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Abstract. Hamiltonian dynamics is recast in a timeless formalism in which parameter time
o is derived from the generalized coordinates, the Hamiltonian invariance on trajectories,
and the Maupertuis principle. In order to define a time variable 7 in macroscopic systems,
the cyclicity in the phase space replaces the self consistent assumption of time periodicity
generally adopted for real clocks. Generalized clocks are defined in physical systems of sufficient
complexity. Under suitable assumptions, physical systems can be separated in a subsystem
to be dynamically described, and another cyclic subsystem which has the role of generalized
clock. The latter provides a discrete approximation of the parameter time, called metric time.
The stability prescription of generalized clocks guarantees that dynamics is expressed by the
same equations of motion parametrized by the parameter time, in terms of metric time at the
desired approximation. The timeless Hamiltonian framework, together with the definition of
generalized clock, provide a ground to account the fundamental timelessness of nature, and the
experimental evidence of time evolution in macroscopic systems experienced by the observers.

1. Introduction

After the pioneering work of De Witt [1], timeless approach to fundamental physics [2] has
recently obtained a renewed interest[3, 4, 5]. The odd nature of time arises from a large number
of reasons, first of all the discrepancy between the satisfactory description of dynamics in terms
of time evolution, and the fundamental timelessness of general relativity and canonical quantum
gravity [1, 4, 5, 6, 7, 8, 9]. Furthermore, several contradictions emerge when different theories
are compared, like classical and quantum mechanics, for which time is an external parameter to
generate a strongly continuous unitary group of transformations U(1) [10], special and general
relativity, quantum field theory, where time is the negative metric signature coordinate of a
4-dimensional differential manifold [11, 12] and canonical quantum gravity. On the other hand,
in metrology clock time is a metric time operatively defined at rest. Time is also sometimes
associated to the concept of irreversibility and entropy [13, 14, 15]. Such variety of properties
and domains of applicability reveals the lack of a satisfactory and universal well posed definition
of time.

When considering the problem of the nature of time, there are implicitly two distinct problems
to address. The first is about whether or not time must be included in the list of fundamental
quantities of Nature, well defined at all the possible energy and length scales. The second is
the description of the emergence of time metrology based on operatively defined clocks, and the
explanation of time evolution experienced by an observer. The present work strongly supports
the view that time is not a fundamental quantity of Nature. The starting point is to observe that
time is used both to indicate the parameter used in dynamic equations to describe change in the
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phase space, and the discretized quantity measured by some macroscopic instruments treated
as reference clocks. In most of the scientific literature, the two are implicitly considered the
same quantity. Hamiltonian mechanics, which governs the dynamics of generalized coordinates
or quantum fields, can be rigorously well defined without the concept of time. As a consequence,
it becomes apparently even more difficult to solve the second problem, because time disappears
from the list of observable quantities, even if there is a field of metrology entirely devoted to
time and frequency measurements conceptually based on the common experience of time.

A good theoretical model capable to be predictive and satisfactory without time answers only
partly to the problem of the nature of time: it says what time is not [7]. In the present work
the answer to the first problem is addressed, with a particular attention in the definition of the
time parameter in a Hamiltonian system in terms of other quantities. Next, also the second part
of the problem is addressed, in order to account the experimentally measured and experienced
clock time. The connection between the experimental clock time and the theoretical parameter
time is the main goal of the present contribute.

As already pointed out by Newton itself, the fact that time is not a measurable quantity
[1, 16, 17, 18] can be clarified as follows. One observes that a clock measures with some
uncertainty an hypothetical 'true’ external time ¢ as a classical quantity 7;(¢) where the index 4
spans the clocks. The other observable quantities O;(t) are detected as O;(T1), Oj(T3),.... where
j spans the observables. However, the clock used to label the dynamical quantities of the system
is in turn object of a measurement which establishes its value, accuracy and stability, by means
of another clock. Consequently, being the second clock subject to the same check by the first,
a two-clock time measurement is required to determine the fractional frequency stability from
the Allan variance of both. The reference standard is expressed by T5(T) and T'(T3),[7, 19]
without any explicit use of . In other words, a clock is not capable to measure such hypothetical
external parameter time, but only self consistent quantities assisted by the recursive definition
of period.

In the following we addresses the problem of explaining the macroscopic correspondence of
clock time with parameter time of dynamics and we provide a universal definition of time for a
Hamiltonian system in terms of generalized coordinates change in the phase space.

I will concentrate on a variational approach which enables the introduction of time in a
physical theory in two steps. The method provides a parameter, called parameter time, which
does not correspond to a specific observable quantity. However it can be put in correspondence
with measurable quantities via cyclic phenomena. This is achieved by dividing a system in
opportune subsystems. The present approach partially recalls the distinction presented in Ref.[4]
between parametric (proper) time and discrete physical time. Differently from there, here no
compactified extra-dimensions are required to introduce a detector operator, neither a lapse
function or other parameters to appear in the Lagrange function.

In Section II the definition of parameter time in the framework of timeless Hamiltonian
theories is presented. Time emerges as the natural parameter after one imposes a variational
principle on a timeless action. The approach is applied in the subsection 2.1 to classical
mechanics, and extended to quantum field theory in the subsection 2.2. Section III is devoted
to connect the parametric time with clock metric time measured by means of realistic devices.
In Section IV the conclusions are briefly discussed.

2. Parameter time in a Hamiltonian timeless scenario

The Maupertuis [20, 21, 22] action principle generates the dynamics without explicitly using
time in the Hamilton. The interest is restricted to closed systems, so parameter independent
Hamiltonians are considered. The variational principle, the Hamiltonian and the generalized
coordinates are consequently expressed in a timeless framework. In the following I will show
that the imposition of both the variational principle and the stationarity of the Hamiltonian
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individuate a special parametrization among all the possible parametrizations, which is the one
commonly used to describe dynamics. In the following the corresponding parameter is indicated
by o and corresponds to the parameter 7 of Ref. [20], and to parameter time ¢ of iz in ordinary
Hamiltonian theory. The main difference from the latter is given by its derivation in a timeless
framework. The capability of defining Hamiltonian mechanics without the concept of time will
require consequently that some extra hypothesis are assumed in order to provide a definition
of clock time. Its correspondence with the parameter ¢ is defined and discussed in the next
section.

2.1. Parameter time in timeless classical mechanics

The Hamilton equations are expressed in timeless formalism from a variational principle on
asynchronous varied trajectories. The time independent Hamiltonian H(p,q) is a function of
the generalized three dimensional coordinates p and q. The independence of H from time
reduces the degrees of freedom to 2n — 1. It is necessary to assume that it exists a set of
trajectories in the coordinates space y for which H is constant.

In order to determine the parametrization imposed by the stationarity of the action, a generic
parametrization of the points of the trajectories is first assumed. Such arbitrary parametrization
A gives ¢; = ¢i(\) and p; = p;(\) where all the functions belong to C? on the interval
[A4,AB] € R. The Hamiltonian H(p,q) does not depend explicitly on A. In order to impose
a variational principle on the trajectory it is now considered a variation that is normally used
to impose asynchronous varied trajectories in canonical formalism to derive Hamilton equation
from the Maupertuis principle. A new parametrization ¢ of the generalized coordinates and of
X is now defined, under the condition that 2 # 0 on [04,05].

Such distinction between A and o represents a subtle principle and technical difference from
the approach of Ref.[23, 24]. The stationarity of the action is imposed:

A= [ pidg (1)

where the Einstein summation on the repeated indexes is adopted and ¢ = 1,2,3. The
Maupertuis variational principle reads

SA =6 / pidg; = 0 2)

The imposition of the stationarity of the action is given by the variation of the trajectories.
Neglecting as usual second order perturbations and integrating by parts where necessary, one

has:
OH\ ! OH\ !
do = (31%’) dgi =~ (3%) api ®)

under the hypothesis that (g—g) # 0 and (?)_Z) # 0. They differ from the Hamilton equations
since o does not represent the macroscopic metric time. On the contrary, it only represents the
natural parameterization of the system imposed by the energy conservation. o has nothing to
do with the quantity measured by clocks.

2.2. Parameter time in quantum field theory

The most convenient formalism to extend the action principle to general relativity and to
quantum mechanics is the extended presymplectic approach [7]. There, dynamics is expressed
on the unparameterized curve  in the relativistic configuration space C' = R x Cj, where C is
the m-dimensional space of coordinates ¢*, which extremizes the integral
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Aly] = / 0 (4)

where

0 = pidg" + pydt (5)

is the natural one-form defined on the cotangent space T*C and the constraint

H(qi,tapiapt) =0 (6)

where H is the relativistic Hamiltonian. In the extended presymplectic formalism, the
variational principle reads:

5,4[7]:5/9:0 (7)
v

Such principle allows a quantum extension, which goes beyond the scopes of the present
section. Both the lagrangian and the extended presymplectic formalism consider time as a part
of the manifold where physics is defined. Time t or zy assumes a role comparable to that of
space, even when starting with an unparameterized curve as happens in presymplectic approach.
Technically, since the action admits invariance under reparameterization of time (spacetime in
relativistic domain), it does not represent a problem. Here, in order to avoid the use of the
concept of time, the configuration space is only Cj instead of C' = R x Cj and the extended
configuration space will only include fields and their conjugate momenta (generalized fields).

A Hamiltonian operator H = [d3z#H is given, where H is the Hamiltonian density. The
Hamiltonian operator H acts as a constraint for quantum field dynamics. The action, in terms
of a quantum fields 9;(z) and the conjugate coordinates 7;(z), can be re-expressed as:

A= /d%/diﬁmi (8)

where the Einstein summation on the repeated indexes is adopted. The roman index spans
on the space dimensions 1, 2, and 3. To define time as the natural parameterization of change in
the generalized coordinate space pq, the points of the trajectories f(g;,p;) = 0 are replaced in
QFT by space configurations of the generalized field @ = (9;(x), 7;(x)) in g . In the classical
case neighboring position and momentum states are associated to the parameter ¢, while in
QFT o labels the generalized field with support in R3. Two arrays of fields variate the quantum
fields and their conjugate fields respectively. As in the previous case, the extremality of the
action is obtained under the condition that:

do = (%);1 dipi(x) = — (%)_1 s (x) (9)

The parameter o belongs to R by construction. The parameterization of the field distribution
is locally achieved by tagging neighboring configurations with the parameter o.

3. Definition of generalized clock time

o has the property of providing a special parameterization suitable for describing dynamics,
but it is not an observable quantity. In order to explain the macroscopic experience of time in
complex systems, an observable quantity 7" is built. T realizes an experimentally measurable
discrete approximation of o. Since (metric) time is operatively defined by clock standards based
on the period of an oscillator, it is only defined in such systems complex enough to contain a
subsystem acting as such a clock. Unfortunately the definition of periodicity implicitly assumes
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that an external time is available in order to compare a period with the next one, which is
meaningless in a timeless framework. Consequently, the concept of period is relaxed to the
concept of cycle in the phase space p or in pug. Defining the clock time T, measured for example
by atomic clocks, corresponds to label simultaneous occurences in the phase space of two or more
subsystems where one is identified as the clock. The clock corresponds to the cyclic subsystem,
as defined below. The dynamics of the i-th observable O; will consequently be expressed by the
simple law involving o:

Oi(T) = Oi(0) (10)

Let’s consider a Hamiltonian system S separable in two independent subsystems S; and So,
so that all the states are represented by factorized (eigen)states of their respective Hamiltonian
P1®19 € H1® Hy where Hy and Hs are the Hilbert spaces of the subsystems 1 and 2 respectively.
From the previous analysis, the system S owns a unique natural parameter time o which is well
defined also separately for the two subsystems by construction. We now define the properties
required by the system S; to act as a clock in S in order to describe dynamics in S3. For a
given &, a state 1 € H; ® Hy consists of the tensor product of the state () € H; and the
state 19(c) € Hy. We say that 9, has multiplicity xap on the interval (o4, 0p) if there are k4p
values of &; € (04,0p) such that 1;(5;) = 11 where i € (0,545). We say that the subsystem
S1 is cyclic in the phase space if

(i) its path in the phase space is closed,
(ii) its velocity |dQ/do| # 0 and it is smooth,

(iii) the multiplicity k4 p of a state vector in the System 1 monotonically grows with the interval
(04,0p) and it tends to infinity when 04 — —0c0 A op — +00.

The second requirement grants that the realizations of two contiguous states occur along the
o axis by respecting the order of the parameter ¢. The third requirement that the clock never
stops and its velocity in the phase space is enough to grant that the number of cycles is not
finite.

Given the interval (o 4,0p), it is now defined the set Q(o4,08) C Ha:

Qoa,08) = {12(0) € Halo € (04,08)} (11)

An arbitrary origin og is fixed for the parameter time. We associate to such origin the
arbitrary initial states ¥; = 11(0g) and ¥y = 13(0p). Macroscopic time duration T(51) of the
interval (04,0p) measured by the cyclic subsystem S; is given by the number k4 p of states
ha(0) € Q so that 91 (o) = 11. More explicitly, one has

TIS{%) = kAB (12)

A good clock has the property of being stable (small standard deviation) and accurate (high Q
factor of the resonance associated to the clock) [19, 25]. Since the accuracy refers to the arbitrary
resonance frequency of the time standard (for example the Cesium resonance frequency), the
present analysis considers only the requirement of stability. Given a target standard deviation
Y. required in an experiment performed on the subsystem Sy in the interval (o4,05), for an
integration time 7, the generalized clock has to fulfill the following prescription:

e= B2 [T5))] <= (13)

where E? is the standard deviation and

Ji+1 = 0j + 7 (14)
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where i = 0...Nap with Nap = (0B — 04)/7. Consequently, the definition of clock metric
time loses of validity for time intervals T(5!) comparable with the clock period, and for shorter
time intervals. Under such hyphotesis, dynamics of observables in the interval (o4,0p) is
approximated by the discrete valued equations:

zp(T;) = zp(0; £ €) = zp(0;) £ Ogploi, €] (15)
pp(Ti) gpp(ai +€) :pp(ai) :I:Opp[o'iaﬁ] (16)
where p = 1,2,3, and Ogplo,€] and Op,lo,€] are higher order quantities in e. Such

equations provide the bridge between parameter time of Hamiltonian timeless formalism, and
the experimentally defined clock time experienced by observers.

4. Conclusion

I've presented an approach to provide the correspondence between timeless physics in the
microscopic domain, and macroscopic time metrology. Consistently with the discussion, some
considerations on the use of the concept of time in theoretical physics is implied. Since clock
time is by definition fundamentally discrete and it depends on the specific fabrication of the
clock, a (macroscopic) measurement of time below one cycle (period) of the time standard is
meaningless. At the present time the most advanced available clock technology is given by single
ion atomic clocks based on Al*/Hg" with a fractional uncertainty of about 1—2x 10'7 [26]. The
presented approch implies for example that Planck time scale is an extrapolation, an extension
of the concept of clock time beyond its field of definition. To conclude an explicit Hamiltonian
framework, entirely developed without the concept of time, has been defined. The time and
frequency metrology has been mapped in the equations of motion expressed as a function of the
time parameter obtained in the timeless framework, by defining cyclic subsystems capable to
account the (discrete) definition of clock time. The present work provides a framework capable
to account the timelessness of nature at a fundamental level, and to explain how clock time can
be defined in metrology and experiments, consistently with the dynamics of relations between
variables and parameter time evolution itself.
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