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ABSTRACT: We present Swarm-CG, a versatile software for the
automatic iterative parametrization of bonded parameters in
coarse-grained (CG) models, ideal in combination with popular
CG force fields such as MARTINI. By coupling fuzzy self-tuning
particle swarm optimization to Boltzmann inversion, Swarm-CG
performs accurate bottom-up parametrization of bonded terms in
CG models composed of up to 200 pseudo atoms within 4−24 h
on standard desktop machines, using default settings. The software
benefits from a user-friendly interface and two different usage
modes (default and advanced). We particularly expect Swarm-CG
to support and facilitate the development of new CG models for
the study of complex molecular systems interesting for bio- and
nanotechnology. Excellent performances are demonstrated using a
benchmark of 9 molecules of diverse nature, structural complexity, and size. Swarm-CG is available with all its dependencies via the
Python Package Index (PIP package: swarm-cg). Demonstration data are available at: www.github.com/GMPavanLab/SwarmCG.

1. INTRODUCTION

In many research fields, innovation passes through the design
and development of new types of functional materials and
molecular systems with controllable properties. The shape and
functions of such complex nanostructures typically originates
from the collective behavior of a large number of interacting
molecules, as it is the case, for example, in lipid membranes,1,2

supramolecular polymers,3−5 crystals,6−8 cages,9−11 and so
forth. The investigation of these molecular systems at a
sufficiently high (submolecular) resolution is a tedious task,
especially when these are composed of large, soft, and flexible
macromolecules in the solution.
Alongside with experimental studies, molecular modeling

techniques such as molecular dynamics (MD) or Monte Carlo
simulations have turned out to be cornerstone tools to this
purpose.12−20 Recent advances in computational hardware and
simulation software have made possible to study and model
increasingly larger molecular systems, allowing the inves-
tigation of their structural properties with great (atomistic-
level) detail. However, the large number of degrees of freedom
(DOFs) of these calculations still limits classical all-atom MD
simulations (AA-MD) to the study of systems with a maximum
of ∼106 atoms (including the solvent, in, e.g., explicit solvent
simulations) and within the timescales of nano- to micro-
seconds.12,13 Furthermore, AA-MD may typically suffer from
limited sampling, especially in the simulation of complex

molecules, with the risk of entrapment and oversampling of
local minima and metastable states.21,22 As a consequence, AA-
MD simulations cannot be practically employed for the
observation of many crucial phenomena and molecular events
occurring on long characteristic timescales.
A typical approach to overcome these limitations is coarse

graining (CG), which consists of simplifying the description of
high-resolution molecular models (fine grain, FG), reducing
their resolution by grouping several atoms in CG beads
(pseudo atoms). The objective of CG modeling is to limit the
number of DOFs to be treated in the simulations, while still
providing a physically relevant representation of the molecular
systems. The way particles are grouped together (mapping
scheme) determines which DOFs are either retained or
neglected in the CG process23−25 and can be modulated by
molecular modelers according to the specific questions of
interest. Different CG frameworks have gained popularity by
allowing to simulate complex molecular systems, and their
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dynamical properties, such as solvent and small-molecule
mixtures,26−33 polymer melts,34−37 lipid bilayers,38−40

vesicles,39,41,42 proteins,43−45 and various types of complex
nanomaterials.14,46−50 Essentially, the CG process can follow
two different routes: bottom-up or top-down.
In bottom-up approaches (structure-based CG), parameters

of the CG force field are extracted from the reference
equilibrium AA-MD simulations. Methods such as inverse
Monte Carlo (IMC),51 iterative Boltzmann inversion (IBI),52

multistate IBI,53 force matching,18,54−56 relative entropy
minimization,57 the generalized Yvon−Born−Green (g-
YBG)58 equation, or particle swarm optimization
(PSO)33,34,59,60 can be applied to this end. Their parameter
extraction schemes either try to reproduce the pair distribution
functions,51−53 to match the forces,18,54−56 to minimize the
information loss in terms of relative entropy,57 or to make use
of the liquid state theory.58 Bottom-up approaches generally
allow to capture great details of the interactions of a FG system
and benefit from rigorous formalism. On the other hand, the
very nature of these structure-based approaches is to rely on
equilibrium AA-MD simulation(s) of bulk/condensed systems
for calibrating CG force fields, which induces transferability
issues: bottom-up CG force fields are rarely accurate in
thermodynamic conditions away from those used during
parametrization.61,62 The necessity of disposing of well-
equilibrated AA-MD trajectories is also often a nontrivial
task, which is important in structure-based CG of heteroge-
neous systems including large and flexible molecules. Bottom-
up CG approaches have been applied mostly to solvent and
small-molecule mixtures,26−33 polymer melts,34−37 amorphous
organic solids,63 lipids,18,64,65 and peptides.66 To date, the
number of successful studies involving more structured
macromolecular systems67−69 is still limited. Inversely, top-
down approaches essentially focus on reproducing key
experimental data and thermodynamic properties, while
making minimal, indirect, or no use of AA-MD simula-
tions.12,24,70,71 The main limit in the use of top-down
approaches is the need for reliable experimental results to be
used as a reference. However, in most cases for which it is of
practical interest to develop a CG model, experimental results
are often not available (i.e., this is one reason why the
development of a CG model is a necessity in order to
exhaustively study these systems and to gain a deeper insight
into their behavior).
Perhaps one of the most widely used CG framework is

MARTINI,72 which maps molecular fragments composed of
∼3−5 heavy atoms into predefined CG beads, parametrized
according to the partitioning of their associated molecular
fragments between aqueous and hydrophobic environments.
MARTINI CG beads are distributed in 4 categories: polar (P),
nonpolar (N), apolar (C), and charged (Q) bead types, while
nonbonded pair interactions (solute−solute and solute−
solvent interactions) are represented using nondirectional 12-
6 Lennard-Jones potentials. Such top-down approaches enable
the modular and additive parametrization of new complex
molecules, capitalizing on a relative transferability of the force
field, which has proven useful to create CG molecular models
for various types of molecules, from biomolecules, such as
lipids,73−75 peptides, and proteins,76,77 to synthetic molecules,
such as polymers78,79 and fullerenes.80,81 Moreover, the
MARTINI scheme makes this force field, in principle,
transferable, which is very useful when one wants to compare
and study structural variants or different conditions in the

molecular systems. In most cases, however, molecular modelers
need to refine their base MARTINI models to more faithfully
represent a specific molecular chemistry and architec-
ture.24,71,82

Bottom-up and top-down approaches each have their
drawbacks and in practice many CG-based studies rely on a
combination of these two routes. In particular, one of the most
challenging tasks in complex molecular systems is to quantify
the intramolecular and intermolecular interactions of hetero-
geneous systems composed of large and flexible molecules,
notably exhibiting long-range ordering at low density in the
solvent, starting solely from their molecular structures.
Combined top-down and bottom-up approaches are partic-
ularly useful to this end. For example, previous stud-
ies14,46−48,50,83,84 have demonstrated the potential of combin-
ing MARTINI,72 AA-MD simulations, and enhanced sampling
methods85−88 for probing the self-assembling capabilities of
complex (heterogeneous) molecular systems in a rigorous way.
Their general workflow can be summarized as follows, in 3
steps. First, according to the MARTINI framework, a
preliminary CG model is built for each molecular species in
the system by mapping constitutive molecular fragments to CG
beads, which types are opportunely chosen based on the
chemical analogy and polarities of the fragments. This allows to
quickly set up an initial guess of the nonbonded interactions in
the CG system.24,71 Second, molecular modelers have to
parametrize the intramolecular bonded interactions between
CG beads, namely, the bond, angle, and dihedral parameters,
in terms of equilibrium values and force constants.70,72 These
define the molecular flexibility, shape, and size and are just as
important as the nonbonded parametrization for how the
molecules will interact between them and their surroundings
(also solvent). Best practice is to tune bonded parameters
(BPs) in a bottom-up fashion, based on separate well-sampled
AA-MD simulations of each molecular species in the solvent at
the relevant thermodynamic conditions (temperature, pres-
sure, etc.) using a reliable AA force field.12,70,72,89 During this
step of bonded parametrization, the nonbonded parameters
remain constant. Third, the nonbonded parameters can be
eventually adjusted to refine the interactions between all pairs
of molecular species in the system (while typically BPs remain
constant in this phase). For example, to this end, enhanced
sampling methods such as umbrella sampling methods such as,
for example, umbrella sampling85,86 or (well-tempered)
metadynamics87,88 have been applied to calculate interaction
energies and to compare between the CG versus AA
models.14,46−48,50,83,84 When available, experimental data can
also be used for validation. Finally, it is important to control
that BPs have not been affected during the nonbonded
parameter refinement. Steps 2 and 3 can be repeated if
necessary, allowing to rigorously tune both bonded and
nonbonded interactions in concert. Frequently, however,
studies relying on top-down CG modeling validate the force
field parameters using few experimental data, or simply assume
that the nonbonded interaction force field is transferable,
which sometimes provide an incomplete picture of the
dynamics of the molecular systems.24,82

For molecules of interest in materials science, soft matter,
and modeling of complex molecular systems, usually composed
of 20−200 CG beads using fine mapping schemes and
including symmetrical, partially symmetrical, flexible, or planar
parts, automatic tools for the parametrization of the CG
models would be of great help, making the coarse-graining
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process more robust and reliable.12,23 While in principle a
simultaneous optimization of bonded and nonbonded
interactions would be desirable, in many cases this is practically
unfeasible. For this reason, in this work, we decided to rely on
the widely used MARTINI force field for what pertains to the
nonbonded interactions, and we focus exclusively on easing
and automatizing the parametrization of the bonded
interactions in the context of combined top-down and
bottom-up CG modeling approaches. Several software, such
as MSCGFM,90 VOTCA,26 BOCS,32 Magic,91 and PyCG-
TOOL,92 implement approaches that can be used for tuning
bonded interactions, while the nonbonded ones remain
constant, notably direct Boltzmann inversion (DBI),93,94

IBI,52,53 IMC,51 and the g-YBG equation.58 The g-YBG
equation and DBI are direct approaches, which do not require
to run simulations iteratively for refining parameters. Although

their direct nature allows a great speed-up of the para-
metrization process, they are not perfectly suited for handling
complex molecules, for which they might provide a relatively
poor description of the intramolecular interactions.25,58,68

IBI,52,53 IMC,51 and the iterative version of the g-YBG
approach (iter-g-YBG)25 are better suited to this end, relying
on iterative simulations to refine the potentials. Iterative
approaches then allow to better handle the coupling between
DOFs (i.e., the modification of one potential might affect other
potentials), notably between bonds, angles, and dihedrals,
which is frequently encountered in high-resolution CG models
of complex and flexible molecules. However, these typically
require extensive sampling for accurately calculating the
correction to be applied to the potentials at each iteration,
which can become particularly expensive for large and flexible
molecules and may cause convergence issues.25,68,89 Existing

Figure 1. Molecules used to benchmark Swarm-CG. Each molecule is represented by its molecular structure and AA model with superimposed CG
MARTINI bead mapping. (a) Flexible and symmetric molecular structures generating supramolecular polymers: water-soluble BTA with
amphiphilic side chains,83 C3-symmetric BTT decorated by L-phenylalanine and octaethylene glycol side-chains,84 NDI-based,47 and Zn-porphyrin-
based molecules.50 (b) Examples of cyclic structures: β-cyclodextrin97 and a pillar[5]arene.98 (c) Complex hyper-branched polymer structures:
spermine dendron99 and PAMAM G1 and G2.49,100−102 Each panel indicates the color coding of the CG MARTINI bead types (see Supporting
Information for exact mapping data).
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software also sometimes lack user-friendliness, they might
require manually smoothening the distributions of the
reference potentials, choose the fineness of the grid used for
calculating potentials (which introduces a trade-off between
accuracy and computation time), and their input formats are
not very convenient for usage with widely adopted combined
top-down and bottom-up approaches, notably making use of
MARTINI. In fact, these reasons prompted the recent
development of PyCGTOOL,92 which simply implements
DBI with increased ease-of-use with MARTINI.
Here, we introduce Swarm-CG, a general and easy-to-use

tool that combines DBI93,94 and fuzzy self-tuning PSO95 (FST-
PSO) to automatically parametrize bonded interactions in CG
models in a bottom-up fashion, within CG frameworks such as
MARTINI. The method requires only a reference AA-MD
trajectory and a preliminary CG topology of the molecule of
interest. Swarm-CG makes a first guess of the equilibrium BPs
via DBI, then automatically refines them via iterative CG-MD
runs and FST-PSO,95 until the distributions of the bonds,
angles, and dihedrals in the CG model are in good agreement
with those of the AA model. Its scoring function relies on the
Earth mover’s distance96 (EMD, aka Wasserstein) for
simultaneously evaluating the matching of all bond, angle,
and dihedral distributions, according to the provided CG
topology and bonded potential functions. In particular, the
coupling of FST-PSO to the EMD for score evaluation allows
to obtain a parameter-free software, requiring only minimalistic
input from the user, while the fast-converging PSO variant
(FST-PSO)95 used here also allows to correctly handle noisy
optimization and offers good performances for complex and
flexible molecules, even using limited CG sampling during each
iteration. To empirically demonstrate the robustness of this
approach, we challenged Swarm-CG on a diverse molecular
data set, including small to large molecules of different natures
and shapes; (i) flexible and symmetric self-assembling
monomers generating supramolecular polymers in the
solution: water-soluble 1,3,5-benzenetricarboxamide (BTA)
with amphiphilic side chains,83 C3-symmetric benzotrithio-
phene (BTT) decorated by L-phenylalanine and octaethylene
glycol side-chains,84 naphthalene diimide (NDI),47 and Zn-
porphyrin based self-assembling monomers,50 (ii) cyclic
structures: β-cyclodextrin97 and pillar[5]arene,98 and (iii)
complex hyper-branched polymers: a spermine dendron99

and poly(amidoamine) dendrimers of generation 1 and 2

(PAMAM G1 and G2)49,100−102 (Figure 1). Benchmarking
results demonstrate that Swarm-CG readily performs com-
parably to expert molecular modelers and systematically yields
CG models that exhibit reliable behavior in the solvent
environment, within 4−24 h on standard desktop machines
(wall time). Notably, such execution times allow to explore
different CG representations of the molecule of interest using
different AA-to-CG mappings and topologies. The approach is
perfectly suited for building and optimizing CG models based
on widely used CG frameworks such as MARTINI. At the
same time, Swarm-CG workflow is general and can be applied
in principle to any CG framework and any CG passage through
scales.

2. ALGORITHM
The algorithm implemented in Swarm-CG is designed to
automatically optimize the parameters of the bonded
interactions in a CG molecular model, namely, the parameters
of the potential functions used by the force field for bonds,
angles, and dihedrals in a user-provided CG molecular
topology file, in a bottom-up fashion. The software requires
to preliminary define the AA-to-CG mapping and the
nonbonded interactions force field (e.g., selecting beads
types in MARTINI). The functional form of the bonded
interaction potentials can generally be described as

∑ ∑

∑

θ θ

ϕ ϕ

= − + −

+ ± −

V k l l k

k n

1
2

( )
1
2

( )

1
2
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i
i i i

j
j j j

k
k k k k

bonded

bonds

b 0
2

angles

a 0
2

dihedrals

d 0
(1)

where the first term is the potential associated to the length li
of each bond, the second term is the potential of the angles θj,
and the third term is the potential of the dihedral angles ϕk. kbi,
kaj, and kdk are, respectively, the bond, angle, and dihedral force
constants, l0i indicates the equilibrium bond lengths, θ0j is the
equilibrium angle values, nk is the periodicity, and ϕ0k is the
phase shift of each dihedral.
In the bottom-up part of the MARTINI framework, an all-

atom trajectory of the target molecule in the solvent, at a
chosen thermodynamic state, is mapped to CG particles
(hereafter referred to as the “AA-mapped” trajectory) and used
as the reference to tune BPs, namely, the parameters in eq 1,

Figure 2. General workflow of Swarm-CG. This can be schematized into three phases. (i) Preparation of the input: the software requires a reference
AA-MD trajectory, a predefined AA-to-CG mapping and a preliminary CG model, where the nonbonded interactions are predefined (CG bead
types and interactions), and (ii) preprocessing: an AA-mapped reference model is built, computing the bond, angle, and dihedral distributions of the
reference AA-mapped MD trajectory, and an initial guess of bonded CG parameters is made (to be then optimized). (iii) Optimization process:
iterative CG-MD simulations are performed, while at each iteration, Swarm-CG, starting from a “swarm particle” (a set of BPs), changes the BPs to
optimize the consistency with the reference AA-MD trajectory. The resulting set of CG bond parameters is then obtained as the output.
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and to obtain matching distributions of the bond lengths, angle
values, and dihedral torsions (hereafter referred to as “geoms”)
in the CG representation. Often the tuning of BPs in the CG
models is performed manually, by repeating simulations of the

CG system until the agreement between CG and AA-mapped
models is deemed satisfactory. Provided that a well-sampled
AA-MD reference trajectory is available, the bonded para-
metrization of CG models is essentially an optimization

Figure 3. Overview of the scoring function and iterative optimization procedure used in Swarm-CG to automatically tune the BPs of a preliminary
CG model (using illustrative data). (a) Single model scoring: the scoring function evaluates the matching between pairwise distributions of N
groups of bonds, M groups of angles, and L groups of dihedrals from CG vs AA model trajectories using the EMD. C is a scaling factor applied to
the EMD of bonds. (b) Iterative model optimization: the procedure generates new sets of BPs to minimize the differences between CG and
reference AA-mapped distributions. (c) Quality control: radius of gyration (Rg) and SASA monitored during optimization.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://dx.doi.org/10.1021/acsomega.0c05469
ACS Omega 2020, 5, 32823−32843

32827

https://pubs.acs.org/doi/10.1021/acsomega.0c05469?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c05469?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c05469?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c05469?fig=fig3&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://dx.doi.org/10.1021/acsomega.0c05469?ref=pdf


problem, which requires to iterate CG-MD while the BPs are
optimized. To automatically perform this operation with high
accuracy and minimal user setup, in particular for complex
molecules that include symmetrical, partially symmetrical,
flexible, or planar parts, Swarm-CG is built around a state-of-
the-art metaheuristic, FST-PSO,95 which is employed to
iteratively tune the BPs to improve the geometrical features
of the CG model throughout successive CG-MD simulations.
At each iteration step (i.e., in each successive CG-MD run), a
scoring function based on the EMD96 evaluates the current
and complete set of BPs by comparing the resulting geoms
distributions with those of the AA-mapped reference trajectory.
After a defined number of iteration steps, the best matching set
of BPs is selected. The workflow implemented in Swarm-CG is
summarized in Figure 2. The following sections describe the
protocol and heuristics implemented in Swarm-CG that
allowed to make the software parameter-free and versatile to
deal with different modeling requirements and designs.
2.1. Input. Swarm-CG is currently designed for usage with

the GROMACS103,104 MD engine. In this paper, we
demonstrate Swarm-CG performances to optimize CG models
built based on the well-known MARTINI force field. However,
the workflow of Swarm-CG is general and it can be used for
refining basically any CG model, provided that nonbonded
parameters and a mapping scheme are defined and a reliable
reference AA-MD trajectory is available. The necessary input
can be divided in two groups: (i) AA data used to define the
target of the optimization and (ii) preliminary CG data used to
perform the model optimization.
The AA input data (i) include a well-sampled MD trajectory

of the AA molecular model to be used as a reference and its
predefined mapping to CG beads. We note that while a few
automatic AA-to-CG mapping schemes have been already
proposed (e.g., in the MARTINI formalism),92,105 these
typically work only for small molecules. The search of methods
suggesting the best CG representation for accurately treating
the dynamics and structural features of molecules is a subject
of great scientific debate.106−109 Here, for the sake of a broader
practical utility of Swarm-CG, we preferred to leave the AA-to-
CG mapping to the user, who is free to choose the preferred
CG scheme (the MARTINI force field or other preset
schemes),18,110,111 while the software will optimize the bonded
terms accordingly.
Input CG data (ii) include a preliminary CG model,

together with its nonbonded force field parameters, and
simulation setup for the iterative MD simulations that will be
used for the model refinement, i.e., the starting molecular
configuration and the MD parameter files (cf. Section 6.1). The
starting molecular configuration will be minimized and
preprocessed at each iterative MD simulation step using new
sets of BPs. The preliminary CG model needs to contain
relevant information on the CG beads (e.g., type, charge, and
mass), the bonded potential topology, and functional forms
(which define the form of eq 1), while equilibrium values and
force constants are arbitrarily initialized (e.g., to 0).
Symmetries of the CG topology can be specified in the
preliminary model file to improve the quality of the reference
AA sampling and to reduce the number of free parameters to
optimize. To this end, the bonds (or angles, dihedrals) that are
structurally equivalent because of their chemical nature or the
molecular symmetries can be gathered in “groups” so that: (i)
their distributions are averaged in the analysis and (ii) they will
share the same BPs in the CG model (cf. Section 6.1). Groups

of geoms are directly indicated by the user in the preliminary
model file. Swarm-CG provides detailed documentation and
uses a set of default file names for easier argument handling.

2.2. Scoring Function. To attribute a score to the BPs set
of a CG model (namely, how good/bad this performs
compared to the reference AA model), the reference AA
trajectory is first mapped to its CG representation to generate a
“target/reference” AA-mapped trajectory that the optimized
CG model aims at reproducing. In this perspective, the
geometrical features of the CG model can be evaluated by
comparing the CG-MD trajectory to the AA-mapped, on two
scales: (i) “global” structural molecular properties, for example,
the radius of gyration (Rg) and solvent accessible surface area
(SASA) and (ii) “local” conformation and flexibility, which can
be assessed via the distributions of geoms. Because multiple sets
of BPs can produce similar Rg or SASA values, it is not possible
to directly use such global structural properties as feedback for
the optimization process, as the results would be locally
inaccurate. Therefore, Swarm-CG uses a scoring function based
on the differences between the corresponding geoms
distributions obtained from the CG and AA-mapped
trajectories (reported in Figure 3a). The differences are
evaluated using the EMD,96 which solves the optimal transport
problem112 to quantify the amount of “work” necessary to
transform one distribution into another. The set of BPs
selected by Swarm-CG as the outcome of the optimization
process is the one that minimizes the scoring function, while Rg
and SASA are monitored during the execution and ultimately
used for a posteriori model validation.
In the present context, using the EMD offers several

advantages over other f-divergences. Notably, the EMD: (i)
quantifies the difference between geoms distributions in
interpretable units (Å, degrees), (ii) is well suited for
comparison of multimodal distributions in this application
case, and (iii) it allows to correctly handle dihedral
distributions by using a periodic distance matrix. A scaling
factor C is applied to the EMD obtained for bond distributions
to allow comparison with the EMD obtained for angles and
dihedrals because units are different.
By default, we set C = 50, meaning that an EMD of 0.4 Å

between bond distributions is equivalent to an EMD of 20°
between the angle or dihedral distributions. To better penalize
large mismatches between distributions and respect the weight
of each geom, we do not normalize score components by the
number of geoms defined in the topology. Therefore, it is
important to note that the scores can be compared exclusively
between trajectories of CG models generated in similar
conditions (i.e., identical topology and nonbonded interactions
parameters, but also simulation parameters) and with respect
to a (well-sampled) reference AA-mapped trajectory. The
components of the scoring function can be considered
separately to exclusively evaluate the matching of bond,
angle, or dihedral distributions during the optimization
procedure. Swarm-CG performs EMD calculations via
PyEMD.96,113

2.3. Iterative Optimization Procedure. PSO114,115 is a
population-based global optimization algorithm (aka meta-
heuristic) inspired by the collective movement of birds flocks
and fish schools. In PSO, a swarm of individuals (referred to as
“particles”, each representing a set of values to be optimized)
moves iteratively inside a bounded search space and cooperates
to identify the best solution for a problem, according to an
objective function. Usually, there are two groups of settings in
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PSO that control the cooperation within the swarm: (i) social
attraction, which favors the collaboration among particles, and
(ii) cognitive attraction, which prompts a particle to rely on its
individual experience. The swarm of particles can be initialized
either randomly or from known approximate solutions.
Metaheuristics such as PSO are particularly suited for solving
black-box optimization problems and effectively handle noisy
data.
To refine BPs of CG models, Swarm-CG relies on FST-

PSO,95 a recently introduced PSO variant. FST-PSO exploits
fuzzy logic to dynamically adjust PSO settings independently
for each particle during optimization, making it a more
efficient, parameter-free, and versatile PSO variant.95 None-
theless, the performance of all PSO algorithms is greatly
affected by the initial positioning of the swarm in the search
space.115 If the initial candidate solutions are positioned close
to the basin of attraction of a local minimum of the objective
function, the swarm might converge prematurely and be unable
to move out of that region. To systematically achieve global
optimization while minimizing execution times, Swarm-CG
uses an iterative procedure that includes 3 successive
optimization cycles calibrated to complement each other
(Figure 3b).
Notably, BPs of the CG model are optimized from higher to

lower geoms vibrational frequencies. Exclusively bonds and
angles are tuned in cycle 1. Angles and dihedrals are then
optimized in cycle 2. Finally, all parameters are refined
altogether in optimization cycle 3 (see Table 1). Accordingly,

the scoring function is adapted for each cycle to include
relevant components exclusively. Swarm-CG also calibrates
each initialization of the swarm of particles to maximize FST-
PSO performances. At the start of cycle 1, initialization is
performed using DBI (cf. Supporting Information Section
S1.1) to guess BPs of the CG model for one swarm particle,
which is used as a reference to generate variations and initialize
the rest of the swarm. At the start of cycles 2 and 3, the best set
of BPs obtained in previous cycles is chosen as a reference
particle to generate the rest of the swarm. For each BPs,
variations around the reference particle are generated
randomly within adaptive ranges, which are decreased as the
procedure progresses through optimization cycles (Table 1).
Adaptive ranges also take into account the EMD previously
obtained for each pairwise CG and AA-mapped geoms
distributions, which directs the optimization procedure toward

reducing first the largest discrepancies between models (cf.
Supporting Information Section S1.2). The two first
optimization cycles allow a quick exploration of relevant sets
of BPs using short simulation times (10 ns by default), while
the third optimization cycle uses longer simulation times to
perform a final merging and refinement step (25 ns by default).
In all PSO algorithms, the procedure terminates after a pre-

defined number of steps or when improvements over the
objective function become minimal. To allow a parameter-free
usage of Swarm-CG, simple heuristics enable automatic
selection of a relevant swarm size and number of swarm
iterations to perform in each cycle of optimization. The Swarm
size (Ssize) is defined according to the dimension (D) of the
search space as = +S D2size and number of swarm

iterations (Siter) as = +S D8 /2iter . An optimization cycle
is terminated prematurely if no improvement occurred within
6 swarm iterations. Default settings readily allow to perform
accurate bonded parametrization of virtually any CG model, as
long as the provided topology and potential functions are
relevant. The accuracy and execution times of Swarm-CG are
expected to satisfy molecular modeler requirements for the
optimization of up to approximately 100 free parameters,95

which represent approximately 50 groups of bonds, angles, and
dihedrals (i.e., many more geoms in symmetrical molecules).
Beyond that, users can easily access Swarm-CG parameters, for
example, to increase the number of optimization steps or add
more optimization cycles.

2.4. Execution Modes. The software provides two
execution modes, which conform to two different CG
modeling philosophies. Using execution mode 1, all equilibrium
values (l0i θ0j, and ϕ0k in eq 1) are optimized together with the
force constants (kbi, kaj, and kdk in eq 1), for each group of
bonds, angles, and dihedrals. This procedure, based on the
bottom-up philosophy, allows for a fully automatic and
relatively easy usage of the software, which precisely
reproduces geoms distributions from an AA-mapped reference
trajectory. However, using Swarm-CG in execution mode 1 as a
black box may also have undesired effects. For instance, an
insufficient conformational sampling in the reference AA-MD
trajectory may automatically introduce artifacts in the
optimized CG model. Indeed, poor sampling can attribute
excessive statistical weight to some molecular conformation,
which will affect the resulting CG model and limit its accuracy.
For example, the folding of flexible hydrophobic molecules in
polar solvents into metastable compact conformations may be
typically oversampled in AA-MD simulations. While the
folding is a consequence of solvophobic interactions, it may
result in a CG model in which the output BPs encode the
bending of straight linear chains (e.g., long alkyl groups,
formed by a straight chain of CG beads) in the form of
spurious angle equilibrium values (different from, e.g., 180°),
producing shorter bonds, and so forth. Similarly, limited
sampling can affect the modeling of symmetric molecules (e.g.,
the branched molecules of Figure 1), by enforcing non-
symmetric parameters that emerge by the oversampled local
minima, in contradiction with the chemical structure of the
molecule. In such cases, this may eventually result into having
an “effect” emerging from the AA models and encoded into the
BPs of the CG models, which may then affect the way
molecules interact between them, their flexibility, trans-
ferability across different molecular environments, and so
forth. However, Swarm-CG is well equipped to mitigate such

Table 1. Default Settings Used to Perform 3 Cycles of BPs
Optimization of a CG Model in Swarm-CG

geoms optimized

opti.
Cycle bonds angles dihedrals

reference
swarm
particle

initialization

variations
around
reference
swarm
particle

simulation
time of

production
runsc (ns)

1 yes yes nob BI large 10
2 noa yes yesb best from

cycle 1
medium 10

3 yes yes yesb best from
cycle 2

small 25

aIn cycle 2, bond parameters are fixed to those of the best scored
model obtained during cycle 1. bDihedral parameters are applied for
simulation and optimized only in cycles 2 and 3, if dihedral topologies
are provided in the input preliminary CG model. cDefault settings,
simulation times can be increased by the user for very large molecules.
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spurious effects of limited MD sampling, by averaging in the
AA-mapped reference the distributions obtained for structurally
symmetric/identical parts of the molecule. It is also worth
underlining that such possible issues emerging from using a not
properly sampled AA-MD trajectory as the reference is not
specific to Swarm-CG but rather a general drawback of the
bottom-up approach. Therefore, one should always be careful
and check that the AA-MD trajectory is sufficiently well
sampled to ensure that the observed properties of the
optimized CG models are reliable. While enhanced sampling
approaches such as replica exchange MD116,117 and metady-
namics87,88 may be useful in this sense, said issues can be
mitigated by using the second execution mode (mode 2) of
Swarm-CG.
Execution mode 2 is identical to mode 1, with the exception

that equilibrium values for bonds, angles, and dihedrals can be
predefined in the preliminary CG model and conserved during
the optimization, while only their force constants are optimized
(along with all bond parameters). For example, in the case of
flexible molecules containing long solvophobic chains (e.g.,
alkyl chains in water), execution mode 2 allows to manually
predefine chemically relevant equilibrium angle values between
the alkyl CG beads (e.g., 180°) and to obtain an accurate
folding propensity of the molecule (i.e., the correct folding
effect) exclusively by softening angle force constants, without
biasing the equilibrium conformation (and without encoding
such bias in the optimized CG models). Compared to mode 1,
mode 2 requires more experience of the user and some
knowledge of the molecular system, as well as an initial hands-
on setup.
2.5. Usage. Swarm-CG allows users to quickly verify the

setup and progress of an optimization procedure. At the outset
of an optimization, Swarm-CG produces a graphical summary
of the geoms distributions used as the target for optimization,
notably allowing to verify the consistency of the mapping and
choice of potential functions. At any point during the iterative
execution process, the best identified set of BPs is readily
provided as an output in a CG model ITP file, while the
progress of the procedure can be monitored by producing a
graphical summary similar to the one presented in Figure 3.
Separate modules allow to perform these actions independ-
ently from the optimization. For manual editing of models,
such as further modifying nonbonded interactions (e.g., CG
bead types in MARTINI) and evaluating their impact on the

bonded parametrization, the routine for model evaluation via
scoring function and geoms distributions is also available as a
separate module.

3. RESULTS

The following sections describe the results obtained for
automatic bonded parametrization of CG models included in
the Swarm-CG benchmark (Figure 1), using default settings of
the program. Here, we focus on synthetic structures as: (i)
being the core activity of our group, we have a good amount of
available data to test the performance and accuracy of Swarm-
CG and (ii) because it is for the simulation of synthetic
molecular systems that the development of de novo AA and CG
models from scratch is most often required, while the accuracy
of such models is clearly critical for the reliability of the results
that these can provide. This can be a time-consuming activity,
in which the advantages of an automatic tool such as Swarm-
CG combined with a general CG force field such as MARTINI
are more evident. The benchmark synthetic molecules that we
use herein were selected for their structural diversity in terms
of molecular flexibility, symmetry, and complexity (cf. Section
6.2). We first created AA models and generated AA-MD
trajectories (up to 1 μs of simulation) for each single molecule
in the explicit solvent (while most of the cases studied herein
are in water, the approach is versatile to treat molecules in
various solvents, as it is shown in the case of the NDI and
porphyrin-based structures shown in Figure 1, studied in
methyl cyclohexane),50 guaranteeing well-sampled references
for the automatic bonded parametrization of the CG models.
CG models were already available from the literature for 7 of
the 9 benchmarking molecules (BTA,83 BTT,84 NDI,47 Zn-
porphyrin-based molecule,50 β-cyclodextrin,97 and PAMAM
dendrimers of generation G1 and G249), which allowed us to
challenge Swarm-CG performances with respect to manually
parametrized CG models previously developed by expert
molecular modelers. To this end, we used the available CG
models as provided (notably for what pertains to mapping and
nonbonded interactions) and allowed Swarm-CG to modify
exclusively the equilibrium values and force constants of each
bonded potential function defined in the available CG
topology (cf. Section 6.2). For the 2 other molecules
(pillar[5]arene98 and spermine dendron99), CG models were
built in the framework of MARTINI and optimized using AA
models previously reported by our group (cf. Section 6.2). For

Table 2. Average Rg Obtained for CG Models of the Benchmark Optimized Using Execution Mode 1 and Swarm-CG Default
Settings, the Reference AA-Mapped Trajectories and Manually Parameterized CG Models from the Literaturea

radius of gyration (Rg)

molecule
bond
scaling

ref. AA model
[Å]

optimized CG model error [ΔÅ]
(Δ%)

manually parametrized CG model error [ΔÅ]
(Δ%)

optimization wall timeb

(h)

BTA ++ 9.07 0.37 (4.1%) 0.41 (4.5%)83 6
BTT ++ 8.45 0.73 (8.6%) 0.89 (10.5%)84 7
NDI +++ 10.98 0.53 (4.8%) 0.75 (6.8%)47 16.5
porphyrin ++ 13.58 0.40 (3.0%) 0.60 (4.4%)50 15.5
β-cyclodextrin n/a 5.71 0.15 (2.6%) 0.35 (6.1%)97 5
pillar[5]arene + 6.43 0.07 (1.1%) n/a 6.5
spermine
dendron

+ 9.50 0.27 (2.8%) n/a 12

PAMAM G1 n/a 9.95 0.12 (1.2%) 2.62 (26.3%)49 5
PAMAM G2 n/a 13.61 1.26 (9.3%) 3.32 (24.4%)49 5.5
aAll data points were obtained in 200 ns simulations. (+) Minimal bond rescaling. (++) Important bond rescaling. (+++) All bonds rescaled.
bUsing standard desktop machines, see Supporting Information and Table S2 for simulations parameters and hardware specifications.
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all models, bonded parametrizations were evaluated using (i)
Swarm-CG scoring function, which assesses the local geo-
metrical features of a CG model, together with (ii) Rg and
SASA, which provide a global evaluation of its dynamics.
We first tackle relatively small and flexible molecules forming

supramolecular polymers in the solution that we use as
examples to discuss in detail the differences between execution
mode 1 versus mode 2. Then, we report the results of Swarm-
CG for the parametrization of relatively rigid cyclic molecular
structures. Finally, we increase molecular complexity by
parametrizing complex hyperbranched directional and non-
directional macromolecules, such as dendrons and dendrimers.
Because the simulation times used in the optimization runs
(10−25 ns by default in the examples reported herein) might
be insufficient in some cases to get well-converged Rg and

SASA data at each step of the optimization process, Rg and
SASA values presented for the selected (i.e., best scored) set of
BPs are all issued from 200 ns validation simulations that are
conducted at the end of the optimization procedure. This also
allowed to verify that all optimized models are stable in CG
simulation using a standard integration time step of 20 fs. All
average Rg values obtained for optimized CG models using
execution mode 1 are summarized in Table 2 and compared to
the available manually parametrized CG models. The number
of iterative optimization steps used for each model is
determined according to the formula previously described in
Section 2.3, while execution times are reported in Table 2
(hardware is detailed in Table S2).

3.1. Small Flexible Molecules Generating Supra-
molecular Polymers. Because we have a good benchmark

Figure 4. Results of Swarm-CG for the optimization of BPs of two C3-symmetric flexible structures using execution modes 1 (M1) and 2 (M2) with
default settings: (a) BTA model.83 (b) BTT model.84 From left to right we report: (i) molecular structure and (ii) evolution of the scoring
function, where green lines show the score attributed to candidate BPs during optimization. Yellow diamonds indicate the score of the selected
model. (iii) the evolution of Rg, in which blue lines show average Rg estimates at each iteration of the CG model optimization (light blue intervals
represent ±standard deviation), and red horizontal lines show the average Rg of AA-mapped reference trajectories (light red intervals represent
±standard deviation). Yellow diamonds and lines show averages and standard deviations obtained from 200 ns simulations. (iv) The comparison of
Rg and BPs errors in different models in 200 ns simulations (BI: step 1, Opti: selected model). Boxplots and whiskers display percentiles 5, 25, 50,
75, and 95 of Rg values. Black dots show average Rg values. Stacked barplots show each component of the scoring function, the sum of which
amounts to the BPs score.
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of AA and CG models for (relatively) small and flexible
molecules that generate supramolecular polymers in different
environments,46,47,49,50,83,84,97−99,118 we started from here in
showing the potential of Swarm-CG. We chose the examples
reported in Figure 1a. These are relatively flexible molecules
that generate supramolecular structures in water (BTA and
BTT)83,84 or in organic solvents (BTA, porphyrin, and NDI-
based units).46,47,50,84 These molecules show an intrinsic
symmetric character having three (BTA and BTT), two
(NDI), or four (porphyrin) structurally identical arms
originating from their cores, while NDI and porphyrin also
include planar substructures at their core. Thus, these are the
typical motifs which may suffer from spurious different
parametrizations of identical groups given by insufficient
sampling, and in this sense, they represent the ideal ground
to test Swarm-CG. For these systems, we compared the results
obtained using Swarm-CG execution mode 1 versus mode 2. As
previously mentioned (cf. Section 2.4), execution mode 2
allows the user to preset conserved equilibrium values for
angles and dihedrals, while Swarm-CG then optimizes the
corresponding force constants to have the CG model behaving
consistently with the reference AA model.
For the CG modeling of BTA, BTT, NDI, and porphyrin-

based motifs, we relied on previously developed AA and CG
models, where intramolecular nonbonded interactions were
accurately tuned using state-of-the-art enhanced sampling
techniques.14,46,47,50,83,84 Considering the nonbonded param-
eters of these CG models as reliable, we used Swarm-CG
exclusively to set up their bonded terms.
3.1.1. BTA. We first comment the optimization case of the

CG model of the water-soluble BTA.83 The main results of
both execution modes are reported in Figure 4a. Geometrical
features of the optimized models are compared to both those
calculated from AA-mapped data and from the literature CG
model46 (cf. Section 6.2).
Using execution mode 1, the DBI coupled to distributions

averaging within groups of similar geoms yielded an already
appropriate set of BPs at the very first step of the optimization
process (Figure S2), here also validated in an additional 200 ns
of MD simulation. For BTA, which can be considered a
structurally (relatively) “simple” case with respect to the rest of
the benchmark (i.e., composed of 3 core CG beads, linear side
arms, and a 3-fold symmetry), the BI implemented in Swarm-
CG with geoms averaging proved very efficient. Optimization
still reduced small mismatches in geoms distributions (Figure
S4) and BPs scores decreased from 23.3 to 16.1 without
modifying the average Rg of the CG model, which was found in
good agreement with AA-mapped data for both sets of BPs (i.e.,
both errors <5%). The set of BPs, which obtained the lowest
score during the optimization procedure, is considered as the
most relevant (Figure 4a, yellow diamonds), with respect to
AA-mapped reference data, and is further validated in a 200 ns
simulation. This longer simulation validates that the optimized
CG model correctly reproduces both local and global
geometrical features calculated from the AA-mapped trajectory.
BPs optimization converged within 257 steps (Table 2).
We also tested the manually parametrized CG model of

BTA83 in a 200 ns simulation. BPs score and average Rg error
for this model were 43.2 and 4.5% with respect to AA-mapped
data (Figure 4a, right plots). Both BPs sets obtained via BI and
optimization using execution mode 1 fixed small mismatches
observed in local geometrical features of the manually

parametrized model (Figure S6), without substantially
improving the average Rg error.
Using execution mode 2, all equilibrium values for the angles

between the CG beads representing the three side chains of the
BTA were fixed at 180°. As expected, the BI initially produced
an imperfect set of BPs (Figure S3 and cf. Supporting
Information Section S1.1), which were quickly tuned as the
optimization approached convergence. BPs scores decreased
from 52.2 to 20.0. The optimized set of BPs produced more
“loosely” adjusted overlaps of the distributions for some angle
groups that used equilibrium values at 180° (Figure S5, angle
groups 7, 8, and 9), providing increased flexibility of the CG
molecular model with respect to the optimized BPs obtained
via execution mode 1 and AA-mapped data (i.e., average Rg
increased just by 0.65 Å, or 7 points, reaching 10.1 Å). BPs
scores first decreased slowly during optimization cycle 1, then
only angle distributions were further optimized during cycle 2
and all BPs were refined during cycle 3 using longer simulation
times. At the start of cycles 2 and 3, the swarm is reinitialized
around the best scored set of BPs obtained in previous cycles,
using calibrated variations (cf. Section 2.3) which allowed to
escape a local minima of the objective function and produced
the fluctuations of BPs scores observed after steps 95 and 160.
BPs optimization converged within 209 steps. The selected
maximum number of optimization steps is reduced compared
to execution mode 1 because equilibrium angle values are
provided by the user, reducing the dimensionality of the
problem.
It is worth re-underlining that in this case (mode 2) the BTA

folding is not pre-encoded in the CG model as the bonded
terms, but it is exclusively a consequence of the spontaneous
collapse of the molecule in the solvent (hydrophobic effect,
bead−bead interactions), which, in a sense, is more physically
correct. However, it is also worth noting that such a
comparison between mode 1 and mode 2 shows that the two
modes work substantially the same in these cases, demonstrat-
ing that the behavior of these CG models is mainly controlled
by the nonbonded interactions between the CG beads in the
models more than by the bonded terms, so that the difference
between the 2 execution modes is globally negligible in this
case (see Figure 4).

3.1.2. BTT. We then optimized the CG model of the three-
branched BTT84 motif, again using both execution modes. The
main results are reported in Figure 4b. Geometrical features of
the optimized models are compared to both those calculated
from AA-mapped data and from the literature CG model84 (cf.
Section 6.2).
Using execution mode 1, the BI again yielded an appropriate

set of BPs at the very first step of the optimization process,
with essentially a single group of dihedrals for which
distributions were not perfectly adjusted (Figure S8). These
were fixed during optimization (BPs scores down from 31.7 to
20.8) and allowed to retrieve a correct planar geometry of the
core of BTT, along with slightly better adjusted geoms
distributions (Figure S10). Notably, the average and spread
of Rg values obtained for the optimized CG model are just
slightly larger with respect to those of the AA-mapped reference
trajectory (Figure 4b: ΔRg of 0.7 Å). Although the error is
substantially negligible, this is consistent with the higher
dynamicity of CG models compared to the AA ones119 (this is
more evident in BTT, as this motif allows stronger core-to-
arms and arms-to-arms interactions compared to, e.g., BTA).
BPs optimization converged within 282 steps (Table 2).
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We tested the manually parametrized CG model of BTT in a
200 ns simulation. BPs score and average Rg error for this
model were 87.4 and 10.5% with respect to AA-mapped data.
The set of optimized BPs obtained using execution mode 1
fixed the small mismatches observed in local geometrical
features of the manually parametrized model (Figure S12),
while producing a very similar average and spread of Rg values.
Using execution mode 2, as expected the BI initially

produced an inaccurate set of BPs (Figure S9 and cf.
Supporting Information Section S1.1), which was then tuned
during optimization. BPs scores decreased from 95.6 to 38.0.
Again, the optimized BPs produced more “loosely” adjusted
distribution overlaps for angle groups that used equilibrium

values at 180° (Figure S11, angle groups 3−8), providing
increased flexibility of the CG molecular model with respect to
the model optimized via execution mode 1 and AA-mapped
data (i.e., average Rg increased by 1.10 Å or 12 points, reaching
10.3 Å). BPs optimization converged within 261 steps.

3.1.3. NDI.We performed the same study for the NDI-based
molecules, the results of which are reported in Figure 5a and
compared to the CG model available from the literature.47

Using execution modes 1 and 2, the initial BIs yielded
inappropriate sets of BPs, notably due to the several dihedral
potentials used to maintain the planarity of the molecular core
(Figures S14 and S15). During optimization with mode 1, BPs
scores decreased from 182.2 to 41.3 and allowed to retrieve a

Figure 5. Results of Swarm-CG for the optimization of BPs of other symmetric flexible structures in the benchmark, using execution modes 1 (M1)
and 2 (M2) with default settings, (a) NDI model.47 (b) Porphyrin-based monomer model.50 From left to right we report: (i) molecular structure
and (ii) evolution of the scoring function, where green lines show the score attributed to candidate BPs during optimization. Yellow diamonds
indicate the score of the selected model. (iii) Evolution of Rg, in which blue lines show average Rg estimates at each iteration of the CG model
optimization (light blue intervals represent ±standard deviation), and red horizontal lines show the average Rg of AA-mapped reference trajectories
(light red intervals represent ±standard deviation). Yellow diamonds and lines show averages and standard deviations obtained from 200 ns
simulations. (iv) Comparison of Rg and BPs errors in different models in 200 ns simulations (BI: step 1, opti.: selected model). Boxplots and
whiskers display percentiles 5, 25, 50, 75, and 95 of Rg values. Black dots show average Rg values. Stacked barplots show each component of the
scoring function, the sum of which amounts to the BPs score.
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correct planar geometry of the core of NDI, with correctly
adjusted geoms distributions (Figure S14). The average Rg
value of the optimized model is in perfect agreement with the
AA-mapped reference trajectory (Figure 5a: ΔRg = 0.5 Å or
4.8%). BPs optimization converged within 395 steps (Table 2).
As a comparison, the manually parametrized CG model of
NDI yielded a higher BPs score of 74.42 in a 200 ns
simulation, indicating that some geoms distributions could be
better adjusted (Figure S18), although average Rg was correct
at 11.7 Å (ΔRg = 0.7 Å or 6.8%).
Using execution mode 2, the BPs scores went down from

350.2 to 52.4 and produced geoms distributions almost
indistinguishable from those obtained using mode 1, because
only the hinge junctions between the core and arms (Figure
S17, angle groups 10 and 11) used angles at 180° and those
were already “loosely” adjusted with mode 1 (although Swarm-
CG selected an equilibrium value at 120°). In both resulting
models, the low force constant associated with the hinge
junctions should not restrict the full extension of the arms, and
thus is not expected to significantly affect assembly simulations,
but these specific flexibilities must be considered carefully. The
average Rg was 11.8 Å (ΔRg = 0.8 Å or 7.8%). BPs
optimization converged within 301 steps.
3.1.4. Porphyrin. Lastly, we optimized the CG model of the

porphyrin-based molecule, as shown in Figure 5b, which
possesses four arms originating from a central core according
to a square symmetry, as we did for the previous cases. Again,
we compared the geometrical features of the optimized models
with those calculated from AA-mapped data and the literature
CG model.50 Using execution mode 1, the BI initially produced
inappropriate BPs, and mismatches between CG and AA-
mapped geoms distributions were effectively reduced during
optimization (Figure S20), notably allowing to obtain a
relevant geometry of the porphyrin core in this more

“complicated” case (i.e., nested network of bonds). BPs scores
went down from 45.2 to 32.6. The average Rg was also found in
good agreement with the AA-mapped trajectory (ΔRg = 0.4 Å
or 3%). The averaging of distributions within groups of similar
geoms, coupled to CG modeling, produced a planar geometry
of the porphyrin core which reduced the spread of Rg values
with respect to AA-mapped data (Figure 5b, boxplots). BPs
optimization converged within 392 steps (Table 2). Using
execution mode 2, as expected, the BI initially produced an
inaccurate set of BPs (Figure S21 and cf. Supporting
Information Section S1.1), which was tuned during opti-
mization. BPs scores decreased from 80.6 to 40.2. Once again,
optimized BPs produced more “loosely” adjusted distribution
overlaps for angle groups that used equilibrium values at 180°
(Figure S23, angle group 3 in particular), providing increased
flexibility of the CG molecular model with respect to the
optimized BPs obtained via execution mode 1 and AA-mapped
data. In this case, this allowed the model to adopt more folded
conformations in the solvent (i.e., average Rg decreased by 1.20
Å or 10 points, reaching 12 Å). BPs optimization converged
within 322 steps.

3.2. Cyclic Structures. We also challenged Swarm-CG in
treating different types of molecular architectures, i.e., cyclic
and symmetric molecules with a more rigid architecture,
namely, cyclodextrins and pillar[5]arene. In such cases, we
report the results of execution mode 1 (as for such relatively
simple and rigid motifs, execution mode 2 reported identical
results).

3.2.1. β-Cyclodextrin. We first comment the optimization
case of the CG model of β-cyclodextrin,97 for which the main
results are reported in Figure 6a. Geometrical features of the
resulting CG model are compared to both those calculated
from AA-mapped data and from the CG model available from
the literature97 (cf. Section 6.2).

Figure 6. Results of Swarm-CG for the optimization of BPs of two cyclic structures using execution mode 1 with default settings. (a) β-Cyclodextrin
model.97 (b) Pillar[5]arene model.98 From left to right we report: (i) molecular structure and (ii) evolution of the scoring function, where green
lines show the score attributed to candidate BPs during optimization. Yellow diamonds indicate the score of the selected model. (iii) Evolution of
Rg, in which blue lines show average Rg estimates at each iteration of the CG model optimization. (iv) Evolution of SASA, in which blue lines show
average SASA estimates at each iteration of the CG model optimization. Light blue intervals represent ±standard deviation, and red horizontal lines
show the average Rg/SASA of AA-mapped reference trajectories (light red intervals represent ±standard deviation). Yellow diamonds and lines
show averages and standard deviations obtained from 200 ns simulations.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://dx.doi.org/10.1021/acsomega.0c05469
ACS Omega 2020, 5, 32823−32843

32834

http://pubs.acs.org/doi/suppl/10.1021/acsomega.0c05469/suppl_file/ao0c05469_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsomega.0c05469/suppl_file/ao0c05469_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsomega.0c05469/suppl_file/ao0c05469_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsomega.0c05469/suppl_file/ao0c05469_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsomega.0c05469/suppl_file/ao0c05469_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsomega.0c05469/suppl_file/ao0c05469_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsomega.0c05469/suppl_file/ao0c05469_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsomega.0c05469/suppl_file/ao0c05469_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsomega.0c05469/suppl_file/ao0c05469_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c05469?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c05469?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c05469?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c05469?fig=fig6&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://dx.doi.org/10.1021/acsomega.0c05469?ref=pdf


The mismatches between CG and AA-mapped geoms
distributions were effectively reduced during optimization
(Figure 6a, green line). However, in the 200 ns validation
simulation, geoms distributions of the optimized CG model did
not perfectly reproduce those calculated from the AA-mapped
trajectory (Figure S27). A small issue in the topology of the
model, related to the size of CG beads used in the MARTINI
framework, prevents proper closing of angles between P4−P2−
P2 beads (i.e., maroon-pink-pink and Figure S27, angle 4) and
slightly affects other geoms distributions. These small
mismatches in local geometry are acceptable at CG resolution,
in the context of this molecular structure. According to the
MARTINI framework, fixing them would require modifications
such as scaling the bond lengths between P4−P2 beads (i.e.,
maroon-pink), which would introduce other forms of error in
the CG model, notably related to nonbonded parametrization.
Nonetheless, the optimization process yielded appropriate BPs
in the context of the CG topology provided for β-cyclodextrin,
and average Rg and SASA are in very good agreement with the
AA-mapped trajectory (i.e., both errors <1%). BPs optimization
converged within 206 steps (Table 2).
We tested the manually parametrized CG model of β-

cyclodextrin in a 200 ns simulation. Swarm-CG scoring
function yielded a BPs score of 71.9 for this model, indicating

larger discrepancies in the local geometrical features (Figure
S29) compared to the optimized CG model which obtained a
BPs score of 28.2, with respect to the AA-mapped reference
trajectory. BPs optimization produced marginal improvements
on an average Rg error (0.2 Å or 3.5 points) for this small and
cyclic molecule, with respect to the available manual bonded
parametrization (Table 2).

3.2.2. Pillar[5]arene. Next, we optimized the CG model of a
pillar[5]arene, for which the main results are reported in
Figure 6b. Geometrical features of the resulting CG model are
exclusively compared to those calculated from the AA-mapped
data98 because no manually parametrized CG model was
available from the literature for this molecule. The mismatches
between CG and AA-mapped geoms distributions were
effectively reduced during optimization (Figure 6b, green
line). The optimized CG model was further validated in a 200
ns simulation, in which geoms distributions correctly over-
lapped with those calculated from the AA-mapped trajectory
(Figure S31). Average Rg and SASA values were also found in
good agreement (errors: 1 and 5%). Because the CG model of
the pillar[5]arene was prepared according to the MARTINI
framework, bonds were rescaled between SC5 and EO beads
(i.e., cyclic core to arms junctions) and the average Rg of the
AA-mapped reference was rescaled accordingly (cf. Supporting

Figure 7. Results of Swarm-CG for the optimization of BPs of three types of hyper-branched macromolecules (i.e., dendrons and dendrimers) using
execution mode 1 with default settings. (a) Spermine dendron model.99 (b) PAMAM G1 model.49 (c) PAMAM G2 model.49 From left to right we
report: (i) molecular structure and (ii) evolution of the scoring function, where green lines show the score attributed to candidate BPs during
optimization. Yellow diamonds indicate the score of the selected model. (iii) Evolution of Rg, in which blue lines show average Rg estimates at each
iteration of the CG model optimization. (iv) Evolution of SASA, in which blue lines show average SASA estimates at each iteration of the CG
model optimization. Light blue intervals represent ±standard deviation, and red horizontal lines show the average Rg/SASA of AA-mapped
reference trajectories (light red intervals represent ±standard deviation). Yellow diamonds and lines show averages and standard deviations
obtained from 200 ns simulations.
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Information Section S2.2), while no transformation was
applied to its average SASA value. Therefore, the small
discrepancy observed between the average SASA of the
optimized CG and AA-mapped models is expected, and the
rescaled, average Rg is a better reference to assess this model’s
bonded parametrization. BPs optimization converged within
230 steps (Table 2).
3.3. Complex Hyper-Branched Macromolecules. Fi-

nally, we challenged Swarm-CG for the optimization of CG
models of complex macromolecules, for which we use, as a case
study, a spermine-based dendron (flexible, small, and direc-
tional branched macromolecule) and PAMAM dendrimers of
generations 1 (G1, symmetric/nondirectional, small, and
flexible branched macromolecule), and 2 (G2, large,
symmetric/nondirectional and complex branched macro-
molecule). For these cases, only the results of execution
mode 1 are reported, as execution mode 2 provided an
analogous picture. Here, as Swarm-CG averages the behavior of
the identical/symmetric side branches in both the AA and CG
systems, which prevents spurious effects that may arise from
insufficient AA-MD sampling.
3.3.1. Directional Dendrons. We first comment the

optimization case of the CG model of a spermine-function-
alized dendron, as reported in Figure 7a, as an example of a
flexible, branched, and directional molecule.99,118 Geometrical
features of the resulting CG model are exclusively compared to
those calculated from AA-mapped data because no manually
parametrized CG model was available from the literature for
this molecule.
As depicted by the decreasing scores attributed to candidate

sets of BPs during optimization (Figure 7a, green line), the
process effectively minimizes mismatches between CG and AA-
mapped geoms distributions, which were reduced by a factor of
2 when comparing the initial set of BPs (step 1) to those of the
optimized model (step 249). BPs optimization converged
within 255 steps (Table 2). The optimized CG model was
further validated in a 200 ns simulation. Distributions of the
bonds and angles correctly overlap between the optimized CG
and AA-mapped models (Figure S34), and, on a larger scale,
average Rg and SASA values are also in very good agreement
(i.e., both errors <3%). The average SASA of the optimized
CG model is slightly increased with respect to that of the AA-
mapped, which is due to the scaling of bond lengths between
CG beads of the aromatic ring and is inherent to the
MARTINI framework (cf. Supporting Information Section
S2.2). This scaling has little incidence on Rg values in this
model, and the AA-mapped average Rg was calculated without
considering any offset.
3.3.2. PAMAM G1 Dendrimer. Next, we optimized the CG

model of a G1 PAMAM dendrimer, a small structural variant
belonging to a well-known family of dendrimers,49,101,102 here
used as an example of a relatively flexible and small symmetric
branched macromolecule, for which the main results are
reported in Figure 7b. Notably, a MARTINI CG model for
PAMAM G5 is available from the literature49 and could be
adapted (truncated) to obtain a smaller PAMAM G1.
Geometrical features of the resulting CG model are compared
to both those calculated from AA-mapped data and from the
CG model adapted from the literature49 (cf. Section 6.2). We
show that Swarm-CG is capable of optimizing the CG
parametrization for such types of molecules, which performs
even better versus AA models compared to the CG parameters
available in the literature (and adapted for smaller dendrimer

generations), in terms of behavior of the dendrimer in the
solvent (water). In particular, the simple truncation to G1 of
the available MARTINI model for G5 PAMAM dendrimers
(maintaining the very same bonded and nonbonded literature
parameters)49 results in an overestimation of the Rg and SASA
of the dendrimer in explicit water, which could be somewhat
expected considering that Lee and Larson also highlighted
similar slight size overestimations for G5 PAMAM when the
model was developed.49 By providing the same nonbonded
terms as an input; however, here we show that Swarm-CG is
capable of easily optimizing the CG models to successfully
improve the agreement with AA models for these branched
macromolecules.
The mismatches between CG and AA-mapped geoms

distributions were again reduced by a factor of 2 during
optimization, when comparing the initial set of BPs to those of
the optimized CG model (Figure 7b, green line). The
optimized CG model was further validated in a 200 ns
simulation, in which geoms distributions correctly overlapped
with those calculated from the AA-mapped trajectory (Figure
S37). Average Rg and SASA values were also in perfect
agreement (i.e., both errors <2%). BPs optimization converged
within 182 steps (Table 2).
We then tested the available manually parametrized CG

model of PAMAM G149 via a 200 ns CG-MD simulation. The
Swarm-CG scoring function yielded a BPs score of 123.7 for
this CG model (Figure S38). Noteworthy, the discrepancy in
the local geometrical features with respect to the AA-mapped
reference MD trajectory is considerably reduced in the
optimized CG model produced by Swarm-CG, which yielded
a BPs score as low as 9.0 (Figure S37). With respect to manual
parametrization, the average Rg error in the optimized CG
model provided by Swarm-CG (calculated respect to the AA
reference model) is also reduced by 2.5 Å (∼25%) using the
optimized set of BPs (see Table 2).

3.3.3. PAMAM G2 Dendrimer. We then optimized the CG
model of PAMAM G2, for which the main results are reported
in Figure 7c. PAMAM G2 is here used as an example of a more
complex, symmetric branched macromolecule. As for PAMAM
G1, a MARTINI CG model for PAMAM G2 was adapted from
the literature49 and used for comparison. Also in this case, we
show that Swarm-CG is capable of retrieving a reliable
parametrization for such types of molecules, which performs
even better versus AA models compared to the existing CG
parameters in terms of behavior of the G2 PAMAM dendrimer
in the water, obtaining an improvement in the CG model
performance in line with those discussed above for G1
PAMAM. Geometrical features of the resulting CG model are
compared to both those calculated from AA-mapped data and
from the CG model adapted from the literature49 (cf. Section
6.2).
The mismatches between CG and AA-mapped geoms

distributions were effectively reduced during optimization
(Figure 4c, green line). Geoms distributions of the optimized
CG model correctly overlapped with those calculated from the
AA-mapped trajectory in a 200 ns validation simulation (Figure
S41). However, average Rg and SASA values were approx-
imately 1.3 Å (10%) and 8 nm2 (16%) lower with respect to
the AA-mapped reference (all values are reported in Table 2).
In this case, we can safely assume that the CG topology is
valid. Thus, as we proved that BPs are correctly tuned
according to the reference AA-mapped trajectory, the cause of
the residual Rg and SASA offset cannot be directly attributed to
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errors in the bonded parametrization. In this perspective, this
can be imputed: (i) to the nonbonded interaction parameters,
which could possibly slightly underestimate interactions of the
molecule with the solvent or overestimate intramolecular
interactions, or (ii) to sampling limitations in the AA-MD
trajectory (oversampling of determined molecular configu-
rations, possible for particularly complex molecules). We also
underline that if nonbonded parameters are inadequate or sub-
optimal (as in the case of G1 and G2 PAMAM para-
metrization), Swarm-CG consequently adjusts the bonded
terms to reproduce at best in the CG model the geometry
described by the AA-MD reference trajectory, exclusively based
on geoms distributions. These observations highlight the
potential of Swarm-CG as a diagnostic tool for CG modeling,
which provides hints for model refinement beyond its primary
purpose of automatic bonded parametrization.
We compared the automatically optimized CG model of G2

PAMAM with the manually parametrized one obtained using
parameters available from the literature49 via a 200 ns CG-MD
simulation. A Swarm-CG scoring function yielded a BPs score
of 123.8 for the manually optimized CG model. Again, the
discrepancies in local geometrical features calculated with
respect to the AA-reference trajectory were considerably
reduced in the Swarm-CG-optimized CG model (Figure
S42), which provides a BPs score of 23.0 (Figure S41). With
respect to manual CG parametrization, the average Rg error is
also reduced by ∼15 points using the optimized set of BPs
provided by Swarm-CG (see Table 2). BPs optimization
converged within 182 steps (Table 2). The selected maximum
number of optimization steps is identical as for the
optimization of PAMAM G1, owing to the hyper-branched
structures of PAMAM molecules, for which topologies can be
considered identical once similar bonds and angles have been
grouped together. This is also why the manually parametrized
models of PAMAM G1 and G2 obtained very similar BPs
scores (123.7 and 123.8), which are not exactly identical only
because of the intrinsic statistical variability associated with the
MD sampling.
All these results provided for such a diverse set of different

molecules, including these branched dendrimers, demonstrate
that Swarm-CG has great potential to also treat molecular
architectures of considerable complexity in an efficient and
reliable way.

4. METHODOLOGICAL CONSIDERATIONS
To ease the development of CG models and increase their
physical relevance and accuracy, we used a benchmark of wide
structural diversity to demonstrate that Swarm-CG can be
employed with default settings for the bottom-up tuning of
BPs in CG models of diverse complexity. Swarm-CG
systematically yields appropriate sets of BPs in the context of
the provided model topology and reference AA trajectory,
within wall times compatible with molecular modelers’
requirements. Using execution mode 1, Rg values of the
optimized models were systematically in agreement with the
reference AA trajectory.
Importantly, Swarm-CG produces sets of BPs via an

optimization process, for which the objective function is
exclusively based on the user-provided AA reference trajectory.
Therefore, the BPs produced by Swarm-CG are optimized
exclusively to reproduce the geometrical behavior observed in
the AA trajectory for the molecule of interest. The process of
averaging distributions within geoms groups does improve the

quality of the reference sampling for large symmetrical
molecules and yielded particularly accurate BPs in the present
benchmark. To this end, the step of defining relevant geoms
groups in the preliminary CG model file is crucial. On the
other hand, as mentioned before, we highlight the importance
of obtaining a sufficiently sampled AA trajectory to be used as
a reference for Swarm-CG. In the cases studied herein, 1 μs of
AA-MD simulation was proven long enough to guarantee this,
but the required sampling may change depending on the
system of interest.
For molecules that adopt folded conformations in AA-MD

simulations, execution mode 2 typically provides increased
flexibility in the optimized CG models, which allows to
reproduce the dynamical properties of the molecules as an
“effect” rather than a pre-encoded condition in the models.
This is particularly important when one may want to develop
models for molecules composed of rather flexible groups,
which then are supposed to interact between them or with
other molecules in the simulations. In fact, this may limit
spurious effects arising from too rigidly parametrized BPs
(eventually coming from the reduced timescales accessible by
common AA-MD simulations) that may then affect how
molecules interact between them. Although less automatic,
mode 2 has the advantage of not using the software as a black
box, but at the same time it requires prior knowledge of the
molecular system that is not always accessible. In such a case,
the user can always use Swarm-CG in mode 1, which in
principle should provide the best accessible bonded para-
metrization. We included the option to select either usage
mode to leave maximum freedom to the user, with a standard
or more advanced usage of the software.
All CG models resulting from the present benchmark could

be run in 200 ns simulations using time steps of 20 fs. By
default, Swarm-CG uses conservative maximum values for force
constants, which maximizes the stability of the optimized
models for usage in assembly simulations. To this end, the
iterative optimization process aims at identifying an appro-
priate balance of force constants between all the elements of
the topology, while reproducing AA-mapped geoms distribu-
tions in the CG model. For special needs, all parameters of the
software can be modified, notably allowing users to increase
the range of the force constants to be explored during
optimization, although this might be detrimental to the model
stability and should be used carefully. Simulation instabilities in
optimized models would most likely be caused by issues in the
topology definition (e.g., geoms or bond lengths scaling).
Interestingly, we demonstrated that Swarm-CG can also be

used as a diagnostic tool, notably for large molecular structures
for which both bonded and nonbonded parametrizations, as
well as obtaining sufficient AA-MD sampling to produce a
reliable reference trajectory can be particularly complex (cf.
Section 3.3.3).
In principle, Swarm-CG can also be employed for tuning BPs

in higher-scale CG models (e.g., lower CG resolution, mapping
more atoms into each CG bead).18,120,121 While demonstrating
such a usage is outside the scope of this paper, the workflow
would remain substantially unchanged, except for: (i) the
nonbonded parameters provided, (ii) the mapping file that
would group multiple atoms into each larger CG bead, and
(iii) the number of CG beads and swarm iterations used for
optimization, which could potentially be decreased to
minimize execution times, without affecting the accuracy of
the results. Moreover, in such a case, the user would not be
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restricted to using an AA-MD trajectory as the reference, but
also a finer CG-MD trajectory would work to this purpose
(with the advantage of a speed up in the process and of an
overall improved dynamical sampling). In this sense, the
successive higher-scale parametrizations (finer-to-coarser CG
optimization) would be less computationally expensive than
the first one (AA-to-CG), while the user should at the same
time consider that approximations intrinsically accompany
every CG step and that in multistep approaches accuracy is key
to avoid sum of errors. Swarm-CG could also be applied to the
bonded parametrization of polarized CG models or elastic
networks used in CG models of proteins (e.g., MARTINI).122

The code has been developed for immediate usage with the
MARTINI CG force field (explicit or implicit solvent
environments) and the GROMACS103,104 MD engine,
although developments are underway for extending Swarm-
CG to other CG frameworks and MD engines.
Finally, other automatic methods (e.g., IBI, etc.) could be

used instead of PSO, which in principle may allow to converge
with a better efficiency to the global minimum. However, these
lack explorative efficiency compared to PSO.60,89,123 For this
reason, while these are well suited for some types of molecular
systems, these would hardly handle the high complexity of the
large macromolecular systems studied herein. On the other
hand, the good (empirical) convergence demonstrated for the
large variety of complex molecular structures explored herein
(Figures 4−7) demonstrates that the approach adopted in
Swarm-CG guarantees good reliability and robust versatility to
efficiently handle a large variety of molecular models.

5. CONCLUSIONS

Leveraging FST-PSO,95 an efficient and setting-free PSO
variant, here we designed Swarm-CG, a software that
automatizes the iterative bottom-up parametrization of BPs
of CG molecular models, within CG frameworks such as
MARTINI. We took particular care to provide a versatile
software capable of systematically producing reliable results for
virtually any CG model, from simple to complex molecular
architectures, using default Swarm-CG settings. The software is
versatile and requires minimal input preparation. Swarm-CG
can satisfy molecular modelers’ requirements for routine
building of CG models composed of up to 200 CG beads
(in the MARTINI framework, this corresponds to molecular
architectures containing at least ∼600−800 heavy atoms), and
possibly more, both in terms of accuracy and execution times.
We particularly expect this tool to support the development of
new CG molecular models for the study of synthetic molecular
systems and their interaction with other (bio/non-bio)
molecular targets, as it is becoming increasingly crucial in the
various bio- and nanotechnology fields. Swarm-CG is available
via the Python Package Index (package: swarm-cg) with all its
dependencies. Demonstration data are available at www.github.
com/GMPavanLab/SwarmCG.

6. METHODS

6.1. Input Details. AA data used to set the target of the
optimization procedure include a structure and trajectory files.
The AA structure with atom types, connectivity, masses, and
charges can be provided via a GROMACS portable topology
file (.tpr). The AA trajectory can be provided in any
GROMACS format accepted by MDAnalysis124,125 (.xtc, .trr
or else). Periodic boundary conditions (PBC) are handled

internally if the trajectory file includes the position and size of
the simulation box at each time step. Otherwise, it is assumed
PBC have already been handled and a warning is displayed at
the start of the program. The AA trajectory is mapped on-the-
fly to allow faster experimentation with different mapping
schemes. The mapping of atoms to CG beads must be
provided as a GROMACS index file (.ndx). The weight of the
atoms that would be mapped to multiple CG beads will be split
accordingly when performing the mapping and calculating all
AA-mapped reference geoms distributions.
The preliminary CG model to be optimized must be

provided as a GROMACS topology file (.itp), along with the
nonbonded interactions force field to be applied in MD
simulations. To better handle sampling in symmetrical
molecules, users can easily form groups of bonds, angles, and
dihedrals in this topology file (using line returns or
comments). AA-mapped distributions will be averaged within
groups to create the references used as the target of the
optimization procedure, and shared parameters will be used
and optimized for the geoms of each group. This also makes the
optimization process more efficient by reducing the number of
free parameters. For example, grouping 5 angles together
reduces the number of associated free parameters from 10 to 2
when using execution mode 1 and GROMACS angle functions
2.
Swarm-CG requires users to provide a GROMACS structure

file (.gro) to be used as the starting conformation of each
simulation step during the iterative optimization process. This
structure will be (i) minimized and (ii) preprocessed before
gathering data from the production run (iii), using three user-
provided GROMACS MD parameters files (.mdp), one for
each step. Only the simulation parameters of the production
run will be modified to adapt its number of steps and the
number of frames of the output trajectory to be analyzed,
according to software parameters (1000 frames by default,
within 10 or 25 ns). Although the starting conformation does
not have to be perfectly accurate, as it will be minimized and
preprocessed at the start of each iteration, this conformation
must allow running stable simulations while exploring different
sets of BPs. For example, molecular modelers can make use of
an initial set of MARTINI bond parameters just stable enough
to obtain a preliminary CG model file and a starting
conformation to be used for the optimization phase.
The following GROMACS bonded potential functions103,104

are implemented, which should be necessary and sufficient for
building CG models: constraints function 1, bond function 1,
angle functions 1 and 2, and dihedral functions 1, 2, 4, and 9.
Swarm-CG can effectively optimize parameters for dihedral
potential functions with multiplicity greater than one, although
these may be used carefully as they are known to easily trigger
instabilities in simulations. During optimization, sets of BPs
(i.e., particles of the swarm) that cause simulations to
terminate abruptly get attributed the worst possible score the
scoring function can yield, according to the given topology and
geoms domains.

6.2. Benchmarking Data and Models. To compare the
performance of Swarm-CG for bonded parametrization with
respect to manually parametrized CG models, we first collected
several MARTINI models available from the literature and
from previous results of our group. We selected the following
molecular data set based on CG data availability and structural
diversity: BTA83 and BTT decorated by L-phenylalanine and
octa-ethylene glycol side-chains,84 NDI,47 Zn-porphyrin based
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molecule,50 β-cyclodextrin,97 and PAMAM G1 and G2.49

Their CG topologies, selected bead types and nonbonded
interactions force field were used as provided, except for β-
cyclodextrin and PAMAM G1 and G2 for which CG
topologies were built by truncating the existing CG models
of a β-cyclodextrin dimer97 and PAMAM G5.49 Additionally,
two last molecules expand the benchmark and improve its
structural diversity; a pillar[5]arene98 and spermine-function-
alized branched dendron.99 For the spermine dendron and
pillar[5]arene, we built CG models from scratch in the
framework of MARTINI using the CG bead types presented in
Figure 1. For the pillar[5]arene and the dendron, there are no
previously developed manually optimized CG models to
compare with, and the performance of Swarm-CG has been
evaluated exclusively with respect to the data from the AA-
mapped trajectories in these cases.
For these 9 molecules, we created AA models and generated

trajectories for each single molecule in the solvent using time
steps of 2 fs and extensive sampling (Table 3 and Supporting
Information Section S2.1), which are used as a trusted
reference for the bonded parametrization of CG models and
benchmarking of Swarm-CG.
All topologies defined for the CG models of the benchmark

use exclusively bonds and angles defined between CG beads
that are closely located on the AA molecular graph (i.e., no
long-range bonds and angles between CG beads were used to
artificially constraint the flexibility of the CG models), except
for molecules that contain flat cores and the cyclic structures.
For the BTT and porphyrin-based molecular models, longer
range angles and dihedrals were defined to obtain flat
structures of the cores. For β-cyclodextrin and pillar[5]arene,
longer range angles were also used to obtain correct geometries
of the central cyclic structures.
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Table 3. Data Used for the Benchmarking of Swarm-CG Using Default Settings

reference AA trajectory

molecule
simulation time

(μs)
number of
frames force field solvent

nonbonded
parametrizationa

used for manual parametrization
evaluation

BTA 1 5000 GAFF126+ TIP3P127 Water MARTINI 2.283 yes
BTT 1 5000 GAFF126+ TIP3P127 Water MARTINI 2.284 yes
NDI 1 5000 GAFF126 cyclohexane MARTINI 2.247 yes
porphyrin 1 5000 GAFF126 cyclohexane MARTINI 2.250 yes
β-cyclodextrin 1 5000 q4md-CD128

+ TIP3P127
Water MARTINI 2.197 yes

pillar[5]arene 1 5000 GAFF126+ TIP3P127 Water MARTINI 2.2129 no
spermine
dendron

1 5000 GAFF126+ TIP3P127 Water MARTINI 2.2129 no

PAMAM G1 1 5000 GAFF126+ TIP3P127 Water MARTINI 2.249 yes
PAMAM G2 1 5000 GAFF126+ TIP3P127 Water MARTINI 2.249 yes
aWhere present, nonbonded interactions were further tuned as described in the associated literature, starting from the cited force field.
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