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A B S T R A C T

Cytochrome P450 (CYP450) enzymes comprise a highly diverse superfamily of heme-thiolate proteins that
responsible for catalyzing over 90 % of enzymatic reactions associated with xenobiotic metabolism in humans.
Accurately predicting whether chemicals are substrates or inhibitors of different CYP450 isoforms can aid in pre-
selecting hit compounds for the drug discovery process, chemical toxicology studies, and patients treatment
planning. In this work, we investigated in silico studies on CYP450s specificity over past twenty years, catego-
rizing these studies into structure-based and ligand-based approaches. Subsequently, we utilized 100 of the most
frequently prescribed drugs to test eleven machine learning-based prediction models which were published
between 2015 and 2024. We analyzed various aspects of the evaluated models, such as their datasets, algorithms,
and performance. This will give readers with a comprehensive overview of these prediction models and help
them choose the most suitable one to do prediction. We also provide our insights for future research trend in both
structure-based and ligand-based approaches in this field.

1. Introduction

Xenobiotics are exogenous chemical compounds to which the body is
exposed, including those found in drugs, food and environmental pol-
lutants. After xenobiotic intake, they undergo the kinetic processes of
absorption, distribution, metabolism, and excretion (ADME). These
processes can sometimes lead to intermediary metabolism disorders and
toxic effects [1]. Drugs are a significant subclass of xenobiotic sub-
stances. When orally administered, several drugs undergo the hepatic
"first-pass effect" before entering the systemic blood circulation. Various
liver enzymes catalyze metabolic reactions that convert the non-polar
compound (parent drug) into more hydrophilic metabolites. These
metabolic reactions are divided into two phases: phase I (involving
oxidation, reduction, hydrolysis), and phase II (involving conjugation).
During phase I, the parent drug undergoes chemical modifications, such
as the introduction of reactive or polar groups (e.g., -SH or -OH),
yielding more polar metabolites, which can be pharmacologically
inactive or active. In phase II, xenobiotics or their phase I metabolites
can be conjugated with hydrophilic endogenous species, such as gluta-
thione or glycine, further enhancing their solubility and facilitating their
excretion, primarily through the kidneys [2].

Cytochrome P450 (CYP450) enzymes comprise a highly diverse su-
perfamily of heme-thiolate proteins [3] that serve as indispensable

components of the oxidative metabolic machinery and play a pivotal
role in the metabolism and detoxification of a wide range of xenobiotics.
They are found across various life forms, including animals, plants,
bacteria, viruses, and more [4]. Notably, CYP450 enzymes are the major
drug-metabolizing phase I enzymes of the liver [5] and are responsible
for catalyzing over 90 % of enzymatic reactions associated with xeno-
biotic metabolism [6]. In the human context, a total of 57 distinct
CYP450 isoforms have been identified to date. These enzymes pre-
dominantly reside in the membranes of the endoplasmic reticulum and
mitochondria in hepatocytes [7]. The three human CYP450 subfamilies
(CYP1–3) are typically participating in the xenobiotic metabolism, like
drugs, while the remaining human CYP subfamilies are usually engaged
in the endobiotic one [8]. Among the CYP450 enzymes, six isoforms
stand out as particularly critical for drug metabolism in humans,
including CYP1A2, CYP2C9, CYP2C19, CYP2D6, CYP2E1 and CYP3A4.
These enzymes are responsible for metabolizing a substantial portion of
clinically administered medications, accounting for approximately 70 %
to 80 % of clinically relevant drugs [5,9].

Human CYP450s consist of 400–500 amino acid residues, and exhibit
a helix-rich secondary structure architecture and an enclosed active site.
The secondary structure elements include 13 α-helices and 2–5 β-sheets
[10,11]. CYP450s contain a heme cofactor that is essential for the cat-
alytic reaction to occur. The heme cofactor is located at the bottom of
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the active site, with the heme iron fifth coordination position bound to a
cysteine thiolate, and the sixth coordination position free to perform
redox reactions [5]. CYP450 structures exhibit a similar shape resem-
bling an inverted triangle and are highly conserved (Fig. 1, left). Among
all the human CYP450s, CYP3A4 is the most prevalent one, and it is
responsible for the largest fraction of chemical metabolism [6]. There-
fore, we chose CYP3A4 to depict the CYP450s structure (Fig. 1, right).

Pharmaceuticals with metabolic liabilities refer to the susceptibility
of a drug to undergo metabolic processes in the body. This can give rise
to various issues, such as improper drug metabolism, drug-drug in-
teractions (DDIs) and drug-induced toxicity, often linked to CYP450
inhibition or induction [19]. Therefore, recognizing the significance of
CYP450s in drug metabolism is imperative to conduct research aimed at
accurately understanding CYP450 specificity. This is crucial for
designing novel drug molecules and establishing personalized drug
treatment regimens. CYP450 specificity prediction involves anticipating
enzyme-substrate interactions and enzyme-inhibitor interactions. This
predictive capability can assist in the assessment of metabolic stability,
DDIs, and more. However, determining the CYP450 isoforms specificity
experimentally faces time- and resource-consuming challenges [20].
Computational techniques can speed up the prediction of CYP450
specificity. These techniques are based on two main approaches:
structure-based and ligand-based approaches. The former one relies on
the available three-dimensional (3D) protein structures to directly assess
the interactions between CYP450s and chemicals. On the other hand,
ligand-based approaches can evaluate the structural similarities be-
tween ligands and known substrates [20,21]. From classical molecular
modeling to machine learning techniques, computational prediction
models can facilitate the study of CYP450 enzymatic interactions at the
atomistic level. In silico approaches will aid in saving on the experi-
mental costs, accelerating the drug development process, and reducing
environmental pollution.

In this review, we investigated in silico studies on CYP450s specificity
prediction carried out over the past 20 years. Firstly, we summarized
both structure-based and ligand-based approaches in CYP450s speci-
ficity studies. Machine learning methods face the challenge of the model
prediction results not being as accurate as the real experimental results
[22]. However, one relevant review discussed the CYP450s inhibitor
prediction models and just analyzed the performance of these prediction
models as reported in their original publications [23]. Another recently
published review article tested the performance of only three
open-access CYP450s inhibitors prediction tools [24]. We then extended
our scope and evaluations to a set of 100 of the most prescribed drugs to

assess eleven predictive tools published between 2015 and 2024,
developed using various classical machine learning or deep learning
methods. This will give readers, especially researchers using prediction
tools for initial investigations of their molecules of interest, as well as
people working in pharmacotherapy to predict drug-drug interactions
(DDIs) and optimize patients’ treatment plan, a comprehensive over-
view of the performance of tested machine learning CYP450s specificity
prediction models compared to the real experimental or simulation re-
sults. We then discuss the advantages and limitations of the evaluated
models and provide guidance for selecting appropriate computational
tools for prediction. Finally, we highlight trends in the future develop-
ment of CYP450 specificity prediction models.

2. In silico prediction tools

2.1. Structure-based approaches

Structure-based approaches are known for their high accuracy and
strong ability to elucidate the dynamic processes of enzyme-ligand in-
teractions and rational binding events at the atomic level. These ap-
proaches rely on the 3D structure of proteins, including both
experimentally solved structures and theoretical models obtained
through techniques such as homology modelling or predictions made by
artificial intelligence tools like AlphaFold [25]. Structure-based ap-
proaches are implemented through techniques such as molecular
docking, molecular dynamics (MD) simulations and quantum mechan-
ical methods. The general workflow of structure-based approaches is
summarized in Fig. 2. After preparing the protein and ligand structures,
molecular docking is performed to determine the binding poses of the
ligand at the enzyme active site. Subsequently, MD simulations can be
conducted to study the binding modes during the dynamic process and
to verify the stability of the protein-ligand complexes [26]. Additionally,
quantummechanics can be used to optimize the geometry of the enzyme
and molecule, as well as to calculate the non-covalent interaction pa-
rameters between the ligand and the enzyme cofactor heme [27].

Molecular docking lies at the heart of structure-based approaches. It
involves simulating molecular recognition on a computer, generating a
series of putative protein-ligand configurations. The docking algorithm
and scoring function are the two essential components of molecular
docking tools. Protein-ligand interaction represents a thermodynamic
equilibrium and is determined by calculating the free energy variation
throughout the docking process. By using a scoring function, ligand
poses can be assessed based on their approximated binding free energy,

Fig. 1. Three-dimensional structure of CYP450s. Left: Superposition of CYP1A2 (pink; PDB: 2HI4 [12]), CYP2C9 (green; PDB: 4NZ2 [13]), CYP2C19 (light coral,
PDB: 4GQS [14]), CYP2D6 (blue, PDB: 4WNV [15]), CYP2E1 (yellow, PDB: 3GPH [16]), and CYP3A4 (purple, PDB: 1TQN [17]). Right: Three-dimensional structure
of CYP3A4 (PDB: 1TQN). Thirteen α-helices are labelled from A to M. Five β-sheets are represented in β1-β5. All the heme cofactors are represented as gray sticks.
(Protein structures were displayed by MOE 2022.02 [18]).
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allowing for the selection of the most stable one [28].
GOLD, AutoDock, Glide and MOE are the four most widely used

molecular docking software [29]. GOLD is a genetic algorithm
(GA)-based automated docking program [30]. It can handle fully flexible
ligand conformations and partially flexible protein conformations by
encoding the conformation information into the corresponding binary
strings. Its available scoring functions include CHEMPLP, GoldScore,
ChemScore, ASP [31]. Kemp et al. utilized GOLDv2.0 to dock drug-like
compounds and build an in-silico tool for predicting inhibitors of
CYP2D6. This approach can discriminate between tight and weak
binding compounds and predict novel inhibitors compared to experi-
mental and published data [32]. Autodock leverages Lamarckian genetic
algorithm (LGA), which integrates local search and genetic algorithms
by converting genotypes into phenotypes through developmental map-
ping. The binding affinity is then assessed through semi-empirical free
energy calculations [33,34]. Hu et al. conducted molecular docking to
study the interaction between CYP2E1 and dioxin-like polychlorinated
biphenyls (DL-PCBs) using AutoDock 4.2. The docking results were
evaluated based on the average binding energy score, the numbers in
each cluster, and the distance between the ligand and the ferric ion. The
results showed the docking simulations and experimental finding are
consistent [35]. Glide is an exhaustive searching-based docking program
that comprehensively searches the conformation, orientation, and po-
sitional space of the docked ligand. It then refines the binding poses
through Monte Carlo sampling. The docking results are ranked by Gli-
deScore, which was expanded from ChemScore [36]. Kesharwani et al.
used Glide docking to determine the substrate specificity among
CYP1A1, CYP1A2 and CYP1B1, and evaluated their binding affinity
through the Glide docking scores. Their docking results were further
verified by MD simulations with molecular mechanics
Poisson-Boltzmann surface area (MM-PBSA) analysis, and they were
compared to the experimental results [37]. MOE is a molecular model-
ling suite. The MOE-Docking module places the ligand into the protein
binding pocket using geometric methods and assesses the docking poses

via different scoring functions, including, for example, the GBVI/WSA
dG [38]. Metruccio et al. investigated the ligand binding mode in the
active sites of CYP26A1, CYP26B1 and CYP26C1 using the Triangle
Matcher algorithm of MOE-Docking. They then sorted the binding poses
using the London dG empirical function. All the docking results are
comparable to the original structures [39].

It is worth noting that in recent years, some docking programs based
on deep learning methods have been developed. GNINA [40], a mo-
lecular docking software forked from AutoDock Vina [41] and SMINA
[42], utilizes Monte Carlo sampling to explore the ligand conformational
space and employ convolutional neural networks (CNN) to score and
refine the docking poses. GNINA has been used for docking inhibitors to
the binding pocket of the CYP4F11, which 3D model was generated by
AlphaFold. The top-scoring protein-ligand complexes were refined by
MD simulation using AMBER. The resulting CYP4F11-inhibitor com-
plexes are in agreement with the experimental spectroscopic ligand
binding assays [43]. DiffDock [44] employed a diffusion generative
model on a non-Euclidean manifold of ligand poses, achieved by map-
ping this manifold onto the product space of translation, rotation, and
torsion degrees of freedom. It ranks the docking poses by confidence
model. DiffDock has been applied to obtain complexes of
acetyl-coenzyme synthetase 2 with inhibitor and showed comparative
performance [45], however, there is no published data of applying
DiffDock for CYP450s.

Structure-based approaches provide an intuitive understanding of
protein-ligand interactions at the atomistic level. However, CYP450s
exhibit broad selectivity towards various chemicals due to the diverse
shape, size, and different chemical characteristics of residues within the
active sites of different isoforms. Additionally, the flexibility of CYP450s
structure and their active sites result in complex interactions with water
molecules, presenting significant challenges to structure-based methods.
While most published molecular docking programs have their own
characteristics and can provide relatively accurate results to obtain
protein-ligand complexes, accurate sampling of ligand poses can still be

Fig. 2. General workflow of structure-based approaches. Enzyme structures can be obtained through experimental crystallization, homology modeling, and AI
prediction. Chemicals can be collected via experimental synthesis and virtual screening. Molecular docking is performed to obtain the enzyme-molecule complex.
After evaluating the complex structures, the best structures could be submitted to MD simulations to study the enzyme-molecule interaction in a dynamic process.
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limited by induced-fit effects and enzyme conformation changes. Mo-
lecular docking is a computationally expensive process, and docking
poses are often selected by simplistic scoring functions. This could lead
to inaccurate ranking of docking poses and incorrect prediction of
binding free energy [46]. Moreover, molecular docking typically out-
puts the most stable binding mode, and this may not necessarily be the
catalytically active pose [28]. Although these limitations can be
improved with more advanced algorithms and scoring functions,
particularly the machine learning-based methods, these docking tools
are still under development and require further validation through
extensive applications in the field to ensure accuracy and reliability.

2.2. Ligand-based approaches

Ligand-based approaches have advantages compared to structure-
based approaches, particularly in terms of prediction speed, handling
with the absence of an experimental 3D structure, addressing flexibility
of the CYP450s structure [47]. In the absence of such structural data,
insights into ligand molecules binding to enzyme active sites are derived
from an analysis of the structural, physicochemical, and biological
properties exhibiting correlations with the desired bioactivity [48].
Quantitative structure-activity relationship (QSAR) and pharmaco-
phoric models are the most important techniques in ligand-based ap-
proaches. The predominant ligand-based method is the QSAR modeling
which is used to establish correlations between molecular descriptors of
chemicals and their biological activities through mathematical models,
thereby explaining the inherent relationships at a molecular level [20].
(Fig. 3).

In early years, flexible docking was adopted to sample possible
binding modes, followed by the utilization of multi-dimensional QSAR
models [49,50] or Boltzmann scoring [51] to successfully predict the
binding of small molecules to CYP450s. However, these methods are
computationally expensive and encounter challenges when imple-
mented on larger datasets. Nowadays, machine learning algorithms [52]
have become the mainstay for building the QSAR models. The related
published models use algorithms that include classical machine learning
model such as support vector machine (SVM), random forests (RF),
k-nearest neighbor (kNN), Bayesian approaches; as well as deep learning
methods such as convolutional neural network (CNN), graph neural
network (GNN), Transformer, and more [20,53].

The machine learning building procedure can be briefly summarized
into four main stages: raw data gathering, data preprocessing, building
machine learning models, and model deployment (Fig. 4). Consistently
collecting reliable data to create high-quality datasets is crucial for
prediction performance. Several databases have been published in the
CYP450s research field, such as SuperCYP [54], Transformer [55],
CypComp [56], P450Rdb [57], along with other biochemistry databases
like OCHEM [58], PubChem BioAssay [59], DrugBank [60], and
ChEMBL [61], among others. Retrieving data from relevant publications
also serves as a primary method. During data preprocessing, it is
essential to carefully remove redundant, missing values, outliers, and to
standardize molecular structure. Enzymes and molecules need to be
mathematically represented for machine learning models to learn.

Molecular representations, including physicochemical descriptors such
as geometrical, thermodynamics, electronic, constitutional, topological
descriptors, as well as molecular fingerprints like MACCS keys, Mol2Vec
and Morgan fingerprints, encode structure features into binary strings
based on the presence or absence of substructural fragments. Feature
engineering can help prevent overfitting of classification models and
enhance efficiency and accuracy. Methods involve using genetic algo-
rithms to identify the most informative features and PCA to reduce
computational complexity. The selection of molecular descriptors
significantly influences the prediction model performance; therefore,
preparing sufficient descriptors is very important. More details about the
molecular descriptors and their calculations can be found in these re-
views [23,62]. Once the model is built and validated, it can be deployed
for practical use, ensuring it integrates well with the necessary systems
and can handle real-time data if required.

To date, published prediction models incorporate both classical
machine learning and deep learning algorithms. Support vector machine
(SVM) and random forest (RF) are the most commonly used classical
machine learning algorithms in this field. SVM utilizes the structural risk
minimization principle to classify data by optimizing the separation of
classes in an N-dimensional space [63], while RF employs an ensemble
of decision trees to determine the output category based on the mode of
individual tree outputs [64]. On the other hand, graph-based neural
networks (GNNs) and Transformer attention mechanisms are two prin-
cipal strategies in deep learning-based prediction models. GNNs regard
molecules as graphs where atoms represent nodes and bonds represent
edges, updating node and edge representations iteratively to capture
structural relationships for classification [65]. Transformer attention
mechanisms effectively capture intricate relationships and dependencies
within the data by assigning weights to different input data to accurate
classification [66]. Notably, consensus models can be used to integrate
prediction results from multiple models, enhancing the reliability and
performance of the prediction model [67]. Table 1 summarizes machine
learning-based prediction models for CYP450s – substrates/inhibitors
interactions published in the last years.

3. Evaluation of existing machine learning prediction models

3.1. Selection of prediction models and testing dataset molecules

Structure-based prediction models are computationally expensive
and challenging to apply to large-scale datasets. Additionally, molecular
docking and MD simulations, which are structure-based approaches,
require specialized knowledge and specific computing resources. As a
results, these tools are difficult to use for obtaining rapid results and are
less accessible to a broad range of users, such as researchers conducting
initial chemical investigations, pharmacotherapy professionals, and
others. In contrast, ligand-based models address these drawbacks
effectively. Specifically, models developed using machine learning
methods are trained on large datasets that better cover the chemical
space. Most of these models are also non-commercial and open-access
prediction tools. These advantages have significantly advanced in silico
prediction of CYP450s specificity. However, due to the challenge of

Fig. 3. Workflow of QSAR model building. This entails collecting experimental and simulated molecular data from various sources based on the predefined criteria.
Descriptors are computed from the processed dataset. A QSAR mathematical model is applied to predict the biological activity of compounds.
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Fig. 4. General working flow of machine learning model building. First step is collecting data from various sources. Second step is data preprocessing, which includes
data clean, transformation, and feature engineering. Third step is building machine learning model(s), which involves model pre-training, hyperparameter opti-
mization, and model evaluation. Final step is deploying the machine learning mode.

Table 1
Summary of published machine learning-based models for predicting CYP450s – substrates/inhibitors interactions.

Model Algorithms Descriptors Datasets CYP450s Prediction Year Ref.

WhichCyp SVM Molecular signatures 17143 substances from PubChem 1A2, 2C9, 2C19, 2D6, 3A4
(inhibitors)

2013 [68]

CypRules Rule-based C5.0
algorithm

Molecular descriptors 16561 compounds from PubChem 1A2, 2C9, 2C19, 2D6, 3A4
(inhibitors)

2015 [69]

pkCSM RF, LR Molecular descriptors and
graph-based signature

30 datasets with 18000 compounds from
literature

1A2, 2C9, 2C19, 2D6, 3A4
(inhibitors)
2D6, 3A4 (substrates)

2015 [70]

vNN-ADMET vNN Molecular and topological
fingerprints

More than 40000 compounds from ChEMBL 1A2, 2C9, 2C19, 2D6, 3A4
(inhibitors)

2017 [71]

SwissADME SVM Molecular and
physicochemical descriptors

About 47000 compounds from PubChem 1A2, 2C9, 2C19, 2D6, 3A4
(inhibitors)

2017 [72]

CypReact Learning based model Physicochemical and
structure descriptors

1632 compounds from Human Metabolome
Database, KEGG, DrugBank, PubChem,
literature

1A2, 2A6, 2B6, 2C8, 2C9,
2C19, 2D6, 2E1, 3A4
(substrates)

2018 [56]

WhichP450 RF Molecular and Structural
descriptors

465 compounds from literature 1A2, 2C8, 2C9, 2C19, 2D6,
2E1, 3A4 (substrates)

2018 [73]

DeepCYP Multitask autoencoder
DNN

Molecular fingerprints Over 13000 compounds from PubChem 1A2, 2C9, 2C19, 2D6, 3A4
(inhibitors)

2018 [74]

admetSAR 2.0 RF, k-NN, SVM Molecular fingerprints Over 96000 molecules from DrugBank,
CYP450, literature, etc.

1A2, 2D6, 2C8, 2C9 2C19, 3A4
(inhibitors),
2D6, 2C9, 3A4 (substrates)

2019 [75]

SuperCYPsPred RF Molecular fingerprints 17143 substances from PubChem 1A2, 2C9, 2C19, 2D6, 3A4
(inhibitor)

2020 [76]

CYPstrate RF, SVM Molecular descriptors 1831 compounds from literature 1A2, 2A6, 2B6, 2C8, 2C9,
2C19, 2D6, 2E1, 3A4
(substrate)

2021 [77]

CYPlebrity RF Molecular descriptors 18815 compounds from PubChem, ChEMBL,
ADME.

1A2, 2C9, 2C19, 2D6, 3A4
(inhibitors)

2021 [78]

ADMETlab 2.0 multi-task graph
attention framework

Physicochemical, ADME
properties

0.25 M entries from ChEMBL, PubChem,
OCHEM, literature.

1A2, 2C9, 2C19, 2D6, 3A4
(inhibitor, substrate)

2021 [79]

iCYP-MFE Multitask DNN Molecular fingerprints 17143 compounds from PubChem 1A2, 2C9, 2C19, 2D6, 3A4
(inhibitor)

2021 [80]

HelixADMET Multitask GNN ADMET, physicochemical
endpoints

Over 70000 molecules from literature and
PubChem

1A2, 2C9, 2C19, 2D6, 3A4
(inhibitor, substrate)

2022 [81]

Interpretable-
ADMET

GCNN, GAT Physicochemical and
biological properties

80167 compounds from ChEMBL, PubChem,
DrugBank, literature

1A2, 2C9, 2C19, 2D6, 3A4
(inhibitor)
2C9, 2C19, 2D6, 3A4
(substrate)

2022 [82]

ESP GNN, Esm− 1b
transformer

Molecular fingerprints 18351 (experimental) and 274030 (inferred)
enzyme-substrate pairs from UniProt-GOA

- 2023 [83]

DEEPCYPs Multi-task FP-GNN Molecular graph and
fingerprints

71456 compounds from PubChem 1A2, 2C9, 2C19, 2D6, 3A4
(inhibitor)

2023 [84]

ADMET-AI Graph neural network Physicochemical features 41 datasets from Therapeutics Data Commons 1A2, 2C9, 2C19, 2D6, 3A4
(inhibitor)
2C9, 2D6, 3A4 (substrate)

2023 [85]

ADMETlab 3.0 Multi-task DMPNN
framework

Physicochemical, ADME
properties

4 M entries from ChEMBL, PubChem,
OCHEM, literature.

1A2, 2C9, 2C19, 2D6, 3A4
(inhibitor, substrate)

2024 [86]
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achieving high accuracy between the machine learning model pre-
dictions and real experimental results, it is crucial to test and compare
the performance of these models. Therefore, we selected eleven machine
learning-based, non-commercial, open access prediction models pub-
lished between 2015 and 2024. We then utilized the 100 most pre-
scribed drugs from the top 300 drugs of 2021, according to the ClinCalc
DrugStats database (https://clincalc.com/DrugStats/Top300Drugs.
aspx), to test their prediction performance with respect to experi-
mental or QM calculated data on drugs. This will help users in selecting
the most suitable model for prediction and provide researchers with
valuable insights for further model development in this field.

The eleven selected prediction models from Table 1 are: pkCSM,
vNN-ADMET, SwissADME, CypReact, admetSAR 2.0, SuperCYPsPred,
CYPstrate, CYPlebrity, ADMETlab 2.0, ADMET 3.0, ESP. Among these
models, vNN-ADMET, SuperCYPsPred, SwissADME, CYPlebrity are
dedicated to inhibitors prediction. CYPstrate, CypReact, and ESP are
designed for substrates prediction. pkCSM, admetSAR 2.0, ADMETlab
2.0 and 3.0 can predict both inhibitors and substrates. The datasets for
these models were collected from various databases and literature
sources, employing different techniques for data preprocessing and
handling imbalanced datasets. Molecules were represented using
different types of molecular descriptors. The machine learning algo-
rithms used to develop these models varied, including random forest,
support vector machine, logistic regression, graph neural networks,
transformers, and others. For some models that used the same algo-
rithms, different techniques were applied to improve their performance.
For instance, kernelization techniques were used to apply different
kernel functions to the support vector machine, enabling it to transform
input data into a higher-dimensional space more effectively; architec-
tural enhancement techniques were used to integrate attention mecha-
nisms and convolutional neural networks into graph neural networks,
enhancing their ability to learn molecular graphs, and more. This pro-
vides us with a comprehensive overview of the effects of different data
sources, data preprocessing methods, machine learning algorithms on
the performance of prediction models. The details of each model are
illustrated below.

pkCSM (https://biosig.lab.uq.edu.au/pkcsm/) employs distance-
based graph signatures to represent chemical and topological informa-
tion. It utilizes random forest and logistic regression algorithms to build
the classification models, which were trained on datasets containing
inhibitor prediction data for CYP1A2, CYP2C9, and CYP2D6 (each
dataset includes over 14,000 molecules), as well as substrate prediction
datasets for CYP2D6 and CYP3A4 (each dataset contains 671
compounds).

vNN-ADMET (https://vnnadmet.bhsai.org/) uses the variable
nearest neighbor (vNN) method [87] to construct prediction models for
the inhibitors of CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4.
The vNN method, based on the distance-weighted k-nearest neighbor
(kNN), predicts the biological activity of compounds by averaging
weights across structurally similar neighbors. Accelrys
extended-connectivity fingerprints with a diameter of four chemical
bonds were utilized to identify structurally similar compounds. Each
isoform dataset contains over 7500 molecules which were collected
from ChEMBL. Compounds with IC50 values smaller than 10 μM are
distinguished as inhibitors, and those greater than 10 μM as
non-inhibitors.

The prediction models for CYP450 inhibitors in SwissADME (http:
//www.swissadme.ch/) were developed using SVM with an RBF
Gaussian kernel. The datasets for CYP1A2, CYP2C9, CYP2C19, CYP2D6,
and CYP3A4 contain 12145, 12727, 8015, 4732, and 10097 compounds,
respectively. Molecular data were gathered from literature and Pub-
Chem database. Hierarchical grouping and reciprocal nearest neighbor
algorithms were implemented to cluster different chemical classes. Each
isoform was assigned specific chemical descriptors based on its distinct
properties.

CypReact (https://bitbucket.org/Leon_Ti/cypreact/src/master/) is

a Java software package that predicts substrates of nine CYP450 iso-
forms (CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19,
CYP2D6, CYP2E1, and CYP3A4). CypReact was developed via a cost-
sensitive learning-based model (LBM). This LBM incorporates five ma-
chine learning classifiers, including SVM, logistic regression, decision
tree, random forest, and an ensemble method, along with a cost matrix.
The cost matrix is a 2 × 2 matrix representing the cost of four different
classes (true reactants, true non-reactants, false reactants, and false non-
reactants), which helps rebalance the imbalanced datasets. The
CypReact model was trained on datasets containing 1632 compounds
with different labels and considered 2279 features, including physico-
chemical descriptors and molecular fingerprints. A five-fold cross-vali-
dation was used to select the best classification model for different
isoforms.

admetSAR 2.0 (http://lmmd.ecust.edu.cn/admetsar2), an update
from admetSAR [88], provides various tools for evaluating the ADMET
properties of chemicals. SVM, RF, and kNN algorithms were utilized to
build classification models for predicting inhibitors of CYP1A2,
CYP2D6, CYP2C8, CYP2C9, CYP2C19, CYP3A4, as well as substrates of
CYP2D6, CYP2C9, CYP3A4. The datasets for predicting inhibitors of
each isoform includes more than 14,000 molecules, while the datasets
for substrates prediction includes about 670 compounds for each iso-
form. To enhance model performance with imbalanced datasets, two
techniques were used: synthetic minority over-sampling, which creates
new samples by interpolating between minority class samples, and
random under-sampling, which randomly reduces the number of ma-
jority class. Molecular data were represented using six numerical
fingerprints.

SuperCYPsPred (https://insilico-cyp.charite.de/SuperCYPsPred/)
is a user-friendly web server developed to predict inhibitors of CYP1A2,
CYP2C9, CYP2C19, CYP2D6, and CYP3A4 using a random forest algo-
rithm. The model datasets consist of 17,143 substances, collected from
PubChem AID: 1851, SuperCYP databases and literature. To address
dataset imbalance problem, various data sampling methods were used,
including RandUS, AugRandomUS, RandOS, AugRandOs, kMedoids,
SMOTETC and SMOTETVDM.Molecules were represented usingMACCS
or Morgan fingerprints, depending on the specific prediction.

CYPstrate (https://nerdd.univie.ac.at/cypstrate/) is a module of the
New E-Resource for Drug Discovery (NERDD) web portal [89] for pre-
dicting substrates of CYP1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1, and
3A4. The core dataset consists of 1831 compounds, and was evaluated
by PCA-based comparative analysis and a Tanimoto coefficient-based
pairwise maximum similarities analysis for the coverage on drugs,
cosmetic ingredients, and agrochemicals. The molecular data were
represented as four different features: MACCS keys, Mol2vec de-
scriptors, Morgan fingerprints, and RDKit 2D descriptors. SVM with an
RBF kernel function and RF algorithms were used to built the prediction
models. The final models were created via consensus decision strategy,
which used a grid search with five-fold cross-validation optimization to
evaluate individual or combination models.

CYPlebrity (https://nerdd.univie.ac.at/cyplebrity/) is another
module of the NERDD web portal for predicting inhibitors of CYP1A2,
CYP2C9, CYP2C19, CYP2D6, CYP3A4. The datasets have 134,844
molecules, and were iteratively collected from PubChem, ChEMBL,
ADME databases. Nearest neighbor similarity and t-SNE were employed
to evaluate chemical coverage of the dataset, Morgan3 fingerprints and
44 physicochemical molecular descriptors were calculated as features
for the models training. The classification models were built using
random forest algorithm.

ADMETlab 2.0 (https://admetmesh.scbdd.com/) is a web platform
fully redesigned from the original ADMETlab [90], focusing on pre-
dicting molecular pharmacokinetics and toxicity. It can predict both
substrates and inhibitors for CYP1A2, CYP2C9, CYP2C19, CYP2D6, and
CYP3A4. The prediction models were developed using a multi-task
graph attention framework which constitutes of the input, relation
graph convolution network (RGCN) layers, attention layer, and fully
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connected (FC) layers. The RGCN layers take each atom of the input
molecules as a node and convert each node to represent the features of
each atom in the circular substructure. The attention layers assign
different attention weights to the corresponding substructures and
generate customized fingerprints for the prediction tasks. The FC layers
adopt different loss functions to complete the predictions. The BCE-
WithLogitsLoss loss function and the positive samples weights were
adopted to address the imbalanced datasets. ADMETlab 3.0 (https
://admetlab3.scbdd.com/) is the newest version of ADMETlab. It in-
corporates additional features and can predict a broader range of mo-
lecular properties. Instead of using RGCN and attention layers in
ADMETlab 2.0 models, ADMETlab 3.0 utilizes a directed message
passing neural network (DMPNN) block to process both atomic and bond
embeddings from the input molecular graph. These embeddings are then
converted into predicted property values using a feed-forward neural
network.

ESP (https://esp.cs.hhu.de/) web server was built to predict enzyme-
substrate complexes in general. The datasets for ESP were created by
retrieving enzymes and molecules data from the Uniprot-GO annotation
database, comprising 18,351 enzyme-substrate pairs in the experimental
datasets and 274,030 enzyme-substrate pairs in the systematically
inferred datasets. All the small molecules are regarded as positive data
points, and their pairwise similarity have been calculated to create
negative data points, enabling balanced molecular data points distri-
bution in the datasets. The enzymes representations were obtained by a
modified ESM-1b Transformer which is a protein language model, and
the molecules representations were obtained by a graph neural network.
Subsequently, a gradient boosting model was trained on the pairs of
enzyme-substrate representations, allowing the ESP model to success-
fully predict novel enzyme-substrate pairs.

As human CYP450s are the major enzymes for drug metabolism,
understanding whether a drug molecule is a substrate or inhibitor of a
specific CYP450 isoform is crucial for drug discovery and patient
treatment planning. Therefore, we utilized the 100 most prescribed
drugs to test above eleven prediction models. Even though our dataset
contains only 100 drugs, these are the most prescribed drugs and hold
significant clinical relevance. They also have more published experi-
mental data to help us verify the performance of prediction models.
Additionally, each drug has different structure, and most of them do not
share the same privileged structure. The molecular scaffold diversity is
shown in the Scaffold Diversity Curve (Fig. 5), the curve has a gradual
slope indicating in our dataset the compounds have an even distribution

across many scaffolds. This enables us to evaluate the generalizability of
prediction models in a non-redundant medicinal chemical space. How-
ever, as most of the prediction models only reported their dataset
sources and the number of molecules in their datasets, we cannot
determine whether our testing dataset drug molecules are included in
the testing prediction models datasets. For the ESP model, which pub-
lished its dataset, our testing data were not included in their training
datasets.

3.2. Prediction models testing results

The performance of the predictive models has been assessed via
different metrics including sensitivity (SN), specificity (SP), accuracy
(ACC), Matthew’s correlation coefficient (MCC), and F1 score:

SN =
TP

TP+ FN
(1)

SP =
TN

FP+ TN
(2)

ACC =
TP+ TN

TP+ TN+ FP+ FN
(3)

MCC =
TP× TN − FP× FN

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(TP+ FP)(TP+ FN)(TN+ FP)(TN+ FN)

√ (4)

F1 =
2 × TP

2 × TP+ FP+ FN
(5)

Where, TP, TN, FP, and FN denote the numbers of true positives, true
negatives, false positives, and false negatives, respectively. Among these
metrics, SN indicates howwell themodel correctly identifies the positive
cases out of all the actual positive cases. SP shows how well the model
correctly identifies the negative cases out of all the actual negative cases.
ACC measures the overall correctness of the model. MCC measures the
quality of binary classifications and takes the real TP, TN, FP, and FN
values into account, making it suitable for dealing with imbalanced
datasets. MCC values range from − 1 to + 1, where + 1 indicates ideal
prediction, 0 indicates random performance, negative values imply poor
performance or that the model prediction is worse than random guessing
[92]. F1 score ranges from 0 to 1 [93], it can be seen as a harmonic
average of the classification model precision and recall (the model
ability to identify all the relevant cases within one data set [92]). All the
tests were done on the prediction model corresponding web server,
CYPreact testing was done by Visual Studio Code 1.90.2 for processing
its Java software package. Our testing results are shown in Supple-
mentary Information Table S12 and Table S13.

pkCSM prediction results indicate that, for inhibitors prediction,
sensitivity ranges from 0.21 (CYP3A4) to 0.71 (CYP1A2); specificity is
between 0.74 (CYP1A2) and 0.86 (CYP3A4); accuracy is between 0.74
(CYP1A2 and CYP3A4) and 0.79 (CYP2C9, CYP2C19, CYP2D6); MCC
varies from 0.05 (CYP2C9) to 0.34 (CYP2D6); F1 score ranges from 0.16
(CYP2C9) to 0.46 (CYP2D6). For substrates prediction, sensitivity,
specificity, accuracy, MCC, and F1 score for CYP2D6 are 0.14, 0.57,
0.93, 0.71, and 0.12, respectively. For CYP3A4, the corresponding
values are 0.57, 0.78, 0.65, 0.34, and 0.67. This suggests that pkCSM,
under our test conditions, performs well in identifying inhibitors of
CYP1A2 and non-substrates of CYP3A4 but exhibits lower performance
in identifying inhibitors of CYP2C9 and CYP3A4. The prediction accu-
racy is moderate, with relatively low MCC and F1 score across most
predictions, indicating a mild agreement between predicted and actual
values.

vNN-ADMET prediction results show a sensitivity of 0.75 for
CYP2C19, while sensitivity for other isoforms ranges from 0.14
(CYP1A2) to 0.33 (CYP2D6 and CYP3A4). Specificity falls between 0.82
(CYP2D6) and 0.95 (CYP3A4), suggesting vNN-ADMET has a good

Fig. 5. Scaffold diversity curve for our testing dataset. The curve was calcu-
lated by RDkit.Chem.Scaffolds package [91] and indicates the fraction of
molecules in the dataset that are covered as the number of Murcko scaf-
folds increases.
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ability to predict non-inhibitors over inhibitors. The reason could be
imbalance in the number of inhibitors and non-inhibitors in each data-
set. Accuracy ranges from 0.74 (CYP2D6) to 0.84 (CYP1A2 and
CYP2C19). MCC ranges from 0.02 (CYP2C9) to 0.37 (CYP2C19), and F1
score ranges from 0.13 (CYP2C9) to 0.43 (CYP3A4), suggesting the
precision and recall of the model are mild. It is also worth noting that, in
total, 195 molecules had no prediction, therefore, the dataset chemical
coverage should be reassessed.

For SwissADME prediction, the CYP1A2 inhibitors prediction has
the lowest sensitivity at 0.29, while sensitivities for other isoforms range
from 0.55 (CYP3A4) to 0.82 (CYP2D6). This indicates that under our test
conditions, SwissADME could not efficiently predict CYP1A2 inhibitors.
The specificity is between 0.63 (CYP2D6) and 0.79 (CYP1A2), and the
accuracy is between 0.67 (CYP2D6) and 0.75 (CYP1A2), suggesting that
the models moderately identify non-inhibitors and have moderate pre-
diction accuracy. MCC value ranges from 0.04 (CYP1A2) to 0.36
(CYP2C19), and F1 score ranges from 0.14 (CYP1A2) to 0.47
(CYP2C19). Additionally, SwissADME cannot predict molecules using
SMILE strings longer than 200 characters and the inorganic salt com-
pounds. This limitation resulted in no prediction of four relative mole-
cules from our dataset.

CypReact testing results indicate that no reactant for CYP2A6 was
predicted from our dataset, so the sensitivity, MCC, F1 score for CYP2A6
cannot be calculated. Sensitivity for other isoforms ranges from 0.50
(CYP2C8) to 1.00 (CYP2C9 and CYP2E1). Specificity values vary across
different isoforms: 0.18 (CYP3A4), 0.45 (CYP2C19), 0.48 (CYP2C9),
0.58 (CYP2D6), 0.64 (CYP1A2), 0.67 (CYP2C8), 0.75 (CYP2B6), 0.90
(CYP2A6), and 0.92 (CYP2E1), showing that CypReact has significant
ability to predict non-reactants among different isoforms. Accuracy
ranges from 0.49 (CYP2C19) to 0.92 (CYP2E1). MCC is between 0.07
(CYP2C8) and 0.46 (CYP2D6), and F1 score ranges from 0.11 (CYP2C8)
to 0.65 (CYP3A4). This indicates that CypReact shows moderate preci-
sion and recall on CYP2D6 substrates prediction, while the CYP2C8
prediction has much worse precision and recall than other isoforms.

admetSAR 2.0 results show the following performance metrics: For
inhibitors prediction, sensitivity ranges from 0.22 (CYP2C9) to 0.50
(CYP2C8); specificity ranges from 0.72 (CYP1A2) to 0.82 (CYP2D6);
accuracy ranges from 0.71 (CYP1A2) to 0.77 (CYP2C8); MCC ranges
from 0.09 (CYP1A2) to 0.20 (CYP3A4). For substrates prediction:
sensitivity ranges from 0.68 (CYP2D6) to 0.89 (CYP3A4); speicificity
ranges from 0.46 (CYP3A4) to 0.85 (CYP2C9); accuracy ranges from
0.65 (CYP3A4) to 0.85 (CYP2C9); MCC ranges from 0.38 (CYP3A4) to
0.56 (CYP2C9); F1 score ranges fro, 0.38 (CYP3A4) to 0.66 (CYP2D6).
These results indicate that admetSAR 2.0 performs well in predicting
substrates for CYP2C9 and CYP2D6, and effectively identify non-
inhibitors for all predicted isoforms.

SuperCYPsPred results show that the MACCS sensitivity ranges
from 0.14 (CYP1A2) to 0.65 (CYP2D6), while Morgan sensitivity ranges
from 0.11 (CYP2C9) to 0.71 (CYP2D6). MACCS specificity ranges from
0.70 (CYP2C9) to 0.96 (CYP1A2), and Morgan specificity ranges from
0.68 (CYP2D6) to 0.93 (CYP2C19). MACCS accuracy ranges from 0.67
(CYP2C9) to 0.90 (CYP1A2), and Morgan accuracy ranges from 0.69
(CYP2D6) to 0.88 (CYP2C19). MACCS MCC ranges from 0.02 (CYP2C9)
to 0.43 (CYP3A4), while Morgan MCC ranges from 0.04 (CYP2C9) to
0.30 (CYP2D6). MACCS F1 score ranges from 0.15 (CYP2C9) to 0.50
(CYP3A4), and Morgan F1 score ranges from 0.12 (CYP2C9) to 0.44
(CYP2D6). Sensitivity and specificity results indicate that both MACCS
and Morgan models are effective at predicting non-inhibitors of all the
isoforms, however, the ability of correctly identifying inhibitors, under
our testing conditions, are relatively low and vary widely across
different isoforms. MCC and F1 score results suggest that MACCS models
have a slightly better balance between precision and recall.

All the drug molecules were tested by the CYPstrate best perfor-
mance models. The results show the following performance metrics:
sensitivity ranges from 0.50 (CYP2C8) to 1.00 (CYP1A2 and CYP2E1);
specificity ranges from 0.61 (CYP3A4) to 0.99 (CYP2A6); accuracy

ranges from 0.75 (CYP2C8) to 0.99 (CYP2A6); MCC ranges from 0.26
(CYP2B6) to 0.86 (CYPCYP2D6); F1 score ranges from 0.10 (CYP2C8) to
0.90 (CYP2D6). These results point out that CYPstrate has a comparable
ability to accurately predict substrates and non-substrates across all
tested isoforms. However, the models for CYP2B6 and CYP2C8 show,
under our test conditions, less reliable performance compared to other
isoforms. It is worth noting that no substrate for CYP2A6 was predicted,
so its sensitivity and MCC values cannot be calculated. Additionally, 31,
35, 35, 35, 27, 9, 33, 25, and 6 molecules in the CYP1A2, CYP2C9,
CYP2C19, CYP2D6, CYP3A4, CYP2B6, CYP2C8, and CYP2E1 datasets,
respectively, had no predictions. This suggests that CYPstrate cannot
determine whether these molecules are substrates or non-substrates for
the corresponding isoforms. While the core dataset has been evaluated
by comparative analysis to show it can cover the major drug space well,
its actual datasets scope still limit the prediction effectiveness.

CYPlebrity results show that sensitivity ranges from 0.43 (CYP1A2)
to 0.67 (CYP2C19); specificity is between 0.82 (CYP1A2 and CYP2C19)
and 0.86 (CYP2C9 and CYP3A4); accuracy ranges from 0.77 (CYP3A4)
to 0.82 (CYP2C9); MCC ranges from 0.16 (CYP1A2) to 0.43 (CYP2D6);
F1 score ranges from 0.23 (CYP1A2) to 0.54 (CYP2D6). Thereby,
CYP2D6 model has the best performance with balanced metrics, while
CYP1A2 model has moderate ability to identify the true inhibitors.
Overall high specificity indicates a strong ability to correctly determine
non-inhibitors for each isoform. However, the models generally seem
less efficient in predicting true inhibitors.

ADMETlab 2.0 results show that the inhibitors prediction sensitivity
ranges from 0.44 (CYP2C9) to 0.67 (CYP2C19), specificity ranges from
0.71 (CYP2D6) to 0.82 (CYP1A2 and CYP2C9), accuracy ranges from
0.68 (CYP3A4) to 0.80 (CYP1A2), MCC ranges from 0.19 (CYP2C9 and
CYP3A4) to 0.29 (CYP2C19), F1 score ranges from 0.28 (CYP2C9) to
0.42 (CYP2D6). For substrate prediction, sensitivity is between 0.90
(CYP2C9) and 1.00 (CYP1A2 and CYP2C19), specificity ranges from
0.40 (CYP2C19) to 0.68 (CYP2D6), accuracy is between 0.51 (CYP2C19)
and 0.76 (CYP2D6), MCC ranges from 0.32 (CYP2C19) to 0.58
(CYP2D6), F1 score ranges from 0.41 (CYP2C19) to 0.76 (CYP3A4).
ADMETlab 2.0 performs strongly in correctly identifying non-
substrates/inhibitors across different isoforms, and the overall accu-
racy is relatively high. However, the sensitivity, MCC, and F1 score are
relatively low, indicating weakness in identifying actual substrates/in-
hibitors, and low model robustness.

ADMETlab 3.0 results show that the inhibitors prediction sensitivity
ranges from 0.29 (CYP2D6) to 0.78 (CYP2C19), specificity ranges from
0.72 (CYP2C8) to 0.87 (CYP2C19), accuracy ranges from 0.71 (CYP2D6
and CYP2C8) to 0.86 (CYP2C19), MCC ranges from 0.08 (CYP2D6) to
0.47 (CYP2C19), F1 score ranges from 0.12 (CYP2C8) to 0.5 (CYP2C19).
For substrates prediction, sensitivity with the lowest 0.09 (CYP2B6),
others are between 0.59 (CYP2D6) and 0.95 (CYP3A4), specificity
ranges from 0.41 (CYP2C19) to 1.00 (CYP2B6), accuracy ranges from
0.48 (CYP2C19) to 0.80 (CYP2D6 and CYP2B6), F1 scores are between
0.17 (CYP2B6) and CYP3A4 (0.73). We can see ADMET lab 3.0 can
predict substrates and inhibitors for more CYP450 isoforms. However,
under our test conditions, there is no significant improvement in the
prediction performance of the model, with some performance metrics
even slightly worse than ADMET lab 2.0.

ESP results show that the specificity is around 0.96, and the accuracy
ranges from 0.56 (CYP3A4) to 0.96 (CYP2A6). However, the sensitivity,
MCC, and F1 score are around 0. These results indicate that the model
prediction for CYP450s substrates is close to random guessing. The au-
thors stated that the model high prediction performance is limited to the
enzymes and molecules in their datasets, and our tested molecules are
not included in their datasets.

In Fig. 6, the radar charts display the results of inhibitor predictions
under our test conditions. pkCSM exhibits the highest MCC and F1 score
in predicting CYP1A2 inhibitors. Both vNN-ADMET and SwissADME
demonstrate similarly strong predictive performance across all models
except predicting CYP2D6 inhibitors. However, vNN-ADMET generated
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no predictions for approximately 40 % of drugs, indicating its prediction
coverage is limited. CYPlebrity achieves the highest overall MCC and F1
score, suggesting the model prediction reliability. admetSAR 2.0 and
admetLab 3.0 can predict more isoforms inhibitors than other models.
admetSAR 2.0 is better at predicting CYP2C8 and CYP3A4 inhibitors,
while ADMETlab 3.0 shows better prediction performance on other
isoforms. Comparing ADMETlab 2.0 and 3.0, the newest version shows
the best MCC and F1 score in predicting CYP2C19 inhibitors, but except

for this aspect, its overall performance is lower than the ADMETlab 2.0
one. Nonetheless, these two models exhibit above-average performance
across other metrics.

The radar charts, presenting the results of substrates prediction, are
depicted in Fig. 7. pkCSM shows the good capability to predict both
substrates and non-substrates for CYP2D6 and CYP3A4. CYPstrate ach-
ieves superior MCC and F1 scores overall, indicating the robustness of
the model. However, it did not predict about the 25 % of tested drugs,

Fig. 6. Radar charts of model performance for CYP450s inhibitors prediction. Plots with different colors represent the performance of each prediction model. The
closer a plot is to the edge of the radar plot, the better the performance metrics. When a prediction model is unable to predict inhibitors for some isoforms, their
performance metrics are not shown in the corresponding CYP450 isoform’s radar plot.
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Fig. 7. Radar charts of model performance for CYP450s substrates prediction. Plots with different colors represent the performance of each prediction model. The
closer a plot is to the edge of the radar plot, the better the performance metrics. When a prediction model is unable to predict substrates for some isoforms, their
performance metrics are not shown in the corresponding CYP450 isoform’s radar plot.
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revealing a limitation in chemical space coverage. CypReact, while
slightly underperforming compared to CYPstrate, provides predictions
for all drugs. admetSAR 2.0, ADMETlab 2.0 and 3.0 show above-average
predictive performance among the models, but ADMETlab 3.0 perfor-
mance metrics are also slightly worse than ADMETlab 2.0. ESP shows
excellent specificity and accuracy. However, its MCC and F1 scores are
notably low, some even negative, suggesting, under our test conditions,
ESP predictions close to a random guessing.

Comparing classical machine learning-based prediction models
(pkCSM, vNN-ADMET, SwissADME, CypReact, SuperCYPsPred, CYPle-
brity, CYPstrate, admetSAR 2.0) to deep learning-based prediction
models (ADMETlab 2.0 and 3.0, ESP), we can observe distinct advan-
tages and drawbacks for each approach. Classical machine learning
based models often work with smaller datasets, limiting their ability to
predict properties for some molecules. Despite this limitation, they tend
to exhibit higher reliability, as reflected in their better MCC and F1
scores compared to deep learning models. On the other hand, deep
learning models, which were trained on larger datasets, generally ach-
ieve higher prediction accuracy. However, their MCC and F1 scores are
usually lower than those of classical machine learning models, indi-
cating that their prediction results might not be reliable. Importantly,
under our test conditions, the performance metrics of all models were
lower than the original published values, this evidence is also supported
by a previous review [24]. Moreover, some prediction models did not
consider the molecular binding affinity to the enzymes, but only pro-
duced a “yes” or “no” result, which would be problematic when dealing
with molecules acting as weak substrates or inhibitors. Therefore,
improving in silico prediction models to match the accuracy of experi-
mental results remains a substantial challenge.

4. Future trends in in silico predictive models for CYP450s
specificity prediction development

In silico prediction of CYP450s specificity is crucial for investigating
the role of CYP450s in xenobiotic metabolism. This can significantly
improve the pre-selection procedure of lead compounds for drug dis-
covery, drug-drug interaction for patient treatment planning, and
chemical toxicological studies. Both structure-based and ligand-based
approaches are important and have their own characteristics in this
field of study.

Structure-based approaches offer highly accurate predictions by
directly investigating enzyme-molecule interactions at an atomistic
level. However, their computational intensity limits their applications to
larger molecular datasets and makes them less accessible to individuals
without the relevant molecular modeling knowledge and computing
resources. Therefore, these approaches are better suited for focusing on
specific enzyme-substrate interactions or validating results obtained
through ligand-based approaches. Molecular docking is the primary
methodology in structure-based approaches, aiming to identify the most
stable ligand binding poses. However, the most stable binding poses are
not always the reactive ones. Therefore, using quantum mechanics
calculation, such as free energy perturbation, can help verify the most
accurate binding mode. Additionally, insufficient docking algorithms
and simplistic empirical scoring function can affect the accuracy of
docking results. Researchers can compare different molecular docking
programs to study the interaction between CYP450s and chemicals.
Meanwhile, machine learning techniques can be employed to develop
more advanced molecular docking software. Unlike traditional molec-
ular docking software, which relies on molecular physicochemical rep-
resentations and limited datasets for training, machine learningmethods
can convert molecular structural information into numerical vectors.
These vectors are easier to compute and can reveal hidden molecular
chemical and structural features. Also, advanced algorithms used in
machine learning can improve classification and scoring, then
increasing the accuracy of docking results. Nevertheless, many machine
learning-based docking programs are either new or still under

development. Thus, improving the performance of these docking pro-
grams and employing CYP450s data to verify their efficacy in studying
CYP450s specificity need many future efforts.

Ligand-based approaches, primarily QSAR models, study the rela-
tionship between molecular structure and function via mathematical
models. Many ligand-based tools have been developed as web server or
software package, and can be free accessed online. This accessibility
allows for more efficient ligand-based prediction models and these tools
are widely used for predicting large scales of CYP450s substrates and
inhibitors. Machine learning techniques can efficiently process large-
scale datasets, automatically extract molecular and protein features,
and capture the non-linear relationships between molecular descriptors
and biological activities. This has made machine learning play an
important role in building the ligand-based prediction models. Collect-
ing molecular and enzyme data from multiple sources to create raw
datasets is crucial. Data augmentation techniques such as noise injec-
tion, data interpolation, and machine learning surrogate model [94] can
increase quantity and diversity of training sets, thereby improving the
chemical coverage of datasets and the performance and robustness of
machine learning models. Most machine learning prediction models
only considered physicochemical and topological descriptors, and mo-
lecular fingerprints, which are not sufficient for accurate enzyme pre-
diction. Therefore, integrating molecular quantum-chemical descriptors
into the input features can help improve prediction accuracy [95]. In
addition, with the development of more beyond-rule-of-five drugs [96],
it is essential to note that most published prediction models only deal
with small molecules, which may not be adequate for contemporary
drug discovery pipelines. Moreover, overlooking CYP450s pharmaco-
genetics and molecular chirality (only considering canonical SMILES
strings) in model descriptors also requires improvement.

Nowadays, the size and complexity of datasets in biochemical field is
rapidly growing. Deep learning, a type of machine learning that can
identify complex patterns in big data and make accurate predictions
based on them [97], has become the new trend for building CYP450s
specificity prediction models. As the 3D structure of a protein or mole-
cule is directly related to its function, GNNs treat proteins or molecules
as graphs, embedding high-dimensional graph structure data into
low-dimensional vector spaces. This allows researchers to study the
enzyme-molecule interactions easily and accurately in space. PLMs treat
protein sequences as human language, representing each amino acid as a
character, and employ deep neural networks, such as Transformers, to
learn statistical patterns within this “language”. While both GNNs and
PLMs have achieved significant success in biological studies, their
robustness and performance in predicting CYP450s specificity still need
improvement. How to fine-tune these models to better fit CYP450 data is
important for further research progress.

5. Conclusion

Accurate prediction of CYP450 specificity holds significant impor-
tance in drug discovery, chemical toxicology, and patient treatment
planning. Computational approaches offer a means to expedite pre-
dictions, substantially reduce experimental costs and minimize envi-
ronmental pollution. This review provides an overview of past 20 years
of in silico studies on CYP450s specificity, categorized into structure-
based and ligand-based approaches.

Structure-based approaches mainly use molecular docking, MD
simulations, and QM calculations to explicitly study the enzyme-
chemicals complexes at an atomistic level. These methods are highly
accurate but computationally expensive. Additionally, they require
users to have professional knowledge and access to specific computing
resources. This limits the application of these approaches to large-scale
datasets and a broad group of users. They are more commonly utilized in
studying the protein-ligand interactions for specific molecule(s) with
specific CYP450 isoform(s). QSAR modeling is the predominant ligand-
based approach. It employs mathematical models to build correlations
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between molecular descriptors of chemicals and their biological activ-
ities, thereby explaining the inherent relationships at a molecular level.
Nowadays, machine learning techniques are the mainstay for building
prediction models in ligand-based approaches. More and more machine
learning-based prediction models have been developed as open-access
web servers or software packages. People can easily use those predic-
tion tools to have initial investigations on molecules of interest.

We then used 100 of the most prescribed drugs to assess 11 published
prediction models. These prediction models were developed using
various kind of classical machine learning or deep learningmethods, and
were published between 2015 and 2024. Our results indicate that both
classical machine learning methods and deep learning methods can
achieve a certain prediction accuracy, however, they are still not highly
consistent with the experimental or the QM-calculated data. Among the
11 models, CYPlebrity showed the best overall MCC and F1 score for
inhibitors prediction, while pkCSM demonstrated the best MCC and F1
score for CYP1A2. Additionally, admetSAR 2.0 and admetLab 3.0 were
capable of predicting the largest number of CYP450 isoforms. For sub-
strates prediction, CYPstrate achieved superior MCC and F1 scores
overall, indicating robustness, but failed to predict about 25 % of the
tested drugs, revealing a limitation in the chemical space coverage.
Conversely, CypReact slightly underperformed compared to CYPstrate
but provided predictions for all drugs. The quality and scope of datasets,
as well as chemical descriptors, are critical for the performance of pre-
diction models. Moreover, machine learning, particularly deep learning
methods, are the important future research trend for both structure-
based and ligand-based approaches. However, these methods are
newly developed, and model robustness and performance still need to be
improved and further validated by real experimental data.

We think this review provides readers with a comprehensive over-
view of in silico CYP450s specificity prediction studies. It aims to assist
users, such as researchers conducting initial investigations into mole-
cules of interest, as well as pharmacotherapy professionals to predict
DDIs and create better therapeutic schemes by choosing suitable models
for prediction. Additionally, it gives suggestions for researchers to do
better development of prediction models in this field.
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