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1 Introduction

In quest of a deeper understanding of fundamental interactions, and of the identification
of potential new-physics effects in experimental measurements, the availability of highly
accurate theoretical calculations is more and more important for a large variety of scat-
tering processes and relevant collider observables. In turn, this availability stems from the
existence of frameworks capable of making explicit the cancellation of infrared and collinear
(IRC) singularities arising in gauge theories beyond the Born approximation.

General frameworks to solve this singularity problem at next-to-leading order (NLO) in
perturbation theory were developed in the ‘90s [1–5], employing infrared subtraction, which
eventually resulted in an accuracy revolution instrumental to the success of the physics
programme of the Large Hadron Collider (LHC) and other colliders. In a subtraction
method, the universal long-distance behaviour of scattering amplitudes allows to design
functions (the counterterms) which approximate radiative matrix elements squared in all
of their IRC-singular limits, so that the difference between complete and approximate
matrix elements is regular locally in phase space. One then adds back the counterterms,
analytically integrated over the radiative phase space, to the virtual-correction matrix
elements. The KLN theorem [6, 7] ensures this sum to be finite for IRC-safe observables,
hence subtracted real and virtual contributions separately lend themselves to an efficient
numerical evaluation.

At variance with NLO, at next-to-NLO (NNLO) the infrared-subtraction problem has
proved extremely challenging due to a steep increase in technical complexity. Although
several methods [8–19], both within and beyond subtraction, have been proposed that
address classes of processes of high phenomenological interest, and essentially the NNLO
problem is solved for the most important 2→ 2 reactions, a general solution is still elusive.

In [20, 21] the ingredients were defined of a new method, local analytic sector subtrac-
tion, aiming at a solution of the NNLO QCD subtraction problem for generic processes.
Such a method is conceived to minimise the complexity in the integration of subtrac-
tion counterterms by systematically exploiting all available freedom in their definition and
parametrisation, resulting in their analytic integrability [22] by means of standard (as op-
posed to integration-by-parts reduction) techniques in the massless case. The framework
has been so far deduced and characterised in the case of reactions not featuring QCD
partons in the initial-state, i.e. lepton-lepton collisions.

While the general proof of the method achieving its goals for such a class of NNLO
processes will be given elsewhere [23], in this article we concentrate on extending local an-
alytic sector subtraction at NLO to processes featuring initial-state QCD partons, thereby
encompassing all possible collider types. This extension thus represents a fundamental step
towards achieving a fully general local analytic sector subtraction procedure at NNLO.

On top of defining and integrating all necessary counterterms for NLO subtraction,
we also propose a novel systematic optimisation of the subtraction procedure that aims at
numerically improving the quality of the singularity-cancellation mechanism. While optimi-
sation recipes are common at NLO, see for instance [1, 24], they typically entail an increase
in the complexity of the involved analytic integrations. In our proposal, which is applica-
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ble to any subtraction method, optimisation essentially comes without additional analytic
complexity, a feature that will prove crucial when exporting the method to NNLO level.

The structure of the paper is as follows. In section 2 we describe in full detail our
NLO subtraction procedure, and in particular introduce the above-mentioned optimisation
prescription in section 2.5; section 3 deals with the analytic integration of the subtraction
counterterms, enabling to show in section 4 the cancellation of IRC poles for general collider
processes at NLO in massless QCD; section 5 documents the implementation of our method
in an automated software framework, and the related validation at the level of both IRC
limits and physical cross sections, for a variety of NLO processes; finally in section 6 we draw
our conclusions. Five technical appendices report relevant formulae and proofs ensuring a
local cancellation of IRC singularities, as well as details of the numerical implementation.

2 NLO subtraction in presence of initial-state partons

2.1 Generalities of the subtraction procedure

We start by considering the expression of the differential cross section for a hadron-initiated
scattering process,

dσAB(pA, pB) =
∑
a,b

∫ 1

0
dηa fa/A(ηa, µ2

F )
∫ 1

0
dηb fb/B(ηb, µ2

F ) dσ̂ab(ka, kb, µ2
F ) , (2.1)

where a and b represent the flavours of the incoming partons carrying the longitudinal mo-
mentum fractions ηa, ηb of the respective incoming hadrons A and B, with ka = ηa pA and
kb = ηb pB. Upon neglecting non-perturbative corrections O((ΛQCD/Q)p), the cross sec-
tion is factorised into a long-distance contribution, encoded by the parton density functions
(PDFs) fi/I , times the short-distance partonic cross section dσ̂ab(ka, kb). The boundary be-
tween the long- and the short-distance regimes is set by the factorisation scale µF , leftover
of the PDF-renormalisation procedure that allows to reabsorb initial-state collinear singu-
larities, and whose dependence in the partonic cross section is compensated by that in the
PDFs order by order in perturbation theory.

We are interested in the NLO prediction for the partonic cross section, differential with
respect to a generic IRC-safe observable X. Henceforth, we will refer to σ̂ab as σ and we
will focus on reactions that at Born level feature n massless coloured partons (as well as
an arbitrary number of massless or massive colourless particles), of which up to two in the
initial state. Scattering amplitudes for such processes can be expanded in perturbation
theory as

An = A(0)
n + A(1)

n + A(2)
n + . . . , (2.2)

where the superscripts denote the loop order. The expressions of the Born, real emission,
and (MS-renormalised) virtual contributions,

B =
∣∣∣A(0)

n

∣∣∣2 , R =
∣∣∣A(0)

n+1

∣∣∣2 , V = 2 Re
[
A(0)∗
n A(1)

n

]
, (2.3)
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allow one to write the LO and NLO coefficients of the differential partonic cross section as

dσLO

dX
=
∫
dΦnB δXn , (2.4)

dσNLO − dσLO

dX
=
∫
dΦn V δXn +

∫
dΦn+1RδXn+1 +

∫
dΦxx̂

n C(x, x̂) δXn , (2.5)

where δXi ≡ δ(X −Xi), Xi standing for the observable computed with i-body kinematics,
and dΦj = dΦj(ka, kb) is the j-body phase space, including suitable polarisation sums/av-
erages and flux factors; the convolution phase space dΦxx̂

n , defined by

∫
dΦxx̂

n ≡
∫ 1

0

dx

x

∫ 1

0

dx̂

x̂

∫
dΦn(xka, x̂kb) , (2.6)

shows a dependence on rescaled initial-state partonic momenta xka and x̂kb, with 0 ≤
x, x̂ ≤ 1. The PDF collinear counterterm C(x, x̂), encoding the full µF dependence of the
partonic cross section, is defined in MS as

C(x, x̂) = αS

2π
1
ε

(eγE)ε
Γ(1− ε)

(
µ2

µ2
F

)ε [
P̄a(x) δ(1− x̂) + P̄b(x̂) δ(1− x)

]
B(xka, x̂kb) , (2.7)

where P̄i(x) represent the lowest-order four-dimensional regularised Altarelli-Parisi split-
ting kernels (see appendix A for their explicit expressions).

While the finiteness of the NLO correction in eq. (2.5) is ensured by the KLN theo-
rem [6, 7] supplemented with PDF renormalisation, as well as by the IRC-safety of X, the
n-body and (n+1)-body contributions are separately divergent. In dimensional regularisa-
tion, where amplitudes are evaluated in d = 4−2ε space-time dimensions, such divergences
arise at NLO as double and single 1/ε poles in the expression of V ; correspondingly, the
real contribution R, which is finite for ε→ 0, features IRC phase-space singularities which
translate into double and single 1/ε poles upon integration over the radiative phase space.

The procedure of infrared subtraction allows to achieve the cancellation of such poles
by adding and subtracting to eq. (2.5) a counterterm cross section

dσNLO

dX

∣∣∣∣
ct
≡
∫
dΦn+1K δXn

≡
∫
dΦn I δXn +

∫
dΦxx̂

n J(x, x̂) δXn . (2.8)

The counterterm K is designed so as to reproduce point by point all phase-space singular-
ities of the real contribution and, at the same time, to lend itself to a sufficiently simple
analytical integration over the radiative phase space. The outcome of this integration can
be recast into the sum of an (x, x̂)-independent contribution I and an (x, x̂)-dependent
contribution J , which display the same 1/ε pole content (with opposite signs) as V and
C(x, x̂), respectively. At this point, the NLO correction to the partonic cross section can
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be rewritten as
dσNLO − dσLO

dX
=
∫
dΦn

(
V + I

)
δXn

+
∫
dΦxx̂

n

(
C(x, x̂) + J(x, x̂)

)
δXn

+
∫
dΦn+1

(
RδXn+1 −K δXn

)
, (2.9)

where each line is separately finite in d = 4 dimensions, and free from phase-space diver-
gences, thus suitable for numerical integration.

We stress that in case of lepton-hadron collisions, the above discussion carries over
identically, up to the formal replacements∫

dΦxx̂
n →

∫
dΦx

n ≡
∫ 1

0

dx

x

∫
dΦn(xka) ,

C(x, x̂) → C(x) ≡ αS

2π
1
ε

(eγE)ε
Γ(1− ε)

(
µ2

µ2
F

)ε
P̄a(x)B(xka) , (2.10)

which in turn require defining a single-argument counterterm J(x) instead of J(x, x̂). For
lepton-lepton collisions, as well, one just sets the second line of (2.9) to zero.

2.2 Sector functions

The specification of the subtraction counterterm K completely defines a subtraction
scheme. Local analytic sector subtraction is based on the well known idea [1, 2] of dividing
the radiative phase space into regions, each of which associated with the IRC singularities
stemming from an identified set of partons (two at NLO). This can be achieved through
the introduction of a unitary phase-space partition∑

i

∑
j 6=i
Wij = 1 , (2.11)

by means of kinematic sector functions Wij with the following properties:

SiWab = 0 , ∀ i 6= a , (2.12)
CijWab = 0 , ∀ ab 6∈ {ij, ji} , (2.13)

Si
∑
k 6=i
Wik = θi∈F , (2.14)

Cij
(
Wij +Wji

)
= 1− θi∈I θj∈I , (2.15)

Si CijWij = θi∈F . (2.16)

Si and Cij are projection operators that select the leading behaviour of functions in the
limit in which parton i becomes soft (i.e. its energy vanishes), and partons i and j become
collinear (i.e. their relative angle vanishes), respectively; the symbol θC is 1 or 0 if condition
C is or is not fulfilled, so that θa∈F (θa∈I) enforces parton a to belong to the final (initial)
state. (2.12) and (2.13) identify the singular pair in a given sector; the properties in
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eqs. (2.14)–(2.16), which we dub sum rules, express that the sum over all sectors that share
a given soft or collinear singularity reduces to unity in that singular limit (in all physically
meaningful cases): this allows to eliminate sector functions upon suitable combination of
particle labels, which will prove crucial in view of analytic counterterm integration, as
detailed below.

The actual definition of sector functions Wij is largely arbitrary, provided it satisfies
the defining relations (2.11)–(2.16). In terms of the partonic centre-of-mass (CM) four-
momentum qµ = (

√
s,~0 ) and of parton momenta kµi , we start defining dot products

sqi = 2 q · ki , sij = (ki + kj)2 = 2 ki · kj , (2.17)

and dimensionless invariants associated with the energy of parton i and the angle θij
between i and j in the CM frame, namely

ei = sqi
s
, wij = s sij

sqi sqj
= 1− cos θij

2 . (2.18)

Our choice of NLO sector functions is then

Wij = σij
σ
, σij = θi∈F

eiwij
= θi∈F

sqj
sij

, σ =
∑
k

∑
l 6=k

σkl , (2.19)

where the sums run over all massless initial- and final-state QCD particles. In particular,
the action of the soft and collinear projection operators on sector functions is

Ws,ij ≡ SiWij = θi∈F
1/wij∑

l 6=i
1/wil

, (2.20)

Wc,ij ≡ CijWij = θi∈F

(
θj∈F

ej
ei + ej

+ θj∈I

)
, (2.21)

Wsc,ij ≡ Si CijWij = θi∈F . (2.22)

2.3 Definition of candidate local counterterms

After partitioning the radiative phase space, a candidate local counterterm K̂ is obtained
considering one partition Wij at a time, and collecting the action of all singular projectors
Si and Cij on RWij :

K̂ij ≡
[
Si + Cij − Si Cij

]
RWij , K̂ ≡

∑
i

∑
j 6=i

K̂ij , (2.23)

R− K̂ ≡
∑
i

∑
j 6=i

[
RWij − K̂ij

]
=
∑
i

∑
j 6=i

(
1− Si

)(
1−Cij

)
RWij = finite , (2.24)

where the −Si Cij term in brackets removes the double-counting of soft-collinear config-
urations introduced by the incoherent sum of soft and collinear limits. The action of soft
and collinear limits on R gives rise to the universal singular kernels described below.
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2.3.1 Soft limit

The soft limit Si on the real matrix element squared can be written as

SiR = −N1
∑
k 6=i

∑
l 6=i
I(i)
kl Bkl

(
{k}/i

)
, (2.25)

where the eikonal kernel
I(i)
kl = θi∈F δfig

skl
sik sil

(2.26)

is non-vanishing only if final-state parton i, with flavour fi, is a gluon. The soft kinematics
{k}/i is the set of real-radiation momenta after removal of soft momentum ki. The colour-
correlated Born matrix element is defined schematically as

Bkl = A(0)∗
n (Tk ·Tl)A(0)

n , (2.27)

where An is understood as a ket in colour space [3] transforming non-trivially under the
action of the SU(Nc) generators Ta. Finally, the coefficient N1 is defined as

N1 = 8παS

(
µ2eγE

4π

)ε
. (2.28)

2.3.2 Collinear limit

To describe the collinear limit Cij in case both i and j are outgoing, i.e. for the splitting
[ij]→ i+ j, we introduce a Sudakov parametrisation

kµi = zi k̄
µ
[ij] + k̃µF −

1
zi

k̃2
F

s[ij]r
kµr ,

kµj = zj k̄
µ
[ij] − k̃

µ
F −

1
zj

k̃2
F

s[ij]r
kµr ,

kµ[ij] ≡ kµi + kµj , s[ij]r ≡ sir + sjr ,

k̄µ[ij] = kµ[ij] −
sij
s[ij]r

kµr (r 6= i, j) , (2.29)

where massless vector k̄µ[ij] defines the collinear direction, while kµr is a light-like reference
vector chosen from the set of on-shell momenta {k} = {k1, · · · , kn+1}; zi and k̃µF are the
longitudinal momentum fraction and the transverse momentum of parton i with respect to
the collinear direction, respectively,

zi = sir
s[ij]r

, k̃µF = kµi − zi k
µ
[ij] − (1− 2zi)

sij
s[ij]r

kµr , (2.30)

satisfying zi + zj = 1, k̃F · k̄[ij] = k̃F · kr = 0. On the other hand, when a final-state parton
i is collinear to an incoming parton j, relevant to the j → [ij] + i splitting, momentum
kµi is parametrised in terms of its transverse momentum k̃µI and longitudinal momentum
fraction xi as

kµi = xi k
µ
j + k̃µI −

1
xi

k̃2
I
sjr

kµr , (2.31)

– 6 –



J
H
E
P
1
2
(
2
0
2
2
)
0
4
2

where
xi = sir

sjr
, k̃µI = kµi − xi k

µ
j −

sij
sjr

kµr , (2.32)

satisfying x[ij]+xi = 1, k̃I ·kr = k̃I ·kj = 0. The collinear direction in this case is identified as

k̄µ[ij] = x[ij] k
µ
j − k̃

µ
I −

1
x[ij]

k̃2
I
sjr

kµr . (2.33)

The universal (un-regularised, d-dimensional) Altarelli-Parisi splitting kernels [25–27] en-
coding the collinear behaviour of R are matrices in spin space and can be compactly
written as

Pµνab,?(ξ) = Pab(ξ)
(
− gµν

)
+Qab,?(ξ)

[
−gµν + (d− 2) k̃

µ
? k̃

ν
?

k̃2
?

]
, (2.34)

where ξ is the longitudinal momentum fraction of splitting parton a, and the dependence
on ? = I,F will be specified shortly. In a flavour-symmetric notation, the spin-averaged
components Pab(ξ) read

Pab(ξ) = δfagδfbg 2CA
[

ξ

1− ξ + 1− ξ
ξ

+ ξ(1− ξ)
]

+ δ{fafb}{qq̄} TR

[
1− 2 ξ(1− ξ)

1− ε

]
(2.35)

+δfa{q,q̄}δfbg CF
[
2 ξ

1− ξ + (1− ε)(1− ξ)
]

+ δfagδfb{q,q̄}CF

[
21− ξ

ξ
+ (1− ε) ξ

]
,

where we defined flavour delta functions as δfa{q,q̄} ≡ δfaq+δfaq̄ and δ{fafb}{qq̄} ≡ δfaq δfbq̄+
δfaq̄ δfbq. By QCD helicity conservation, the collinear azimuthal kernels Qab,?(ξ) are non-
vanishing only when the virtual parton involved in the splitting is a gluon: the expression
for Qab,?(ξ) thus depends on whether the virtual gluon is the splitting ancestor (? = F),

Qab,F(ξ) = − δfagδfbg 2CA ξ(1− ξ) + δ{fafb}{qq̄} TR
2 ξ(1− ξ)

1− ε , (2.36)

or is one of the splitting siblings (? = I)

Qab,I(ξ) = − δfagδfbg 2CA
1− ξ
ξ
− δfagδfb{q,q̄} 2CF

1− ξ
ξ

, (2.37)

where the notation is reminiscent of the fact that at NLO the two cases apply to final- and
initial-state splittings, respectively.

In terms of such kernels, the collinear Cij limit of the real matrix element can be finally
written as

Cij R = N1
sij

[
θi∈F θj∈F P

µν
ij,F(zi)Bµν

(
{k}/i/j , k[ij]

)

+ θi∈F θj∈I
Pµν[ij]i,I(x[ij])

x[ij]
Bµν

(
{k}/i/j , x[ij]kj

)

+ θj∈F θi∈I
Pµν[ji]j,I(x[ji])

x[ji]
Bµν

(
{k}/i/j , x[ji]ki

) ]
, (2.38)
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Figure 1. Final-state (left) and initial-state (right) splittings.

where Bµν is the spin-correlated Born amplitude, while ({k}/a/b, kc) is the radiative kinemat-
ics with ka and kb removed and replaced by kc. The first two lines of (2.38) are pictorially
represented in the left and right panels of figure 1, respectively, while the third line is
obtained from the second upon i↔ j exchange.

2.3.3 Soft-collinear limit

In the soft-collinear Si Cij limit, final-state gluon i becomes both soft and collinear to
initial- or final-state parton j. The corresponding kernel is

Si Cij R = Cij SiR = N1 2Cfj I
(i)
jr B({k}/i) , (2.39)

where Cfj = CA δfjg +CF δfj{q,q̄} is the SU(Nc) Casimir operator associated to flavour fj ,
and fj = f[ij] since i is a gluon.

For later convenience, we define hard-collinear kernels upon subtracting from the
collinear Altarelli-Parisi kernels in (2.35) their respective soft limits: for a final-state split-
ting, both collinear siblings i and j can give rise to a soft singularity, thus

P hc
ij,F(zi) ≡

(
1− Si − Sj

)
Pij(zi)

= δfigδfjg 2CA zi zj + δ{fifj}{qq̄} TR

(
1− 2 zizj

1− ε

)
+ δfi{q,q̄}δfjg CF (1− ε) zj + δfigδfj{q,q̄}CF (1− ε) zi , (2.40)

while for an initial-state splitting just one of the two, i, can be soft, so

P hc
[ij]i,I(x[ij]) ≡ x[ij] (1− Si)

P[ij]i(x[ij])
x[ij]

(2.41)

= δf[ij]gδfig 2CA
[
xi
x[ij]

+ x[ij]xi

]
+ δ{f[ij]fi}{qq̄} TR

[
1−

2 x[ij]xi

1− ε

]

+ δf[ij]{q,q̄}δfig CF (1− ε)xi + δf[ij]gδfi{q,q̄}CF

[
2 xi
x[ij]

+ (1− ε)x[ij]

]
.

In analogy with (2.34), we introduce

Pµν,hc
ab,? (ξ) = P hc

ab,?(ξ)
(
− gµν

)
+Qab,?(ξ)

[
−gµν + (d− 2) k̃

µ
? k̃

ν
?

k̃2
?

]
. (2.42)
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Figure 2. Final-final (left), final-initial (middle), and initial-initial (right) dipoles.

2.4 Phase-space mappings and counterterm definitions

Although the candidate counterterm locally reproduces all real phase-space singularities,
it embodies Born matrix elements that are evaluated with kinematics that either do not
satisfy n-body momentum conservation (in the soft case, {k}/i), or feature an off-shell leg (in
the collinear case, ({k}/a/b, kc)). Conversely, it is desirable that the Born matrix elements
appearing in counterterms have a physical (i.e. on-shell and momentum conserving) n-
body kinematics for all choices of the n+ 1 radiative momenta, and not only for specific
singular configurations, whence a kinematic mapping of momenta is required. In turn,
such a mapping operation entails a factorisation of the (n+ 1)-body phase space dΦn+1
into a remapped n-body phase space dΦn times a single-radiative measure dΦrad, which
allows the analytic integration of the radiative degrees of freedom at fixed underlying Born
kinematics.

A convenient way of achieving phase-space factorisation is through Catani-Seymour
dipole mappings [3], in which a triplet of massless momenta ka, kb, and kc (the emitted,
emitter, and recoiler parton, respectively) are mapped onto a dipole of Born-level momenta
k̄

(abc)
b and k̄(abc)

c , according to

θa∈F θb∈F θc∈F : k̄
(abc)
b + k̄(abc)

c = ka + kb + kc ,

θa∈F θb∈F θc∈I : k̄
(abc)
b − k̄(abc)

c = ka + kb − kc ,

θa∈F θb∈I θc∈I :
∑
i∈F
i 6=a

k̄
(abc)
i − k̄(abc)

b − k̄(abc)
c =

∑
i∈F
i 6=a

ki + ka − kb − kc . (2.43)

The three assignments are represented pictorially in figure 2; details on the mappings,
parametrisations and corresponding phase-space factorisation are given in appendix B.

There is ample freedom in the choice of mapping dipoles, as long as this is compatible
with the locality of subtraction: in particular, the choice can be adapted to the identity of
the partons involved in the different singular kernels. In the soft limit, each eikonal kernel
I(i)
kl leads naturally to the choice (abc) = (ikl) or (abc) = (ilk), while in the collinear limits

the most natural mapping involves the splitting partons and the recoiler, (abc) = (ijr) or
(abc) = (irj). Denoting mapped limits with a bar, we thus define the soft counterterm
to be

SiR = − 2N1
∑
k 6=i

∑
l 6=i
l<k

I(i)
kl

[(
θk∈I θl∈I + θk∈F θl∈I + θk∈F θl∈F

)
B̄

(ikl)
kl + θk∈I θl∈F B̄

(ilk)
kl

]
,

(2.44)
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where B̄(abc)
... ≡ B...({k̄}(abc)). As for collinear and soft-collinear kernels, we define

Cij R = N1
sij

[
θi∈F θj∈F P

µν
ij,F(z) B̄(ijr)

µν

+ θi∈F θj∈I
Pµν[ij]i,I(x)

x

(
θr∈F B̄

(irj)
µν + θr∈I B̄

(ijr)
µν

)
+ θj∈F θi∈I

Pµν[ji]j,I(x)
x

(
θr∈F B̄

(jri)
µν + θr∈I B̄

(jir)
µν

)]
, (2.45)

Si Cij R = N1 2Cfj I
(i)
jr

[
θj∈F B̄

(ijr) + θj∈I

(
θr∈F
1− z B̄

(irj) + θr∈I (1− v) B̄(ijr)
)]

, (2.46)

where one can choose any r 6= i, j, and the soft-collinear contributions for j ∈ I feature
kinematical factors, written in terms of variables z and v defined in appendix B,1 whose
purpose is to reconstruct the hard-collinear kernels of (2.41):

HCij R ≡ (1− Si − Sj) Cij R

= N1
sij

[
θi∈F θj∈F P

µν,hc
ij,F (z) B̄(ijr)

µν

+ θi∈F θj∈I
Pµν,hc

[ij]i,I (x)
x

(
θr∈F B̄

(irj)
µν + θr∈I B̄

(ijr)
µν

)

+ θj∈F θi∈I
Pµν,hc

[ji]j,I (x)
x

(
θr∈F B̄

(jri)
µν + θr∈I B̄

(jir)
µν

)]
, (2.47)

where we have defined Sj Cij ≡ Sj Cji. It can be checked (see appendix C) that the
definitions in eqs. (2.44)–(2.46) satisfy the following set of consistency relations

Si SiR = SiR , Cij Cij R = Cij R ,

Si Si Cij R = Si Cij R , Cij Si Cij R = Cij SiR , (2.48)

ensuring that the application of the mappings detailed above preserves the local cancellation
of singularities. This leads to defining the sought local counterterm K as

K ≡
∑
i

∑
j 6=i

Kij , Kij ≡
[
Si + Cij − Si Cij

]
RWij , (2.49)

where, introducing the collective notation L = Si, Cij , Si Cij , we have defined LRWij ≡
(LR) (LWij). The definition in (2.49) is thus complete only after specifying the action
LWij of the barred limits on sector functions. The simplest choice is LWab ≡ LWab,
resulting in

R−K =
∑
i

∑
j 6=i

[
RWij −Kij

]
= finite . (2.50)

1We stress that the definitions of z, x, and v in the previous equations are mapping-dependent: for in-
stance, one should correctly interpret the notation f(x)(θr∈FB̄

(irj)
µν +θr∈IB̄

(ijr)
µν ) to mean θr∈Ff(x(irj))B̄(irj)

µν

+ θr∈If(x(ijr))B̄(ijr)
µν , and similarly for the other terms.
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With this choice, however, the quantity Kij defined in (2.49) features spurious singularities
in the collinear Cir and Cjr limits, which are not present in RWij . Such singularities,
generated by the denominators of the Altarelli-Parisi kernels, drop out only in the sum of
mirror sectors Wij +Wji, ensuring the finiteness of R −K. One could envisage removing
spurious singularities at the level of the single Wij partition, which entails redefining the
action of the barred limits on sector functions. For instance, it is straightforward to check
that by choosing

Ws,ij ≡ SiWij ≡ θi∈F
1/wij∑

l 6=i
1/wil

,

Wc,ij ≡ CijWij ≡ θi∈F

(
θj∈F

ej wjr
eiwir + ej wjr

+ θj∈I

)
,

Wsc,ij ≡ Si CijWij ≡ θi∈F , (2.51)

one achieves for all ij pairs

RWij −Kij =
(
1− Si

)(
1−Cij

)
RWij = finite . (2.52)

Another possibility, which preserves the flexibility of the numerical implementation of the
method reducing the number of sectors, is to introduce symmetrised sector functions in
the first place

Zij ≡ Wij +Wji , (2.53)
along with

Zs, ij ≡ SiZij ≡ SiWij = θi∈F
1/wij∑

l 6=i
1/wil

, Zs, ji ≡ Sj Zij = θj∈F
1/wij∑

l 6=j
1/wjl

,

Zc, ij ≡ Cij Zij ≡ CijWij + CijWji = 1− θi∈I θj∈I ,

Zsc, ij ≡ Si Cij Zij ≡ Si CijWij = θi∈F , Zsc, ji ≡ Sj Cij Zij = θj∈F . (2.54)

We can then define the symmetrised counterterms

K{ij} ≡ Kij +Kji =
[
Si + Sj + Cij

(
1− Si − Sj

)]
RZij

=
(
SiR

)
Zs,ij +

(
Sj R

)
Zs,ji + HCij R ,

K =
∑
i

∑
j<i

K{ij} , (2.55)

satisfying

RZij −K{ij} =
[(

1−Cij
)(

1− Si − Sj
)]
RZij = finite ,

R−K =
∑
i

∑
j<i

[
RZij −K{ij}

]
= finite . (2.56)

We stress that, in any case, the sum rules in (2.14)–(2.16) allow to get rid of sector functions
and to write the local counterterm purely as a collection of universal soft and collinear NLO
kernels:

K =
∑
i

SiR+
∑
j<i

HCij R

 . (2.57)
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The latter formulation is particularly suited for counterterm integration: not only this
avoids analytically integrating over the (arbitrarily complicated) sector functions, but also
allows not to recompute the integrated counterterms I and J upon redefinition of the sectors
themselves, provided the sum rules in (2.14)–(2.16) are conserved. Conversely, as for the
numerical implementation of the subtracted real squared matrix element, we reckon (2.56)
preferable, in that it allows to parallelise different sectors, and to independently optimise
their numerical integration.

2.5 Local counterterms with damping factors

At this stage, we have all the ingredients to build a counterterm K which, along with its
integration over the radiative phase space, achieves a local subtraction. Nonetheless, it
is worth investigating a systematic optimisation of the above definitions, with a view to
improving the efficiency of the method. Since the subtraction procedure is necessary only
in the IRC corners of the phase space, one is allowed to tune the counterterm contribution
in the non-singular regions, thereby reducing numerical instabilities. This is customarily
achieved in the literature by introducing parameters (such as the α parameter in CS [24],
and the δ and ξcut parameters in FKS [1]) that set a hard boundary to the phase space
allowed for counterterms. The enhanced numerical stability of this procedure in general
comes at the price of a more cumbersome analytic counterterm integration, which may
become untenable at NNLO.

What we propose in this article is instead to multiply the local counterterms in
eqs. (2.44)–(2.46) by means of smooth damping factors (as opposed to hard step func-
tions) in order to gradually turn them off away from the singular regions. Although one
has some freedom in constructing such damping factors, provided the validity of eqs. (2.48)
is not spoiled, it is particularly convenient to define them as powers, with tunable expo-
nents, of the kinematic invariants proper of the chosen phase-space parametrisation. By
doing so, one is essentially including in a controlled way subleading power terms in the nor-
mal variables through which the IRC kernels are already written. As a result, the presence
of damping factors does not affect the complexity of the analytic integrations, which is cru-
cial for exporting this optimisation to higher perturbative orders. The explicit dependence
of (the finite part of) the integrated counterterms upon the damping parameters, namely
the above-mentioned tunable exponents, must cancel against an analogous dependence in
the local counterterms, which is known to offer a powerful handle to check the numerical
implementation of the subtraction method.

We start by including damping factors in the soft counterterm, (2.44):

SiR = − 2N1
∑
k 6=i

∑
l 6=i
l<k

I(i)
kl

{
θk∈F (1− z)α

[
θl∈F (1− y)α + θl∈I x

α
]
B̄

(ikl)
kl

+ θk∈I x
α
[
θl∈F (1− z)α B̄(ilk)

kl + θl∈I B̄
(ikl)
kl

]}
, (2.58)

where α ≥ 0, and the x, y, z kinematic variables are those associated to the (ikl) or (ilk)
phase-space mappings, i.e. they are different for each term in the eikonal double sum. In
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detail, they are defined as in (B.2), (B.9), (B.16) for (kl) = FF,FI, IF, II, respectively. The
case with no damping, (2.44), is simply obtained setting α = 0.

As far as collinear and soft-collinear contributions are concerned, (2.45) and (2.46) are
modified as

Cij R = N1
sij

{
θi∈F θj∈F P

µν
ij,F(z)

[
θr∈F (1− y)β + θr∈I x

β
]
B̄(ijr)
µν

+ θi∈F θj∈I
Pµν[ij]i,I(x)

x

[
θr∈F (1− z)γ B̄(irj)

µν + θr∈I (1− v)γ B̄(ijr)
µν

]
+ θj∈F θi∈I

Pµν[ji]j,I(x)
x

[
θr∈F (1− z)γ B̄(jri)

µν + θr∈I (1− v)γ B̄(jir)
µν

]}
,

(2.59)

Si Cij R = N1 2Cfj I
(i)
jr

{
θj∈F (1− z)α

[
θr∈F (1− y)β + θr∈I x

β
]
B̄(ijr)

+ θj∈I x
α
[
θr∈F (1− z)γ−1B̄(irj) + θr∈I (1− v)γ+1B̄(ijr)

]}
,

(2.60)

where α is the same exponent appearing in the damped soft counterterm, (2.58), while
β, γ ≥ 0 are relevant for final- and initial-state collinear emission, respectively. The kine-
matic variables building the damping factors depend on the mapping appearing in the
relevant Born matrix element, as in the soft case. The un-damped limits are obtained
upon setting α = β = γ = 0.

Following the same steps detailed in appendix C, it can be checked that the damped
counterterm definitions in eqs. (2.58)–(2.59) correctly satisfy the consistency relations in
eqs. (2.48). It will be moreover shown in the next section that, as expected, the ε poles
of the integrated counterterms do not feature any dependence on the arbitrary parameters
α, β, γ, which thus appear only in the finite part O(ε0).

We point out that the structure of the local counterterm K and of its sector components
Kij , K{ij} given in eqs. (2.49), (2.55), (2.57) is not affected by the presence of damping
factors and remains formally valid for arbitrary values of α, β, γ. The damped HCij R

counterterms can still be written in terms of the hard-collinear kernels P hc
ij,?

HCij R ≡ (1− Si − Sj) Cij R

= θi∈F θj∈F HC F
ij R+ θi∈F θj∈I HC I

ij R+ θj∈F θi∈I HC I
jiR ,

HC F
ij R ≡ N1

[
θr∈F (1− y)β + θr∈I x

β
]

×

Pµν,hc
ij,F (z)
sij

B̄(ijr)
µν + 2

[
CfjI

(i)
jr (1− (1− z)α) + CfiI

(j)
ir (1− zα)

]
B̄(ijr)

 ,
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HC I
ij R ≡ N1

θr∈F (1− z)γ
Pµν,hc

[ij]i,I (x)
x sij

B̄(irj)
µν + 2Cfj I

(i)
jr

1− xα
1− z B̄

(irj)



+ θr∈I (1− v)γ
Pµν,hc

[ij]i,I (x)
x sij

B̄(ijr)
µν + 2CfjI

(i)
jr (1− xα)(1− v)B̄(ijr)

 ,
(2.61)

which will be integrated in the next section.

3 Counterterm integration

In order to analytically integrate the counterterms, it is convenient to start from (2.57),
relying on the kernel definitions in eqs. (2.58), (2.61). The counterterm expression is
summed over sectors, compatibly with the fact that its integral must reproduce the poles
of the virtual matrix element, which is not partitioned. We split K into soft, final-state
hard-collinear and initial-state hard-collinear contributions,

K ≡ Ks + Khc,F + Khc,I , (3.1)

defined as

Ks ≡
∑
i

SiR , (3.2)

Khc,F ≡
∑
i

∑
j<i

θi∈F θj∈F HC F
ij R , (3.3)

Khc,I ≡
∑
i

∑
j<i

[
θi∈F θj∈I HC I

ij R+ θj∈F θi∈I HC I
jiR

]
. (3.4)

The phase-space measures used for integration are given and described in full detail in
appendix B, for all cases of initial- and final-state radiation.

We start with the integration of the soft counterterm Ks in (3.2), yielding∫
dΦn+1 SiR (3.5)

= − 2N1
ςn+1
ςn

∑
k 6=i

∑
l 6=i
l<k

I(i)
kl

[
θk∈F θl∈F

∫
dΦ(ikl)

n

∫
dΦ(ikl)

rad (1− y)α(1− z)α B̄(ikl)
kl

+ θk∈F θl∈I

∫∫
dΦ(ikl)

n (xkl) dΦ(ikl)
rad xα (1− z)α B̄(ikl)

kl

+ θl∈F θk∈I

∫∫
dΦ(ilk)

n (xkk) dΦ(ilk)
rad xα (1− z)α B̄(ilk)

kl

+ θk∈I θl∈I

∫∫
dΦ(ikl)

n (xkk, kl) dΦ(ikl)
rad xα B̄

(ikl)
kl

]
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≡ − 2 ςn+1
ςn

∑
k 6=i

∑
l 6=i
l<k

{
θk∈F θl∈F

∫
dΦ(ikl)

n Iikls,FF B̄
(ikl)
kl

+ θk∈F θl∈I

[∫
dΦ(ikl)

n (kl) Iikls,FI +
∫ 1

0

dx

x

∫
dΦ(ikl)

n (xkl) J ikls,FI(x)
]
B̄

(ikl)
kl

+ θl∈F θk∈I

[∫
dΦ(ilk)

n (kk) Iilks,FI +
∫ 1

0

dx

x

∫
dΦ(ilk)

n (xkk) J ilks,FI(x)
]
B̄

(ilk)
kl

+ θk∈I θl∈I

[∫
dΦ(ikl)

n (kk, kl) Iikls,II +
∫ 1

0

dx

x

∫
dΦ(ikl)

n (xkk, kl) J ikls,II(x)
]
B̄

(ikl)
kl

}
.

The expressions for the integrals Iiabs,?? and J iabs,??(x), are reported in appendix D.1, where
the latter (former) collect x-(in)dependent contributions.

Moving to the hard-collinear counterterms Khc,? in eqs. (3.4)–(3.3), we notice that the
azimuthal contribution multiplying Qab,? in the collinear kernels vanishes upon integration,
hence only unpolarised Altarelli-Parisi kernels need to be integrated. For a final-state j,
relevant to Khc,F, one has∫

dΦn+1 HC F
ij R

= N1
ςn+1
ςn

[
θr∈F

∫
dΦ(ijr)

n

∫
dΦ(ijr)

rad (1− y)β + θr∈I

∫∫
dΦ(ijr)

n (xkr) dΦ(ijr)
rad xβ

]
[
P hc
ij,F(z)
sij

+ 2
[
Cfj I

(i)
jr (1− (1− z)α) +Cfi I

(j)
ir (1− zα)

]]
B̄(ijr)

≡ ςn+1
ςn

[
θr∈F

∫
dΦ(ijr)

n

(
Iijrhc,FF + Iijrsc,FF + Ijirsc,FF

)
+ θr∈I

∫
dΦ(ijr)

n (kr)
(
Iijrhc,FI + Iijrsc,FI + Ijirsc,FI

)
+ θr∈I

∫ 1

0

dx

x

∫
dΦ(ijr)

n (xkr)
(
J ijrhc,FI(x) + J ijrsc,FI(x) + J jirsc,FI(x)

)]
B̄(ijr) , (3.6)

where the contributions proportional to θr∈F or θr∈I correspond to different prescriptions
for the position of the recoiler particle. Likewise, the integration of the constituents of
Khc,I gives∫

dΦn+1 HC I
ij R (3.7)

= N1
ςn+1
ςn

[
θr∈F

∫∫
dΦ(irj)

n (xkj) dΦ(irj)
rad (1− z)γ

(
P hc

[ij]i,I(x)
x sij

+ 2CfjI
(i)
jr

1− xα
1− z

)
B̄(irj)

+ θr∈I

∫∫
dΦ(ijr)

n (xkj , kr) dΦ(ijr)
rad (1− v)γ

(
P hc

[ij]i,I(x)
x sij

+ 2CfjI
(i)
jr (1− xα)(1− v)

)
B̄(ijr)

]

≡ ςn+1
ςn

{
θr∈F

[ ∫ 1

0

dx

x

∫
dΦ(irj)

n (xkj)
(
J irjhc,IF(x) + J irjsc,IF(x)

)
+
∫
dΦ(irj)

n (kj) Iirjsc,IF

]
B̄(irj)

+ θr∈I

[ ∫ 1

0

dx

x

∫
dΦ(ijr)

n (xkj , kr)
(
J ijrhc,II(x) + J ijrsc,II(x)

)
+
∫
dΦ(ijr)

n (kj , kr) Iijrsc,II

]
B̄(ijr)

}
.
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All integrals Iiabhc/sc,?? and J iabhc/sc,??(x) featuring in the previous equations are collected in
appendix D.2.

In order to obtain the integrated counterterms I and J , two final steps are required.
First, all various Born-level parametrisations are identified, as the corresponding phase
spaces have identical support, which amounts to the following relabelings:

{k̄}(abc) → {k} , dΦ(abc)
n → dΦn , B̄(abc)

... → B... . (3.8)

Then, sums over (n + 1)-body labels must be converted into Born-level sums. When a
final-state gluon i is removed, relevant to the soft case, one has

ςn+1
ςn

∑
i∈F

δfig = 1 ; (3.9)

when two final-state particles i and j are replaced by the parent particle p, the sums over
i and j can be recast as a sum over p according to

ςn+1
ςn

∑
i∈F

∑
j∈F
j<i

δ{fifj}{qq̄} = Nf

∑
p∈F

δfpg ,

ςn+1
ςn

∑
i∈F

∑
j∈F
j<i

(
δfi{q,q̄}δfjg + δfj{q,q̄}δfig

)
=
∑
p∈F

δfp{q,q̄} ,

ςn+1
ςn

∑
i∈F

∑
j∈F
j<i

δfig δfjg = 1
2
∑
p∈F

δfpg , (3.10)

where Nf is the number of light active flavours; in the case of a final-state particle i and
an initial-state particle j replaced by the resulting initial-state particle a, the relevant
relations are

ςn+1
ςn

∑
i∈F

∑
j∈I

δ{f[ij]fi}{qq̄} =
∑
a∈I

δfag ,

ςn+1
ςn

∑
i∈F

∑
j∈I

δf[ij]{q,q̄} δfig =
∑
a∈I

δfa{q,q̄} ,

ςn+1
ςn

∑
i∈F

∑
j∈I

δf[ij]g δfi{q,q̄} =
∑
a∈I

δfa{q,q̄} ,

ςn+1
ςn

∑
i∈F

∑
j∈I

δf[ij]g δfig =
∑
a∈I

δfag . (3.11)

After such a procedure, all above integrals are naturally written in terms of Born-level
quantities. With ? = F, I, one has

Iabcs,?? → Is,?? (sbc) , Jabcs,??(x)→ Js,?? (sbc, x) ,

Iabcsc,?? → 2Cfb Isc,?? (sbc) , Jabcsc,??(x)→ 2Cfb Jsc,?? (sbc, x) ,

Iabchc,F? → δfbg

[1
2 I

(2g)
hc,F? (sbc) +Nf I

(0g)
hc,F? (sbc)

]
+ δfb{q,q̄} I

(1g)
hc,F? (sbc) ,
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Jabchc,F?(x)→ δfbg

[1
2 J

(2g)
hc,F? (sbc, x) +Nf J

(0g)
hc,F? (sbc, x)

]
+ δfb{q,q̄} J

(1g)
hc,F? (sbc, x) ,

Jabchc,I?(x)→ δfbg

[
J

(2g)
hc,I? (sbc, x) + J

(0g)
hc,I? (sbc, x)

]
+ δfb{q,q̄} J

(1g)
hc,I? (sbc, x) , (3.12)

where, on the right-hand sides, b and c are Born-level labels. The quantities Is/sc/hc,??(s)
and Js/sc/hc,??(s, x) appearing on the right-hand side of the above identifications are col-
lected in appendices D.1 and D.2.

4 NLO massless subtraction formula

We are now in the position of verifying that the integrated counterterm correctly reproduces
all virtual ε poles, thus providing a valid local subtraction formula for generic NLO processes
without massive colourful particles. We separately consider the cases of 0, 1, 2 initial-
state QCD partons, relevant to lepton-lepton, lepton-hadron, and hadron-hadron collisions,
respectively. For these three process categories, we dub the counterterm K as KF, KIF,
and KIIF, respectively.

4.1 No initial-state QCD partons

The counterterm for leptonic processes is

KF = Ks + θr∈FKhc,F , (4.1)

where Ks and Khc,F are defined in eqs. (3.2), (3.3), and the notation makes explicit the
fact that the emitting dipole jr appearing in the hard-collinear kernels is bound to belong
to the final state.

The integration over the radiative phase space, up to O(ε), yields

IF = Ipoles + IF
fin , (4.2)

where2

Ipoles = αS

2π

 1
ε2

∑
j

Cfj B + 1
ε

∑
j

γj B +
∑
c,d 6=c

LcdBcd

 , (4.3)

IF
fin = αS

2π


∑
k∈F

φk −
∑
j

γhc
j Ljr

 B +
∑
c,d 6=c

Lcd
(

2− 1
2 Lcd

)
Bcd

+ 2A2(α)

∑
j

Cfj Ljr B +
∑
c,d 6=c

LcdBcd

+
∑
k∈F

γhc
k A2(β)B

+ [A2(α) (A2(α)− 2A2(β))−A3(α)]
∑
j

Cfj B

 .

2The expressions in (4.3) feature sums running on final-state labels only,
∑

k∈F, as well as on final-
and initial-state labels, such as

∑
j
and

∑
c,d 6=c. While in the case of leptonic collisions the distinction is

immaterial, as Cfa = γa = 0 for initial-state particles, such a notation allows us to use (4.3) unmodified for
hadronic collisions as well.
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We have introduced some short-hand notation for logarithms, Lab = ln(sab/µ2), and for
anomalous dimensions,

γa = 3
2 CF δfa{q,q̄} + 1

2 β0 δfag , γhc
a = γa − 2Cfa ,

φa = 13
3 CF δfa{q,q̄} + 4

3 β0 δfag +
(2

3 −
7
2 ζ2

)
Cfa , (4.4)

where β0 =
(
11CA−4TRNf

)
/3 is the first coefficient of the QCD beta function, CA = Nc,

CF = (N2
c − 1)/(2Nc) and TR = 1/2. The functions An(x) are defined in appendix D.

The poles in (4.3) are correctly independent of the damping parameters α and β, and
can be checked to exactly match those of virtual origin, see for instance [28], thus verifying
the cancellation of singularities in the first line of (2.9). As for the finite contribution,
the second and third lines collect the full dependence upon the damping parameters, and
cancel out as α = β = 0.

4.2 One initial-state QCD parton

The local counterterm relevant for a reaction with one incoming QCD parton is

KIF = Ks + θr∈IKhc,F + θr∈FKhc,I , (4.5)

where the singular kernels are listed in eqs. (3.2)–(3.4). In Khc,I one assigns a final-state
recoiler since the only initial-state coloured parton is identified with j. As for Khc,F, one
could assign a final-state recoiler only if the process featured at least one massless colourful
parton in the final state at Born level, on top of the final-state emitter j. Identifying the
recoiler with the initial-state colourful parton is instead always allowed.

The integration over the radiative phase space up to O(ε) gives∫
dΦn+1K

IF =
∫
dΦn(ka)

(
IF + II

fin

)
+
∫ 1

0

dx

x

∫
dΦn(xka) J I(x) , (4.6)

where IF is the same as in (4.2), while II
fin is a purely finite contribution reading

II
fin = αS

2π 2Cfa
[
1 + ζ2

4 −A2(α) (A1(γ)−A2(β)− 1) +A3(α)
]
B , (4.7)

where a is the label of the initial-state coloured parton. The x-independent integral on
the right-hand side of (4.6) again successfully reproduces the general pole structure of the
virtual contribution. The remaining integral over J I(x), whose expression is

J I(x) = αS

2π

−
(1
ε
− Lar

)
P̄a(x) + P

(1)
a,fin(x)−

(
x1+β

1− x

)
+

∑
k∈F

(
γhc
k − 2Cfk A2(α)

)

+ 2Cfa

[ (
x ln(1− x)

1− x

)
+
−
(

x

1− x

)
+
A1(γ)

+
(
x1+α

1− x

)
+

(A1(γ)−A2(α)− 1− Lar)
] B +

− αS

2π

(
x1+α

1− x

)
+

∑
k∈F

2 Lak Bak , (4.8)
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with P
(1)
a,fin(x) defined in appendix A, is instrumental to tame the single pole stemming

from collinear factorisation, as contained in (2.10): it is straightforward to check that the
sum C(x) + J I(x) is finite in d = 4, and features a leftover logarithmic dependence upon
the factorisation scale µF , in the form

C(x) + J I(x) ⊃ −αS

2π lnµ2
F P̄a(x)B , (4.9)

which cancels the O(αS) DGLAP µF dependence from the PDF.

4.3 Two initial-state QCD partons

The local counterterm for a process featuring two incoming colourful partons is

KIIF = Ks + θr∈I
(
Khc,F +Khc,I

)
, (4.10)

where the choice of initial recoiler r is dictated by the general availability, for this class of
processes, of an extra initial-state QCD parton regardless of the position of the emitter j.

Counterterm integration up to O(ε) yields∫
dΦn+1K

IIF =
∫
dΦn(ka, kb)

(
IF + III

fin

)
+
∫ 1

0

dx

x

∫ 1

0

dx̂

x̂

∫
dΦn(xka, x̂kb) J II(x, x̂) .

(4.11)
As above, IF refers to (4.2), reproducing the general virtual-pole structure. The remaining
x-independent contribution is collected in

III
fin = αS

2π

{[
2 + ζ2

2 + 3A3(α)−A2(α) (2A1(γ)− 2A2(β) +A2(α))
]

(Cfa + Cfb) B

+ 4 (ζ2 − 1 +A3(α)) Bab
}
, (4.12)

with a, b labelling the two initial-state coloured partons.
The contribution J II(x, x̂) ≡ J II

a (x) δ(1 − x̂) + J II
b (x̂) δ(1 − x) accounts separately

for the configurations in which the incoming colourful parton a or b, respectively, enters
the Born-level amplitude with rescaled momentum. As none of our mappings features a
simultaneous rescaling of both initial-state momenta, the simultaneous dependence on both
x and x̂ is trivial in J II(x, x̂). Explicitly, one has (i = a, b)

J II
i (x) = αS

2π

−
(1
ε
− Lir

)
P̄i(x) + P

(2)
i,fin(x)−

(
x1+β

1− x

)
+

∑
k∈F

(
γhc
k − 2Cfk A2(α)

)

+ 2Cfi

[
2
(
x ln(1− x)

1− x

)
+
−
(
x1+α ln(1− x)

1− x

)
+
−
(

x

1− x

)
+
A1(γ)

+
(
x1+α

1− x

)
+

(A1(γ)−A2(α)− 1− Lab)
] B +

− αS

2π 2
[(

x1+α ln(1− x)
1− x

)
+

+
(
x1+α

1− x

)
+

(A2(α) + 1 + Lab)
]
Bab +

− αS

2π

(
x1+α

1− x

)
+

∑
k∈F

2 Lik Bik . (4.13)
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The same considerations on collinear-pole cancellation and µF dependence hold as in the
case of single initial-state QCD parton, which concludes the proof of ε-pole cancellation by
means of the local analytic sector subtraction procedure.

5 Numerical implementation and validation

In this section, we present numerical results obtained by applying local analytic sector
subtraction to the computation of NLO cross sections for realistic scattering processes. We
choose to work in the MadNkLO framework [29–32], which provides a flexible high-level
platform suitable for deploying meta-codes that implement generic subtraction schemes for
IRC divergences at higher orders. MadNkLO builds on the MadGraph5_aMC@NLO
environment [33, 34], relying on the latter for the generation of tree-level and one-loop
matrix elements.3 In particular, once the user specifies the scattering process and the per-
turbative order (e.g. NLO or NNLO in QCD, and possibly mixed QCD-EW corrections),
MadNkLO identifies all the building blocks necessary for the corresponding computations,
i.e. the matrix elements and the counterterms needed in the singular limits. Matrix ele-
ments which can be obtained from MadGraph5_aMC@NLO are also generated. It is
a developer’s task to implement those ingredients which are specific to a given subtrac-
tion scheme, such as the expression of the local and integrated counterterms, momentum
mappings, and possibly sector functions, as well as functions providing a code in a low-
level programming language. In the following, we will show some numerical results both
at the local and at the integrated level. The interested reader can find details on the
implementation of our subtraction scheme in MadNkLO in appendix E.

5.1 Validation of local IRC-singularity cancellation

In this section we showcase how the cancellation of IRC singularities is achieved numerically
for a selection of processes and of singular configurations. Specifically, we evaluate the
(n+ 1)-body matrix element in a randomly-chosen phase-space point, then we progressively
deform it in order to approach a specific singular configuration (soft or collinear). The
closeness to the singular configuration is controlled by a parameter, λ, whose meaning is
described in details in the appendix of ref. [30]. For the purpose of this work, the reader
should bear in mind that λ ∼ E2

i (λ ∼ θ2
ij) in the soft Si (collinear Cij) limit.

We start by showing in figure 3 the case for e+e− → ggdd̄, and consider the sector
identified by the first gluon and the d̄ quark (labelled as 3, 6 in the particle list) both in
case they become collinear (top row), and in case the gluon becomes soft (bottom row).
Several quantities are displayed: the solid blue line represents the exact (n+ 1)-body
matrix element, dubbed ME; thin dashed lines of different colours indicate the collinear
counterterms C(x, y), which include soft-collinear contributions, and the soft counterterms
S(z), split according to the different eikonal (or radiating dipole) contributions Dip a–b;
the subtracted matrix element, labelled with TOTAL, is marked with a solid teal line,
while the sum of all counterterms (Sum of CTs) is displayed with a thicker dashed line.

3We remind the reader that one-loop matrix elements in MadGraph5_aMC@NLO are generated by
the MadLoop module [35].
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Figure 3. The singular behaviour of the real-emission matrix element and counterterms for the
process e+e− → ggdd̄, in the sector identified by particles 3, 6. Top row: collinear configuration
C(3, 6); bottom row: soft configuration S(3).

Contributions are shown either in absolute value (left panels) or divided by the matrix
element (right panels). Both sets of panels help conveying the message that the local
cancellation of singularities has been achieved. In the left-hand plots, the λ−1 slope of the
real matrix element and of the counterterms is apparent, reducing to a λ−1/2 behaviour for
the subtracted result, which in turn becomes regular once combined with the phase-space
measure. In the right plots one can appreciate how the various counterterms combine in
such a way that their sum matches the matrix element in the relevant singular limit.

Turning to processes initiated by coloured particles, we show in figure 4 the case for
uū → Zgg in the C(1, 5) and S(5) configurations (i.e. those for which the last gluon (5)
is collinear to the incoming u quark (1), or soft), in the sector identified by particles 1,
5. Analogously, in figure 5, we consider the case of dd → ggdd in the C(1, 3) and S(3)
configurations, in the sector identified by particles 1, 3. Such a process has as many as
11 counterterms in this configuration (1 collinear and 10 soft dipoles), thus the displayed
integrable scaling of the subtracted matrix element provides a highly non-trivial test of the
correctness of the local subtraction mechanism.
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Figure 4. The singular behaviour of the real-emission matrix element and counterterms for the
process uū → Zgg, in the sector identified by particles 1, 5. Top row: collinear configuration
C(1, 5); bottom row: soft configuration S(5).

5.2 Integrated results

We now turn to the numerical validation of our approach at the level of integrated cross
sections for a selection of processes at NLO, comparing our results against those obtained
with MadGraph5_aMC@NLO. The two main current limitations of our MadNkLO-
based framework are the absence of a low-level code implementation, and of optimised
phase-space integration routines. In fact, the integration is steered by a code written in
Python, using Vegas3 [36, 37] as integrator. Such a behaviour somewhat limits the
complexity of the processes that can be run within a reasonable amount of time and
computing resources; still, the processes we consider in the following cover all radiation
topologies and both leptonic and hadronic collisions, hence we reckon them a sufficient
subset for validation purposes.

The numerical setup we employ is the following: processes at lepton colliders are run at
a centre-of-mass energy of 500GeV. Hadronic processes are instead run at the LHC RunII
energy of 13TeV. In the latter case, the PDF4LHC15_nlo_30 PDFs are employed [38], via
the LHAPDF interface [39]. The fine-structure and Fermi constants have the values

α = 1/132.507, Gf = 1.16639 · 10−5 GeV−2, (5.1)
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Figure 5. The singular behaviour of the real-emission matrix element and counterterms for the
process dd → ggdd, in the sector identified by particles 1, 3. Top row: collinear configuration
C(1, 3); bottom row: soft configuration S(3).

while the following values for particle masses are employed:4

mZ = 91.188GeV, mW = 80.419GeV, mb = 4.7GeV, mt = 173GeV. (5.2)

Renormalisation and factorisation scales are kept fixed to µ = µF = mZ .
Whenever light partons are present in the final state at the Born level, they are clus-

tered into jets with the anti-kt algorithm [40], as implemented in FastJet [41], with radius
parameter R = 0.4. Jets are then required to satisfy the following kinematic cuts:

pT (j) > 20GeV, |η(j)| < 5. (5.3)

The processes we consider are

e+e− → jj, (5.4)
e+e− → jjj, (5.5)

4In our model mW is derived from α, Gf and mZ ; also, the presence of a non-zero value for mb is
formally inconsistent with the employed PDF set, however this is of no relevance as far as validation is
concerned.
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Process aMC LO MadNkLO LO aMC NLO corr. MadNkLO NLO corr.
e+e− → jj 0.53209(6) 0.53208(6) 0.019991(7) 0.019991(10)
e+e− → jjj 0.4739(3) 0.4740(3) −0.1461(1) −0.1463(6)
pp→ Z 46361(3) 46362(3) 6810.9(8) 6810.8(4)
pp→ Zj 11270(7) 11258(5) 3770(6) 3776(17)

pp→W+W−j 42.42(1) 42.39(2) 10.68(5) 10.53(13)

Table 1. Validation table with predictions for LO cross sections and NLO corrections. Numbers
are in pb. Integration errors, on the last digit(s), are shown in parentheses.

pp → Z, (5.6)
pp → Zj, (5.7)
pp → W+W−j. (5.8)

For these processes, we have computed the LO cross section and its NLO correction,
which are quoted in table 1. In this case, no damping factors are applied. Results from
MadGraph5_aMC@NLO (dubbed aMC in the table) and MadNkLO are in general
very well compatible, the largest deviations being of the order of the combined integration
error, which is at or below the per-mille level.

We also consider the case of non-zero values for the damping parameters α, β, γ pre-
sented in section 2.5. For simplicity, we set the three parameters to a common value,
ranging from 0 to 2. Results for the NLO corrections are shown in table 2, together with
their breakdown into n-body and (n+ 1)-body contributions (the former including virtual
corrections and integrated counterterms, the latter including subtracted real emissions).
While the n- and (n+ 1)-body terms, if consider separately, show a very significant depen-
dence upon the unphysical damping parameters, their sum remains stable, as expected.
Results with the three different damping choices are totally compatible within the respec-
tive integration errors, and, in turn, with the MadGraph5_aMC@NLO results.

5.3 Differential validation

Finally, we validate the correctness of the damping factors at the differential level in the
simple case of e+e− → γ∗ → jj, at centre-of-mass energy

√
s = 100GeV, with µ =

35GeV. The plots in figure 6 show differential cross sections with respect to transverse
momentum and (absolute value of) pseudo-rapidity of the two hardest jets in the events
(clustered with the kt algorithm [42, 43]), which are NLO-accurate observables receiving
contribution from subtraction counterterms across the whole spectrum. A comparison is
provided between predictions obtained with MadGraph5_aMC@NLO and an in-house
implementation of local analytic sector subtraction, limited to the above-mentioned process.
Various combinations of parameters α and β, ranging from 0 to 3, are chosen, in order to
cover different damping possibilities (γ is irrelevant for final-state radiation).

As evident from figure 6, predictions of local analytic sector subtraction for all chosen
damping profiles are in excellent agreement with those obtained with aMC within the
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Process MadNkLO MadNkLO MadNkLO
α = β = γ = 0 α = β = γ = 1 α = β = γ = 2

e+e− → jj

V+I 0.02664732(9) 0.01998531(7) 0.00666183(2)
R-K −0.00666(1) 0.000004(6) 0.013329(6)

NLO corr. 0.019991(10) 0.019985(6) 0.019991(6)
pp→ Z

V+I+C+J 3981.5(4) −3472.7(4) −9163.2(5)
R-K 2829.3(2) 10284.3(4) 15974.1(6)

NLO corr. 6810.8(4) 6811.6(6) 6810.9(8)
pp→ Zj

V+I+C+J 7172(2) 5246(2) 3624(2)
R-K −3395(17) −1469(25) 156(22)

NLO corr. 3776(17) 3777(25) 3780(22)

Table 2. Validation table with predictions for the NLO corrections, broken down between n and
n+ 1 contributions, when different damping factors (α, β, γ) are considered. Numbers are in pb.
The integration error, on the last digit(s), is shown in parentheses.

numerical accuracy used for the runs. A systematic study of the performance of the various
damping choices at the differential level in more complex processes and setups is however
beyond the scope of this paper, and postponed to future work.

6 Conclusion

We have presented the extension of the local analytic sector subtraction method to the
case of initial-state QCD radiation at NLO. We have shown that the enhanced structural
simplicity of the method, already evident in the case of final-state radiation, carries over
to initial-state radiation, which represents a promising feature with a view to NNLO sub-
traction for hadron-collider processes.

Aiming at an improved numerical stability, we have introduced an optimisation pro-
cedure to tune the impact of subtraction terms in the non-singular regions of phase space,
in a way that preserves the properties of the method, in particular the simplicity of the
involved analytic integrations.

Finally, we have presented the first implementation of the method in an automated
framework, MadNkLO, and validated its correctness at the level of singular infrared and
collinear limits and, mainly, of physical cross sections, for a set of simple collider processes
involving initial- and final-state radiation.

The natural directions to be followed after this work are on one hand a systematic
optimisation of the numerical software, necessary to reduce the time and CPU resources
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Figure 6. Transverse momenta and pseudo-rapidities for the two hardest jets in e+e− → γ∗ → jj

at NLO, comparing aMC and local analytic sector subtraction.

necessary to produce phenomenological results; on the other hand, the inclusion of a sub-
traction scheme for massive final-state particles at NLO, relevant for top- and bottom-
quark physics, and, most importantly, the definition of local analytic sector subtraction for
initial-state radiation at NNLO.
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A Altarelli-Parisi splitting kernels

We collect here the expression for the regularised Altarelli-Parisi collinear kernels appearing
in the lowest-order DGLAP [25–27] evolution equations.

P̄a(x)B ≡ δfag
[
P̄gg(x)B(g) + P̄qq̄(x)

(
B(q) +B(q̄))]

+ δfa{q,q̄}
[
P̄gq(x)B(g) + P̄qg(x)B(fa)

]
, (A.1)

where

P̄gg(x) = 2CA
[

x

(1− x)+
+ 1− x

x
+ x(1− x)

]
+ δ(1− x) β0

2 ,

P̄qq̄(x) = TR
[
x2 + (1− x)2

]
,

P̄qg(x) = CF

(
1 + x2

1− x

)
+
,

P̄gq(x) = CF
1 + (1− x)2

x
, (A.2)

CA = Nc, CF = (N2
c − 1)/(2Nc), TR = 1/2, β0 = (11CA − 4TRNf )/3, and B(fi) denotes

the Born contribution initiated by a parton of flavour fi, stemming from the splitting of
parton a.

We also collect here finite terms arising from the integration of initial-state collinear
counterterms, see sections 4.2, 4.3, which are related to the Altarelli-Parisi kernels:

P
(λ)
a,fin(x)B ≡ δfag

[
p(λ)
gg (x)B(g) + p

(λ)
qq̄ (x)

(
B(q) +B(q̄))]

+ δfa{q,q̄}
[
p(λ)
gq (x)B(g) + p(λ)

qg (x)B(fa)
]
, (A.3)

where λ = 1, 2,

p(λ)
gg (x) = 2CA

(1− x
x

+ x(1− x)
) [
λ ln(1− x)−A1(γ)

]
,

p
(λ)
qq̄ (x) = TR

(
x2 + (1− x)2

) [
λ ln(1− x)−A1(γ)

]
+ TR 2x (1− x) ,

p(λ)
qg (x) = CF (1− x)

[
λ ln(1− x) + 1−A1(γ)

]
,

p(λ)
gq (x) = CF

1 + (1− x)2

x

[
λ ln(1− x)−A1(γ)

]
+ CF x , (A.4)

and A1(γ) is defined in appendix D.

B Phase-space mappings

In this appendix we report the phase-space mappings and parametrisations, used through-
out the main text, for initial- and final-state radiation. These mappings are taken from
Catani-Seymour dipole subtraction [3].
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B.1 Final a, b, c

The first configuration we study is shown in leftmost panel of figure 2. Remapped momenta
are defined as

k̄
(abc)
b = ka + kb −

y

1− y kc , k̄(abc)
c = 1

1− y kc , k̄
(abc)
i = ki , ∀i 6= (a, b, c) , (B.1)

as functions of the Catani-Seymour variables 0 ≤ y, z ≤ 1

y = sab
sabc

, z = sac
sac + sbc

. (B.2)

Given the dipole centre-of-mass squared energy s̄
(abc)
bc ≡ 2k̄(abc)

b · k̄(abc)
c , the Mandelstam

invariants satisfy the following relations:

sab = y s̄
(abc)
bc , sac = z(1− y) s̄(abc)

bc , sbc = (1− z)(1− y) s̄(abc)
bc . (B.3)

The remapping allows to factorise the radiative phase space from the n-body phase space as∫
dΦn+1 = ςn+1

ςn

∫
dΦ(abc)

n

∫
dΦ(abc)

rad , (B.4)

where ςm is the multiplicity factor for the m-body phase space and

dΦ(abc)
n ≡ dΦn

(
{k̄}(abc)

)
, dΦ(abc)

rad ≡ dΦrad
(
s̄

(abc)
bc ; y, z, φ

)
, (B.5)∫

dΦ(abc)
rad = N(ε)

(
s̄

(abc)
bc

)1−ε ∫ π

0
dφ sin−2ε φ

∫ 1

0
dy

∫ 1

0
dz
[
y(1− y)2 z(1− z)

]−ε
(1− y) ,

(B.6)

with
N(ε) ≡ (4π)ε−2

√
π Γ(1/2− ε) . (B.7)

B.2 Final a, b, initial c

Considering the central panel of figure 2, we choose to boost the incoming momentum, i.e.

k̄
(abc)
b = ka + kb − (1− x) kc , k̄(abc)

c = x kc , k̄
(abc)
i = ki , ∀i 6= (a, b, c) , (B.8)

where we introduced kinematic variables 0 ≤ x, z ≤ 1 defined as

x = sac + sbc − sab
sac + sbc

, z = sac
sac + sbc

. (B.9)

As a function of the reference invariant s̄(abc)
bc = 2k̄(abc)

b · kc = 2k̄(abc)
b · k̄(abc)

c /x, the dot
products are

sab = (1− x) s̄(abc)
bc , sac = z s̄

(abc)
bc , sbc = (1− z) s̄(abc)

bc . (B.10)

In this case the radiative phase space cannot be exactly factorised as in (B.4) due to the
dependence of the reference scale s̄(abc)

bc upon the variable x associated to the rescaled
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momentum of the initial-state parton, over which we are not integrating. Thus we define
the following convolution,∫

dΦn+1(kc) = ςn+1
ςn

∫∫
dΦ(abc)

n (xkc) dΦ(abc)
rad , (B.11)

with

dΦ(abc)
n (xkc) ≡ dΦn

(
{k̄}(abc)

)
, dΦ(abc)

rad ≡ dΦrad
(
s̄

(abc)
bc ;x, z, φ

)
. (B.12)

The single unresolved phase space in terms of the kinematic variables reads∫
dΦ(abc)

rad = N(ε)
(
s̄

(abc)
bc

)1−ε ∫ π

0
dφ sin−2ε φ

∫ 1

0
dx

∫ 1

0
dz [(1− x) z(1− z)]−ε . (B.13)

B.3 Final a, initial b, c

In the counterterms featuring two incoming partons, we set the incoming momentum k̄b to
be parallel to kb while leaving unchanged the other incoming momentum, k̄µc = kµc . Then
we shift all other final-state momenta collected in kf = {kj}j∈F, as

k̄
(abc)
b = x kb , k̄(abc)

c = kc ,

k̄
(abc)
f = kf −

2kf · (K + sK)
(K + sK)2 (K + sK) + 2kf ·K

K2
sK , ∀f 6= (a, b, c) , (B.14)

with
K = kb + kc − ka , sK = k̄

(abc)
b + k̄(abc)

c . (B.15)

The kinematic variables adopted in this case, satisfying 0 ≤ x, v ≤ 1, are

x = sbc − sab − sac
sbc

, v = sab
sab + sac

, (B.16)

and with respect to the invariant s̄(abc)
bc = 2kb · kc = 2k̄(abc)

b · k̄(abc)
c /x we rewrite the dipole

Mandelstam invariants as

sab = (1− x) v s̄(abc)
bc , sac = (1− x) (1− v) s̄(abc)

bc , sbc = s̄
(abc)
bc . (B.17)

Then we parametrise the (n+ 1)-body phase space as a convolution over x of dΦn and
dΦrad as ∫

dΦn+1(kb, kc) = ςn+1
ςn

∫∫
dΦ(abc)

n (xkb, kc) dΦ(abc)
rad , (B.18)

with

dΦ(abc)
n (xkb, kc) ≡ dΦn

(
{k̄}(abc)

)
, dΦ(abc)

rad ≡ dΦrad
(
s̄

(abc)
bc ;x, v, φ

)
, (B.19)

leading to the explicit expression∫
dΦ(abc)

rad = N(ε)
(
s̄

(abc)
bc

)1−ε ∫ π

0
dφ sin−2ε φ

∫ 1

0
dx

∫ 1

0
dv [(1− x)2 v(1− v)]−ε(1− x) .

(B.20)
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C Consistency relations

In this section we explicitly verify the relations in eqs. (2.48) for initial- and final-state
radiation, ensuring the locality of the subtraction procedure.

As far as relation Si SiR = SiR is concerned, this is trivially verified since Si {k̄}(ikl) =
Si {k̄}(ilk) = {k}/i for soft emission from both the initial and the final state, hence

Si SiR = −N1
∑
k 6=i

∑
l 6=i
I(i)
kl Bkl({k}/i) = SiR . (C.1)

Analogously, for the collinear relation Cij Cij R = Cij R, the key ingredients are the limits

Cij x θi∈F θj∈I = x[ij] θi∈F θj∈I , (C.2)

as well as

Cij {k̄}(ijr) θi∈F θj∈F =
(
{k}/i/j , k[ij]

)
θi∈F θj∈F ,

Cij {k̄}(ijr) θi∈F θj∈I θr∈I = Cij {k̄}(irj) θi∈F θj∈I θr∈F =
(
{k}/i/j , x[ij] kj

)
θi∈F θj∈I , (C.3)

from which one immediately deduces

Cij Cij R = N1
sij

[
θi∈F θj∈F P

µν
ij,F(zi)Bµν

(
{k}/i/j , k[ij]

)

+ θi∈F θj∈I
Pµν[ij]i,I(x[ij])

x[ij]
Bµν

(
{k}/i/j , x[ij]kj

)

+ θj∈F θi∈I
Pµν[ji]j,I(x[ji])

x[ji]
Bµν

(
{k}/i/j , x[ji]ki

) ]
= Cij R . (C.4)

Moving on to relation Si Si Cij R = Si Cij R, this is a consequence of the fact that

Si Si Cij R = N1 δfig 2Cfj
sjr

sij
(
sir + θj∈I θr∈I sij

) B({k}/i) = Si Cij R , (C.5)

having explicitly employed the soft behaviour of Altarelli-Parisi kernels.
The final relation Cij Si Cij R = Cij SiR is instead slightly subtler. The explicit

collinear action on the soft counterterm is

Cij SiR = − 2N1 I(i)
jr Cij


∑
k 6=i
k<j

[
(θj∈I θk∈I + θj∈F θk∈I + θj∈F θk∈F) B̄(ijk)

jk + θj∈I θk∈F B̄
(ikj)
jk

]

+
∑
k 6=i
k>j

[
(θk∈I θj∈I + θk∈F θj∈I + θk∈F θj∈F) B̄(ikj)

jk + θk∈I θj∈F B̄
(ijk)
jk

]

– 30 –



J
H
E
P
1
2
(
2
0
2
2
)
0
4
2

= − 2N1 I(i)
jr Cij


∑
k 6=i
k<j

[
(θj∈I θk∈I + θj∈F θk∈F) B̄(ijk)

jk

]

+
∑
k 6=i
k>j

[
(θj∈I θk∈I + θj∈F θk∈F) B̄(ikj)

jk

]

+
∑
k 6=i,j

[
θj∈F θk∈I B̄

(ijk)
jk + θj∈I θk∈F B̄

(ikj)
jk

] , (C.6)

where we have used that Cij I(i)
jk = I(i)

jr is independent of k, and can be taken out of the
sum. The action of Cij on the mapped Born kinematics reads

Cij θj∈F θk∈F B̄
(ijk)
jk = Cij θj∈F θk∈F B̄

(ikj)
jk = θj∈F θk∈FBjk

(
{k}/i/j , k[ij]

)
,

Cij θj∈F θk∈I B̄
(ijk)
jk = θj∈F θk∈IBjk

(
{k}/i/j , k[ij]

)
,

Cij θj∈I θk∈F B̄
(ikj)
jk = θj∈I θk∈FBjk

(
{k}/i/j , x[ij]kj

)
,

Cij θj∈I θk∈I B̄
(ijk)
jk = Cij θj∈I θk∈I B̄

(ikj)
jk = θj∈I θk∈IBjk

(
{k}/i/j , x[ij]kj

)
, (C.7)

where the latter equality is proven in appendix C.1. At this point, one can recast (C.6) as

Cij SiR = − 2N1 I(i)
jr

∑
k 6=i,j

[
θj∈IBjk

(
{k}/i/j , x[ij]kj

)
+ θj∈FBjk

(
{k}/i/j , k[ij]

)]
. (C.8)

Upon enforcing colour conservation, ∑k 6=j Tk = −Tj , this becomes

Cij SiR = 2N1Cfj I
(i)
jr

[
θj∈IB

(
{k}/i/j , x[ij]kj

)
+ θj∈FB

(
{k}/i/j , k[ij]

)]
. (C.9)

Recalling that Cij z
(irj) θj∈I θr∈F = Cij v

(ijr) θj∈I θr∈I = 0, it is straightforward at this
point to verify that the espression in (C.6) matches the result of Cij Si Cij R for all choices
of remapping, showing the consistency relation.

C.1 Collinear limits on mappings with two initial-state partons

In this appendix we show the last of eqs. (C.7), namely that, under the collinear Cij limit,
both θj∈I θk∈I B̄

(ijk)
jk and θj∈I θk∈I B̄

(ikj)
jk tend to θj∈I θk∈IBjk

(
{k}/i/j , x[ij]kj

)
. The proof is

based on the fact that, although the two sets of momenta do not match in the limit, the
colour- (as opposed to spin-) connected Born squared amplitudes depend on kinematics
only through Mandelstam invariants, which do coincide in the Cij limit, as shown below.

Considering particles j and k in the initial state, while i and f in the final state, we
analyse the Cij limit for the mappings (ijk) and (ikj).
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• Mapping (ijk)

k̄j = x kj , (C.10)

k̄k = kk ,

k̄f = kf −
2kf · (K + sK(1))

(K + sK(1))2 (K + sK(1)) + 2kf ·K
(K)2

sK(1) ,

with

x = sjk − sij − sik
sjk

, K = kj+kk−ki , sK(1) = k̄j+k̄k = xkj+kk . (C.11)

Under Cij collinear limit, denoting with Ea the energy of parton a in arbitrary frame,
and with r the ratio Ei/Ej , one has

sij
Cij−−→ 0 , sik

Cij−−→ sjk r , sif
Cij−−→ sjf r ,

x
Cij−−→ 1− r , K

Cij−−→ kj(1− r) + kk , sK(1)
Cij−−→ kj(1− r) + kk ,

2 k̄j · k̄f
Cij−−→ sjf (1− r) , 2 k̄k · k̄f

Cij−−→ skf , 2 k̄j · k̄k
Cij−−→ sjk (1− r) .

(C.12)

• Mapping (ikj)

k̄j = kj , (C.13)

k̄k = x kk ,

k̄f = kf −
2kf · (K + sK(2))

(K + sK(2))2 (K + sK(2)) + 2kf ·K
(K)2

sK(2) ,

with

x = sjk − sij − sik
sjk

, K = kj+kk−ki , sK(2) = k̄j+k̄k = kj+xkk . (C.14)

Under Cij collinear limit, denoting with Ea the energy of parton a in arbitrary frame,
and with r the ratio Ei/Ej , one has

sij
Cij−−→ 0 , sik

Cij−−→ sjk r , sif
Cij−−→ sjf r ,

x
Cij−−→ 1− r , K

Cij−−→ kj(1− r) + kk , sK(2)
Cij−−→ kj + kk(1− r) ,

2 k̄j · k̄f
Cij−−→ sjf (1− r) , 2 k̄k · k̄f

Cij−−→ skf , 2 k̄j · k̄k
Cij−−→ sjk (1− r) .

(C.15)

Invariants built with the two different remappings are identical in the collinear Cij limit.
The proof of the last of (C.7) is completed by the fact that Cij x = Cij x[ij] = 1− r.
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D Library of integrals

The analytical results collected in this section depend on the following functions

A1(ξ) ≡ γE + Ψ(0)(ξ + 1) ,
A2(ξ) ≡ γE − 1 + Ψ(0)(ξ + 2) = A1(ξ + 1)− 1 ,
A3(ξ) ≡ 1− ζ2 + Ψ(1)(ξ + 2) , (D.1)

where ξ ≥ 0, γE = 0.5772156649 . . . is the Euler-Mascheroni constant, Ψ(n)(z) is the n-th
Polygamma function, namely

Ψ(n)(z) = dn+1

dzn+1 ln[Γ(z)] , (D.2)

and all functions Ai(ξ) satisfy Ai(0) = 0.

D.1 Soft counterterms

For ?? taking value in FF,FI, II, we define

Iabcs,?? ≡ δfag Is,??
(
s̄

(abc)
bc

)
, (D.3)

Jabcs,??(x) ≡ δfag Js,??
(
s̄

(abc)
bc , x

)
, (D.4)

where the relevant integrals obtained integrating the soft counterterm in (3.2) read

Is,FF(s) = αS

2π

(
s

eγE µ2

)−ε Γ(1−ε)Γ(2+α−ε)
ε2 Γ(2+α−3ε) (D.5)

= αS

2π

(
s

µ2

)−ε[ 1
ε2

+ 2
ε
− 7π2

12 +6+2A2(α)
(1
ε

+2+A2(α)
)
−4A3(α)+O(ε)

]
,

Is,FI(s) = αS

2π

(
s

eγE µ2

)−ε Γ(1−ε)Γ(2+α)
ε2 Γ(2+α−2ε) (D.6)

= αS

2π

(
s

µ2

)−ε[ 1
ε2

+ 2
ε
− π

2

4 +4+2A2(α)
(1
ε

+2+A2(α)
)
−2A3(α)+O(ε)

]
,

Is,II(s) = αS

2π

(
s

eγE µ2

)−ε Γ(1−ε)Γ(2+α)
ε2 Γ(2+α−2ε) = Is,FI(s); (D.7)

Js,FI(s,x) = αS

2π

(
s

eγE µ2

)−ε Γ(2+α−ε)
(−ε)Γ(2+α−2ε)

(
x1+α

(1−x)1+ε

)
+

(D.8)

= αS

2π

(
s

µ2

)−ε[
−
(
x1+α

1−x

)
+

(1
ε

+1+A2(α)
)

+
(
x1+α ln(1−x)

1−x

)
+

+O(ε)
]
,

Js,II(s,x) = αS

2π

(
s

eγE µ2

)−ε Γ(1−ε)
ε2 Γ(−2ε)

(
x1+α

(1−x)1+2ε

)
+

(D.9)

= αS

2π

(
s

µ2

)−ε[
−
(
x1+α

1−x

)
+

2
ε

+4
(
x1+α ln(1−x)

1−x

)
+

+O(ε)
]
.
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D.2 Collinear counterterms

When a collinear splitting occurs in the final state, one has

Iabchc,F? ≡ δ{fafb}{qq̄} I
(0g)
hc,F?

(
s̄

(abc)
bc

)
+
(
δfagδfb{q,q̄} + δfbgδfa{q,q̄}

)
I

(1g)
hc,F?

(
s̄

(abc)
bc

)
+ δfagδfbg I

(2g)
hc,F?

(
s̄

(abc)
bc

)
,

Jabchc,F?(x) ≡ δ{fafb}{qq̄} J
(0g)
hc,F?

(
s̄

(abc)
bc , x

)
+
(
δfagδfb{q,q̄} + δfbgδfa{q,q̄}

)
J

(1g)
hc,F?

(
s̄

(abc)
bc , x

)
+ δfagδfbg J

(2g)
hc,F?

(
s̄

(abc)
bc , x

)
,

Iabcsc,F? ≡ δfag 2Cfb Isc,F?
(
s̄

(abc)
bc

)
,

Jabcsc,F?(x) ≡ δfag 2Cfb Jsc,F?
(
s̄

(abc)
bc , x

)
, (D.10)

while, if the splitting originates from an initial partonic state, one has

Jabchc,I?(x) ≡ δ{faf[ab]}{qq̄} J
(0g)
hc,I?

(
s̄

(abc)
bc , x

)
+ δfagδf[ab]{q,q̄} J

(1g),qg
hc,I?

(
s̄

(abc)
bc , x

)
+ δf[ab]gδfa{q,q̄} J

(1g),gq
hc,I?

(
s̄

(abc)
bc , x

)
+ δfagδf[ab]g J

(2g)
hc,I?

(
s̄

(abc)
bc , x

)
,

Iabcsc,I? = δfag 2Cfb Isc,I?
(
s̄

(abc)
bc

)
,

Jabcsc,I?(x) = δfag 2Cfb Jsc,I?
(
s̄

(abc)
bc , x

)
, (D.11)

where ? = F, I. Explicitly, the integrals obtained through integration of the collinear
counterterms in eqs. (3.3), (3.4) read as follows.

• Final j, final r:

I
(0g)
hc,FF (s) = αS

2π

(
s

eγE µ2

)−ε
4TR

Γ(2− ε)2 Γ(2 + β − 2ε)
(−ε) Γ(4− 2ε) Γ(2 + β − 3ε)

= αS

2π

(
s

µ2

)−ε
TR

[
−2

3
1
ε
− 16

9 −
2
3 A2(β) +O(ε)

]
, (D.12)

I
(1g)
hc,FF(s) = αS

2π

(
s

eγE µ2

)−ε
(3− 2ε)CF

Γ(2− ε)2 Γ(2 + β − 2ε)
(−ε) Γ(4− 2ε) Γ(2 + β − 3ε)

= αS

2π

(
s

µ2

)−ε
CF

[
−1

2
1
ε
− 1− 1

2 A2(β) +O(ε)
]
, (D.13)

I
(2g)
hc,FF(s) = αS

2π

(
s

eγE µ2

)−ε
2CA

Γ(2− ε)2 Γ(2 + β − 2ε)
(−ε) Γ(4− 2ε) Γ(2 + β − 3ε)

= αS

2π

(
s

µ2

)−ε
CA

[
−1

3
1
ε
− 8

9 −
1
3 A2(β) +O(ε)

]
, (D.14)

Isc,FF(s) = αS

2π

(
s

eγE µ2

)−ε Γ(1− ε) Γ(2 + β − 2ε)
ε2 Γ(2 + β − 3ε)

[ Γ(2− ε)
Γ(2− 2ε) −

Γ(2 + α− 2ε)
Γ(2 + α− 3ε)

]

= αS

2π

(
s

µ2

)−ε [
−1 + π2

6 −A2(α)
(1
ε

+ 2 + 1
2 A2(α) +A2(β)

)

+ 5
2 A3(α) +O(ε)

]
. (D.15)
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• Final j, initial r:

I
(0g)
hc,FI(s) = αS

2π

(
s

eγE µ2

)−ε
4TR

Γ(2− ε)2 Γ(2 + β)
(−ε) Γ(4− 2ε) Γ(2 + β − ε)

= αS

2π

(
s

µ2

)−ε
TR

[
−2

3
1
ε
− 16

9 −
2
3 A2(β) +O(ε)

]
, (D.16)

I
(1g)
hc,FI(s) = αS

2π

(
s

eγE µ2

)−ε
(3− 2ε)CF

Γ(2− ε)2 Γ(2 + β)
(−ε) Γ(4− 2ε) Γ(2 + β − ε)

= αS

2π

(
s

µ2

)−ε
CF

[
−1

2
1
ε
− 1− 1

2 A2(β) +O(ε)
]
, (D.17)

I
(2g)
hc,FI(s) = αS

2π

(
s

eγE µ2

)−ε
2CA

Γ(2− ε)2 Γ(2 + β)
(−ε) Γ(4− 2ε) Γ(2 + β − ε)

= αS

2π

(
s

µ2

)−ε
CA

[
−1

3
1
ε
− 8

9 −
1
3 A2(β) +O(ε)

]
, (D.18)

J
(0g)
hc,FI (s, x) = αS

2π

(
s

eγE µ2

)−ε
4TR

(1− ε)Γ(2− ε)
Γ(4− 2ε)

(
x1+β

(1− x)1+ε

)
+

= αS

2π

(
s

µ2

)−ε
TR

(
x1+β

1− x

)
+

[2
3 +O(ε)

]
, (D.19)

J
(1g)
hc,FI (s, x) = αS

2π

(
s

eγE µ2

)−ε
(3− 2ε)CF

(1− ε)Γ(2− ε)
Γ(4− 2ε)

(
x1+β

(1− x)1+ε

)
+

= αS

2π

(
s

µ2

)−ε
CF

(
x1+β

1− x

)
+

[1
2 +O(ε)

]
, (D.20)

J
(2g)
hc,FI (s, x) = αS

2π

(
s

eγE µ2

)−ε
2CA

(1− ε)Γ(2− ε)
Γ(4− 2ε)

(
x1+β

(1− x)1+ε

)
+

= αS

2π

(
s

µ2

)−ε
CA

(
x1+β

1− x

)
+

[1
3 +O(ε)

]
, (D.21)

Isc,FI(s) = αS

2π

(
s

eγE µ2

)−ε Γ(1− ε) Γ(2 + β)
ε2 Γ(2 + β − ε)

[ Γ(2− ε)
Γ(2− 2ε) −

Γ(2 + α− ε)
Γ(2 + α− 2ε)

]

= αS

2π

(
s

µ2

)−ε [
−A2(α)

(1
ε

+ 2 + 1
2 A2(α) +A2(β)

)

+ 3
2 A3(α) +O(ε)

]
, (D.22)

Jsc,FI(s, x) = αS

2π

(
s

eγE µ2

)−ε (
−1
ε

)[ Γ(2− ε)
Γ(2− 2ε) −

Γ(2 + α− ε)
Γ(2 + α− 2ε)

](
x1+β

(1− x)1+ε

)
+

= αS

2π

(
s

µ2

)−ε( x1+β

1− x

)
+

[A2(α) +O(ε)] . (D.23)
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• Initial j, final r:

J
(0g)
hc,IF(s, x) = αS

2π

(
s

eγE µ2

)−ε
TR

(
1− 2x(1−x)

1− ε

)
(1−x)−ε Γ(1 + γ− ε)

(−ε) Γ(1 + γ− 2ε) (D.24)

= αS

2π

(
s

µ2

)−ε
TR

[(
x2 + (1−x)2)(−1

ε
+ ln(1−x)−A1(γ)

)

+ 2x(1−x) +O(ε)
]
,

J
(1g),qg
hc,IF (s, x) = αS

2π

(
s

eγE µ2

)−ε
CF (1−x) (1− ε) (1−x)−ε Γ(1 + γ− ε)

(−ε) Γ(1 + γ− 2ε) (D.25)

= αS

2π

(
s

µ2

)−ε
CF (1−x)

[
−1
ε

+ ln(1−x) + 1−A1(γ) +O(ε)
]
,

J
(1g),gq
hc,IF (s, x) = αS

2π

(
s

eγE µ2

)−ε
CF

(
1 + (1−x)2

x
− εx

)
(1−x)−ε Γ(1 + γ− ε)

(−ε) Γ(1 + γ− 2ε) (D.26)

= αS

2π

(
s

µ2

)−ε
CF

[
1 + (1−x)2

x

(
−1
ε

+ ln(1−x)−A1(γ)
)

+x+O(ε)
]
,

J
(1g)
hc,IF(s, x) ≡ J

(1g),qg
hc,IF (s, x) + J

(1g),gq
hc,IF (s, x) (D.27)

= αS

2π

(
s

eγE µ2

)−ε
CF

(
2
x
− 1− ε

)
(1−x)−ε Γ(1 + γ− ε)

(−ε) Γ(1 + γ− 2ε)

= αS

2π

(
s

µ2

)−ε
CF

[(
2
x
− 1
)(
−1
ε

+ ln(1−x)−A1(γ)
)

+ 1 +O(ε)
]
,

J
(2g)
hc,IF(s, x) = αS

2π

(
s

eγE µ2

)−ε
2CA

(
1−x
x

+x(1−x)
)

(1−x)−ε Γ(1 + γ− ε)
(−ε) Γ(1 + γ− 2ε) (D.28)

= αS

2π

(
s

µ2

)−ε
2CA

(
1−x
x

+x(1−x)
)[
−1
ε

+ ln(1−x)−A1(γ) +O(ε)
]
,

Isc,IF(s) = αS

2π

(
s

eγE µ2

)−ε Γ(1− ε) Γ(1 + γ− ε)
ε2 Γ(1 + γ− 2ε)

[
1

Γ(2− ε) −
Γ(2 +α)

Γ(2 +α− ε)

]
(D.29)

= αS

2π

(
s

µ2

)−ε [
−A2(α)

(
1
ε

+ 1 + 1
2 A2(α) +A1(γ)

)
+ 1

2 A3(α) +O(ε)
]
,

Jsc,IF(s, x) = αS

2π

(
s

eγE µ2

)−ε Γ(1 + γ− ε)
(−ε) Γ(1 + γ− 2ε)

(
x(1−xα)
(1−x)1+ε

)
+

(D.30)

= αS

2π

(
s

µ2

)−ε [(
x(xα− 1)

1−x

)
+

(
1
ε

+A1(γ)
)

+
(
x(1−xα) ln(1−x)

1−x

)
+

+O(ε)
]
.
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• Initial j, initial r:

J
(0g)
hc,II(s, x) = αS

2π

(
s

eγE µ2

)−ε
TR

(
1− 2x(1−x)

1− ε

)
(1−x)−2ε Γ(1 + γ− ε)

(−ε) Γ(1 + γ− 2ε) (D.31)

= αS

2π

(
s

µ2

)−ε
TR

[(
x2 + (1−x)2)(−1

ε
+ 2 ln(1−x)−A1(γ)

)
+ 2x(1−x) +O(ε)

]
,

J
(1g),qg
hc,II (s, x) = αS

2π

(
s

eγE µ2

)−ε
CF (1−x) (1− ε) (1−x)−2ε Γ(1 + γ− ε)

(−ε) Γ(1 + γ− 2ε) (D.32)

= αS

2π

(
s

µ2

)−ε
CF (1−x)

[
−1
ε

+ 2 ln(1−x) + 1−A1(γ) +O(ε)
]
,

J
(1g),gq
hc,II (s, x) = αS

2π

(
s

eγE µ2

)−ε
CF

(
1 + (1−x)2

x
− εx

)
(1−x)−2ε Γ(1 + γ− ε)

(−ε) Γ(1 + γ− 2ε) (D.33)

= αS

2π

(
s

µ2

)−ε
CF

[
1 + (1−x)2

x

(
−1
ε

+ 2 ln(1−x)−A1(γ)
)

+x+O(ε)
]
,

J
(1g)
hc,II(s, x) ≡ J

(1g),qg
hc,II (s, x) + J

(1g),gq
hc,II (s, x) (D.34)

= αS

2π

(
s

eγE µ2

)−ε
CF

(
2
x
− 1− ε

)
(1−x)−2ε Γ(1 + γ− ε)

(−ε) Γ(1 + γ− 2ε)

= αS

2π

(
s

µ2

)−ε
CF

[(
2
x
− 1
)(
−1
ε

+ 2 ln(1−x)−A1(γ)
)

+ 1 +O(ε)
]
,

J
(2g)
hc,II(s, x) = αS

2π

(
s

eγE µ2

)−ε
2CA

(
1−x
x

+x(1−x)
)

(1−x)−2ε Γ(1 + γ− ε)
(−ε) Γ(1 + γ− 2ε) (D.35)

= αS

2π

(
s

µ2

)−ε
2CA

(
1−x
x

+x(1−x)
)[
−1
ε

+ 2 ln(1−x)−A1(γ) +O(ε)
]
,

Isc,II(s) = αS

2π

(
s

eγE µ2

)−ε Γ(1− 2ε) Γ(1 + γ− ε)
2ε2 Γ(1 + γ− 2ε)

[
1

Γ(2− 2ε) −
Γ(2 +α)

Γ(2 +α− 2ε)

]
(D.36)

= αS

2π

(
s

µ2

)−ε [
−A2(α)

(
1
ε

+ 2 +A2(α) +A1(γ)
)

+A3(α) +O(ε)
]
,

Jsc,II(s, x) = αS

2π

(
s

eγE µ2

)−ε Γ(1 + γ− ε)
(−ε) Γ(1 + γ− 2ε)

(
x(1−xα)

(1−x)1+2ε

)
+

(D.37)

= αS

2π

(
s

µ2

)−ε [(
x(xα− 1)

1−x

)
+

(
1
ε

+A1(γ)
)

+ 2
(
x(1−xα) ln(1−x)

1−x

)
+

+O(ε)
]
.

E Implementation of the subtraction scheme in MadNkLO

In this appendix, we provide some more details on the implementation of local analytic
sector subtraction at NLO within MadNkLO. On top of the general operations that
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MadNkLO automatically handles, the user must provide and code the building blocks
defining the subtraction algorithm to be used. In our case, the scheme-specific ingredients
to be introduced are the sector partition, the kinematic mappings, the local counterterms,
and their integrations over the radiative phase space.

Sector partition. First, we introduce the SectorGenerator class, which implements
the functions responsible for building the correct list of sectors to be considered for a given
process. This procedure consists of two steps, namely the generation of all sectors, which
basically follows what was done in MadFKS [44], and the identification of the countert-
erms, or rather singular currents, belonging to each of them. The assignment of currents
to sectors, depending on the current type, is exemplified in the following code snippet.

...
for s in all_sectors :
...
if counterterms is not None:
s[’counterterms ’] = []
for i_ct , ct in enumerate ( counterterms ):
current = ct.nodes[0]. current
singular_structure = current .get(’singular_structure ’). substructures [0]
all_legs = singular_structure . get_all_legs ()
if singular_structure .name ()==’S’:
...
s[’counterterms ’]. append (i_ct) # soft CT
if singular_structure .name ()==’C’:
if not singular_structure . substructures :
...
s[’counterterms ’]. append (i_ct) # pure - collinear CT
else:
...
s[’counterterms ’]. append (i_ct) # soft - collinear CT

Being aware of the problem of spurious singularities that plague collinear kernels, two pos-
sibilities for introducing a unitary phase-space partition have been proposed in section 2.4.
Of these, we choose to code the sector symmetrisation, which consists in performing the
sum of the mirror sectors Wij +Wji. To this aim, we incorporate the different weight func-
tions for the standard/soft/collinear/soft-collinear sector functions by using the definitions
in eqs. (2.19)–(2.22), where in particular, for the standard case, one has

def get_sector_wgt (q, p_sector ): # sigma_ij without the normalisation
"""
- q is the total momentum of the incoming particles
- p_sector : list of the momenta of the particles defining the sector
"""
s = q. square ()
s_ij = 2 * p_sector [0].dot( p_sector [1])
s_qi = 2 * p_sector [0].dot(q)
s_qj = 2 * p_sector [1].dot(q)
e_i = s_qi / s
w_ij = s * s_ij / s_qi / s_qj

return 1 / e_i / w_ij
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Then, we implement the Sector class, whose purpose is to return the full weight of the
sector function by calling the correct numerator function based on the sector types listed
above, and associating the correct normalisation (i.e. dividing by the sum of all the relevant
sector functions), given a kinematic configuration and the flavours of the external states.

Kinematic mappings. All of the kinematic mappings introduced in this work and listed
in appendix B are encoded in a single class, dubbed TRNMapping, which provides the
map_to_lower_multiplicity attribute: given an (n+ 1)-body kinematics and a specific
counterterm, this function exploits the information about the structure of the singular cur-
rent and the position of the particles defining the singularity, and applies the suitable trans-
formation of momenta, eventually returning a valid on-shell and momentum-conserving
Born-level kinematics.

Local counterterms. The implementation of the counterterms at the local level relies
on the definition of singular currents, whose structure depends on the specific type of di-
vergence being treated. Let us consider first the collinear and soft-collinear contributions
in eqs. (2.59), (2.59): labelling with ab the flavours of a pair of massless QCD particles,
we recognise the sets (gg, gq, qq̄) and (gg, gq, qg, qq̄),5 to be the possible singular struc-
tures defining a final or initial collinear splitting event, respectively. As an exemplary
case, we focus on the final-state splitting with gq-flavour resulting particles, namely the
θi∈F θj∈F(δfigδfj{q,q̄} + δfjgδfi{q,q̄}) contribution in eqs. (2.59), (2.59). In MadNkLO, sin-
gular currents need to specify the so-called singular structure, i.e. the particle types, and
the kinematic limit, for which a specific current needs to be employed. In the case at hand,
we have two final-state legs, a (anti-)quark and a gluon, becoming collinear. Thus we define
the QCD_TRN_C_FgFq class with this specific singular structure:

class QCD_TRN_C_FgFq ( general_current . GeneralCurrent ):
...
coll_structure_q = sub. CollStructure (
substructures =tuple([]),
legs=(
sub. SubtractionLeg (10 , 21 , sub. SubtractionLeg .FINAL),
sub. SubtractionLeg (11 , +1, sub. SubtractionLeg .FINAL),
)
)
coll_structure_qx = ...
...

This structure is then introduced in the currents definition, so as it can be found and
picked by the code when needed.

...
currents = [

sub. Current ({
’resolve_mother_spin_and_color ’ : True ,
’n_loops ’ : 0,

5Following the notation used in Altarelli-Parisi kernels in eq. (2.35), the first index identifies the parton
entering the Born-level amplitude after the collinear emission.
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’squared_orders ’ : {’QCD ’: 2},
’singular_structure ’ : sub. SingularStructure ( substructures =(

coll_structure_q ,)),
}),
...

]
...

Next, we add the mapping_rules block: here the counterterm is linked to the functions
that, respectively, apply the suitable momentum mapping (the ’mapping’ key), provide the
kinematic variables involved in the singular kernel (’variables’) and return the identity
of the recoiler particle (’reduced_recoiler’), which is selected according to the rules
made explicit by the θr∈? prescriptions in eqs. (4.1), (4.5), (4.10).

...
mapping_rules = [

{
’singular_structure ’ : ... ,
’mapping ’ : torino_config . final_coll_mapping ,
’variables ’ : general_current . CompoundVariables (
kernel_variables . TRN_FFn_variables
),
’is_cut ’ : torino_config . generalised_cuts ,
’reduced_recoilers ’ : torino_config . get_recoiler ,
... ,

},
]
...

Then, the kernel function is specified: given a phase-space point and the (soft-)collinear
prefactor weighted by the corresponding sector function and modulated by damping factors,
it evaluates the singular kernel and finally stores the results, including the possible spin
correlation, in the evaluation vector.

def kernel (self , evaluation , all_steps_info , global_variables ):
""" Evaluate this counterterm given the variables provided . """
...
prefactor = 1./s_rs
prefactor *= compensate_sector_wgt ( ... , ’C’ )
CS_prefactor = 1./s_rs
CS_prefactor *= compensate_sector_wgt ( ... , ’SC’ )

# Modulate prefactor with damping factors
recoiler = all_steps_info [0][’mapping_vars ’][’ids ’][’c’]
if recoiler > 2: # final -state
prefactor *= (1. - y) ** beta_FF
CS_prefactor *= (1. - y) ** beta_FF * (1. - z) ** alpha
else: # initial -state
prefactor *= x ** beta_FI
CS_prefactor *= x ** beta_FI * (1. - z) ** alpha

# collinear CT
spin_correlation , weight = AltarelliParisiKernels .P_qg(self , z, kT)
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# soft_collinear CT
soft_col = EpsilonExpansion ({0: self.CF * 2. * (1.- z)/z , 1: 0.})

...
return evaluation

The compensate_sector_wgt function replaces the resolved sector function, applied by
the code, to the corresponding collinear or soft-collinear one.

Let us focus now on the remaining soft contribution. Formally the implementation of
this singular structure follows the steps of the previous collinear example, for which we
included the definition of the current, here reading

class QCD_TRN_S_g ( dipole_current . DipoleCurrent ):
...
soft_structure = sub. SoftStructure (
substructures =tuple([]),
legs=(
sub. SubtractionLeg (11 , 21 , sub. SubtractionLeg .FINAL),
)
)
...

In this case, the singular structure consists in just one final-state gluon being soft. In
addition, it inherits from the DipoleCurrent class, which handles the different remapped
kinematics associated to the (ikl) momentum sets needed by the structure of the soft
kernel, see eq. (2.58). Thus, given a (n+ 1)-body phase-space point and a single identified
soft particle i, the kernel function defines the prefactor weighted by the corresponding
sector function, for each (ikl) dipole it evaluates the eikonal kernels with damping factors,
and finally stores the results and the colour correlation due to the involved particles in the
evaluation vector.

Integrated counterterms. The implementation of the integrated counterterms closely
follows that of the local counterpart, for both soft and collinear contributions. Again, a
singular structure has to be specified, but this time mapping rules are not needed, as all
counterterms share a common Born-level kinematics, as well as sector functions, which are
summed away before performing the actual integration. Consider again as a case study
the collinear counterterm for the gq final-state splitting, namely the θi∈F θj∈F(δfigδfj{q,q̄}+
δfjgδfi{q,q̄}) part of eq. (3.6) (in the integrated currents we code the collinear and soft-
collinear contributions separately, at variance with the local case). Here, in the case of
initial-state recoiler, the current definition requires the further specification of the endpoint
and bulk + counterterm receptacles, which collect the x-independent and the x-dependent
contributions, along with the emerging plus-distributions, respectively. In the kernel
function we report the results of the counterterm analytic integrations over the radiative
phase spaces, which are different depending on the position of the chosen recoiler, as briefly
sketched below.
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class QCD_integrated_TRN_C_FqFg ( general_current . GeneralCurrent ):
...
def kernel (self , evaluation , all_steps_info , global_variables ):
...
recoiler = global_variables [’recoiler ’]
color_factor = self.CF
overall = 1./2.

if recoiler > 2: # final -state recoiler
kernel = {

’bulk ’: 0. ,
’counterterm ’: 0. ,
’endpoint ’: color_factor * overall * ( EpsilonExpansion ({

-2: 0.,
-1: - 1.,
0: - (2. + A2( beta_FF ))

}))
}
...
elif recoiler <= 2: # initial -state recoiler
kernel = {

’bulk ’: color_factor * overall * ( EpsilonExpansion ({
-2: 0. ,
-1: 0. ,
0: x ** (1. + beta_FI ) / (1. - x)

})) ,
’counterterm ’: color_factor * overall * ( EpsilonExpansion ({

-2: 0. ,
-1: 0. ,
0: x ** (1. + beta_FI ) / (1. - x)

})) ,
’endpoint ’: color_factor * overall * ( EpsilonExpansion ({

-2: 0. ,
-1: - 1. ,
0: - (2. + A2( beta_FI ))

}))
}
...

Next, we translate the evaluation of the coefficients of ε poles and finite parts to the
parameter convention used in MadNkLO through the torino_to_madnk_epsexp function
and finally store the resulting computation.
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