
Empirical Software Engineering (2022) 27:82
https://doi.org/10.1007/s10664-021-10074-6

Towards a recipe for language decomposition: quality
assessment of language product lines

Walter Cazzola1 · Luca Favalli1

Accepted: 3 November 2021
© The Author(s) 2022

Abstract
Programming languages are complex systems that are usually implemented as monolithic
interpreters and compilers. In recent years, researchers and practitioners gained interest in
product line engineering to improve the reusability of language assets and the management
of variability-rich systems, introducing the notions of language workbenches and language
product lines (LPLs). Nonetheless, language development remains a complex activity and
design or implementation flaws can easily waste the efforts of decomposing a language
specification into language features. Poorly designed language decompositions result in
high inter-dependent components, reducing the variability space of the LPL system and
its maintainability. One should detect and fix the design flaws posthaste to prevent these
risks while minimizing the development overhead. Therefore, various aspects of the quality
of a language decomposition should be quantitatively measurable through adequate met-
rics. The evaluation, analysis and feedback of these measures should be a primary part of
the engineering process of a LPL. In this paper, we present an exploratory study trying to
capture these aspects by introducing a design methodology for LPLs; we define the prop-
erties of a good language decomposition and adapt a set of metrics from the literature to
the framework of language workbenches. Moreover, we leverage the AiDE 2 LPL engineer-
ing environment to perform an empirical evaluation of 26 Neverlang-based LPLs based on
this design methodology. Our contributions form the foundations of a design methodology
for Neverlang-based LPLs. This methodology is comprised of four different elements: i)
an engineering process that defines the order in which decisions are made, ii) an integrated
development environment for LPL designers and iii) some best practices in the design of
well-structured language decomposition when using Neverlang, supported by iv) a variety
of LPL metrics that can be used to detect errors in design decisions.

Communicated by: Philippe Collet, Sarah Nadi, and Christoph Seidl

This article belongs to the Topical Collection: Software Product Lines and Variability-rich Systems
(SPLC)

� Walter Cazzola
cazzola@di.unimi.it

Luca Favalli
favalli@di.unimi.it

1 Computer Science Department, Università degli Studi di Milano, Milan, Italy

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-021-10074-6&domain=pdf
http://orcid.org/0000-0002-4652-8113
mailto: cazzola@di.unimi.it
mailto: favalli@di.unimi.it

 82 Page 2 of 47 Empir Software Eng (2022) 27:82

Keywords Language product lines · Feature modularity · Software variability ·
Domain specific languages

1 Introduction

Domain-specific languages (DSL) are programming languages capable of expressing
aspects and abstractions of a specific application domain. Incorporating DSLs into the
design of complex systems enables the direct interaction of domain experts with the devel-
opment of defined system aspects (Combemale et al. 2014). Despite being designed for a
precise purpose and defined audiences, many DSLs and programming languages in general
share with each other several commonalities either from an abstract syntax, a concrete syn-
tax or a semantics standpoint (Méndez-Acuña et al. 2016; Zschaler et al. 2009; de Lara and
Guerra 2012). For instance, syntactically different constructs may share the same semantics
(e.g., an if statement in Java versus Python) or, conversely, share the same syntax but yield
different semantics (e.g., a sequential versus a parallel for loop). Such commonalities can
improve reuse and minimize the efforts of from-scratch implementations when wisely lever-
aged by language developers (Méndez-Acuña et al. 2016). The advantage of fine-grained
modularity in language workbenches (Erdweg et al. 2013; Fowler 2005)—i.e., tools that
provide high-level mechanisms for the implementation of languages and their usage in a
unified environment—is twofold and enables the construction of both syntax and seman-
tic variability-rich systems. In this context, the research community focused on defining a
systematic reuse process by embracing feature-oriented programming and software product
lines introducing the notion of LPLs (Kühn et al. 2015). A language feature encapsulates the
subset of a language specification representing a functionality offered by a DSL: as stated
in Vacchi and Cazzola (2015), each subset represents either language constructs—e.g., for
loop—or language concepts (without concrete syntax)—e.g., scope and type system. In LPL
engineering, language features are implemented independently and in separate modules as
a result of a language decomposition combined into a compiler or interpreter through a con-
figuration mechanism and finally used by application domain experts in a tight feedback
loop (Favalli et al. 2020). To summarize, each product of an LPL is a compiler or inter-
preter for a DSL and the collection of all the DSLs produced by an LPL is called language
family. To serve the purpose of several users, LPLs become complex systems with possibly
hundreds of features and an exponential number of valid configurations. Nonetheless, LPLs
should provide both flexibility and ease of use by ensuring the validity of products without
limiting the variability space of the language family.

Successful product line engineering requires the definition of highly cohesive features
with low coupling as any other kind of software engineering (Parnas 1971; Troy and Zweben
1981; Macro and Buxton 1987; Fenton 1991; Lanza and Marinescu 2006). Researchers are
focusing on the development of integrated development environments (IDEs) which provide
tools supporting LPLs system designer, the systematic derivation of sound language defini-
tions and implementations (Visser et al. 2014) and the automatic generation of IDE services
and debugging (Butting et al. 2018; Kühn et al. 2019; Favalli et al. 2020). Modern language
workbenches do not directly address a formal specification for the quality in the design of
language features, especially with respect to their modularity flaws. Despite not causing
any errors from a user perspective, modularity flaws may result in highly inter-dependent
modules and crosscutting features which are known to reduce the flexibility and maintain-
ability of program families (Colyer et al. 2004). In language engineering separate constructs
should be either independent or implemented as a unique feature. Yet, we argue that such

Empir Software Eng (2022) 27:82 Page 3 of 47 82

specification could be defined with minimal effort thanks to the amount of meaningful infor-
mation that a full-fledged language workbench with LPL support accesses at compile time.
State-of-the-art language workbenches could help improve the quality of the design of lan-
guage decompositions and of DSLs overall, by framing such information in well defined
metrics and providing them to the language designer.

For each aspect we show how it can be tackled with the Neverlang language workbench
and the Neverlang-based LPL engineering (LPLE) framework AiDE 2. This work is a follow
up to our original contribution (Favalli et al. 2020) that introduced the LPLE process and
an environment supporting it. This contribution further elaborates on Favalli et al. (2020)
by defining the qualities of a good language decomposition developed following that pro-
cess. The output of our research is the definition of the properties that a well designed
language decomposition in Neverlang modules should have and a set of metrics for the
measurement of those properties. Last but not least important, we also show how this evalu-
ation can be easily integrated in a LPL engineering process to guide the design of language
decompositions.

This work is validated by answering the following research questions:

RQ1. What are the properties of a language decomposition in Neverlang?

RQ2. How can errors in design decisions be detected in Neverlang LPLs?

To answer these research questions we perform an empirical evaluation on 26 Neverlang
LPLs without applying any changes to either Neverlang or AiDE 2 but rather accessing
compile-time information already available in any Neverlang LPL. What remains of this
paper is structured as follows. Section 2 presents the foundations, terminology and technol-
ogy. Section 3 introduces the design methodology. Section 4 describes the experiment and
its result. Finally in Sections 5 and 6 we give an overview of the related work and draw our
conclusions.

2 Background

In this section, we present the background and concepts of feature modeling, language
workbenches and language product lines through the used tools and methods: Neverlang
and AiDE 2.

2.1 Software product lines and feature modeling with FeatureIDE

Variability-rich software systems development applies concepts from product line engineer-
ing. This practice is usually referred to with the terms of feature-oriented programming and
software product line (SPL) engineering. An SPL is a family of software products whose
commonalities and differences can be described in terms of their features. SPL engineering
combines concepts from domain engineering for the design and implementation of software
artifacts with concepts from application engineering to create products from selected fea-
tures (Apel et al. 2013). The SPL engineering activity often involves the feature modeling
activity i.e., the creation and maintenance of a feature model (FM) whose concept was first
introduced as part of the FODA method (Kang et al. 1990) and expresses the variability of
the system in terms of its features and of the dependencies among these features. In SPLs
using the FM formalism, the deployment of a software product is closely tied to the usage
of a FM for the definition of valid feature subsets called configurations. Given a valid con-
figuration, any feature that belongs to the defined subset of features is said to be active for

 82 Page 4 of 47 Empir Software Eng (2022) 27:82

that configuration; all other features of the FM are inactive. The validity of a configura-
tion is based on the dependencies between features that the FM declares. The FM structure
can implicitly imply feature dependencies by defining mandatory features, optional fea-
tures, or groups, and alternative features, as well as, the simple parent-child relationship—a
feature can be active only if all parent features are also active. In addition, dependencies
can be defined explicitly by the cross-tree constraint mechanism—i.e., Boolean expression
defining which terms are features from the FM; each term is set to true if the correspond-
ing feature is active in the current configuration and false otherwise. If the truth value of
any cross-tree constraint is false for a configuration then that configuration is invalid. Both
implicit and explicit feature dependencies may result in dead features (that can never be
active), false-optional features (that are marked as optional but are mandatory), and atomic
sets—i.e., sets of features such that all features are active in the same configuration, or none
is. The quality of SPLs can be improved by performing static analysis of FMs for the detec-
tion of such anomalies. This is an active research area and includes structural (Benavides
et al. 2010) and behavioral (ter Beek et al. 2019) approaches.

FeatureIDE (Thüm et al. 2014; Meinicke et al. 2016; Meinicke et al. 2017) is a SPL devel-
opment environment that copes with all aspects of the development of SPLs. It supports
the FM construction, the management of software artifacts, the configuration and product
derivation.

SPL engineering support in FeatureIDE encompasses: 1) the FeatureModel Editor for the
creation, visualization and tracing of FMs, concrete and abstract features, feature dependen-
cies and cross-tree constraints; 2) the Configuration Editor for the creation, modification,
and validation of feature configurations (Pereira et al. 2016); and 3) various Composers for
the derivation of product variants from a given valid feature configuration.

As an example, Fig. 1 showcases a FM for the language family of LogLang built with
FeatureIDE.

FeatureIDE maintains consistency between all the different views during all phases of
the development process. This includes all the editors as well as the Feature Model Outline
which provides basic information and metrics about the FM and the variability space of the
SPL. The Configuration Editor guides the development of valid configurations by checking
their validity to feature dependencies and cross-tree constraints. Finally, a composer gen-
erates the final product variant for a given configuration by combining the active features
from that configuration. We created AiDE 2 in our previous work (Favalli et al. 2020) by
integrating FeatureIDE with AiDE to bring LPL support to FeatureIDE.

2.2 Language product lines

The development of families of programming languages and DSLs has gained popularity
among researchers and practitioners, e.g., Ng et al. (2011), Kühn et al. (2014), Crane and
Dingel (2005), and Zschaler et al. (2009). Similar to other software, DSL interpreters and
compilers can be designed around the concept of product line, in relation to the features
they include in their specification. SPL engineering applied to the development of program-
ming languages is called LPL (Kühn et al. 2015) engineering and it is becoming a popular
topic (Méndez-Acuña et al. 2016; Völter 2011; Wende et al. 2009; Grönniger and Rumpe
2010) in the research on DSLs because it eases the language development process (White
et al. 2009). DSLs can be modeled as a family of languages rather than stand-alone mono-
lithic implementations when developed in a LPL fashion. For instance, several works (Tratt
2008; Crane and Dingel 2005; Vacchi et al. 2013; Méndez-Acuña et al. 2017) showed that
the variants of state machine languages can be modeled as a single family of programming

Empir Software Eng (2022) 27:82 Page 5 of 47 82

Fig. 1 Example feature model for the family of LogLang DSLs (Cazzola and Poletti 2010). Each sub-tree
models the variability of a different language construct. For instance the syntax of the rename statement can
be composed with any of three different semantics implementations, each represented by a leaf in the FM

languages. On the one side, specialized versions of full-fledged programming languages
can be employed in case of security purposes (e.g., Java Card Chen 2000) or teaching (Bet-
tini and Crescenzi 2015; Cazzola and Olivares 2016; Hermans 2020). Language extensions,
on the other hand, can be exploited to embed new language features into an existing
programming language, such as type-checked SQL queries (Erdweg et al. 2011).

LPLs can be created by using either a top-down or a bottom-up approach (Kühn and
Cazzola 2016). In the former approach, the feature model is created first as a result of the
domain analysis which defines and documents the desired variability of the product fam-
ily (Pohl et al. 2005; Apel et al. 2013), then the features are mapped to the language artifacts
and finally language variants are developed though a configuration process. In the latter,
the language developer creates individual language artifacts, then the FM is automatically
generated from those artifacts. Given these definitions, the top-down approach is similar to
the proactive SPLE adoption technique whereas the bottom-up approach employs aspects
of both the extractive and reactive techniques (Krueger 2001). Henceforth, we will focus on
the bottom-up approach for LPL engineering.

Figure 1 showcases the FM generated in bottom-up fashion for the family of LogLang
variants. LogLang (Cazzola and Poletti 2010) is a simple DSL that describes tasks for a log
rotating tool similar to the Unix logrotate utility with a modular Neverlang implementation.
An interpreter—i.e., a product of the LogLang language family—can be generated by pro-
viding a valid configuration to the composer. We denote a language variant to be viable if its
language recognizes/evaluates the selected language constructs with the expected semantics.

 82 Page 6 of 47 Empir Software Eng (2022) 27:82

Listing 1 Syntax and semantics for the backup task

2.3 Neverlang and AiDE in a nutshell

Neverlang (Cazzola 2012; Cazzola and Vacchi 2013; Vacchi and Cazzola 2015) is a lan-
guage workbench for the modular development of programming languages. Language
components, called slices, embody the concept of language features and are developed as
separate units that can be independently compiled, tested, and distributed, enabling devel-
opers to share and reuse the same units across different language implementations. The
basic development unit is introduced by the keyword module. A module may contain a
reference syntax definition with one or more productions and/or roles. Each role,
introduced by the keyword role, defines a compilation phase by declaring semantic actions
that should be executed when some syntax is recognized, as prescribed by the syntax-
directed translation technique (Aho et al. 1986). Semantic actions are also responsible
for the definition and evaluation of the attributes characteristics of the attribute grammar:
attributes to which semantic actions perform an assignment are inherited or synthesized
depending on how they are defined. Henceforth we will refer to both inherited and syn-
thesized attributes as provided attributes for brevity, whereas required attributes are those
whose values can be accessed during the evaluation of a semantic action. Both required and
provided attributes—i.e., any attributes that are referenced in a semantic action—are source
of dependencies between modules, since their value will be generated or accessed respec-
tively by different modules. Syntactic definitions and semantic roles are tied together using
slices.

Empir Software Eng (2022) 27:82 Page 7 of 47 82

Listing 1 illustrates the implementation of the Backup feature of the LogLang LPL.
The Backup module declares a reference syntax for the backup task (lines 2-10). The ref-
erence syntax of a module also piggybacks (Kühn et al. 2019) information for basic IDE
services, such as syntax highlighting (line 7) and code-completion (lines 8-9), to automat-
ically provide IDE support for languages in which they are included. Semantic actions are
attached to nonterminals of the productions (lines 12-15) by referring to their position in
the grammar: numbering starts with 0 and grows from the top left to the bottom right.1

Thus, the Backup nonterminal on line 5 is referred to as $0 and the two String non-
terminals on the right-hand side of the production as $1 and $2, respectively. Attributes
are accessed from nonterminals using the same criterion by dot notation as in line 13. In
contrast, the BackupSlice (lines 18-22) declares that it will promote the reference syn-
tax from the Backup module to concrete syntax for our language (line 19) and combine it
with the semantics actions from two separate roles of two different modules (lines 20-21).
Finally, the language descriptor (lines 24-29) indicates which slices should be composed
to generate the language interpreter and the IDE (lines 25-26). Therefore, composition
in Neverlang is twofold: i) between modules, which yields slices, and ii) between slices,
which yields a language implementation. Composition is also supported through bundles
that behave just as languages but they can be embedded in other languages. The grammars
are merged to generate the complete language parser. Any gaps in the grammar can be filled
by using the rename mechanism: any nonterminal can be renamed to match a nontermi-
nal provided by another production in the grammar. Renames will be discussed further in
Section 4 with some usage examples. Semantic actions are performed with respect to the
parse tree of the input program; roles are executed in sequence and traversal options spec-
ified in the roles clause (line 28) of the language descriptor, e.g., permission is
executed after parsing and terminal-evaluation. Besides, the language clause
can declare endemic slices whose instances are shared across multiple compilation
phases (line 27).2

Neverlang supports LPL engineering thanks to AiDE (Vacchi et al. 2013; Vacchi et al.
2014). AiDE is a variability management tool tailored for the development of LPLs. It
extracts information provided by Neverlang modules (lines 3-4 of Listing 1) to determine the
language features and their dependencies and synthesizes the corresponding FM for a given
language family (Vacchi and Cazzola 2015) in a bottom-up fashion using the algorithm
introduced in (Vacchi et al. 2013) and refined in Favalli et al. (2020). Through its graphi-
cal user interface, the user can explore the FM, choose language features, create a language
variant, and test it. Moreover, AiDE tracks all unresolved dependencies—i.e., all open non-
terminals in the current configuration—and guides the renaming mechanism to bind them to
other nonterminals already in the current configuration. The flexibility of LPLs is desirable
for all actors of the development process. From a stakeholder perspective, the ability to cre-
ate several language variants from the same language assets through a FM allows addressing
the needs of a large pool of different users with minimum additional investment. From the
designer standpoint, providing a language variant in which only a subset of the language
features is made available to the developers helps aligning the development team to the same
vocabulary of abstractions and in turn improving the maintainability and efficiency of soft-
ware artifacts. From the final user perspective, a well designed language variant is a DSL

1Neverlang also provides a labeling mechanism for productions, so that nonterminals are referred via an
offset from such a label, e.g., $BKP[1] is the first nonterminal from the right-hand side of the BKP production.
2Please see Vacchi and Cazzola (2015) for further details.

 82 Page 8 of 47 Empir Software Eng (2022) 27:82

perfectly suited to the domain and stripped of all the low-level implementation concerns.
For instance, language constructs, programming practices, chosen paradigm and compiler
can all impact energy consumption (Pinto et al. 2014; Trefethen and Thiyagaligam 2013;
Lima et al. 2016). This is relevant in contexts under strict energy consumption constraints,
such as embedded systems (Tiwari et al. 1994; Tavares et al. 2008). A restricted language
variant can ensure only the most efficient constructs are used by removing the less effi-
cient ones from the language. Language restrictions can also prevent dangerous behaviour
to ensure safety (Hatton 2007) and to improve overall software quality (Basalaj 2008).

AiDE also relies on a quick feedback loop for the behavior of the language variant under
construction by allowing for the dynamic update of a language variant during the config-
uration phase. AiDE updates a language descriptor with the newest set of active features
whenever a valid configuration is deployed.

AiDE is currently integrated with FeatureIDE and the Gradle build tool3 to ease the gen-
eration of Java artifacts and the deployment of an archive containing the runtime for the
language variant. FeatureIDE also enables to perform the variability space analysis of any
FM. This version of AiDE is the latest available version and it is called AiDE 2 (Favalli et al.
2020).

3 Towards a DesignMethodology for Language Product Lines

We hereby describe the concepts that enable the development and evaluation of well
designed Neverlang-based language families. Our contribution in this regard is manifold
and includes i) the bottom-up LPL engineering process, ii) the properties of a well designed
language decomposition and iii) the metrics to measure the quality of LPLs. Moreover, iv)
we lay the foundations of a design methodology that encompasses all other contributions,
as well as a dedicated IDE, under a unified vision by following Parnas’ steps. According
to Parnas (1971), a design methodology for any software system should account for five
design aspects of that system:

1) the order in which decisions are made;
1) what constitutes good structure for a system;
1) methods of detecting errors in design decisions;
1) specification techniques;
1) tools for system designers.

Notice that the system (points 2 and 5) is a LPL in our case and that each point is instan-
tiated as one of the contributions we presented. Point 1 is the engineering process. Point 5
is the LPL engineering environment. Both points were firstly presented in Favalli et al.
(2020) and are hereby substantially extended to suit our vision of a LPL design methodol-
ogy. Points 2 and 3 will be addressed in this work by further elaborating on the concepts
proposed in Favalli et al. (2020). More precisely, we address point 2 by introducing a set
of desired properties for LPLs and their language components and point 3 by introduc-
ing metrics for the evaluation of LPLs and investigating any ideal and threshold values for
those metrics. We do not address the topic of specification techniques (point 4) for Never-
lang LPLs, which is not directly tied to this work and should be tackled on with a different
approach in the future.

3https://gradle.org/

https://gradle.org/

Empir Software Eng (2022) 27:82 Page 9 of 47 82

All points of the design methodology are deeply interconnected. In fact, the methods for
detecting errors in design decision are based on the properties of a well structured system
and should be able to determine whether the system achieves these properties or not. Any
detected errors affect the order in which decisions are made: the engineering process should
be able to adapt so that the errors are corrected before propagating to other elements of the
system. Finally, all other points must be supported by the proper tools to be applicable in
any real use case.

In this section, we tackle each one of these points: first we show the bottom-up LPL engi-
neering process (Section 3.1), followed by the LPL engineering environment (Section 3.2),
the properties of a well designed language decomposition (Section 3.3) and finally the
metrics for the detection of design errors in LPLs (Section 3.4).

3.1 The LPL Engineering Process—Point 1

The bottom-up LPL engineering process was first introduced in our original work (Favalli
et al. 2020). In this work, we elaborate on that contribution to establish the order in which
decisions are made—i.e., point 1 of Parnas’ vision. The Business Process Model and
Notation (BPMN) model4 in Fig. 2 illustrates the proposed LPL engineering process by
showcasing the activity of the three different roles. Each role is involved in either the design,
development, deployment or usage of languages from a language family. The process tries
to grant continuous flexibility and responsiveness in the development and extension of LPLs
while maximizing the separation of concerns among the three roles of language developer,
language deployer and language user. In the BPMN, each role is represented as a sepa-
rate swim lane whose overlap may be minimal or none to highlight the differences in their
skills. The language developer has notions of language development and feature-oriented
programming. The language deployer is a domain expert with expertise on the specific con-
cepts of the domain at hand without any knowledge in language development. Finally, the
language user is the final user that can use any language variants and deploy programs
without necessarily knowing any low level language implementation details. The three roles
use different artifacts, thus improving the applicability of the process in a distributed envi-
ronment by minimizing conflicts when using a versioning control system. For instance, the
language user can deploy programs using a language variant while the language developer
is refactoring a language feature used in the same variant without causing any conflicts since
the two roles do not share any artifacts.

The process starts following the initial request of an unspecified stakeholder—which may
or may not coincide with the language user—asking for an interpreter or a compiler for a
given language. The language developer (first layer) performs the initial phase of analysis of
that language, either against a language specification or an existing monolithic implementa-
tion. The result is a language decomposition into language features, i.e., language concepts
or constructs with minimal dependency with other features. Language features should be
developed and tested separately from each other, possibly by several programmers guided
by the same designer with minimal interaction to grant a good language decomposition.
Applying the bottom-up approach, the language decomposition also results in the genera-
tion of a description of the variability space of the system, i.e., a FM. The FM is the only
artifact subject of both the language developer and the language deployer activities and
should be shared—e.g., by a commit to a central repository.

4BPMN is a standard graphical notation for the specification of business processes based on flowcharts and
activity diagrams.

 82 Page 10 of 47 Empir Software Eng (2022) 27:82

Fig. 2 BPMN model describing the language product line engineering process (Favalli et al. 2020)

Now, the language deployer (second layer) can inspect the latest FM to choose and
pick (Kühn et al. 2015) language features from the FM, thus creating or revising a language
configuration. In addition, the configuration for a language variant should also refer to the
compilation phases of the target compiler. Finally, variability in programming languages
has to cope with additional problems such as the ripple effect (Yau et al. 1978), i.e., adding
or removing a language feature may provoke the addition or removal of several language
features in cascade if no strategy to resolve unfulfilled dependencies on a syntactic level
is provided. This usually results in the creation of atomic sets of features (see Section 2).
The language deployer reports back to the language developer requesting to update a set
of language features when a language configuration is not viable; either because required
language features are missing, are too coarse grained or do not compose. Otherwise, the
language deployer deploys the language variant from the respective configuration together
with its IDE services (Kühn et al. 2019), e.g., an editor with syntax highlighting, code
completion and a debugger.

Empir Software Eng (2022) 27:82 Page 11 of 47 82

Once a language variant is deployed and committed, language users (third layer) can
choose any of the available variants in the language family to write and run code in such a
language variant. They can report back to the deployer if any issue is found either on the syn-
tactic or the semantic level. The language deployer then repeats all steps of the configuration
process (possibly including their requests for updates to the developer) to accommodate the
user request. The result of this process can be either the update of the corresponding variant
or the creation of a new one. From the user perspective each language variant is an isolated
programming language providing some declared capabilities, including an IDE. The lan-
guage deployer has knowledge of all the variants and of the configurations used to generate
them. The language developer knows all the language features that constitute the LPL and
their implementation.

This LPLE process is designed to allow iterative evolution of language families: when
supported by effective modular design in the early stages of development, the three lay-
ers can proceed independently and concurrently. In the BPMN model in Fig. 2 only the
language components, the FM and the language variants are highlighted, because they are
the only artifacts shared between more than one role. Moreover, it should be noticed that
by using a language workbench that supports separate compilations such as Neverlang the
overlapping in the usage of language components is limited since neither the source nor the
binaries of the language components are required to compile a language unit. Instead,
the deployer only needs access to the latest FM to generate and compile a valid language,
regardless of how the individual language features are implemented. Nonetheless, all lan-
guage components binaries must be available when the language compiler is finally used.
The interactions between roles are limited to: i) requests from language user to language
deployer and from language deployer to language developer when the BPMN model is tra-
versed from bottom to top; ii) update notifications from language developer to language
deployer and from language deployer to language user when the BPMN model is traversed
from top to bottom. The proposed LPLE process outlines the activity of all the roles involved
in the development of LPLs and the order in which decisions are made and thus satisfies
point 1 of Parnas’ vision.

3.2 The LPL engineering environment—Point 5

All phases of the engineering process must be supported by a dedicated tool for system
designers to satisfy point 5 of Parnas’ vision. As we introduced in Favalli et al. (2020), our
approach is the combination of the state-of-the-art in SPL (FeatureIDE) and LPL (AiDE)
engineering dubbed AiDE 2. Using the same environment for the design, development,
deployment and usage of languages reduces the implementation efforts for dedicated IDEs
for each language variant while ensuring a quick feedback loop and rapid deployment. Nev-
erlang embraces this process by providing a full loop in which the tools used to deploy
the Neverlang ecosystem are the same used to deploy the ecosystem for any Neverlang-
based product: Neverlang is bootstrapped and its IDE is generated using categories,
in-buckets and out-buckets as in Listing 1.

The language developer uses a Neverlang distribution with a compiler and an Eclipse-
based IDE developed using Neverlang. The developer implements language components in
the form of Neverlang modules. The FeatureIDE environment is synchronized with the AiDE
bottom-up algorithm that performs the reverse engineering of a FM for the current language
family given an AiDE environment, i.e., a set of modules.

AiDE 2 provides an extension of the default FeatureIDE Configuration Editor: the Nev-
erlang Configuration Editor. With this tool, the deployer can create, update and deploy

 82 Page 12 of 47 Empir Software Eng (2022) 27:82

language configurations, including the selection of both features and roles as well as a man-
ual solution to the ripple effect through the renaming mechanism. Language variants are
generated from configuration files by the AiDE 2 composer and deployed using Gradle. A
Neverlang distribution piggybacks the IDE for the generated compiler. The user must regis-
ter a variant on AiDE 2 by indexing the location of the language binaries in a configuration
file. The environment is then capable of automatically detecting the new language variant
and its IDE, that the user can adopt in the development process of programs written in the
corresponding language. Compilers are Java classes5 with a main method and can thus be
directly executed within the environment, in both execution and debug mode.

In summary, Neverlang and AiDE can support all phases of the language developer activ-
ity, whereas AiDE, FeatureIDE and Gradle all the phases of the language deployer activity.
Finally, Neverlang supports the usage of language variants.

3.3 Properties of a well designed language decomposition—Point 2

We now introduce the properties that a well designed language decomposition should have
to tackle point 2 of Parnas’ design methodology. The properties we introduce and the respec-
tive metrics (Section 3.4) are mainly based on the works of Briand Briand et al. (1998) and
Coleman et al. (1994), which we adapt to the framework of Neverlang-based LPLs.

LPLE encompasses both domain engineering and application engineering aspects. The
quality assessment of LPLs must therefore cope with both these aspects. We address the
quality in the design of the variability space of a LPL and then of its language compo-
nents in this order. Notice that language component is synonymous of module in Neverlang;
henceforth the two terms will be used interchangeably.

Properties of a well designed variability space. The main concern of SPL and LPL engi-
neering is improving the reusability of software artifacts. A key factor in determining the
value from reuse opportunities in LPLs is scoping. If the scope is too large, the invest-
ment may be wasted on assets that will never be reused. If the scope is chosen too narrow,
components may be designed in a way that does not support reuse across enough rele-
vant products (Schmid 2002). Moreover, if the number of products in a product family
grows too large, for the user it is impractical to find the correct product and to specify
a valid configuration by keeping track of all the features during the configuration pro-
cess (Pereira et al. 2016). Since the number of configurations is exponential in the number
of features, LPLs should apply techniques to reduce the number of configurations to be
monitored (Kim et al. 2010) or split complex LPLs into smaller LPLs towards a multi-LPL
approach (Rosenmüller et al. 2011). Dealing with smaller LPLs also stems the problem of
increased connectivity associated to programmers using information they should not possess
about other modules (Parnas 1971). Therefore a well designed LPL should find the correct
scope by establishing a trade-off in the number of products it provides. To summarize, we
are interested in the following qualitative properties of the variability space:

– self-descriptiveness—property of a system or component containing enough information
to explain its objectives and properties (ISO/IEC/IEEE International Standard 2017).

– encapsulation— concept that access to the names, meanings, and values of the respon-
sibilities of a class is entirely separated from access to their realization (ISO/IEC/IEEE
International Standard 2017).

5The Neverlang language workbench supports Java, Scala, Kotlin and JRuby semantic actions, but
language units are always translated to Java source code.

Empir Software Eng (2022) 27:82 Page 13 of 47 82

Moreover, we are interested in the following quantitative properties of the design of the
variability space:

– adaptability—degree to which a product or system can effectively and efficiently be
adapted for different or evolving hardware, software or other operational or usage
environments (ISO/IEC/IEEE International Standard 2017).

– complexity—degree to which a system’s design or code is difficult to understand
because of numerous components or relationships among components (ISO/IEC/IEEE
International Standard 2017).

– modifiability—degree to which a product or system can be effectively and effi-
ciently modified without introducing defects or degrading existing product qual-
ity (ISO/IEC/IEEE International Standard 2017).

In particular, a LPL is adaptable when its products can be used in several different contexts
and is modifiable when its structure and implementation can be changed without affect-
ing the quality of other features and existing products. A well designed variability space
meets the proper trade-off among these properties by decreasing complexity and increasing
adaptability while taming the decrease in modifiability. Notice that the list of properties we
introduce represent the foundations of a design methodology for Neverlang LPLs and might
be extended and completed in future works.

Properties of well designed language components A well designed modularization
brings several benefits to the entire software system (Parnas 1972): the development can
proceed in parallel with minimal communication, it is possible to change one module with-
out affecting the others and the system can be studied one module at a time. As a result of
a well designed modularization, the whole system should be better designed because it is
better understood by the developers (Parnas 1972). This fits our view of a design methodol-
ogy: in bottom-up LPLE, the FM is the result of running the generation algorithm on a set
of language components. In our case AiDE 2 takes a set of Neverlang modules and generates
the FM accordingly as described in Section 2. For this reason, the design of the variabil-
ity space is tightly tied to the design of its modules. It is known that most development
efforts and funds go towards the testing and maintenance of software products (McCabe
1976; Pressman 2005; de Vasconcelos et al. 2017; Fernández-Sáez et al. 2018) and that
automated software maintainability analysis can be used to guide software-related decision
making (Coleman et al. 1994). Thus, the identification of modules that are hard to test and
maintain is a fundamental requirement in the development of any software system. In turn,
this requirement led to the definition of design properties such as cohesion and coupling
that are said to affect reusability, maintainability and fault-proneness (Briand et al. 1998).
The correlation between those properties was supported by empirical evidence (Briand et al.
1994; Card et al. 1985; Card et al. 1986). Cohesion and coupling can be used to evalu-
ate several aspects of modules design. Coupling is strongly related to the probability of
fault detection (Briand et al. 1998). On the other hand lack of cohesion—despite not being
directly associated to faults empirically—can hinder the design of the system. Parnas (1972)
stated that a modularization is effective when there is no confusion in the intended inter-
face with other system modules. To this goal each module should be a small manageable
unit that can be easily understood and well programmed. In feature-oriented programming,
low cohesion is an indicator of several concerns being merged into the same feature. While
not directly causing faults in software products, lack of cohesion in features represents an
opportunity for further decomposition. High coupling is an indicator of the same concern
being split into several features. A refactoring process should compose coupled features into

 82 Page 14 of 47 Empir Software Eng (2022) 27:82

a single one. Increasing cohesion and reducing coupling in turn improves time of develop-
ment, flexibility and comprehensibility (Parnas 1972). To summarize, we are interested in
the following quantitative properties of the language components:

– cohesion—degree to which the tasks performed by a single software module are related
to one another (ISO/IEC/IEEE International Standard 2017).

– coupling—degree of interdependence between software modules (ISO/IEC/IEEE Inter-
national Standard 2017).

– complexity—degree to which a system or component has a design or implementation
that is difficult to understand and verify (ISO/IEC/IEEE International Standard 2017).

– maintainability—degree with which a software system or component can be modified
to change or add capabilities, correct faults or defects, improve performance or other attri-
butes, or adapt to a changed environment (ISO/IEC/IEEE International Standard 2017).

In particular, a well designed language decomposition should provide modules with high
cohesion and maintainability but with low coupling and complexity. Notice that the list of
properties we introduce represent the foundations of a design methodology for Neverlang
LPLs and might be extended and completed in future works.

3.4 Metrics for the detection of design errors in LPLs—Point 3

In this section, we propose a framework of quantifiable metrics that can be used to measure
the properties presented in Section 3.3. These metrics are evaluated through static and/or
dynamic quality assurance techniques that asses the level of quality of a language decompo-
sition. Eventually this enables the language designers to determine if the requirements for
a well structured LPL are met. In this regard, the metrics constitute a method for the detec-
tion of errors in design decisions and thus they fulfill point 3 of Parnas’ vision of design
methodologies. Both the LPL engineering process presented in Section 3.1 and the LPL
engineering environment presented in Section 3.2 are designed to work in conjunction with
the evaluation of these metrics. More precisely, in Section 3.1 we stated that the language
deployer can report to the language developer to request a refactoring on a set of language
features when they are too coarse grained or do not compose. Now, this step is streamlined
by the introduction of our metrics: the LPL engineering environment provides tools for the
evaluation of these metrics, thus enabling the detection of design errors without requiring
manual inspection from the language deployer. When a LPL reaches the deployment phase,
it should meet the quality standards imposed by the stakeholders. This refactoring process
is repeated iteratively until the results match the requirements.

The framework we propose is based on metrics taken from the literature of object-
oriented systems. Our contribution is the definition of the same metrics in the context of the
Neverlang language workbench. This is done by mapping concepts of object-orientation to
the corresponding concepts of Neverlang. In the following paragraph we will introduce the
metrics for each of the quantitative properties we proposed in Section 3.3. Our focus is on
the metrics for the evaluation of language components since, to the best of our knowledge
there is no prior contribution in this regard. This proposal will be supported by an empirical
study (Section 4) to determine the relation among these metrics and any ideal values.

Metrics for the evaluation of variability spaces. The FM is one of the most important
artifacts in SPL engineering since errors in the FM can propagate to subsequent SPL
phases (Bezerra et al. 2015). The FM is a valuable tool during the design phase and the con-
figuration process thanks to the definition of optional and mandatory features, as well as of

Empir Software Eng (2022) 27:82 Page 15 of 47 82

alternative sets. Therefore, all the metrics used to evaluate the variability space perform an
analysis of the FM. Qualitative properties are not measured by metrics. Encapsulation is the
result of the engineering process: the activity of language developers is separated from that
of language deployers. The two roles do not share any artifacts thus the feature implementa-
tion and their representation are separated. Self-descriptiveness requires that a FM contains
enough information to explain its domain while not containing information pertaining sev-
eral domains. This property can be qualitatively assessed based on abstract features, that
do not have any impact at the implementation level but enable reasoning on language vari-
ants (Thüm et al. 2011). AiDE 2 maps features with no concerns in common to separate FM
sub-trees through abstract features. High arity near the root of the FM is undesirable because
it is a sign of an LPL dealing with several different domains. High arity near the leaves indi-
cates the presence of several variants for the same feature, all dealing with the same domain.
Instead, there is a large variety of metrics can be perform the quality assessment of the FM
in literature (El-Sharkawy et al. 2019). A thorough evaluation of all the metrics proposed in
literature is out of the scope of our contribution. Instead, in this work we focus on a subset
of the existing metrics to show how literature fits our vision of a LPL design methodology.
For each property of the variability space from Section 3.3, the red boxes highlight the char-
acteristics a metrics should have to be considered viable. The yellow boxes show how each
metric fits the above property by respecting all characteristics. For instance, Metric 2.3 is a
valid metric for Property 2 because it matches the nonnegativity and nondecreasing mono-
tonicity requirements while having the same null value, worst value and ideal value. Notice
that some metrics (such as number of configurations) may satisfy the definition of more
than one property. If the ideal value does not match between the two properties, ensuring
that the variability space is well designed will require finding an acceptable trade-off. For
each metric, we also add a rationale explaining why the metric was chosen to measure the
corresponding property.

 82 Page 16 of 47 Empir Software Eng (2022) 27:82

Modifiability can be hard to assess and thus we measure its opposite property (lack of
modifiability). If lack of modifiability is low then modifiability is high and vice versa.

Empir Software Eng (2022) 27:82 Page 17 of 47 82

Metrics for the evaluation of language components. Cohesion and coupling were origi-
nally defined for the evaluation of object-oriented classes. Yet, they were successfully applied to
other fields, such as procedural software (Henry and Selig 1990). In this work we attempt a simi-
lar approach by mapping concepts from object orientation to the corresponding Neverlang
concepts to assess the cohesion and coupling of language modules. This mapping requires three
concepts to be redefined: i) classes are mapped to Neverlang modules, ii) methods are mapped
to semantic actions and iii) class fields are mapped to grammar attributes. Table 1 contains the
formal definition and description of the used metrics based on these definitions along with the
original object-oriented counterpart that inspired them. Following the original framework, we mea-
sure the opposite of cohesion—i.e., lack of cohesion in modules. Lack of cohesion occurs when
a module contains several semantic actions that do not refer any attributes in common. Coupling
is caused by semantic actions from different modules referencing the same attributes. Notice
that cohesion and coupling are conflicting factors in the design of language modules, which is
in line with previous definitions of these metrics (Perepletchikov et al. 2007). Now we con-
textualize the metrics from Table 1 with regards to the definitions of cohesion and coupling.
The approach is the same we used to justify the metrics used on the FM.

 82 Page 18 of 47 Empir Software Eng (2022) 27:82

Table 1 Cohesion and coupling metrics for language product lines

Metric Description OO equivalent

LCOA1 (lack of cohesion
in actions)

The number of pairs of actions in
the module that do no reference any
attributes in common on the same
nonterminal symbols.

LCOM1 (Chidamber and Kemerer
1991) (lack of cohesion in methods)

LCOA2 The number of pairs of actions in
the module that do no reference any
attributes in common on the same non-
terminal symbols minus the number of
pairs of actions that do. If this difference
is negative, LCOA2 is set to zero.

LCOM2
(Chidamber and Kemerer 1994)

LCOA3 Let G be an undirected graph where
the vertices are the actions of a mod-
ule and there is an edge between two
vertices if the corresponding actions ref-
erence at least one attribute in common on
the same nonterminal symbols. LCOA3 is
then defined as the number of connected
components of G.

LCOM3 (Hitz and Montazeri 1995)

Co (connectivity) Let |V | be the number of vertices in
the graph G from LCOA3, and |E|
the number of edges. Then Co =
2

|E| − (|V | − 1)

(|V | − 1) (|V | − 2)
.

Co or C (Briand et al. 1998; Hitz
and Montazeri 1995) (connectivity)

LCOA5 Let S = {s1, . . . , sn} be the set
of actions of a module which refer-
ence the attributes A = {a1, . . . , am}.
Let Mj = {

s ∈ S | s references aj

}

and μj = |Mj | then LCOA5 =
1
m

(
m∑

j=1
μj

)

− n

1 − n

LCOM5 (Briand et al. 1998)

Coh (cohesion) Given n, m and μj as in LCOA5,

Coh =

m∑

j=1
μj

nm
is a normalized rep-

resentation of individual references
to attributes in actions.

Coh (Briand et al. 1998) (cohesion)

CBM
(coupling between
modules)

A module is coupled with another if
actions in eithser module reference
attributes which are also referenced
by the other module on the same
nonterminal symbols. CBM for a
module is then defined as the num-
ber of other modules to which it is
coupled.

CBO (Chidamber and Kemerer
1994) (coupling between objects)

Empir Software Eng (2022) 27:82 Page 19 of 47 82

 82 Page 20 of 47 Empir Software Eng (2022) 27:82

With regards to complexity and maintainability, we do not introduce any new metric.
For this reason we do not provide a rationale for all the metrics as we did above and

Empir Software Eng (2022) 27:82 Page 21 of 47 82

instead define the concept of operator and operand in Neverlang and apply metrics from
literature. We apply several metrics to measure the complexity of Neverlang modules:
lines of code (LoC), McCabe’s cyclomatic complexity (CC) (McCabe 1976), Halstead’s
complexity metrics (Halstead 1977)—volume (V), difficulty (D), effort (E), development
time (T) and delivered bugs (B). Moreover we measure the maintainability of modules
through the Coleman’s maintainability index (MI) (Coleman 1992) and the normalized
derivative used in Visual Studio (VS) (Chen et al. 2017). We define the cyclomatic com-
plexity of a Neverlang module as the sum of the cyclomatic complexities of the semantic
actions in that module—thus a module with no actions will have a cyclomatic complexity
of 0. Halstead’s complexity measures are calculated upon the vocabulary—i.e., the num-
ber of operands and operators. Neverlang operators are module, imports, reference
syntax, :, ←,categories, in-buckets, out-buckets, role, []. Identifiers as
module names, labels, offsets, terminal and nonterminal symbols, attribute and role names
are instead operands. We define the set of operators in a module—both total (N1) and dis-
tinct (η1)—as the union of Neverlang operators and Java operators in each semantic action.
The same applies to operands—total (N2) and distinct (η2). Given this distinction, Hal-
stead’s complexity metrics and the maintainability index are then used with their original
meaning and computed with the conventional formulas. Please refer to the reported works
for a full overview of the complexity and maintainability metrics.

4 Evaluation

We setup an experiment assessing the quality in the design of LPLs with respect to the met-
rics presented in Section 3.4. The experiment tries to answer RQ1 by applying the proposed
metrics against a wide range of LPLs and RQ2 by comparing the effects of different design
strategies on the experimental results. On the basis of the collected data, we will also try to
define some best practices that should be applied when designing a language decomposition
with the goal of improving the maintainability of LPLs and their reuse.

4.1 Experimental setup

Hardware setup. All experiments were run on an 64 bits Arch Linux machine with an
Intel Core i7-1065G7 3.9GHz processor and a 16 GB RAM. The hardware setup affects the
measurement of the valid configurations lower bound estimation.

Software setup. Metrics were extracted from both Neverlang source code implementations
and compiled binaries using the Neverlang 2.1.2 runtime in combination with AiDE 2.0.1
and FeatureIDE 3.6.1. Henceforth, whenever we mention AiDE 2 we are referring to the
toolchain comprising Neverlang, AiDE and FeatureIDE, i.e., the integrated LPL development
environment introduced in Favalli et al. (2020) for brevity. AiDE 2 exploits the latest version
of the Neverlang language variability support (Vacchi et al. 2013) through an extension of
the original AiDE FM generation and management algorithms (Cazzola and Olivares 2016).

Data setup. The subject for this empirical evaluation is a collection of Neverlang LPLs,
including Neverlang itself. Each LPL is composed of a collection of Neverlang source files
implementing the language features and a FM in XML format compliant with FeatureIDE.
The considered LPLs can be logically classified into three groups: i) legacy LPLs created

 82 Page 22 of 47 Empir Software Eng (2022) 27:82

before the introduction of the design methodology, ii) sub-languages LPLs created apply-
ing the design methodology, and iii) refactored LPLs—i.e., LPLs redesigned to maximize
the reuse of language assets from other LPLs. This classification provides a first broad sub-
division of the LPLs based on the differences in their development process: comparing the
results of legacy LPLs with those of sub-languages we can evaluate how the design method-
ology affects the results. All the considered LPLs are shown in Table 2 along with some of
the metrics and general project information. For each LPL, Table 2 also reports the work in
which it was originally introduced, if any. The codebase contains a wide variety of different
LPL projects. Below, a brief description of each of the considered LPLs.

• Neverlang is a legacy LPL. implements the translator from Neverlang source to Java.
Neverlang is an LPL applying the bootstrapping technique (Cazzola and Vacchi 2013)

• LogLang is a legacy LPL. It implements a family of languages for scripting the tasks of
log maintenance in compliance with the logrotate linux tool

• Javascript is a legacy LPL. This LPL is a family of Javascript-based language
interpreters compliant to the ECMAScript 3 specification

Table 2 Feature model information for Neverlang LPLs considered in this experiment

sgifnoCstniartsnoC)citnames(serutaeFseludoM)snoitca(CoLmorFtcejorPyrogetaC

legacy

Neverlang Vacchi and Cazzola (2015) 1650 (349) 40 81 (41) 18 231935 †

LogLang Cazzola and Poletti (2010) 284 (38) 15 28 (18) 19 104532

Javascript Cazzola and Olivares (2016) 4199 (1399) 108 262 (121) 162 172169 †

State Machines Vacchi et al. (2013) 948 (247) 24 64 (37) 36 271356 †

Tyllegacy – 4981 (2335) 78 190 (123) 186 185459 †

Java Kühn and Cazzola (2016) 5488 (1233) 113 307 (169) 180 155522 †

Java Role Extension Kühn and Cazzola (2016) 202 (36) 5 19 (10) 0 3156

Object Teams Kühn and Cazzola (2016) 1036 (222) 16 55 (46) 10 288678 †

PowerJava Kühn and Cazzola (2016) 300 (77) 7 26 (14) 3 49193

Rava Kühn and Cazzola (2016) 309 (76) 5 20 (10) 1 2866

Java Relations Kühn and Cazzola (2016) 1026 (284) 17 61 (34) 11 284600 †

Rumer Kühn and Cazzola (2016) 1630 (466) 30 101 (60) 20 222048 †

sub-languages

Types – 686 (107) 44 44 (26) 0 274388 †

Expressions – 2471 (911) 84 113 (54) 1 206616 †

Variables – 493 (135) 18 44 (25) 12 283325 †

Errors – 0 (0) 0 2 (1) 0 2

Compilation Unit – 24 (4) 2 3 (1) 0 3

Arrays – 391 (113) 12 32 (19) 3 328545 †

Statements – 149 (20) 6 16 (8) 2 770

Control Flow – 385 (50) 12 29 (16) 0 333033 †

Functions – 321 (74) 7 27 (16) 7 83457

refactored

Desk Vacchi and Cazzola (2015) 63 (8) 3 8 (4) 2 15

Lambda – 107 (20) 4 10 (6) 0 150

Tylrefactored – 241 (64) 4 15 (9) 1 522

JS + Slicing – 5 (0) 1 2 (0) 0 2

Java + SM – 5 (0) 1 2 (0) 0 2

–476)868(1651656)8628(89372––llarevo

Values marked with a † represent a lower bound in the number of valid configurations. Note that “(actions)”
represents the absolute frequency of LoC in semantic actions out of the total LoC and “(semantic)” represents
the absolute frequency of semantic features out of the total number of features

Empir Software Eng (2022) 27:82 Page 23 of 47 82

• State Machines is a legacy LPL. The State Machines LPL defines a DSL for the
description of state machines that are then translated into Java code

• Tyllegacy is a legacy LPL. Products of the Tyllegacy LPL are DSLs for enterprise resource
planning (ERP) that translate the source code to different, more refined semantics
by feeding it to different language variants—with the same syntax and different
semantics—in succession: a Java main class first calls the import language variant—
which accepts a list of Tyl source files and builds the symbol table for all the declared
Tyl modules—and then the translation language variant that uses the information col-
lected by the import language variant to type check the program and finally transpile
to Java. Tyllegacy includes a QueryDSL that could be refactored out and distributed as a
standalone LPL extension. Notice that a refactored version of Tyl is also present

• Java is a legacy LPL. The Neverlang implementation of Java is a Java-to-Java source
code translator

• Java Role Extension, Object Teams, PowerJava, Rava, Java Relations, and Rumer are
legacy LPLs. Each of these LPLs implements a different language extension based
on Java that embrace the role-based programming paradigm (Kühn et al. 2014) to
distinguish between classes and role types.

• Types is a sub-languages LPL. Types contains the definition of all Java primitive types
(including numeric separators) with heavy emphasis on modularization

• Expressions is a sub-languages LPL. This LPL defines all the most used operators in
infix, prefix and postfix version with customizable operator priority

• Variables is a sub-languages LPL. This sub-language contains a portable definition of
identifiers, of a symbol table, as well as the concept of block and scope

• Errors is a sub-languages LPL. Errors in this LPL leverage Neverlang endemic slices to
build an error report at compilation phase. This LPL is a corner case of our evaluation
because it is totally composed of endemic slices. This will be our running example to
show how the metrics we introduced are currently not suited to evaluate endemic slices

• Compilation Unit is a sub-languages LPL. This LPL provides an entry point for the
parser of any language and the semantics for the generation of a Java class using the
syntax-directed translation technique (Aho et al. 1986) regardless of the underlying
syntax used for the compilation unit

• Arrays is a sub-languages LPL. The Arrays LPL implements arrays with a Python-like
syntax, as well as the slicing operator

• Statements is a sub-languages LPL. The Statements sub-language contains the glue
code to hook other sub-languages to statements and blocks of imperative programming
languages

• Control Flow is a sub-languages LPL. While, do-while, for loops, switches and if
statements are part of the Control Flow sub-language

• Functions is a sub-languages LPL. This LPL defines a function table as well as the
syntax and the semantics for the declaration and usage of functions

• Desk is a refactored LPL. This implementation of the Desk DSL performs heavy reuse
of the Types, Expressions and Variables sub-languages

• Lambda is a refactored LPL. Lambda applies a multi-phase strategy (similar to Tyllegacy)
to resolve any lambda expression by running a second interpreter that performs the
evaluation of the expressions. This interpreter is run only on a sub-tree of the abstract
syntax tree (AST)

• Tylrefactored is a refactored LPL. This version of Tyl reimplements some of the variants
of Tyllegacy while maximizing reuse of assets from sub-languages LPLs

 82 Page 24 of 47 Empir Software Eng (2022) 27:82

Listing 2 Accepted Java+SM syntax

• JS+Slicing is a refactored LPL. JS+Slicing is defined as a LPL which depends on
Javascript and Arrays and combines them to allow the use of the array slicing operator
in Javascript

• Java+SM is a refactored LPL. Java+SM combines Java and State Machines so that state
machine definitions are accepted as valid Java expressions (as in Listing 2).

The codebase above contains a wide variety of different projects. Notice that legacy
LPLs are obtained by the decomposition of a well-defined language. Instead, sub-languages
LPLs are not decompositions of any programming language per se, but rather describe
the variability of a family of sub-languages. As introduced in (Cazzola et al. 2018), every
sub-language contains a subset of language features from a so-called host language to sup-
port a well-defined programming aspect of that language. Therefore, a sub-languages LPL
describes the variability of a family of sub-languages: the features of a sub-languages LPL
are those supporting the same programming aspect across several host languages. Each
product of a sub-languages LPL is a sub-language and cannot be used alone; instead they
rely on the presence of other language features provided by other sub-languages (Cazzola
et al. 2018). Most LPLs are implemented either as families of interpreters or as fami-
lies of translators with Java back-end; most of the sub-languages LPLs implement both
interpreters and translators. The considered LPLs substantially differ in scope, including
minimal projects with just a small set of available language components as well as language
families with hundreds of language features and possibly millions of variants. The dataset
and the used scripts for running the experiment are available at Zenodo.6

Process. Neverlang was used to access source code information (lines of code, number
of modules, semantic actions and roles), FeatureIDE was used for any information regard-
ing the LPLs variability space (number of features, number of constraints, and number of
configurations), whereas AiDE 2 was used to compute cohesion, coupling, complexity and
maintainability metrics. All test results were stored in CSV format for further elaboration.
The data collection was automated by using a custom AiDE 2 wrapper without bringing
any changes to the Neverlang framework. As already discussed, legacy and sub-languages
projects apply completely different design strategies in their language decompositions. Most
notably sub-languages were developed using AiDE 2 and applying the design methodology
introduced in Section 3.4 whereas legacy projects were developed before the introduction
of AiDE 2 and of the design methodology. Legacy projects can therefore be used as a control
group to compare the evaluation results between projects that apply the design methodology

6https://doi.org/10.5281/zenodo.5236547

https://doi.org/10.5281/zenodo.5236547

Empir Software Eng (2022) 27:82 Page 25 of 47 82

against those that do not and to detect whether the methodology brings any improvement in
the quality of LPLs. The results of this comparison will be discussed in Section 4.5.

4.2 Results

General experiment statistics. We evaluated 26 LPLs: 12 legacy, 9 sub-languages, and
5 refactored. Among the several millions of valid configurations, we explicitly defined 53
languages: for each language, we performed the configuration process to deploy a language
variant; each of the 53 languages was tested to ensure its syntactic and semantic validity.
Table 2 summarizes the basic information of each LPL and the overall results. The codebase
amounts to a total of 656 modules and 27398 lines of Neverlang code—8268 of which
represent code in semantic actions and the remaining 19130 represent syntactic definitions
and other Neverlang constructs (mainly declaration, imports and roles). The Neverlang
modules implement 2447 semantic actions—3.73 actions per module on average. Each LPL
project is described by a FM generated by AiDE 2 for a total 1561 language features and 674
constraints; 868 of the total language features are semantic features—2.82 semantic actions
per language feature on average.

As seen in Section 2, Neverlang semantic actions are implemented in Java by default,
hence they can instantiate and use external Java classes; similarly endemic slices declare
instances of Java objects which will be globally accessible by any semantic action. These
classes are not considered in the experiment since they are used as black-boxes and their
cohesion, coupling, complexity and maintainability are comparable to those of external
libraries in object-oriented systems. These concepts are meaningful only on Neverlang mod-
ules where all the syntax and semantics of a language are implemented. Slices, bundles, and
languages are the main constructs for feature composition and their evaluation only affect
the amount of glue code needed in language definitions.

Feature model metrics. FeatureIDE limits to one hour the computation of any metrics on
the FM. Formally, the upper bound in valid configurations for a FM with n features, depth
2, and no cross-tree constraints is 2n; due to the properties of FMs introduced in Section 2,
the upper bound lowers when the depth of the FM or the number of constraints increases.
This means that the number of valid configurations increases exponentially with the number
of features (Batory et al. 2000) and that computing the exact number of valid configura-
tions is just not feasible for large projects. Table 2 highlights whether the reported number
of configurations is an exact value or a lower bound. The results show that FeatureIDE
can compute the exact number of valid configurations on FMs with 28 features at most.
Using better hardware and more efficient methods for counting the number of valid con-
figurations may reveal a closer approximation. However, we are not interested in an exact
result in this work. Finding the language variant that meets the user’s requirements in a
LPL with several hundreds of thousands of valid configuration is hard regardless of how
close the approximation is Pereira et al. (2016). It should also be considered that a high
number of configurations affects the viability of solutions to NP-hard problems such as slic-
ing (Krieter et al. 2016). Therefore, spending several hours and computational effort during
the daily development process of LPLs to determine an exact number of configurations
(or a better approximation) may be not worth it depending on the application. In our use
case the number of features suffices as an indicator of the growing size of the LPL: a high
number of features hints at the possibility of splitting the LPL in a multi-dimensional vari-
ability modeling approach (Rosenmüller et al. 2011). Still, there might be other use cases
in which an exact number of configurations is required. If that is the case, different product

 82 Page 26 of 47 Empir Software Eng (2022) 27:82

line verification approaches based on #SAT (Sundermann et al. 2021) and Binary Decision
Diagrams (BDDs) (Cordy et al. 2013) should be considered. On a side note, renames—i.e.,
the Neverlang way of stopping the ripple effect—are not expressed in the FM and cannot
be considered when computing valid configurations. An invalid configuration from the FM
perspective could still generate a valid language variant if the correct renames are defined.
As a result, the variability space of the language family is further widened by renames. The
effects of renames on the size of the variability space will be part of a future work.

We evaluated the presence of atomic sets in each LPL: being either all active or all inac-
tive in a given configuration, they behave as a single feature and thus represent excellent
refactoring points. Language components in atomic sets should be either merged or refac-
tored to eliminate the dependency. Atomic sets were present in only three legacy projects
thus we list them explicitly instead of showing them in Table 2 for brevity reasons:

– Javascript has 2 atomic sets of 2 features each (both associated to assignment
expressions);

– Java has 1 atomic set of 13 features (including all the mathematical expressions);
– Tyllegacy has 1 atomic set of 3 features (including variable declarations and assignments)

and 1 atomic set of 7 features (including all the mathematical expressions).

AiDE FMs contain an average of 0.21 constraints per feature. However, only 30 constraints
come from sub-languages and refactored LPLs whereas legacy LPLs contain 0.36 con-
straints per feature. The Pearson correlation coefficient (Pearson 1895) (PCC) between
number of features and number of constraints is 0.94 for legacy LPLs and 0.09 for sub-
languages LPLs. This relation is reported in Fig. 3. The result highlights a linear increase
in the number of constraints with respect to the size in legacy projects. We can conclude
that LPLs developed without applying our design methodology result in FMs with more
constraints and a high relative number of features appearing in constraints: the association
between these metrics and quality aspects such as low modifiability and high complexity
is discussed in this work (see Section 3.4) and evaluated in literature (El-Sharkawy et al.
2019). For the same reasons, the results presented in this paragraph are not used to answer

Fig. 3 Number of constraints in Neverlang LPLs with respect to their number of features

Empir Software Eng (2022) 27:82 Page 27 of 47 82

RQ1 and RQ2. Instead, the remainder of this section will focus on the properties of language
components introduced in Section 3.3 and their evaluation.

Cohesion and coupling. We assessed each of the LPLs with respect to each of the metrics
introduced in Table 1. First we can observe that some of these metrics are not applicable
to all modules. Co applies only to modules with an LCOA3 value of 1—i.e., completely
interconnected actions dependency graph—and with at least three semantic actions. Co
was applied to only 68 (10.57%) modules since Neverlang modules tend to be very small.
LCOA5 was applied to modules that refer at least one grammar attribute and defining two
semantic actions (438 modules or 66.77% of the total). Coh was applied to modules ref-
erencing at least one grammar attribute and defining one semantic action (560 modules or
85.37% of the total). Similarly, results are not available for the Errors LPL because it does
not define any Neverlang module but just endemic slices for the definition and collection
of compilation errors. We mentioned above that our metrics do not apply to the evalua-
tion of endemic slices; the results report this fact for completeness. Table 3 summarizes the
results for each LPL whereas Table 4 compares legacy and sub-languages LPLs. Refactored

Table 3 Cohesion and coupling on Neverlang modules for each LPL sorted by increasing LCOA1

Project LCOA1 LCOA2 LCOA3 Co LCOA5 Coh CBM

JS + Slicing 0.00 0.00 0.00 – – – 1.00

Java + SM 0.00 0.00 0.00 – – – 1.00

Compilation Unit 0.00 0.00 0.50 – – – 1.00

LogLang 0.20 0.20 1.07 – 1.00 0.95 11.53

Types 0.27 0.27 1.00 1.00 0.54 0.87 2.73

Desk 0.33 0.33 1.00 – 1.00 0.75 1.67

Expressions 0.35 0.11 2.63 1.00 0.28 0.90 3.12

Variables 0.39 0.39 1.11 – 0.77 0.80 2.33

Statements 0.50 0.50 1.17 – 0.50 0.87 1.00

Lambda 0.50 0.25 1.00 – 0.47 0.73 2.00

Javascript 1.40 0.70 2.41 – 0.23 0.89 13.94

Arrays 1.42 1.17 1.67 – 0.82 0.61 2.17

Control Flow 1.67 1.50 2.08 – 0.57 0.76 1.83

Functions 2.29 2.14 2.29 – 0.93 0.51 2.71

State Machines 3.29 0.92 2.25 1.00 0.65 0.69 4.92

PowerJava 4.57 2.86 3.57 – 0.76 0.51 4.71

Rava 4.80 3.40 5.00 – 0.58 0.53 3.80

Neverlang 5.05 2.62 3.02 – 0.68 0.66 7.35

Tylrefactored 9.00 6.00 2.50 – 0.65 0.66 2.50

Tyllegacy 9.24 5.42 1.45 0.76 0.28 0.80 8.97

Java Role Extension 11.20 7.80 5.20 – 0.71 0.49 1.00

Rumer 13.57 9.00 6.00 – 0.67 0.48 6.47

Java 23.41 13.88 2.50 0.92 0.54 0.64 17.90

Java Relations 25.65 17.06 7.12 – 0.64 0.50 6.65

Object Teams 90.19 81.81 9.12 – 0.61 0.55 4.38

Errors – – – – – – –

 82 Page 28 of 47 Empir Software Eng (2022) 27:82

Table 4 Comparison between sub-languages and legacy LPLs

Metric Overall Legacy Sub-languages

Mean Median σ Mean Median σ Mean Median σ

Features 60.04 28.50 77.21 101.17 62.50 93.99 34.44 29.00 31.32

Constraints 35.92 2.50 54.98 53.83 18.50 71.34 2.78 1.00 3.91

LCOA1 9.67 0.00 49.39 13.53 0.50 58.67 0.56 0.00 1.45

LCOA2 6.47 0.00 39.40 9.04 0.00 46.90 0.42 0.00 1.12

LCOA3 2.65 2.00 3.29 2.99 2.00 3.62 1.91 1.00 2.16

Co 0.85 1.00 0.29 0.84 1.00 0.29 1.00 1.00 0.00

LCOA5 0.48 0.60 0.37 0.48 0.60 0.35 0.48 0.50 0.45

Coh 0.74 0.70 0.27 0.71 0.62 0.27 0.83 1.00 0.24

CBM 8.80 5.00 9.46 11.46 9.00 10.14 2.70 2.00 2.13

LPLs do not yield significant results because—being specifically designed with the goal of
maximizing reuse—they mostly focus on glue code and contain a minimal set of features.
Table 4 shows how sub-languages consistently perform better on all metrics and highlights
how applying a design methodology can improve the quality of language modules.

Figure 4a, b, and c show the increase in lack of cohesion when the number of semantic
actions (or pairs of semantic actions) in a module increases. In particular, we applied the

Fig. 4 Cohesion (a-c) and coupling (d) with respect to the number of actions per module

Empir Software Eng (2022) 27:82 Page 29 of 47 82

Table 5 Summary of the result of complexity metrics on Neverlang LPLs sorted by decreasing MI

Project CC LoC V D E T B MI VS

JS+Slicing 0.00 5.00 5.00 4.00 172.08 9.56 0.01 125.37 73.31

Java+SM 0.00 5.00 5.00 4.00 172.08 9.56 0.01 125.37 73.31

Compilation Unit 1.00 12.00 12.00 7.00 863.91 47.99 0.03 104.45 61.08

Types 0.98 15.59 15.59 4.66 1090.56 60.59 0.03 98.59 57.66

LogLang 1.80 18.93 18.93 6.53 1925.15 106.95 0.05 93.64 54.76

Desk 1.00 21.00 21.00 8.33 2782.56 154.59 0.06 90.92 53.17

Statements 1.67 24.83 24.83 8.17 3334.29 185.24 0.07 87.96 51.44

Lambda 1.75 26.75 26.75 9.75 7093.58 394.09 0.11 84.10 49.18

Variables 2.44 27.39 27.39 8.61 8589.59 477.20 0.11 83.61 48.89

Control Flow 2.50 32.08 32.08 6.92 2954.60 164.14 0.06 83.01 48.54

Expressions 3.27 29.42 29.42 14.27 24029.29 1334.96 0.21 79.94 46.75

Neverlang 3.85 41.35 41.35 9.72 12058.23 669.90 0.15 74.35 43.48

Arrays 3.00 32.58 32.58 8.92 8136.50 452.03 0.12 79.77 46.65

State Machines 3.96 39.50 39.50 11.33 10387.41 577.08 0.13 76.64 44.82

Javascript 4.69 38.88 38.88 14.41 21270.55 1181.70 0.20 75.05 43.89

Java Role Extension 5.20 40.40 40.40 17.60 20477.80 1137.66 0.24 73.75 43.13

Functions 3.29 45.86 45.86 11.14 11165.46 620.30 0.15 72.57 42.44

PowerJava 4.57 42.86 42.86 14.00 21421.32 1190.07 0.23 72.09 42.16

Java 7.36 48.57 48.57 15.06 35645.70 1980.32 0.26 69.22 40.48

Rumer 7.80 54.33 54.33 21.57 49047.38 2724.85 0.37 66.17 38.70

Tylrefactored 4.00 60.25 60.25 10.25 21061.02 1170.06 0.22 65.48 38.29

Rava 5.40 61.80 61.80 20.80 48978.01 2721.00 0.41 63.50 37.13

Java Relations 7.65 60.35 60.35 21.94 57099.55 3172.20 0.43 63.50 37.13

Tyllegacy 8.45 63.86 63.86 17.73 50014.63 2778.59 0.36 62.74 36.69

Object Teams 9.38 64.75 64.75 21.00 54806.41 3044.80 0.42 61.72 36.09

Errors – – – – – – – – –

PCC between LCOA1 and the number of pairs of actions7 in a module and observed a strong
linear correlation of 0.97 highlighting the fact that the lack of cohesion scales quadratically
in the number of semantic actions. Conversely, there is no apparent relation between the
number of actions in a module and CBM (Fig. 4d). We can conclude that reducing the size
of a module in terms of its semantic actions can increase cohesion; increasing the size of a
module does not reduce coupling instead.

Code complexity and maintainability. Table 5 contains the results of the evaluation of
complexity and maintainability metrics on each LPL. McCabe’s CC validity is often dis-
cussed due to its theoretical weakness (Ebert et al. 2016); the initial proposed limit of 7 ± 2
CC has been relaxed over time and the belief is that CC is no more useful than a LoC met-
ric. In fact, Table 5 shows that average CC tends to be higher for projects in which average

7The number of pairs of actions in a module with n actions is

(
n

2

)
= n(n − 1)

2
.

 82 Page 30 of 47 Empir Software Eng (2022) 27:82

LoC is also high. Nonetheless CC is widely used for fault prediction in industrial produc-
tion and can be applied to the evaluation of other metrics such as MI. All the considered
LPL projects scored an average CC below 10, with the highest being Object Teams at 9.38
and the lowest Types at 0.98. The average CC is 3.80. Both JS+Slicing and Java+SM have
an average CC of 0.00 because they do not implement any semantic action and instead just
perform syntax checking on source code.

Halstead’s complexity measure source code properties by comparing them to physical
matter properties such as volume; volume is also used for the computation of MI and VS. For
each Halstead metric the lower the result, the better. More abstract measures such as volume,
difficulty and effort are translated into concrete estimations: required time to program and
number of delivered bugs.

MI collects the data from CC, LoC and Halstead metrics to estimate the maintainability
of a software system. According to Coleman (1992) a MI value above 85 (or the correspond-
ing VS=49.71) indicates that the software is highly maintainable, a value between 85 and
65 (or the corresponding VS=38.01) suggests moderate maintainability, and a value below
65 indicates that the system is difficult to maintain. Table 5 reports the MI results: LPLs in
green are highly maintainable, LPLs in yellow are moderately maintainable and LPLs in red
are difficult to maintain. Once again, sub-languages and refactored LPLs apply the design
methodology and show average to high maintainability. All the LPLs that are difficult to
maintain are part of the legacy project, on which the design methodology was not applied.

4.3 Principal component analysis

To answer RQ1 we performed a principal component analysis (PCA) on our results. Thanks
to the PCA we can extract the dimensions that have the most relevance on the results to
obtain the properties of Neverlang language decompositions. Each dimension is represented
by one of the metrics we evaluated on language components. Figure 5 depicts the results
of the PCA. To perform the PCA we discard any dimensions containing null values, leav-
ing 13 dimensions. We normalize the results and list the principal components. Then, we
discard the least relevant components according to the Kaiser rule (Kaiser 1960): only the
principal components with an eigenvalue above 1 are kept. The rationale is that any princi-
pal component with an eigenvalue below 1 is less relevant than the original dimensions. For
each principal component we determine the original dimensions that have the most impact
by analyzing the covariance matrix. This analysis reveals three principal components that
describe 88.9% of the variance in the dataset.

– PC1 (67.4% of the variance) is mainly determined by V, B, LoC, CC, E, T in order
of relevance. Other dimensions have lower impact. All the most relevant dimensions
described by PC1 are metrics used to evaluate complexity.

– PC2 (13.2% of the variance) is mainly determined by LCOA2, LCOA1 and LCOA3 in
order of relevance. Other dimensions have much lower impact. All the most relevant
dimensions described by PC2 are metrics used to evaluate cohesion.

– PC3 (8.3% of the variance) is mainly determined by VS and MI in order of relevance.
Other dimensions have much lower impact. All the most relevant dimensions described
by PC2 are metrics used to evaluate maintainability.

Notice that only three of the four properties of language decompositions that we introduced
in Section 3.3 are matched by a principal component. In fact, CBM is not among the most
relevant dimensions in any of the principal components. Instead, the variance of CBM is

Empir Software Eng (2022) 27:82 Page 31 of 47 82

Fig. 5 Results of the PCA performed on the subject systems and the considered metrics. Each element on
the x-axis is one of the principal components. On the y-axis, their respective eigenvalue

described by other dimensions. We can conclude that we are interested in three properties of
a language decomposition in Neverlang: complexity, cohesion and maintainability; coupling
has a limited impact on the variance of the results and is described by the other properties.
This result is relevant because CBM is the only metric among the considered ones that can
only be evaluated on a set of language components. In other words, we cannot evaluate
CBM of a single language component but only the CBM of a language component within
a LPL. The evaluation of standalone language components is enabled by the fact that the
coupling property does not have a big impact on the variance of the results.

4.4 Thresholds

To answer RQ2 we must determine a replicable method for the detection of design errors in
Neverlang LPLs. We use the metrics for the evaluation of language components: a low score
in any of these metrics will suggest a refactoring opportunity or the need for a review of the
design choices. For complexity and maintainability metrics we stick to the quality thresholds
defined in literature that we reported in Section 4.2. However, cohesion and coupling metrics
were first defined in Section 3.4 and therefore there is no prior work that investigates any
ideal value. For this reason, we perform a quartile analysis on our dataset to determine the
thresholds between well designed components and components with average design and
between components with average design and poorly designed components. The results
are reported in Fig. 6. We consider any modules with a score in the interquartile range
(IQR) to have average design. Values below the first quartile (Q1) indicate good design and
values above the third quartile (Q3) indicate bad design. The only exception is Coh, for

 82 Page 32 of 47 Empir Software Eng (2022) 27:82

Fig. 6 Evaluation results of several metrics and their quartiles. Some results are omitted for better readability.
Modules in the IQR is considered to have average design. Modules below Q1 are well designed and modules
above Q3 are badly designed or vice versa depending on the metric

Empir Software Eng (2022) 27:82 Page 33 of 47 82

which values above Q3 indicate good design and values below Q1 indicate bad design. This
analysis reveals the following thresholds.

Notice how it is relatively easy to keep lack of cohesion to a minimum in most modules.
For this reason, any result below the optimal value is considered average design on lack of
cohesion metrics.

4.5 Discussion

The experimental results outline the amount of data that can be inferred from a LPL with
relative ease. Now we summarize these results with respect to our research questions to
outline our contribution towards a design methodology for LPLs.

 82 Page 34 of 47 Empir Software Eng (2022) 27:82

Moreover, our evaluation showed that the Neverlang LPLs on which we applied our
design methodology performed better on average on all metrics.

4.6 Lessons learned

Now we provide an overview of the lessons learned from this evaluation and how the design
properties translate into design practices on Neverlang LPLs. Finally we show how our
contribution can be adapted to other language workbenches.

Scope of a language family. We found that the best trade-off in the number of configu-
rations that can be computed with AiDE 2 is met at 28 features: Table 2 shows that it was
possible to provide an exact number of configurations for LogLang—which contains 28
features—and for all the other LPLs with less than 28 features but we only got a lower
bound for Control Flow—which contains 29 features and for all the other LPLs with more
than 29 features. Of course this result is not objective and might change based on several
factors: machine performance, time limit provided by the tool, development requirements,
resolution algorithm and number of constraints. However, as a general rule a manageable
language decomposition should contain between 25 and 30 features to enable exhaustive
approaches and a small degree of FM analysis in AiDE 2.

Taming the complexity of LPLs. Constraints are a useful tool for guiding the configura-
tion process in LPLs but they should be wisely and sparingly used to avoid limiting the
language family’s richness. In fact our evaluation shows that Javascript, Tyllegacy and Java
are both the LPLs with the highest number of constraints (162, 186 and 180 respectively)
and the only LPLs containing any atomic sets, that we associated to lack of modifiabil-
ity in Section 3.4. In general, the design process should keep cross-tree constraints to

Empir Software Eng (2022) 27:82 Page 35 of 47 82

a minimum. Take LogLang as an example. It is an average size LPL with 28 features.
At the same time, it shows a relatively high number of constraints: 19 constraints, with
78.50% of its features appearing at least once in a constraint which is the highest out
of all the considered LPLs. The high relative number of features appearing in constraints
is indeed a design flaw since it affects the configuration process: when selecting a fea-
ture from the FM there is a high chance of causing the ripple effect. This result is in fact
empirically coupled with high CBM: Table 3 shows that LogLang has an average CBM of
11.53, which is the third highest value. This result hints that the design of the LogLang
language decomposition could be improved to reduce coupling, constraints and features
appearing in constraints. This can be achieved with a simple design practice. Take List-
ing 1 as an example: AiDE 2 defines a constraint between the Backup feature and any
feature providing the String nonterminal because the Backup syntax directly depends
on the String nonterminal. Given the FM from Fig. 1 this translates into the con-
straint SYNTAX Backup =⇒ SYNTAX LogLangTypes. Each LogLang configuration
containing the SYNTAX Backup feature must also contain the SYNTAX LogLangTypes
feature. Let us assume we extend the DSL by adding the expressions—i.e., the DSL
must perform backup operations between files whose path is not hardcoded in a string
but is the result of an expression instead. The approach would be to apply a rename
to the LogLang language: String→ Expression. However this rename changes all
the String nonterminals in all productions of the language to Expression nontermi-
nals which may not be desirable and may cause unexpected behavior or even syntax
clashes. Instead, we propose the refactoring in Listing 3. It uses dummy nonterminals
BackupSource and BackupTarget and delegates the hooking of dummies with con-
crete nonterminals to the language unit and, in particular, to the rename construct. This
results in the SYNTAX Backup =⇒ SYNTAX LogLangTypes constraint not being defined
by AiDE 2, reduces coupling accordingly and enables more variability in the LPL prod-
ucts. For instance, BackupTarget is the result of an expression in Listing 3 whereas
BackupSource behaves the same in both Listings 1 and 3. A manual inspection of the
LogLang FM shows that 7 out of the 19 constraints are of this kind thus applying this design
practice whenever possible would reduce the number of constraints to 12. We applied this
design practice to all LPLs created using our design methodology. As a result, the relative
number of features in constraints is 32.98% on average in legacy LPLs and only 12.28%
in sub-languages LPLs. The same applies to CBM: average CBM is 11.46 in legacy LPLs
and 2.70 in sub-languages. It is arguable that the refactoring from Listing 3 is more verbose
and reduces the readability of the system as a whole, however we introduced in Section 3.4
that a well designed language decomposition can be studied one module at a time. Dummy
nonterminals can be declared without knowledge of other modules since BackupSource
and BackupTarget are not intended to be used by any other module. The original imple-
mentation requires knowledge of at least two modules instead: the module requiring the
String nonterminal (Backup) and the module providing it (LogLangTypes). The
overhead of introducing dummy nonterminals is paid by the language deployer during the
configuration process since a viable language configuration requires all the dummy nonter-
minals to be renamed to concrete nonterminals. This problem, however, can be mitigated
by using the AiDE 2 language configuration editor that keeps track of all open nonterminals
and helps the language deployer figuring out if any additional renames are needed (Favalli
et al. 2020).

Increasing the number of semantic actions in a module negatively impacts their lack of
cohesion: Fig. 4a shows that LCOA2 and LCOA1 in particular have a good fit for a quadratic

 82 Page 36 of 47 Empir Software Eng (2022) 27:82

curve with respect to the number of semantic actions in a module; the number of semantic
actions is also an upper bound for LCOA3 by construction. Object Teams has the highest
lack of cohesion—90.13, 81.81 and 9.12 for LCOA1, LCOA2 and LCOA3 respectively—
associated to a high count of semantic actions per module—150 actions in 16 modules.
Once again, applying the design methodology can improve the results: sub-languages LPLs
contain 2.02 actions per module—41.56 actions in 20.56 modules—and present lower lack
of cohesion—0.56, 0.42 and 1.91 for LCOA1, LCOA2 and LCOA3 on average respectively
as shown in Table 4. On the other hand, Fig. 4d shows that increasing the number of semantic
actions does not benefit CBM either, despite the intuition that big modules should increase
the likelihood of dependent actions being in the same module. These results incentivize the
development of small Neverlang modules with a few semantic actions.

Low complexity and high maintainability are not always associated to low lack of cohe-
sion and coupling in modules. The most interesting case is LogLang: Table 3 shows high
CBM while Table 5 highlights high MI. This is achieved by the usage of endemic slices, as
shown in Listing 1: referencing endemic instances in Neverlang modules not only generates
a variability point in which the behavior of a semantic action can be changed by swapping
endemic slices in a configuration but also delegates the complexity of the algorithm to an
external Java class, rendering the semantic action easier to maintain as a result. Implement-
ing different roles and therefore different semantic actions in separate modules can also help
decreasing average complexity of the system since the CC of a module is the sum of the
CC of its semantic actions. A good language decomposition should then take advantage of
endemic slices while minimizing the number of referred attributes in semantic actions.

We expect all of the above design practices to improve the variability of the language
family and to ease the configuration process of language variants. Scaling to larger lan-
guage families should not be done by adding more features to the same FM, but applying a
multi-dimensional variability modeling approach (Rosenmüller et al. 2011) in which each
dimension describes the variability of a family of sub-languages instead. For instance,
we propose to improve the approach we propose in Favalli et al. (2020)—in which the
configuration process focuses on one LPL and the products of the LPL are language

Listing 3 Refactoring Listing 1 to reduce CBM and the constraints introduced by AiDE

Empir Software Eng (2022) 27:82 Page 37 of 47 82

units—by using the configuration editor to deploy bundle units from different LPLs and
then combining them into an interpreter or a compiler.

AiDE 2 can provide much information about the quality of language decomposition with-
out any change to the Neverlang compiler. All the data needed for this experiment can be
statically evaluated by accessing the Neverlang source code. Lack of cohesion, complexity
and maintainability metrics only need information about a single module hence the over-
head is negligible. Conversely, measuring CBM requires source-level information from all
the concrete features in a LPL and becomes more time-consuming as the number of fea-
tures increases. We limited the overhead thanks to AiDE 2 which already stores a reference
to each module into an environment object to build the FM. Moreover, the PCA performed
in Section 4.3 shows that CBM has low impact on the variance of the results: the evaluation
of CBM can be avoided altogether if the time requirements become prohibitive.

A shared design methodology. In our work, we focused only on Neverlang and the met-
rics defined in Section 3.4 are based on Neverlang concepts. However, other language
workbenches could apply the same approach we propose with minor changes. For instance,
JastAdd aspects contain keywords for inherited (inh) and synthesized (syn) attributes
which can be used to evaluate coupling and cohesion metrics. Similarly, in Melange the
semantics are defined with Kermeta8 aspects: if an aspect refers class attributes that were
defined in a different aspect then the two aspects are coupled. As long as the language
workbench provides tools to extract this information, our approach should be applicable
with minimal effort. However, we suggest performing a preliminary empirical study on a
case by case basis before applying our design methodology in production environments.
For instance, the metrics might need to be adapted to suit the specific quirks of the lan-
guage workbench. A major challenge in this regard is the level of granularity: Parnas’ work
on design methodologies emphasizes the concept of modularization (Parnas 1972). In Nev-
erlang the translation is natural because modules are a core concept in the development of
Neverlang LPLs, but each language workbench has a different approach to modularity. In
MPS (Völter and Pech 2012) the user manipulates the AST directly and each AST node is
an instance of a Concept. In Melange the aforementioned Kermeta aspects are woven with
Ecore9 meta-models into languages that can then be extended. Spoofax (Wachsmuth et al.
2014) is a collection of meta-languages, each dealing with a different aspect of language
development and each with a different approach to modularization. Given this premise, it
may be hard to define a design methodology shared among all language workbenches since
some of the concepts may not translate well from one another. Instead, the research should
focus on the definition of a shared baseline that is then instantiated differently for each
language workbench.

4.7 Threats to validity

Construct validity—the degree to which the independent variables and dependent
variables accurately measure the concepts they purport to measure (Wohlin et al.
2003). Part of the metrics we propose are adaptations from object-oriented metrics. It is
debatable that the Neverlang modularity model fits that of object-oriented programming,

8http://diverse-project.github.io/k3/
9https://wiki.eclipse.org.Ecore

http://diverse-project.github.io/k3/
https://wiki.eclipse.org.Ecore

 82 Page 38 of 47 Empir Software Eng (2022) 27:82

i.e., that the proposed metrics actually measure what they purport to measure. Their defini-
tion was kept as close as possible to the original metrics to limit the discrepancy. Intuitively
Neverlang modules fit the parallel with classes from object-orientation: classes are modules,
methods are semantic actions, and attributes are nonterminal attributes from the attribute
grammar. The evaluation shows reasonable results and the experiment was designed to
include both projects attempting to optimize those metrics and a control group of legacy
projects to which we did not apply any change before performing the evaluation. Most of
the metrics lack normalization and require comparison to assess anything about the quality
of software while others are not always applicable. In this work, we sticked as close as pos-
sible to the parallel between language feature and class: any inapplicability was addressed
in the evaluation and should non impact the results. Finally, our framework focuses on mod-
ules and does not address other components of the Neverlang development process, such as
slices, endemic slices, and Java source code. As previously stated, this should not influence
the results since slices are just glue code with no intrinsic dependency whereas endemic
slices and Java source are considered as black-box libraries on which we cannot improve.
CC theoretical validity is discussed (Ebert et al. 2016) but CC is used in industrial pro-
duction nonetheless and its value is needed to compute MI which was applied in the past
to the evaluation of SPLs (Aldekoa et al. (2006, 2008). We could measure only a lower
bound in the number of configurations thus one may question the validity of feature-oriented
metrics—whose results also highly depend on the application domain. However little can
be done to improve this since the number of configurations is known to scale exponentially
with the number of features. Instead we can leverage this limitation to suggest a refactoring
opportunity for LPLs by using a multi-LPL approach.

Internal validity—thedegree towhich conclusions canbedrawnabout the causal effect
of the treatments on the outcomes (Wohlin et al. 2003). Using a single framework
for both the development and the evaluation of software may indeed cause internal valid-
ity issues. As already stated, this problem is mitigated by the presence of a control group
and from the high variety of different LPLs we present. Due to the focus on maximizing
reusability, some of the LPLs are extremely small and could be classified as libraries rather
than LPLs but all the reported results are always weighted with respect to the number of
modules in the project, hence outliers should not excessively impact the results. It should
be noted that most projects were created by the same group of developers and that legacy
projects were implemented in previous versions of Neverlang hence some changes were
needed to adapt those projects to the current standard and to generate a FM using AiDE 2.
This could cause some bias in the results but we always applied the minimum required
changes without affecting neither syntactic definitions nor semantic actions.

External validity—the degree to which the results of the research can be generalized
to the population under study and other research setting (Wohlin et al. 2003). In this
study, we only used LPLs created with the Neverlang language workbench and the AiDE
LPL framework. We focused on concepts which are specific to Neverlang, such as, modules
and semantic actions. Hence the same concepts may not be applicable to other language
workbenches. However we tried to stick to elements of the attribute grammar formalism,
which should be applicable to several other language workbenches such as JastAdd (Hedin
and Magnusson 2003), for the definition of cohesion and coupling metrics. Instead, feature
variability aspects of our evaluation are mostly shared among the product line engineering.
If the language family is described by a FM then the same metrics can be applied with no
changes. The time limit imposed by FeatureIDE on the evaluation of the metrics may cause

Empir Software Eng (2022) 27:82 Page 39 of 47 82

different results to be obtained with respect to the number of configurations in subsequent
experiments or in different research settings. However, the improvement that a different
research setting could bring are limited due to the exponential nature of the quantity we
are trying to measure. The same result may change considerably also if renames were to be
considered in the computations of valid configurations in a future work, but renames can
only increase the number of valid configurations since no rename can turn a valid config-
uration invalid. The number of configurations is a lower bound for most considered LPLs,
thus it would still hold true if renames were added. The thresholds we used to answer RQ2
are based on a limited set of LPLs, which design quality is not determined independently
from the metrics by a domain expert. Therefore the results may not be generalizable to other
LPLs. To address this threat to validity we took Neverlang LPLs created by different authors
across several years without a shared vision or approach to language design. This should
ensure our sample is fairly representative of the real world population.

5 RelatedWork

Language workbenches and the development of DSLs are established research topics. Most
recent language workbenches (Erdweg et al. 2015)—such as, Spoofax (Wachsmuth et al.
2014), MPS (Völter and Pech 2012), MontiCore (Krahn et al. 2010) and Melange (Degueule
et al. 2015)—provide tools for system designers by addressing the problem of IDE sup-
port for modular DSLs. Monticore, Spoofax and MPS directly or indirectly provide LPL
engineering capabilities. Monticore supports language embedding and language inheritance
for compositional development of language families. Butting et al. (2018) presented an
approach to manage syntactic variability of extensible LPLs using Monticore. Spoofax sup-
ports generation of a wide variety of IDE tools for Eclipse and IntelliJ. Liebig et al. (2013)
used Spoofax alongside FeatureHouse for the representation and composition of language
features. MPS offers full IDE support and customizable abstract syntax tree manipulation.
MPS was used to develop mbeddr (Völter et al. 2012), a set of integrated and extensible
languages based on C for embedded software engineering with an IDE support. Mendez-
Acuña et al. presented several contributions to the topic of reuse in language workbenches:
in Jézéquel et al. (2014) the authors address the problems of programming languages evo-
lution and maintenance, as well as their verification and validation; in Méndez-Acuña et al.
(2016) they introduce PUZZLE as a tool for the detection of duplicates in syntactic and
semantic definitions in Melange. Melange is also supported by GEMOC Studio (Combemale
et al. 2017), used by language designers to build and compose DSLs and by domain design-
ers to coordinate their models. In most of these works LPLs are not directly addressed but
emerge from the development of language features, language variants and the tools they
provide for system designers. For instance, we could not find any work directly addressing
tool-supported LPL capabilities in JastAdd.

Thüm et al. (2011) indirectly address point 4 of the design methodology—i.e., a specifi-
cation technique for SPL products—by proof decomposition into features: all the features
in a configuration are associated with a partial proof in Coq, then the proof assistant checks
if the composed proof is valid thus verifying that the program variant is valid. Their work is
complementary to ours since they address an aspect of design methodologies that we did not
address in this contribution. On the same topic, CBS (Mosses 2019) provides an extensible
library of reusable language specification components based on fundamental programming
constructs (funcons).

 82 Page 40 of 47 Empir Software Eng (2022) 27:82

The topic of methods of detecting errors in design decisions is one as old as software
engineering itself and has been addressed in different ways in the framework of SPLs.
IncLing (Al-Hajjaji et al. 2016) and MoSo-PoLiTe (Oster et al. 2011) address the problem of
exponential increase in product configurations and apply pairwise testing to find a minimal
subset of configurations covering 100% pairwise interactions. Perrouin et al. (2012) apply
automated generation of test products using the t-wise SPL test adequacy criteria. Several
works (Bagheri and Gasevic 2011; Her et al. 2007; van der Hock et al. 2003; Zhang et al.
2008) evaluate SPLs using structural or service utilization metrics and Aldekoa et al. (2006,
2008) used the maintainability index to evaluate the maintainability of SPLs.

However, to the best of our knowledge, no previous work performs a similar evaluation
on LPLs nor defines a design methodology for LPLs. Despite being tailored to bottom-up
LPLs and attribute grammars, our approach introduces the definition of a design method-
ology for LPLs, comprehensive of the order in which decisions are made, what constitutes
good structure for a system, methods of detecting errors in design decisions and tools for
system designers.

6 Conclusion

In this article, we presented the introductory study of a design methodology for language
decompositions. Our original work (Favalli et al. 2020) focused on the order in which deci-
sions are made and on tools for system designers. With this contribution we substantially
extend the original paper by defining what constitutes good structure for a Neverlang LPL
and methods of detecting errors in design decisions. We validated our research by answer-
ing the research questions RQ1 and RQ2 through an empirical study. The results show that
AiDE 2 can be leveraged to compute several metrics adapted from the literature and supports
the early detection of design flaws in language decompositions and their components. The
results match our expectations: fine-grained language decompositions using abstractions in
their syntactic definitions show better cohesion, coupling, complexity and maintainability
results. Limiting the number of features in a LPL improves the accuracy of FM analysis
tools and eases the configuration process of language variants. Contrary to our expectations,
the PCA revealed that coupling is not a principal component in determining the variance of
the results and that CBM can be expressed in terms of other quantities.

Nonetheless, to improve the usability of our LPL development environment the imple-
mentation must be further optimized for better performance and extended to include more
Neverlang features. The metrics results that are now dumped to disk in CSV format should be
fully integrated with the LPL engineering environment. Finally, our future work will focus
on the evaluation of other Neverlang constructs, such as slices and endemic slices and on
point 4 of Parnas’ design methodology: specification techniques for Neverlang LPLs. Our
work will focus on the integration of theorem proving and contracts support for Neverlang
semantics, as well as their usage to determine the validity of a language specification.

Acknowledgments This work was partly supported by the MUR project “T-LADIES” (PRIN 2020TL3X8X).

Declarations

Conflict of Interests The authors declare that they have no conflict of interest.

Empir Software Eng (2022) 27:82 Page 41 of 47 82

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Aho AV, Sethi R, Ullman JD (1986) Compilers: Principles, techniques, and tools. Addison wesley, Reading
Al-Hajjaji M, Krieter S, Thüm T, Lochau M, Saake G (2016) Incling: Efficient Product-Line Testing Using

Incremental Pairwise Sampling. In: Schaefer I (ed) Proceedings of the 15th International Conference on
Generative Programming and Component Engineering (GPCE’16). ACM, Amsterdam, pp 144–155

Aldekoa G, Trujillo S, Mendieta GS, Dı́az O (2006) Experience Measuring Maintainability in Software
Product Lines. In: Riquelme Santos JC, Botella P (eds) Proceedings of the XI Jornadas de Ingenieria del
Software y Bases de Datos (JISBD’06). Barcelona, Spain, pp 173–182

Aldekoa G, Trujillo S, Sagardui G, Dı́az O (2008) Quantifying Maintainability in Feature Oriented Prod-
uct Lines. In: Tjiortjis C, Winter A (eds) Proceedings of the 12th European Conference on Software
Maintenance and Reengineering (CSMR’08). IEEE, Athens, pp 243–247

Apel S, von Thein A, Wendler P, Größlinger A, Beyer F (2013) Strategies for Product-Line Verification: Case
Studies and Experiments. In: Chang BH, Pohl K (eds) Proceedings of the 35th International Conference
on Software Engineering (ICSE’13). IEEE, San Francisco, pp 482–491

Bagheri E, Gasevic D (2011) Assessing the maintainability of software product line feature models using
strutural metrics. Softw Quality J 19(3):576–612

Basalaj W (2008) How to select a programming language subset to maximise software quality. In: Redmill
F, Anderson T (eds) Proceedings of the 16th Safety-Critical Systems Symposium (SSS’08). Springer,
Bristol, pp 43–56

Batory D, Cardone R, Smaragdakis Y (2000) Object-Oriented Frameworks and product lines. In: Donohoe
P (ed) Software product lines, SECS, vol 576. Springer, pp 227–247

ter Beek MH, Damiani F, Lienhardt M, Mazzanti F, Paolini L (2019) Static analysis of featured transition
systems. In: Duchien L, Thüm T (eds) Proceedings of the 23rd International Systems and Software
Product Line Conference (SPLC’19). ACM, Paris, pp 39–51

Benavides D, Segura S, Ruiz-cortés A (2010) Automated Analysis of Feature Models 20 Years Later: A
Literature Review. Inf Syst 35(6):615–636

Bettini L, Crescenzi P (2015) An eclipse IDE for teaching java--. In: Lorenz P, Cardoso J, Maciaszek LA, van
Sinderen M (eds) Proceedings of 10th International Conference on Software Technology (ICSOFT’15),
Communications in Computer and Information Science 586. Springer, Colmar, pp 63–78

Bezerra CIM, Andrade RMC, Monteiro JM (2015) Measures for quality evaluation of feature models. In:
Proceedings of the 9th International Conference on Software and Software Reuse (ICSR’15), Lecture
Notes in Computer Science 8919. Springer, Miami, pp 282–297

Briand L, Morasca S, Basili VR (1994) Defining and validating High-Level design metrics technical report
CS-TR, vol 3301. University of Maryland, Baltimore, MD, USA

Briand LC, Daly J, Porter V, Wüst J (1998) A comprehensive empirical validation of design measures
for Object-Oriented systems. In: Proceedings of the 5th International Symposium on Software Metrics
(METRICS’98). IEEE, Bethesda, pp 246–257

Briand LC, Daly J, Wüst J (1998) A Unified Framework for Cohesion Measurement in Object-Oriented
Systems. Empir Softw Eng 3(1):65–117

Butting A, Eikermann R, Kautz O, Rumpe B, Wortmann A (2018) Controlled and extensible variability of
concrete and abstract syntax with independent language features. In: Proceedings of the 12th Interna-
tional Workshop on Variability Modelling of Software Intensive Systems (VAMOS’18). ACM, Spain,
pp 75–82

Card DN, Church VE, Agresti WW (1986) An empirical study of software design practices. IEEE Trans
Softw Eng 12(2):264–271

http://creativecommons.org/licenses/by/4.0/

 82 Page 42 of 47 Empir Software Eng (2022) 27:82

Card DN, Page GT, McGarry FE (1985) Criteria for software modularization. In: Lehman MM, Hünke H,
Boehm B (eds) Proceedings of the 8th International Conference on Software Engineering (ICSE’85).
IEEE, London, pp 372–377

Cazzola W (2012) Domain-Specific Languages in few steps: The neverlang approach. In: Gschwind T,
De Paoli F, Gruhn V, Book M (eds) Proceedings of the 11th International Conference on Software
Composition (SC’12), Lecture Notes in Computer Science 7306. Springer, Prague, pp 162–177

Cazzola W, Chitchyan R, Rashid A, Shaqiri A (2018) μ-DSU: A Micro-Language Based
Approach to Dynamic Software Updating. Computer Languages. Syst Struct 51:71–89.
https://doi.org/10.1016/j.cl.2017.07.003

Cazzola W, Olivares DM (2016) Gradually Learning Programming Supported by a Growable Programming
Language. IEEE Trans Emerg Top Comput 4(3), 404–415. https://doi.org/10.1109/TETC.2015.2446192.
Special Issue on Emerging Trends in Education

Cazzola W, Poletti D (2010) DSL Evolution through composition. In: Proceedings of the 7th ECOOP
Workshop on Reflection, AOP and Meta-Data for Software Evolution (RAM-SE’10). ACM, Maribor

Cazzola W, Vacchi E (2013) Neverlang 2: Componentised language development for the JVM. In: Binder W,
Bodden E, Löwe W (eds) Proceedings of the 12th International Conference on Software Composition
(SC’13), Lecture Notes in Computer Science 8088. Springer, Budapest, pp 17–32

Chen C, Alfayez R, Srisopha K, Boehm B, Shi L (2017) Why Is It Important to Measure Maintainability,
and What Are the Best Ways to Do It? In: Proceedings of the 39th International Conference on Software
Engineering Companion (ICSE-companion’17). IEEE, Buenos Aires, pp 377–378

Chen Z (2000) Java card technology for smart cards: Architecture and programmer’s guide. Addison-Wesley,
Reading

Chidamber SR, Kemerer CF (1991) Towards a metrics suite for Object-Oriented design. In: Paepcke A (ed)
Proceedings of the 6th International Conference on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA’91). ACM, Phoenix, pp 197–211

Chidamber SR, Kemerer CF (1994) A metrics suite for object oriented design. IEEE Trans Softw Eng
20(6):476–493

Coleman D (1992) Assessing maintenaibility. In: Proceedings of the HP Software Engineering Productivity
Conference (SEPC’92). HP, Palo Alto, pp 525–532

Coleman D, Ash D, Lowther B, Oman P (1994) Using Metrics to Evaluate Software System Maintainability.
IEEE Comput 27(8):44–49

Colyer A, Rashid A, Blair G (2004) On the separation of concerns in program families technical report,
vol 107. Lancaster University, Lancaster

Combemale B, Barais O, Wortmann A (2017) Language engineering with the GEMOC studio. In: Proceed-
ings of the International Conference on Software Architecture Workshop (ICSAW’17). IEEE, Sweden,
pp 189–191

Combemale B, De Antoni J, Baudry B, France RB, Jézéquel JM, Gray J (2014) Globalizing Modeling
Languages. IEEE Comput 47:68–71

Cordy M, Classen A, Heymans P, Schobbens PY, Legay A (2013) Provelines: A Product Line of Verifiers
for Software Product Lines. In: Proceedings of the 17th International Software Product Line Conference
(SPLC’13 Workshops). ACM, Tokyo, pp 141–146

Crane ML, Dingel J (2005) UML Vs. Classical vs. Rhapsody Statecharts: Not All Models Are Created
Equal. In: Briand L, Williams C (eds) Proceedings of the 8th International Conference on Model Driven
Engineering Languages and Systems (MoDELS’05), Lecture Notes in Computer Science 3713. Springer,
Montego Bay, pp 97–112

Degueule T, Combemale B, Blouin A, Barais O, Jézéquel JM (2015) Melange: a Meta-Language for Mod-
ular and Reusable Development of DSLs. In: Di Ruscio D, Völter M (eds) Proceedings of the 8th
International Conference on Software Language Engineering (SLE’15). ACM, Pittsburgh, pp 25–36

Ebert C, Cain J, Antoniol G, Counsell S, Laplante P (2016) Cyclomatic Complexity. IEEE Softw 33(6):27–29
El-Sharkawy S, Yamagishi-Eichler N, Schmid K (2019) Metrics for analyzing variability and its implemen-

tation in software product lines: a systematic literature review. Inf Softw Technol 106:1–30
Erdweg S, Rendel T, Kästner C, Ostermann K (2011) Sugarj: Library-Based Syntactic Language exten-

sibility. In: Proceedings of the 26th ACM SIGPLAN Conference on Object-Oriented Programming
(OOPSLA’11). ACM, Portland, pp 391–406

Erdweg S, van der Storm T, Völter M, Boersma M, Bosman R, Cook WR, Gerrtsen A, Hulshout A, Kelly S,
Loh A, Konat GDP, Molina PJ, Palatnik M, Pohjonen R, Schindler E, Schindler K, Solmi R, Vergu V,
Visser E (2013) The state of the art in language workbenches. In: Erwig M, Paige RF, Van Wyk E (eds)
Proceedings of the 6th International Conference on Software Language Engineering (SLE’13), Lecture
Notes on Computer Science 8225. Springer, Indianapolis, pp 197–217

https://doi.org/10.1016/j.cl.2017.07.003
https://doi.org/10.1109/TETC.2015.2446192

Empir Software Eng (2022) 27:82 Page 43 of 47 82

Erdweg S, van der Storm T, Völter M, Tratt L, Bosman R, Cook WR, Gerritsen A, Hulshout A, Kelly A,
Konat G, Molina PJ, Palatnik M, Pohjonen R, Schindler E, Schindler K, Solmi R, Vergu V, Visser E, van
del Vlist K, Wachsmuth G, van der Woning J (2015) Evaluating and comparing language workbenches:
Existing results and benchmarks for the future. Comput Lang Syst Struct 44:24–47

Favalli L, Kühn T, Cazzola W (2020) Neverlang and featureIDE Just Married: Integrated Language Prod-
uct Line Development Environment. In: Collet P, Nadi S (eds) Proceedings of the 24th International
Software Product Line Conference (SPLC’20). ACM, Montréal, pp 285–295

Fenton NE (1991) Software metrics: a rigorous approach. Chapman & Hall, London
Fernández-Sáez MA, Chaudron MRV, Genero M (2018) An industrial case study on the use of UML in

software maintenance and its perceived benefits and hurdles. Empir Softw Eng 23(6):3281–3345
Fowler M (2005) Language Workbenches: The Killer-App for Domain Specific Languages? Martin Fowler’s

Blog. http://www.martinfowler.com/articles/languageWorkbench.html
Grönniger H, Rumpe B (2010) Modeling language variability. In: Calinescu R, Jackson E (eds) Proceed-

ings of the 16th Monterey Workshop on Modeling, Development and VErification of Adaptive Systems
(WMDVAS’10), Lecture Notes in Computer Science 6662. Springer, Redmond, pp 17–32

Halstead MH (1977) Elements of software science. Operating and programming systems. Elsevier
Hatton L (2007) Language Subsetting in an Industrial Context: A Comparison of MISRA C 1998 and MISRA

C 2004. Inf Softw Technol 49(5):475–482
Hedin G, Magnusson E (2003) Jastadd — an Aspect-Oriented compiler construction system. Sci Comput

Programm 47(1):37–58
Henry S, Selig C (1990) Predicting Source-Code Complexity at the Design Stage. IEEE Softw 7(2):36–44
Her JS, Kim JH, Hun OS, Rhew SY, Kim SD (2007) A Framework for Evaluating Reausability of Core Asset

in Product Line Engineering. Inf Softw Technol 49(7):740–760
Hermans F (2020) Hedy: a gradual language for programming education. In: Robins A, Ko A (eds)

Proceedings of ACM International Computing Education Research Conference. ACM, Dunedin
Hitz M, Montazeri B (1995) Measuring coupling and cohesion in Object-Oriented systems. In: Proceedings

of International Symposium on Applied Corporate Computing, Monterrey
van der Hock A, Dincel E, Medvidović N. (2003) Using service utilization metrics to assess the structure of

product line architectures. In: Proceedings of the 5th International Workshop on Enterprise Networking
and Computing in Healthcare Industry (IWENCHI’03). IEEE, Sidney, pp 298–308

ISO/IEC/IEEE International Standard (2017) Systems and software Engineering—Vocabulary. Standard.
24765–2017. https://doi.org/10.1109/IEEESTD.2017.8016712

Jézéquel JM, Méndez-Acuña D, Degueule T, Combemale B, Barais O (2014) When systems engineering
meets software language engineering. In: Boulanger F, Krob D, Morel G, Rousse JC (eds) Proceedings
of the 5th International Conference on Complex Systems Design & Management (CSDM’14). Springer,
Paris, pp 1–13

Kaiser HF (1960) The Application of Electronic Computers to Factor Analysis. Educ Psychol Measur
20(1):141–151

Kang KC, Cohen SG, Hess JA, Novak WE, Peterson AS (1990) Feature-Oriented Domain analysis (FODA)
feasibility study. Technical report, CMU/SEI-90-TR-21. Carnegie mellon university, Pittsburgh

Kim CHP, Bodden E, Batory D, Khurshid S (2010) Reducing configurations to monitor in a software prod-
uct line. In: Barringer H, Falcone Y, Finkbeiner B, Havelund K, Lee I (eds) Proceedings of the First
International Conference on Runtime Verification (RV’10), Lecture Notes in Computer Science 6418.
Springer, St. Julians, pp 285–299

Krahn H, Rumpe B, Völkel S (2010) Monticore: A Framework for Compositional Development of Domain
Specific Languages. Int J Softw Tools Technol Transfer 12(5):353–372

Krieter S, Schröter R, Thüm T, Fenske W, Saake G (2016) Comparing algorithms for efficient Feature-
Model slicing. In: Rabiser R, Xie B (eds) Proceedings of the 20th International Systems and Software
Product-Line Conference (SPLC’16). ACM, Beijing, pp 60–64

Krueger CW (2001) Easing the transition to software mass customization. In: van der Linden F (ed) Pro-
ceedings of the 1st International Workshop on Software Product-Family Engineering (PFE’01), Lecture
Notes in Computer Science 2290. Springer, Bilbao, pp 282–293

Kühn T, Cazzola W (2016) Apples and oranges: Comparing Top-Down and Bottom-Up language product
lines. In: Rabiser R, Xie B (eds) Proceedings of the 20th International Software Product Line Conference
(SPLC’16). ACM, Beijing, pp 50–59

Kühn T, Cazzola W, Olivares DM (2015) Choosy and picky: Configuration of language product lines. In:
Botterweck G, White J (eds) Proceedings of the 19th International Software Product Line Conference
(SPLC’15). ACM, Nashville, pp 71–80

http://www.martinfowler.com/articles/languageWorkbench.html
https://doi.org/10.1109/IEEESTD.2017.8016712

 82 Page 44 of 47 Empir Software Eng (2022) 27:82

Kühn T, Cazzola W, Pirritano Giampietro N, Poggi M (2019) Piggyback IDE support for language prod-
uct lines. In: Thüm T, Duchien L (eds) Proceedings of the 23rd International Software Product Line
Conference (SPLC’19). ACM, Paris, pp 131–142

Kühn T, Leuthäuser M, Götz S, Seidl C, Aßmann U (2014) A Metamodel Family for Role-Based Modeling
and Programming Languages. In: Combemale B, Pearce DJ, Barais O, Vinju J (eds) Proceedings of
the 7th International Conference Software Language Engineering (SLE’14), Lecture Notes in Computer
Science 8706. Springer, Västerås, pp 141–160

Lanza M, Marinescu R (2006) Object-Oriented Metrics in practice: Using Software Metrics to Characterize,
Evaluate, and Improve the Design of Object-Oriented Systems. Springer

de Lara J, Guerra E (2012) Domain-Specific Textual Meta-Modelling languages for model driven engineer-
ing. In: Vallecillo A, Tolvanen JP, Kindler E, Störrle H, Kolovos D (eds) Proceedings of the European
Conference on Modelling Foundations and Applications (ECMFA’12), Lecture Notes in Computer
Science 7349. Springer, Kgs. Lyngby, pp 259–274

Liebig J, Daniel R, Apel S (2013) Feature-Oriented Language families: a case study. In: Collet P, Schmid
K (eds) Proceedings of the 7th International Workshop on Variability Modelling of Software-intensive
Systems (VaMoS’13). ACM, Pisa

Lima LG, Soares-Neto F, Lieuthier P, Castor F, Melfe G, Fernandes JP (2016) Haskell in green land:
Analyzing the energy behavior of a purely functional language. In: Hassan AE, Zimmermann T, Di
Penta M (eds) Proceedings of the 23rd International Conference on Software Analysis, Evolution and
Reengineering (SANER’16). IEEE, Osaka, pp 517–528

Macro A, Buxton J (1987) The craft of software engineering. Addison-Wesley
Mann S, Rock G (2011) Control Variant-Rich models by variability measures. In: Czarnecki K, Eisenecker

UW (eds) Proceedings of the 5th Workshop on Variability Modeling of Software-Intensive Systems
(VaMoS’11). ACM, Namur, pp 29–38

McCabe TJ (1976) A complexity measure. IEEE Trans Softw Eng 2(4):308–320
Meinicke J, Thüm T, Schröter R, Benduhn F, Leich T, Saake G (2017) Mastering Software Variability with

featureIDE. Springer
Meinicke J, Thüm T, Schröter R, Krieter S, Benduhn F, Saake G, Leich T (2016) FeatureIDE: Taming the

Preprocessor Wilderness. In: Procedings of the 38th international conference on software engineering
companion (ICSE’16-companion). IEEE, Austin, pp 629–632

Méndez-Acuña D, Galindo JA, Combemale B, Blouin A, Baudry B (2016) Puzzle: A Tool for Analyzing and
Extracting Specification Clones in DSLs. In: Kapitsaki GM, Santana de Almeida E (eds) Proceedings of
the International Conference on Software Reuse (ICSR’16), Lecture Notes in Computer Science 9679.
Springer, Limassol, pp 393–396

Méndez-Acuña D, Galindo JA, Combemale B, Blouin A, Baudry B (2017) Reverse engineering language
product lines from existing DSL variants. J Syst Softw 133:145–158

Méndez-Acuña D, Galindo JA, Degueule T, Combemale B, Baudry B (2016) Leveraging Software Product
Lines Engineering in the Development of External DSLs: A Systematic Literature Review. Comput Lang
Syst Struct 46:206–235

Mosses PD (2019) Software Meta-Language Engineering and CBS. J Comput Lang:50 39–48
Ng K, Warren M, Golde P, Hejlberg A (2011) The roslyn project: Exposing the c# and VB compiler’s code

analysis. White paper, Microsoft
Oster S, Zorcic I, Markert F, Lochau M (2011) Moso-polite—tool Support for Pairwise and Model-Based

Software Product Line Testing. In: Czarnecki K, Eisenecker UW (eds) Proceedings of the 5th Workshop
on Variability Modeling of Software-Intensive Systems (VaMoS’11). ACM, Namur, pp 79–82

Parnas DL (1971) Information Distribution Aspects of Design Methodology. Inf Process:71 339–344
Parnas DL (1972) On the criteria to be used in decomposing systems into modules. Commun ACM

15(12):1053–1058
Pearson K (1895) Notes on Regression and Inheritance in the Case of Two Parents. Proc R Soc Lond 58:240–

242
Pereira JA, Krieter S, Meinicke J, Schröter R, Saake G, Leich T (2016) FeatureIDE: Scalable Product Con-

figuration of Variable Systems. In: Kapitsaki GM, Santana de Almeida E (eds) Proceedings of the
15th International Conference on Software Reuse (ICSR’16), Lecture Notes in Computer Science 9679.
Springer, Limassol, pp 397–401

Perepletchikov M, Ryan C, Frampton K, Tari Z (2007) Coupling metrics for predicting maintainability
in Service-Oriented designs. In: Proceedings of the 18th Australian Software Engineering Conference
(ASWEC’07). IEEE, Melbourne, pp 329–340

Perrouin G, Oster S, Sen S, Klein J, Baudry B, le Traon Y (2012) Pairwise Testing for Software Product
Lines: Comparison of Two Approaches. Softw Qual J 20(3):605–643

Empir Software Eng (2022) 27:82 Page 45 of 47 82

Pinto G, Castor F, David LY (2014) Understanding energy behaviors of thread management constructs. In:
Millstein T (ed) Proceedings of the ACM International Conference on Object Oriented Programming
Systems Languages and Applications (OOPSLA’14). ACM, Portland, pp 345–360

Pohl K, Böckle K, van der Linden FJ (2005) Software product line engineering: Foundations, Principles and
Techniques. Springer

Pressman RS (2005) Software Engineering: A Practitioner’s Approach, 6th edn. McGraw-Hill
Rosenmüller M, Siegmund N, Thüm Saake,G (2011) Multi-Dimensional Variability Modeling. In: Czarnecki

K, Eisenecker UW (eds) Proceedings of the 5th Workshop on Variability Modeling of Software-Intensive
Systems (VaMoS’11). ACM, Namur, pp 11–20

Schmid K (2002) A comprehensive product line scoping approach and its validation. In: Magee J, Young
M (eds) Proceedings of the 24th International Conference on Software Engineering (ICSE’02). ACM,
Orlando, pp 593–603

Sundermann C, Nieke M, Bittner PM, Łovasz-bukvova H (2021) Applications of #SAT Solvers on Feature
Models. In: Grünbacher P, Seidl C, Dhungana D (eds) Proceedings of the 15th International Working
Conference on Variability Modelling of Software-Intensive Systems (VaMoS’21). ACM, Krems, pp 1–10

Tavares E, Silva B, Maciel P (2008) An environment for measuring and scheduling Time-Critical embedded
systems with energy constraints. In: Cerone A, Grüner S (eds) Proceedings of the 6th International
Conference on Software Engineerig and Formal Methods (SEFM’08). IEEE, Cape Town, pp 291–300

Thüm T, Kästner C, Benduhn F, Meinicke J, Saake G, Leich T (2014) FeatureIDE: An Extensible Framework
for Feature-Oriented Software Development. Sci Comput Programm 79(1):70–85

Thüm T, Kästner C, Erdweg S, Siegmund N (2011) Abstract features in feature modeling. In: Schaefer I, John
I, Schmid K (eds) Proceedings of the 15th International Systems and Software Product-Line Conference
(SPLC’11). ACM, Münich, pp 191–200

Thüm T, Schaefer I, Kuhlemann M, Apel S (2011) Proof composition for deductive verification of software
product lines. In: Proceedings of the International Conference on Software Testing Verification and
Validation Workshop (ICSTW’11). IEEE, Berlin, pp 270–277

Tiwari V, Malik S, Wolfe A (1994) Power Analysis of Embedded Software: A First Step Towards Software
Power Minimization. IEEE Trans Very Large Scale Integr Syst 2(4):437–445

Tratt L (2008) Domain specific language implementation via Compile-Time Meta-Programming. ACM Trans
Programm Lang Syst 30(6):31:1–31:40

Trefethen AE, Thiyagaligam J (2013) Energy-Aware Software: challenges, Opportunities and Strategies. J
Comput Sci 4(6):444–449

Troy DA, Zweben SH (1981) Measuring the quality of structured designs. J Syst Softw 2(2):113–120
Vacchi E, Cazzola W (2015) Neverlang: a framework for Feature-Oriented language development. Comput

Lang Syst Struct 43(3):1–40. https://doi.org/10.1016/j.cl.2015.02.001
Vacchi E, Cazzola W, Combemale B, Acher M (2014) Automating variability model inference for

Component-Based language implementations. In: Heymans P, Rubin J (eds) Proceedings of the 18th
International Software Product Line Conference (SPLC’14). ACM, Florence, pp 167–176

Vacchi E, Cazzola W, Pillay S, Combemale B (2013) Variability support in Domain-Specific language
development. In: Erwig M, Paige RF, Van Wyk E (eds) Proceedings of 6th International Conference
on Software Language Engineering (SLE’13), Lecture Notes on Computer Science 8225. Springer,
Indianapolis, pp 76–95

de Vasconcelos JB, Kimble C, Carreteiro P, Rocha A (2017) The Application of Knowledge Management to
Software Evolution. Int J Inf Manag 37(1):1499–1506

Visser E, Wachsmuth G, Tolmach A, Neron P, Vergu V, Passalaqua A, Konat G (2014) A language designer’s
workbench: a One-Stop-Shop for implementation and verification of language designs. In: Black AP,
Krishnamurthi S, Bruegge B, Ruskiewicz JN (eds) Proceedings of the International Symposium on New
Ideas, New Paradigms, and Reflections on Programming & Software (Onward!’14). ACM, Portland,
pp 95–111

Völter M (2011) Language and IDE modularization and composition with MPS. In: Lämmel R, Saraiva
JA, Visser J (eds) Proceedings of the 4th International Summer School on Generative and Transforma-
tional Techniques in Software Engineering (GTTSE’11), Lecture Notes in Computer Science, vol 7680.
Springer, Braga, pp 383–430

Völter M, Pech V (2012) Language modularity with the MPS language workbench. In: Proceedings of the
34th International Conference on Software Engineering (ICSE’12). IEEE, Zürich, pp 1449–1450

Völter M, Ratiu D, Schätz B, Kolb B (2012) mbeddr: an Extensible C-Based Programming Language and
IDE for Embedded Systems. In: Proceedings of the 3rd Annual Conference on Systems, Programming,
and Applications: Software for Humanity (SPLASH’12). ACM, Tucson, pp 121–140

Wachsmuth GH, Konat GDP, Visser E (2014) Language design with the spoofax language workbench. IEEE
Softw 31(5):35–43

https://doi.org/10.1016/j.cl.2015.02.001

 82 Page 46 of 47 Empir Software Eng (2022) 27:82

Wende C, Thieme N, Zschaler S (2009) A Role-Based Approach towards Modular Language Engineering.
In: van den Brand M, Gašević D, Gray J (eds) Proceedings of the 2nd International Conference on
Software Language Engineering (SLE’09), Lecture Notes in Computer Science 5969. Springer, Denver,
pp 254–273

White J, Hill JH, Gray J, Tambe S, Gokhale A, Schmidt DC (2009) Improving Domain-specific Language
Reuse with Software Product-Line Configuration Techniques. IEEE Softw 26(4):47–53

Wohlin C, Höst M, Henningsson K (2003) Empirical research methods in software engineering. In: Conradi
R, Wang AI (eds) Empirical Methods and Studies in Software Enginering: Experiences from ESERNET,
LNCS 2765. Springer, pp 7–23

Yau SS, Collofello JS, MacGregor T (1978) Ripple effect analysis of software maintenance. In: Proceed-
ings of the 2nd International Computer Software and Applications Conference (COMPSAC’78). IEEE,
Chicago, pp 60–65

Zhang T, Deng L, Wu J, Zhou Q, Ma C (2008) Some metrics for accessing quality of product line architec-
ture. In: Proceedings of the International Conference on Computer Science and Software Engineering
(ICCSSE’08). Wuhan, China, pp 500–503

Zschaler S, Kolovos DS, Drivalos N, Paige RF, Rashid A (2009) Domain-Specific Metamodelling languages
for software language engineering. In: van den Brand M, Gašević D, Gray J (eds) Proceedings of the
2nd International Conference on Software Language Engineering (SLE’09), Lecture Notes in Computer
Science 5969. Springer, Denver, pp 334–353

Zschaler S, Sánchez P, Santos J, Alférez M, Rashid A, Fuentes L, Moreira A, Araújo J, Kulesza U (2009)
VML*—A family of languages for variability management in software product lines. In: van den Brand
M, Gašević D, Gray J. (eds) Proceedings of the 2nd International Conference on Software Language
Engineering (SLE’09), Lecture Notes in Computer Science 5969. Springer, Denver, pp 82–102

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Empir Software Eng (2022) 27:82 Page 47 of 47 82

Walter Cazzola is an Associate Professor in the Computer Science
Department of the Université? degli Studi di Milano, Italy and the
Chair of the ADAPT laboratory. Dr. Cazzola designed the mChaRM
framework, @Java, [a]C#, Blueprint programming languages and
he is involved in the designing and development of the Neverlang
language workbench. He also designed the JavAdaptor dynamic soft-
ware updating framework and its front-end FiGA. He has written
over 100 scientific papers. His research interests include (but are not
limited to) software maintenance, evolution and comprehension, pro-
gramming methodologies and languages. He served on the program
committees or editorial boards of the most important conferences and
journals about his research topics. He is associate editor for the Jour-
nal of Computer Languages published by Elsevier. More information
about Dr. Cazzola and all his publications are available at https://
cazzola.di.unimi.it and he can be contacted at cazzola@di.unimi.it for
any question.

Luca Favalli is currently a Computer Science PhD student at Univer-
sité degli Studi di Milano. He is involved in the research activity of the
ADAPT Lab and in the development of the Neverlang language work-
bench and of JavAdaptor. His main research interests are software
design, software (and language) product lines and dynamic software
updating with a focus on how they can be used to ease the learning of
programming languages. He can be contacted at favalli@di.unimi.it
for any question.

https://cazzola.di.unimi.it
https://cazzola.di.unimi.it

	Towards a recipe for language decomposition: quality assessment of language product lines
	Abstract
	Introduction
	Background
	Software product lines and feature modeling with FeatureIDE
	Language product lines
	Neverlang and AiDE in a nutshell

	Towards a Design Methodology for Language Product Lines
	The LPL Engineering Process—Point 1
	The LPL engineering environment—Point 5
	Properties of a well designed language decomposition—Point 2
	Properties of a well designed variability space.
	Properties of well designed language components

	Metrics for the detection of design errors in LPLs—Point 3
	Metrics for the evaluation of variability spaces.
	Metrics for the evaluation of language components.

	Evaluation
	Experimental setup
	Hardware setup.
	Software setup.
	Data setup.
	Process.

	Results
	General experiment statistics.
	Feature model metrics.
	Cohesion and coupling.
	Code complexity and maintainability.

	Principal component analysis
	Thresholds
	Discussion
	Lessons learned
	Scope of a language family.
	Taming the complexity of LPLs.
	A shared design methodology.

	Threats to validity
	Construct validity—the degree to which the independent variables and dependent variables accurately measure the concepts they purport to measure Wohlin03.
	Internal validity—the degree to which conclusions can be drawn about the causal effect of the treatments on the outcomes Wohlin03.
	External validity—the degree to which the results of the research can be generalized to the population under study and other research setting Wohlin03.

	Related Work
	Conclusion
	References

