28 ) for TE subfamily expression. This
simulation procedure has the advantage to reproduce the
3 

′ - or 5 

′ -end positioning bias of droplet-based scRNA-
seq reads aligning on any genomic region by using a
real dataset as template. For this purpose, we used three
10x Genomics human PBMC datasets: 3 

′ -end single-cell
( https:// www.10xgenomics.com/ resources/ datasets/ 8- k- pbm- 
cs- from- a- healthy- donor- 2- standard- 2- 1- 0 ), 5 

′ -end single-
cell ( https:// www.10xgenomics.com/ datasets/ human-pbmc-
from- a- healthy- donor- 10- k- cells- v- 2- 2- standard- 4- 0- 0 ) 
and 3 

′ -end single-nuclei ( https://www.10xgenomics.com/
datasets/10- k- human- pbm- cs- multiome- v- 1- 0- chromium- 
x- 1- standard- 2- 0- 0 ), which are common library layouts.
Briefly, the simulated reads were derived from the alignment
coordinates of real reads on a reference, along with the
associated UMI sequences. In detail, cell barcodes are filtered
according to the 10x Genomics whitelist and UMIs with
uncalled bases are removed. Reads are aligned on a reference
that combines the human hg38 primary genome assembly and
the Repeatmasker TE genomic sequences using BWA-MEM
0.7.17 ( 39 ). UMIs are counted based on the TE sequence
they map on; in case of alignments on multiple features,
the top-scoring alignment is chosen. Finally, the sequences
from alignment coordinates on the Repeatmasker reference
were extracted. A mismatch rate of 0.5% was added in the
extracted sequences to simulate Illumina sequencing errors
and written in fastq format. Data for the plots showing the
UMI deduplication statistics were obtained from the equiv-
alence classes summary file generated by IRescue using the
‘ --dump-ec ’ parameter. Spearman’s correlation coefficients
were calculated using R 4.3.1 between true and estimated TE
counts in a pairwise manner across all the simulated library
types. The statistical significance of fold changes between
estimates and true counts for each TE subfamily was calcu-
lated on absolute values of log 2 (estimate / truth) to be able to
compare both over- and under-estimated counts, using a two-
tailed Wilcoxon rank sum test and P -values were adjusted
for multiple comparisons as per Benjiamini-Hocheberg. Cell
clustering according to TE counts was performed using the
Louvain algorithm implemented in Seurat 5.0.1 ( 40 ), using

https://www.10xgenomics.com/resources/datasets/8-k-pbm-cs-from-a-healthy-donor-2-standard-2-1-0
https://www.10xgenomics.com/datasets/human-pbmc-from-a-healthy-donor-10-k-cells-v-2-2-standard-4-0-0
https://www.10xgenomics.com/datasets/10-k-human-pbm-cs-multiome-v-1-0-chromium-x-1-standard-2-0-0
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similarity index between measured and simulated clusters
was calculated for each cluster using kBET ( 41 ) by transform-
ing kBET’s rejection rate to acceptance rate, as in Büttner
et al. ( 41 ): Accept anceRat e = 1 − Re ject ionRat e . Memory
(RAM) usage and run time were measured by running the TE
quantification methods in a Nextflow pipeline ( 42 ) using 1,
2, 4, 8 or 16 CPUs and extracted from the pipeline’s tracing
file. 

Colorectal cancer scRNA-seq analysis 

Data was obtained from ArrayExpress E-MTAB-8410. Data
pre-processing and TE quantification were done as above
using IRescue, scTE and SoloTE. TE counts normalization,
principal component analysis (PCA), cell clustering (Louvain)
and uniform manifold approximation and projection (UMAP)
were performed using the Seurat 5.0.1 toolkit. Cell clusters
based on TE expression profiling were annotated as tumoral
(K) or normal (N) according to the most prevalent cell condi-
tion on each cluster. TE expression signatures were obtained
by finding differentially expressed TEs across clusters using
Seurat’s FindAllMarkers function, and TEs significantly over-
expressed (Wilcoxon rank sum test’s P -value adjusted accord-
ing to Bonferroni < 0.01; log 2 fold change > 1.5) on K or N
clusters only were selected, discarding TEs overexpressed in
clusters from both conditions. The difference in enrichment of
TE subfamilies by class between tumor and normal signatures
was tested with a two-tailed two-proportions Z -test using the
R 4.3.1 stat package. The average expression of significantly
overexpressed CRC marker TEs across clusters was visualized
using Seurat’s DotPlot visualization. Sashimi plots were ob-
tained by loading the BAM files the IGV genome browser ( 43 ).

Human brain snRNA-seq analysis 

Data was obtained from NCBI’s Gene Expression Omnibus
GSE209552. Data pre-processing, TE and gene expression
quantification, normalization and scaling were done as above.
Clusters based on gene expression were inferred with the Lou-
vain algorithm with resolution 0.1, and annotated by cell type
based on the expression of marker genes ( 44 ) as neurons (RB-
FOX3 for excitatory and GAD1 for inhibitory neurons) or glia
(GFAP for astrocytes, PLP1 for oligodendrocytes, VCAN for
OPCs, FYB1 for microglia). Clusters based on TE expression
were inferred with 0.5 resolution and annotated as neuronal
or glial based on the prevalent cell type. TE subfamilies spe-
cific for each cluster were identified as above, with adjusted
P -value < 0.05 and average log 2 fold change > 0.5. 

Human skin aging scRNA-seq analysis 

Data was obtained from NCBI’s Gene Expression Omnibus
GSE130973. Data pre-processing and TE quantification
were done as above. TE counts were normalized with gene’s
counts to accurately estimate the per-cell library size as
log1 p( Count 

Cel l l ibSize × 10 , 000) using Seurat’s NormalizeData
function. Data was scaled and centred with Seurat’s Scale-
Data function using all TE subfamilies. Next, for gene and TE
counts, PCA was calculated, batches integration was done by
canonical correlation analysis (CCA) using the first 20 PCA
dimensions and UMAP using the first 20 PCA dimensions
for genes and 10 for TEs. To identify cell types, cells were
clustered based on gene expression at 0.7 resolution and the
following marker genes were used, as in ( 45 ): LYZ, AIF1,
HLA-DRA, CD68, ITGAX (macrophages and dendritic cells);
CD3D, CD3G, CD3E, LCK (T cells); SELE, CLDN5, VWF,
CDH5 (vascular endothelial cells); LYVE1, PROX1 (lym- 
phatic endothelial cells); ACTA2, RGS5, PDGFRB (pericytes); 
HBA1, HBA2, HBB (erythrocytes); PMEL, MLANA, TYRP1,
DCT (melanocytes); KR T5, KR T14, TP63, ITGB1, ITGA6 

(undifferentiated keratinocytes); KR T1, KR T10, SBSN,
KRTDAP (differentiated keratinocytes); LUM, DCN, VIM,
PDGFRA, COL1A2 (fibroblasts). For fibroblasts-derived 

cell subsets: CCN5, SLPI, CTHRC1, MFAP5, TSPAN8 

(secretory-reticular); APCDD1, ID1, WIF1, COL18A1, PT- 
GDS (secretory-papillary); CCL19, APOE, CXCL2, CXCL3,
EFEMP1 (pro-inflammatory); ASPN, POSTN, GPC3, TNN,
SFRP1 (mesenchymal). For T cell subsets: CCR7, TCF7,
LEF1, SELL (Naïve); CD27, CD28, PTPRC, IL7R (Memory); 
IL2RA, IFNG, IL7R-, (Effector); NKG7, GNLY, GZMH,
GZMB, CCL4 (Cytotoxic lymphocytes, CTL). Genes or 
TEs specific for each fibroblasts or T cell subpopulations 
were identified with Seurat’s FindAllMarkers function as 
above. Average TE or gene expression per cell type across 
donor’s age were extracted with Seurat’s AverageExpres- 
sion function and plotted using the R package pheatmap 

( https:// github.com/ raivokolde/ pheatmap ). TEs differentially 
expressed between elderly and adults were identified using 
Seurat’s FindMarkers function (adjusted P -value < 0.05 

and average log2 fold change > 0.5 or < −0.5) and vi- 
sualized in volcano plots using the R package ggplot2 

( https://ggplot2.tidyverse.org ). Enriched TE subfamilies in 

each TE class across cell types were calculated as above, di- 
viding between TE subfamilies upregulated or downregulated 

in aging. 

PBMCs in SARS-CoV-2 infection scRNA-seq 

analysis 

Data was obtained from ArrayExpress E-MTAB-9652. Data 
normalization, scaling and dimensionality reduction were 
done as for human skin aging, with the exception of using 
Reciprocal PC A (RPC A) instead of CC A for integration due 
to the high size of the dataset. TE average expression across 
groups were extracted and plotted as for human skin ag- 
ing, with TE family-level expression being calculated by sum- 
ming TE subfamilies counts by family. TE differential expres- 
sion, TE subfamilies enrichment, heatmaps and volcano plots 
were done as for human skin aging, and feature selection 

were done by adjusted P -value < 0.05 and average log 2 fold 

change > 0.25 or < −0.25. 

Results 

IRescue: a novel multi-mapping aware algorithm 

for the quantification of TE expression in 

scRNA-seq data 

Rescuing multi-mapping reads is widely recognized as an es- 
sential step to precisely quantify the expression of TEs ( 5 ) 
or other challenging-to-map features, like multigene fami- 
lies ( 46 ). However, currently published computational tools 
for the quantification of TE subfamilies expression at single- 
cell level ( 19 ,20 ) select only one random alignment of multi- 
mapped reads and do not account for eventual sequencing 
errors in the UMI sequences, without implementing state-of- 
the-art approaches for UMI deduplication and multi-mapping 
reads quantification. These shortcomings impair the correct 
estimation of many TE subfamilies, in particular the young 

https://github.com/raivokolde/pheatmap
https://ggplot2.tidyverse.org
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nes. Hence, we have developed IRescue, an algorithm that
s able to allocate the counts from multi-mapped reads in a
robabilistic manner, while also accounting for sequencing er-
ors in the UMI sequence and PCR duplicates. To accomplish
his, we modified a state-of-the-art UMI deduplication proce-
ure ( 23 ), adjusting it for UMIs mapped across interspersed
epeats instead of fixed genomic coordinates. For the first time,
e have introduced an Expectation-Maximization (EM) al-

orithm to probabilistically redistribute the signal from all
ulti-mapping UMIs that remain associated to more than one
E subfamily after deduplication. Briefly, reads sharing the
ame UMI sequence and mapped feature are represented by
 single object called equivalence class (EC). ECs are orga-
ized in a cell-wide directed graph, where direct edges con-
ect the original UMIs with their PCR duplicates. Subse-
uently, the deduplicated UMI count is found by calculating
he minimum number of paths in each subgraph of connected
odes. In cases where multiple TE subfamilies are linked to
he graph, the UMI count is optimally redistributed among
ubfamilies through the EM convergence (Figure 1 A). The
E expression estimates represent three components: gene-TE
himeric transcripts, pervasive transcription and transcription
f entire TE elements ( 5 ). Only few young TE insertions con-
ribute to the latter in human, whereas older elements can
nly be transcribed within other transcriptional units. Since
ifferent UMI-based single-cell technologies capture different
ortions of transcripts, we assessed the accuracy of IRescue
y simulating both 3 

′ -end and 5 

′ -end scRNA-seq datasets,
s well as single-nuclei RNA-seq (snRNA-seq). We observed
hat, using IRescue, UMIs are deduplicated by about 4-fold
 Supplementary Figure S1 A) and, following deduplication, the
mount of ambiguous UMIs associated to multiple TE sub-
amilies was drastically reduced ( Supplementary Figure S1 B),
howing how a sensible UMI-deduplication procedure can
educe noise in single-cell TE analysis. Next, we tested the
erformance of IRescue and alternative tools, scTE ( 19 ) and
oloTE ( 20 ). Overall, IRescue’s counts better correlated with
heir simulated counterpart, with only minor differences be-
ween tools observed in the 5 

′ -end dataset ( Supplementary 
igure S1 C-E). We attributed this discrepancy to the signif-

cantly lower presence of TEs in the 5 

′ -end of transcripts
 47 ), which reduces the amount of ambiguous alignments
nd, consequently, the benefit of using IRescue’s algorithm.
s expected, the correlation between different single-cell li-
rary types, whether using simulated or estimated mean TE
xpression, was low, confirming that library composition has a
trong impact on TE detection ( 24 ,48 ) ( Supplementary Figure 
1 F). We evaluated the quantification precision of IRescue
nd alternative tools considering both TE age and the fre-
uency of reads aligning to multiple locations, which are more
ommon on younger TEs ( 12 ) ( Supplementary Figure S1 G).
ur findings demonstrate that IRescue significantly improves

he quantification precision of TE subfamilies with exten-
ive read alignment to multiple genomic positions (Figure
 B), and showed better performance for old TEs as well
 Supplementary Figure S1 H). Notably, a small number of TE
ubfamilies (9 in 5 

′ scRNA-seq and 4 in snRNA-seq) were sig-
ificantly underestimated by IRescue (less than –0.5 log 2 fold
hange) and consistently underestimated by scTE and SoloTE
s well, suggesting an issue in the mappability of these TEs
uring read alignment rather than in quantification (Figure
 B, Supplementary Table S1 ). Next, we assessed the perfor-
ance of IRescue, scTE and SoloTE in inferring cell clusters
sing TE expression and observed a higher cluster similarity
between true and inferred clusters when employing IRescue in
3 

′ scRNA-seq and snRNA-seq, with no significant difference
among them in 5 

′ scRNA-seq ( Supplementary Figure S1 I). Fi-
nally, we demonstrated that IRescue utilizes computational re-
sources more efficiently than other tools, while maintaining a
reasonable runtime ( Supplementary Figure S1 J). Overall, we
demonstrated that IRescue outperforms existing tools in the
accuracy of TE expression quantification in UMI-based single
cell datasets, especially for 3 

′ scRNA-seq and snRNA-seq. 

IRescue enables the identification of tumor-specific 

TE signatures in colorectal cancer at single-cell 
resolution 

To evaluate the performance of IRescue against scTE ( 19 )
and SoloTE ( 20 ) in real datasets, first we leveraged the well-
characterized expression patterns of various transposable ele-
ment (TE) subfamilies in colorectal cancer (CRC) ( 17 , 49 , 50 ).
We analysed the TE expression profiles in a publicly available
10x Genomics 3 

′ scRNA-seq dataset of tumor and adjacent
normal tissues from six CRC patients ( 51 ). We clustered the
cells based on TE expression and visualized them on a 2D
UMAP space, identifying five clusters predominantly or ex-
clusively composed of cancer cells (K1–5) and six by normal
cells (N1–6) (Figure 2 A, B), confirming that TE expression en-
ables the discrimination between cancerous and normal cells
within the dataset. In particular, we found 75 TE subfami-
lies overexpressed specifically in cancer cell clusters and 39 in
normal cell clusters. The expression of more TE subfamilies
is detectable in a larger fraction of cells belonging to cancer
clusters, compared to normal ones ( Supplementary Figure S2 A
and B, Supplementary Table S2 ). LINE and LTR subfamilies
were significantly over-represented in cancer, in accordance
with literature ( 52 ,53 ), whereas SINE subfamilies abundance
did not change significantly between the two conditions (Fig-
ure 2 C). Interestingly, among LINE subfamilies, those that
were differentially expressed in normal cells were evolutionar-
ily old LINE1 (i.e. L1M*, mammalian-wide LINE1 elements),
whereas younger LINE1 were specific for cancer cells only
(i.e. L1HS, L1PA* and L1P*, human and primate-specific)
(Figure 2 D). Also scTE and SoloTE tools identified distinct
cancer cell clusters characterized by a general enrichment of
LINE and LTR subfamilies ( Supplementary Figure S2 D-F). We
checked the expression of 16 TE subfamilies known to be
overexpressed in CRC ( 17 ,49 ) across the cell clusters identi-
fied in scRNA-seq and confirmed the presence of eight sub-
families belonging to the cancer TE signature using IRescue
(Figure 2 E and Supplementary Figure S2 C). Despite L1HS and
L1PA2 being recognized as overexpressed in CRC ( 17 ), scTE
failed to detect them as differentially expressed and SoloTE
identified them as expressed indiscriminately in both cancer-
ous and normal cells (Figure 2 E, Supplementary Figure S2 G).
This highlights that IRescue, by virtue of its improved quan-
tification of multi-mapping TE reads, enhances the detection
of CRC-specific young TE subfamilies that are otherwise chal-
lenging to pinpoint in single-cell RNA-seq data. Given pre-
vious reports of L1PA2-SYT1 and MER1B-PIWIL1 as dis-
tinctive alternative isoforms formed by TE insertions in CRC
( 50 ), we inspected the alignment of reads across these genomic
loci. We sought evidence of reads spanning splice junctions
mapped onto both TEs and non-repetitive genomic regions,
indicative of potential hidden TE-containing exons. We found
over 3-fold more reads splitted between the L1PA2-derived

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae793#supplementary-data
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A

B

Figure 1. IRescue’s algorithm schematics and benchmarking. ( A ) Scheme of IRescue’s algorithm. (Top-left) IRescue takes as input uniquely mapped and 
multi-mapped reads aligned on a reference genome with annotated UMI and barcode sequences in BAM format. (Top-middle) equivalence classes (ECs) 
containing each UMI’s sequence, frequency and mapped TE subfamilies are used to build a directed graph according to the indicated conditions (i.e. 
minimum hamming distance, frequency difference and TE subfamilies in common). For each subgraph of connected nodes, the minimum number of 
paths is calculated to obtain the deduplicated UMI count, which is assigned to the corresponding TE subfamily. (Top-right) In case of deduplicated UMIs 
being associated to more than one TE subfamily, an Expectation-Maximization (EM) procedure redistributes the UMI’s relative abundance to optimize 
the expression estimate of each subfamily. (Bottom) the UMI counts per TE subfamilies in each cell are written in a Matrix Market exchange format (Cell 
Ranger-compatible) for downstream analysis. ( B ) Scatterplots of TE subfamilies ( N = 1202) showing the relationship between the number of the 
associated multi-mapping UMIs and the fold change between estimated and true counts in the indicated dataset and quantification method. Each dot 
represents a TE subfamily, color-coded by the average insertion age presented as the percentage of divergence between genomic TEs and their 
respective consensus sequence (as reported in UCSC’s Repeatmasker annotation). Blue dots correspond to older TEs, whereas orange dots represent 
younger TEs. Black horizontal lines and μ indicate the mean. 
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Figure 2. Identification of TE expression dynamics in colorectal cancer. ( A ) UMAP representation of CRC and normal cells according to TE expression. 
Clusters of normal and cancer cells (indicated in legend) are obtained on the basis of TE expression. ( B ) Relative abundance of cells by condition across 
clusters. ( C ) Enrichment of differentially expressed TE subfamilies in normal or cancer condition (adjusted P -value < 0.05) by TE class, calculated as the 
percentage in respect to the total number of subfamilies per class. *** P -value < 0.001 (two-sided two-proportions Z -test). ( D ) Number of differentially 
expressed LINE1 subfamilies in normal or cancer condition (adjusted P -value < 0.05) by evolutionary clade (Human: L1HS; Great apes: L1PA[2–3]; 
Primates: L1P*; Mammals: L1M*). Animal shapes were obtained from PhyloPic and are copyright-free. ( E ) Average expression of differentially 
e xpressed kno wn TE CR C mark ers across clusters using the indicated quantification method. T he dot siz e is indicativ e of the percentage of e xpressing 
cells in the cluster (adjusted P -value < 0.05). ( F ) Sashimi plot representing the coverage across the splice junction of a L1PA2-derived CRC-specific 
alternative cryptic exon of the SYT1 oncogene. 
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of a MER1B-PIWIL1 TE-oncogene isoform in CRC (Figure
2 F and Supplementary Figure S2 H), concluding that IRescue
correctly estimates the expression of TEs transcribed within
specific TE-containing transcripts. 

IRescue dissects the expression dynamics of old 

and young LINE1s in single nuclei human brain 

To test IRescue and alternative tools’ capability to quantify
TE subfamily expression in single nuclei, we analysed the
TE expression dynamics in human brain, a biological con-
text known to be characterized by clear LINE1 activity ( 54–
56 ) and expression patterns ( 44 ) in neurons. We processed a
snRNA-seq dataset of temporal and frontal lobes from five
adult donors ( 44 ). After identifying the main neuronal and
glial populations using the expression of marker genes, we per-
formed clustering and dimensionality reductions based on TE
subfamily expression estimates with IRescue, revealing a clear
separation between neuronal and glial nuclei. In particular, six
clusters were mostly composed by neuronal and two clusters
by glial nuclei (Figure 3 A, B). This was further confirmed by
performing the same analysis with scTE and SoloTE, which
led to similar results ( Supplementary Figure S3 A, B). It has
been reported that LINE1 subfamilies are expressed in adult
human neurons, but not in glia, at bulk or pseudo-bulk level
( 44 ). Here, we investigated whether specific LINE1 subfami-
lies were enriched in distinct neurons clusters at single-nucleus
resolution. We detected 35 LINE1 subfamilies significantly
overexpressed in neurons clusters, and none in glia (Figure
3 C). Interestingly, the expression of young LINE1 subfami-
lies (L1HS and L1PA2-4) were mostly restricted to one spe-
cific neurons cluster (Figure 3 C, D), whereas most evolution-
arily old LINE1s were expressed in multiple clusters, different
from the cluster enriched in young LINE1 expression (Figure
3 C, E). Finally, we tested the detection of differentially ex-
pressed LINE1 subfamilies between nuclei clusters using scTE
and SoloTE. With the former method, we found 27 LINE1
subfamilies specific to neuronal clusters and none in glial clus-
ters. Conversely, using SoloTE, we detected 28 LINE1 subfam-
ilies specific to neuronal clusters and 4 to glial clusters (Figure
3 F, Supplementary Figure S3 C, Supplementary Table S3 ). This
was consistent to our previous findings on both simulated and
real data which indicated that scTE slightly underestimate TE
expression while SoloTE overestimates it, with IRescue repre-
senting an improvement over both methods. 

IR escue un veils the varying patterns of 
retrotransposon expression during human skin 

aging at the single-cell level 

As an additional validation for IRescue, we inspected the
TE expression dynamics in human aging, during which TEs
are upregulated due to epigenetic de-repression and struc-
tural changes in the genome ( 57–61 ). The dynamics of TEs
in the context of human aging remain inadequately explored,
particularly at the single-cell level. Therefore, we analyzed a
3 

′ scRNA-seq dataset comprising 20676 cells collected from
five male donors aged between 25 and 70 years old, with
a focus on human skin aging ( 45 ). By assessing the expres-
sion of marker genes, we delineated 10 distinct cell types
( Supplementary Figure S4 A) and, when employing dimension-
ality reduction based solely on TE expression, we were able
to distinguish between most cell types, although with slightly
lower precision ( Supplementary Figure S4 B). Firstly, we fo-
cused on the four primary subsets of dermal fibroblasts, which 

are recognized for experiencing substantial functional decline 
with age ( 45 ,62 ): secretory-papillary, secretory-reticular, mes- 
enchymal and pro-inflammatory (Figure 4 A). We explored the 
expression dynamics of genes and TE subfamilies significantly 
enriched in each fibroblast subset across all samples. When 

grouping samples by hierarchical clustering based on gene ex- 
pression, cell types from donors of different ages clustered to- 
gether ( Supplementary Figure S4 C). In contrast, applying the 
same clustering procedure based on TE expression resulted 

in the grouping of different cell types by donor age, except 
for mesenchymal fibroblasts (Figure 4 B). Notably, elderly in- 
dividuals (aged 69–70 years) exhibited an over-expression of 
SINE and LINE elements compared to younger adults, sug- 
gesting a shift in TE expression dynamics in aging (Figure 4 B).
We then identified the specific TE subfamilies exhibiting dif- 
ferential expression between elderly (aged 69–70 years) and 

adult (aged 25–53 years) individuals. We found an overall up- 
regulation of LINE1 and Alu subfamilies in elderly fibrob- 
lasts, consistent across all fibroblast subsets except for mes- 
enchymal cells, while most ERV subfamilies showed down- 
regulation (Figure 4 C,D and Supplementary Table S4 ). It is 
noteworthy that mesenchymal cells are reported to undergo 

fewer functional declines during aging compared to other fi- 
broblast subsets ( 45 ). These results imply a correlation be- 
tween the expression dynamics of specific TE families and fi- 
broblast functions, with mesenchymal cells showing relatively 
minor alterations in TE expression profiles. The most recog- 
nized transcriptional pattern of TEs in aging involve the acti- 
vation of specific TEs that are normally repressed in young 
individuals due to loss of DNA methylation. For this pur- 
pose, we assessed the differential expression of Alu, LINE1 

and ERV1 subfamilies that are reported to follow this pat- 
tern ( 57 , 63 , 64 ) using IRescue, scTE and SoloTE. All the 12 

analysed TE subfamilies are enriched in elderly individuals 
using IRescue’s estimates, with six being significantly upreg- 
ulated (Figure 4 E). A similar result is observed using scTE 

and SoloTE, with the exception of AluYb9, a subfamily that 
varies from AluYb8 by only a single nucleotide replacement 
( 65 ), which in contrast was found to be more expressed in 

adults in both the tools (Figure 4 E). Next, we analysed the 
2634 T cells present in the same human aging skin dataset 
described above ( 45 ). It has been previously documented that 
the dynamics of TEs varies across different T cell functional 
states ( 9 ), but it remains unclear whether aging affects TE 

expression dynamics in T cells. The expression of marker 
genes identified four main T cell type subsets: naïve, mem- 
ory, effector and cytotoxic ( Supplementary Figure S4 D, E).
However, TE expression profiles clustered these subsets dif- 
ferently according to age, with a minor exception observed 

in naïve T cells ( Supplementary Figure S4 F). Notably, el- 
derly individuals (aged 69–70 years) exhibited an overex- 
pression of LINEs and SINEs compared to younger adults 
( Supplementary Figure S4 F), suggesting that the increased ex- 
pression of these two classes of retrotransposons is a common 

characteristic of cellular aging across various cell types. 

IRescue reveals varied TE expression in the innate 

and adaptive immune systems throughout 
SARS-CoV-2 infection and subsequent recovery. 

To further showcase the effectiveness of IRescue in accurately 
quantifying the expression of TE subfamilies in single cells,

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae793#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae793#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae793#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae793#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae793#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae793#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae793#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae793#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae793#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae793#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae793#supplementary-data


Nucleic Acids Research , 2024, Vol. 52, No. 19, e93 PAGE 9 OF 15 

UMAP 1

U
M

A
P

2

A

G1
G2 G

lia

N1
N2
N3
N4
N5
N6

N
e

u
ro

n

Clusters

B

Glia
Neuron

N1

N2

N3

N4

N5

N6

G1

G2

Nuclei (%)

N
e

u
ro

n
G

lia

C
lu

s
te

rs

0 25 50 75 100

N1

N2

N3

N4

N5

N6

G1

G2

N
e

u
ro

n
G

lia

C

D

UMAP 1

U
M

A
P

2

UMAP 1

U
M

A
P

2

UMAP 1

U
M

A
P

2

UMAP 1

U
M

A
P

2

1.00
1.25
1.50
1.75
2.00

L1HS L1PA2 L1PA3 L1PA4

E

UMAP 1

U
M

A
P

2

UMAP 1

U
M

A
P

2

UMAP 1

U
M

A
P

2

UMAP 1

U
M

A
P

2

1.00
1.25
1.50
1.75
2.00

L1MC3 L1M1 L1M4c L1M2

F

0

20

40

L
IN

E
1

s
u

b
fa

m
ili

e
s

e
n

ri
c
h

m
e

n
t
(%

)

Glia
Neuron

H
um

an
/A

pe
s

P
rim

at
es

M
am

m
al
s

IRescue scTE SoloTE

H
um

an
/A

pe
s

P
rim

at
es

M
am

m
al
s

H
um

an
/A

pe
s

P
rim

at
es

M
am

m
al
s

L1
H
S

L1
PA

2

L1
PA

3

L1
PA

4

L1
PA

5

L1
P
1

L1
PA

6

L1
PA

7

L1
P
2

L1
PA

10

L1
P
3

L1
PA

8A

L1
P
B
1

L1
P
B
a1

L1
M

A
2

L1
P
B

L1
PA

12

L1
P
B
a

L1
M

1

L1
M

3f

L1
P
4a

L1
M

2

L1
M

C
3

L1
M

C
a

L1
M

4c

L1
P
4c

L1
M

2c

L1
P
4d

L1
M

D
a

L1
M

2b

L1
M

C
b

L1
M

4a
1

L1
M

3d
e

L1
M

3d

L1
M

E
5

Percent Expressed

0
25
50
75
100

0.0

0.5

1.0

1.5

2.0

Average Expression

Figure 3. LINE1 are dynamically expressed in the human brain in specific subpopulations of neuronal nuclei. ( A ) UMAP representation of neuronal and 
glial nuclei according to TE expression, colored by cluster identity inferred by TE expression and cell type inferred by gene expression. ( B ) Relative 
abundance of nuclei by major cell type across TE clusters. ( C ) Average expression of differentially expressed LINE1 subfamilies across clusters. The dot 
siz e is indicativ e of the percentage of e xpressing cells in the cluster (adjusted P -v alue < 0.05, a v erage log 2 f old change > 0.5). ( D ) UMAP representation 
of nuclei colored by scaled expression of evolutionarily young LINE1 subfamilies. ( E ) as (D), for evolutionarily old LINE1 subfamilies. ( F ) Enrichment of 
LINE1 subfamilies differentially expressed in neurons or glia among the total number of annotated subfamilies, stratified between L1HS / PA (human or 
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Figure 4. Human skin fibroblasts and T cells display specific single-cell TE expression patterns in aging. ( A ) UMAP representation of skin-derived 
fibroblasts subsets according to gene expression. ( B ) Average expression of TE subfamilies differentially expressed in each fibroblast subset, further 
stratified by donor’s age (top 10 significant TE subfamilies per cell type, adjusted P -value < 0.05). Expression values are normalized and scaled by 
Z -score. Dendrograms display the hierarchical clustering of TE subfamilies (rows) and samples (columns) according to TE expression patterns. The color 
code indicates the TE class (rows), donor’s age or fibroblast subset (columns). ( C ) Volcano plot of TE subfamilies by average log 2 fold-change between 
elderly and adults individuals and adjusted P -value in negative log 10 scale, colored by TE family. Horizontal dashed line indicates P -value = 0.05, vertical 
dashed line indicates log 2 fold change = 0. ( D ) Enrichment of differentially expressed TE subfamilies (adjusted P -value < 0.05) in aging by fibroblasts 
subsets and TE families, calculated as the percentage in respect to the total number of subfamilies per family. ERV family includes ERV1, ERVK, ERVL 
and ERVL-MaLR. ( E ) Average expression of TE subfamilies expected to be upregulated in aging across fibroblasts subsets using different quantification 
methods. The dot size is indicative of the percentage of expressing cells in the cluster. * indicates that the TE subfamily is significantly upregulated in 
adult or elderly condition (adjusted P -value < 0.05, average log 2 fold change > 0.5). 
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e investigated a recent case study involving TE upregula-
ion in human peripheral blood mononuclear cells (PBMCs)
ollowing recovery from S AR S-CoV-2 infection. During the
cute phase of infection, TE expression is reported to remain
argely unchanged in PBMCs ( 66–68 ). However, strong TE
pregulation has been documented in PBMCs after patients
ave recovered from COVID-19, with the extent of upregula-
ion correlating with the severity of the disease ( 69 ). Hence, we
mployed IRescue to analyze a 5 

′ scRNA-seq dataset compris-
ng 87324 PBMCs obtained from patients experiencing either
ild or severe symptoms in acute and recovery phase ( 70 ).
irst, we globally evaluated the expression of the most abun-
ant families of TEs (LINE1, Alu and ERVs) in all PBMCs,
tratifying the samples according to disease’s severity and
nfection state. As reported ( 66–69 ), we observed a subtle
ncrease in TE expression during the acute phase of infec-
ion compared to controls and a marked upregulation dur-
ng the recovery phase, ( Supplementary Figure S5 A). By an-
lyzing the expression of lineage-specific marker genes, we
dentified four main populations: monocytes, natural killer
NK), T and B lymphocytes (Figure 5 A). To obtain a gran-
lar insight on TE dynamics from the acute to the recov-
ry state, we conducted TE differential expression analysis
n each immune lineage comparing COVID-19 patients and
ealthy donors. Our findings revealed that all TE families ex-
ibited increasing over-representation from acute to recovery
tate in T and B cells, with Alu subfamilies showing the high-
st increase during recovery . Interestingly , Alu displayed an
pposite pattern in monocytes and NK cells. Moreover, while
INE1 and ERV subfamilies demonstrated significant in-
reases in T and B lymphocytes during recovery, they showed
 weaker upregulation in monocytes and NK cells (Fig-
re 5 B). Next, we explored the expression of the differen-
ially expressed TEs according to the severity of the disease.

e observed that healthy donors’ monocytes and NK cells
howed a strong TE expression signature, whereas T and
 cells were better identified in severe patients (Figure 5 C,
upplementary Figure S5 B). Interestingly, healthy donors’
onocytes and NK cells were enriched by Alu subfami-

ies, compared to both acute infection and remission sam-
les (Figure 5 D, Supplementary Figure S5 C); in contrast,
 and B cells showed a strong Alu upregulation specif-

cally in COVID-19 remission, with a greater significance
n severe patients (Figure 5 E, Supplementary Figure S5 D).
oth young and old LINE1 subfamilies were among the
pregulated ones in acute infection and remission in all
ineages, whereas ERVs showed a more mixed behavior,
ince some specific ERV subfamilies defined the signature of
ealthy donors (e.g. MER21B, LTR8) and others were specific
or infected patients (e.g. L TR16D1, L TR83) (Figure 5 D-E,
upplementary Figure S5 C-D, Supplementary Table S5 ). Im-
ortantly, the majority of the Alu and ERV subfamilies re-
orted to be upregulated in S AR S-CoV-2 recovery ( 69 ) were

dentified in our differential expression analysis in T and B
ymphocytes, and were similarly enriched among all upreg-
lated TE subfamilies by either IRescue or alternative tools
 Supplementary Figure S5 E, Supplementary Table S5 ). Over-
ll, through the analysis of real single cell / nuclei RNA-seq
atasets, we validated IRescue capability to dissect the expres-
ion patterns of TE subfamilies in different biological contexts
here the expression behavior of TEs has been previously

eported. 

 

Discussion 

Estimating transposable element (TE) expression poses a per-
sistent computational challenge due to the nature of repeti-
tive elements, where reads can align equally well to multi-
ple genomic loci ( 5 ). Typically, aligners either report a ran-
dom alignment per read or arbitrarily designate one align-
ment as primary and others as secondary, which can result
in inaccurate TE estimates. While several tools for TE expres-
sion quantification have been developed for bulk RNA-seq to
address secondary alignments when assigning multi-mapping
reads to TEs ( 5 ,13 ), similar strategies have not yet been im-
plemented in the single-cell field. In this work, we introduce
IRescue, a novel approach to accurately estimate TE expres-
sion in scRNA-seq data. IRescue not only considers all the sec-
ondary alignments of multi-mapping reads for TE assignment,
but also provides the first strategy for deduplicating the UMIs
associated to such reads, taking into account UMI frequen-
cies and sequencing errors. Additionally, IRescue employs an
Expectation-Maximization algorithm to probabilistically re-
distribute the count of UMIs still associated with more than
one TE after deduplication—a procedure commonly used for
processing multi-mapping reads ( 71–73 ) and previously im-
plemented only in bulk-level TE quantification ( 15 , 16 , 74 ). In
details, through these implementations, we demonstrated that
IRescue is the most precise tool in quantifying TE expression
at subfamily level when compared to other state-of-the-art
tools, scTE ( 19 ) and SoloTE ( 20 ), using simulated scRNA-
seq 10x Genomics-like reads and real datasets from different
type of libraries (5 

′ and 3 

′ scRNA-seq, snRNA-seq). Reads
simulated from TE sequences are more prone to map to mul-
tiple genomic regions, as they only contain the repetitive se-
quence and no flanking sequences, and therefore it is crucial
to evaluate the ability of TE quantification methods in cor-
rectly estimating their contribution to TE expression. In con-
trast, chimeric alignments are composed in part by the TE se-
quence and in part by non-repetitive genomic sequences, and
therefore are more easily allocated to their respective TE sub-
family’s counts. In this context, it is important to note that
simulated data might display fewer chimeric alignments com-
pared to real data. For this reason, we tested IRescue and al-
ternative tools in four different case studies using real exper-
imental data. Using simulations, we showed that IRescue is
more accurate in allocating and quantifying multi-mapping
reads and this improvement concerns both evolutionarily old
and young TE subfamilies, the latter being more prone to be
multi-mapped. This feature makes IRescue more reliable in
the identification of young elements like L1HS and L1PA2,
known to be overexpressed in colorectal cancer ( 17 ,49 ). In
fact, IRescue identified those TEs as enriched and heteroge-
neously expressed in distinct cancer cell clusters, while scTE
and SoloTE failed to detect them or observed their expression
in the same cancer clusters and, at lower levels, in normal cells
as well. In snRNA-seq, IRescue detected more LINE1 subfam-
ilies specific to neurons against glia in human cells, compared
to scTE and SoloTE, and identified a distinct neurons clus-
ter enriched in young LINE1 expression. IRescue’s accuracy
was also validated in the investigation of TE dynamics during
aging, with an upregulation of LINE1 and Alu elements in el-
derly individuals ( 58 ,61 ) and the identification of TE subfam-
ilies specifically expressed in different fibroblast subsets, such
as AluSp, AluSg4, L1PBa1, L1MA10 and upregulated in aging
due to methylation loss, such as AluYa5 and L1HS. Moreover,

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae793#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae793#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae793#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae793#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae793#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae793#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae793#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae793#supplementary-data
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Figure 5. Specific TE expression patterns characterize human immune cells during SARS-CoV-2 infection and recovery. ( A ) UMAP representation of 
PBMCs colored by cell type inferred by gene expression. ( B ) Enrichment of differentially expressed TE subfamilies (adjusted P -value < 0.05, average log 2 
fold change > 0.25 or < –0.25) in infection or recovery compared to healthy conditions for the indicated cell types, calculated as the percentage in 
respect to the total number of TE subfamilies per family. ( C ) Average expression of differentially expressed TE subfamilies between healthy and infected 
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Rescue corroborated that no TE alteration occurs in the acute
hase of S AR S-CoV-2 infection, while a strong TE upregu-
ation happen during recovery phase ( 66–69 ). Interestingly,
Rescue detected most of ERV and Alu subfamilies reported in
iterature as differentially expressed in T and B lymphocytes
 69 ), with a similar enrichment observed in alternative tools.
urthermore, we demonstrated that IRescue is more power-
ul in inferring cell clusters compared to alternatives, showing
 higher similarity with simulated cells clusters and avoiding
echnical biases in defining the TE expression profile. Notably,
n case of datasets with low complexity of TE signal, such as 5 

′

cRNA-seq ( 47 ), IRescue showed the least differences against
cTE and SoloTE in both simulations and real data. This is
xpected, since the benefit of IRescue’s algorithm resides in
he optimized quantification of a large amount of ambiguous
ulti-mapping TE reads. IRescue enables sophisticated analy-

is of TEs in scRNA-seq datasets, highlighting the increasingly
redominant role of TEs in regulating cellular functions; for
nstance, it accurately quantifies the signal from reads map-
ing on both TEs and unique genomic regions, which indicate
he presence of chimeric transcripts ( 5 ). In this regard, we pre-
ented evidence of TE-originated transcript variants of human
ncogenes in scRNA-seq ( 50 ,75 ), which incorporate TEs that,
sing IRescue, were detected as overexpressed in specific can-
er cells clusters. We highlighted the presence of a small num-
er of TE subfamilies consistently underestimated by all tested
uantification methods, suggesting that this issue arises at the
evel of read alignment—a pre-requisite for quantification and
ommon to all the three tools. Further investigations could en-
ance the state of alignment methods in scRNA-seq by iden-
ifying optimal parameters to improve the mapping for these
roblematic TEs. Overall, the transcription of TEs is involved
n several physiological scenarios, such as embryo develop-
ent ( 10 ), aging ( 76 ), differentiation and cell identity ( 9 ), as
ell as pathological conditions, such as cancer ( 52 ,77 ) and
eurodegenerative diseases ( 78 ). However, the expression dy-
amics and heterogeneity of the single cell TE transcriptome
n most of these tissues is still unexplored. With the release of
Rescue, we long to facilitate the single cell TE expression pro-
ling from canonical scRNA-seq experiments. This will open
p the possibility of extracting novel insights from the vast
mount of publicly available datasets ( 22 ). 

ata availability 

Rescue source code and documentation are available at https:
/ github.com/ bodegalab/ irescue and https:// doi.org/ 10.5281/
enodo.13479364 . Data used for benchmarks is available
t 10x Genomics ( https:// www.10xgenomics.com/ resources/
atasets/8- k- pbm- cs- from- a- healthy- donor- 2- standard- 2- 
-0 , https:// www.10xgenomics.com/ datasets/ human-pbmc- 
rom- a- healthy- donor- 10- k- cells- v- 2- 2- standard- 4- 0- 0 , 
ttps:// www.10xgenomics.com/ datasets/ 10- k- human- pbm- 
s- multiome- v- 1- 0- chromium- x- 1- standard- 2- 0- 0 ), colorec-
al cancer scRNA-seq data at ArrayExpress (E-MTAB-8410),
uman brain snRNA-seq data at GEO (GSE209552), human
kin aging scRNA-seq data at GEO (GSE130973), PBMCs
n S AR S-CoV-2 infection scRNA-seq data at ArrayExpress
E-MTAB-9652). 

upplementary data 

upplementary Data are available at NAR Online. 
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