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A B S T R A C T   

Low-Field Nuclear Magnetic Resonance (LF-NMR) can be a valid tool in food fingerprint analyses to detect 
commercial frauds. Thus, the work aims at exploring the potential of LF-NMR, coupled with chemometrics, in 
discriminating authentic white wine vinegars from products adulterated with alcohol vinegars (i.e., 5–25% v/v 
adulteration levels). The monodimensional spectra and transverse relaxation times (T2) of 88 samples, including 
32 authentic vinegars and 56 adulterated samples, were collected. Three different spectral regions were inves
tigated (i.e., 3.75–0.90, 3.75–2.00, and 1.50–0.90 ppm) and, for each, fifteen variables were selected from the 
pretreated monodimensional spectra. Linear Discriminant Analysis (LDA) on monodimensional spectra in the 
range 3.75–0.90 ppm gave 100% correct classification of authentic and adulterated vinegars in prediction, 
whereas LDA models developed with acetic acid or water T2 failed. 

In conclusion, LF-NMR spectra can be effectively used to detect, in a rapid and non-destructive way, white 
wine vinegar adulteration with alcohol vinegar.   

1. Introduction 

Within the food industry, vinegar is a product particularly prone to 
fraudulent manipulation. Several types of vinegars are produced 
worldwide with distinctive characteristics based on raw materials and 
production methods. A substantial share of the worldwide vinegar 
market is covered by Balsamic vinegar, red wine vinegar, and white 
wine vinegar (Bekatorou, 2019). In the Mediterranean Countries and 
Central Europe, which are major wine manufacturing regions, wine 
vinegar is the most commonly used vinegar. 

Economic frauds are particularly common in the field, from the 
substitution of aged balsamic vinegars with its cheaper alternatives to 
the dilution of vinegar with diluted synthetic acid (Grégrová, Čížková, 
Mazáč, & Voldřich, 2012). The addition of low-value products, for 
example spirit vinegar, to products of higher economic value, such as 
wine vinegar, turns out to be one of the most frequently common frauds 
(Callejón et al., 2018). Indeed, spirit vinegars are characterized by 
similar macronutrient composition, but they are made by fermentation 
of alcohol derived from starchy or saccharides-containing raw materials 
(e.g., molasses, potatoes or grain alcohol) (Grégrová et al., 2012), even 
though information about raw materials are not mandatory in the labels. 
Frauds are particularly relevant to the canning industry where the vol
umes of vinegar used are large and this fraudulent practice can have a 

substantial economic impact, causing damages to both buyers and 
honest manufacturers. With respect to this issue, the food industry re
quires solid and reliable methods to authenticate vinegar, which are also 
quick and inexpensive. Often the diffusion of a new methodology is 
hampered by the complex sample preparation and the associated costs. 
Therefore, methods that do not require any (or minimal) sample treat
ment are highly desired. However, the increasing number of adulterants 
used in frauds makes the process of authentication extremely complex. 

In this context, Nuclear Magnetic Resonance (NMR) spectroscopy 
turns out to be one of the most interesting analytical tools: in addition to 
the possibility of making quantitative determinations, it is possible to 
simultaneously detect several chemical compounds within the analyzed 
matrix through non-destructive, rapid analyses that often do not require 
any sample preparations (Consonni & Cagliani, 2019; Pacholczyk-Sie
nicka, Ciepielowski, & Albrecht, 2021). Depending on the needs of the 
investigation being conducted, NMR analyses can be carried out by 
targeted and non-targeted approaches. In general, both the approaches 
proceed according to metabolomics. The targeted approach is useful 
when the determination of specific markers, known beforehand, is 
needed. However, it is not always possible to define a priori markers of 
food adulteration. Thus, it is often useful to resort to non-targeted 
methods: the focus here falls on pattern recognition, which can distin
guish samples according to their class of membership, based on the 
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simultaneous analysis of several compounds or the metabolic profile of 
the analyzed matrix (Medina, Pereira, Silva, Perestrelo, & Câmara, 
2019; Mialon, Roig, Capodanno, & Cadiere, 2023). In the field of food 
authentication, given the potential of NMR analysis to generate a large 
amount of data in a relatively short period of time, the use of the 
untargeted approach in combination with chemometric techniques has 
great advantages, and consequently there are numerous studies in this 
regard on various food matrices, such as meat (Jakes et al., 2015; Leng 
et al., 2023), honey, beer, spices (Kuballa, Brunner, Thongpanchang, 
Walch, & Lachenmeier, 2018), fruit juice (Cuny et al., 2008), wine 
(Amargianitaki & Spyros, 2017), and vinegar (Consonni et al., 2008; 
Hsieh, Li, Cheng, & Ma, 2013; Mascareli et al., 2023). Most studies, 
however, focus on the use of NMR techniques by high-field (HF-)in
struments, while the low-field (LF-)NMR instruments, i.e. time-domain 
NMR (TD-NMR), have several advantages. The functioning of HF- 
instruments relies on superconducting magnets that must necessarily 
be cooled with cryogenic liquids, significantly affecting the operational 
costs of analysis. LF-instruments, on the other hand, use permanent 
magnets that, in addition to having lower operating costs, allow these 
instruments to be significantly smaller than HF-instruments and there
fore usable as bench equipment in virtually any laboratory. LF- 
instruments are also definitely cheaper with respect to HF-equipment, 
being their cost about eight times lower (Pagès et al., 2014). However, 
the lower field strength of LF-instruments results in lower sensitivity and 
resolution. Thus, these instruments are best suited for analyses where it 
is not essential to elucidate the fine structural and chemical details of the 
compounds under investigation: low-resolution analyses often do not 
offer chemical shift information, and the 1H signal obtained includes a 
single absorption that encodes information from all protons in the 
sample (Baroni, Consonni, Ferrante, & Aime, 2009). However, these 
disadvantages can be overcome by appropriate coupling of chemo
metrics techniques (Galvan et al., 2021). 

Therefore, this work aims to verify the hypothesis that a LF-NMR 
instrument, with the support of chemometrics, can be used in rapid 
untargeted analyses, without any sample preparation, to test for adul
teration, at different percentages (5–25% v/v adulteration levels), of 
white wine vinegars with alcohol vinegars. Given the absence of internal 
references in the NMR spectra, the iCOSHIFT algorithm (Savorani, 
Tomasi, & Engelsen, 2010) was used for pretreatment, coupled with the 
Savitzky-Golay algorithm (Savitzky & Golay, 1964) for noise reduction. 
In addition, with the aim of creating more robust and concise models, 
ultimately reducing the computational requirements needed, the 
SELECT algorithm of the V-PARVUS package (Forina et al., 1988) was 
used for the selection of the most informative variables. 

2. Materials and methods 

2.1. Authentic and adulterated vinegars 

The sample set was created using 32 commercial white wine vinegars 
(i.e., authentic samples), covering different brands, producers, lots, and 
origins to represent the product variability in the Italian market, and 2 
commercial spirit vinegars (i.e., adulterants). 

Details about the vinegars are reported in Table A1. The majority 
(28%) were produced by the same producer, followed by other seven 
different companies; the considered samples covered 16 different Italian 
brands, commercial brands have not been made explicit for the sake of 
confidentiality. Five main areas of production are indicated in the labels: 
Modena and Novara (28%), Naples (24% of samples), Mantua (16%), 
and Arezzo (4%). The two commercial spirit vinegar were from Naples 
and Arezzo, respectively. Four authentic samples were bought in three 
different production lots and selected for preparation of adulterated 
samples. In particular, the three bottles belonging to different lots were 
used to prepare samples adulterated with 25% v/v of each spirit vinegar 
(for a total of 24 samples adulterated at the highest level), while only 
one bottle of each selected white wine vinegar was used to prepare 

samples adulterated with the two spirit vinegars at different levels (i.e., 
5, 10, 15, and 20% v/v; for a total of 32 differently adulterated samples). 
Thus, a total of 88 samples was analyzed in duplicate, including 32 
authentic samples and 56 adulterated samples (Fig. 1). 

2.2. NMR measurements 

The reference spectra of one authentic white wine vinegar were ac
quired by a HF-NMR instrument (AV600 spectrometer, Bruker Corpo
ration, Billerica, MA, USA) operating at a frequency of 600.10 MHz for 
1H, equipped with a z-gradient 5 mm reverse probe. 1H NMR spectra 
were recorded at 25 ◦C. Chemical shifts (δ) were measured in ppm and 
referenced to external 2,2-dimethyl-2-silapentane-5-sulfonate sodium 
salt set at 0.00 ppm, 0.14% in analyzed samples. The samples were 
added by 5% of D2O. Solvent suppression was achieved by presaturation 
with the carrier placed on the water resonance (4.70 ppm). NMR spectra 
were elaborated by using the TOPSPIN 1.3 software (Bruker BioSpin 
GmbH, Rheinstetten, Germany). 

The whole set of samples (88 samples) was analyzed in duplicate by a 
LF-NMR (Spinsolve 60 NMR spectrometer, Magritek Ltd. Aachen, Ger
many) operating at a resonance frequency of 60.0 MHz. Samples were 
used directly without any solvent/standard addition. Monodimensional 
spectra and transverse relaxation times (spin-spin, T2) were recorded. 
For the spectra acquisition, 32 scans (FIDs) were collected into 8 k data 
points using 90 pulse angle, acquisition time of 3.7 s, and 10 s repetition 
time. Phase correction was performed manually for each spectrum, and 
the baseline correction was applied over the entire spectral range. The 
monodimensional spectra were processed using MestReNova (v. 
12.0.2–20,910, Mestrelab Research S.L, Santiago de Compostela, Spain). 
The water and acetic acid T2 were acquired applying the Carr-Purcell- 
Meiboom-Gill sequence (CPMG) (Carr & Purcell, 1954; Meiboom & 
Gill, 1958). The experimental parameters were as follows: acquisition 
time 3.2 s, repetition time 15 s, number of steps 20, echo-time 10,000 μs. 
The exponential decay curve of each relaxation time measurement was 
the result of the accumulation of 4 scans. An exponential decay curve of 
the raw data was transformed to a continuous relaxation time distri
bution curve by inverse Laplace transformation. 

2.3. Data analysis 

The LF-NMR data collected in duplicate for each sample were aver
aged and three datasets were created with monodimensional spectra, 
water T2, and acetic acid T2, respectively. 

Prior to data analysis, the spectral dataset was reduced in the region 
0.90–3.75 ppm (named region A) according to previous findings (Cal
igiani, Acquotti, Palla, & Bocchi, 2007; Boffo, Tavares, Ferreira, & 
Ferreira, 2009). The region A was further divided in two subregions: 
region B (2.00–3.75 ppm) and C (0.90–1.50 ppm). To correct the 
inhomogeneous chemical shifts, all spectra were aligned by means of the 
iCOSHIFT algorithm (Savorani et al., 2010), whereas the Savitzky-Golay 
algorithm (Savitzky & Golay, 1964) was used for noise reduction (15 
points window, 2nd polynomial order). 

Principal Component Analysis (PCA) was performed on mono
dimensional spectra and T2 datasets, enabling the evaluation of variable 
load and possible sample patterns according to the degree of 
adulteration. 

Subsequently, the datasets were prepared for Linear Discriminant 
Analysis (LDA) by data split and variable selection. Each dataset was 
divided in a calibration set (about 70% of the whole collected data) for 
calibration and cross-validation (with 5 cancellation groups) and an 
external test set containing only untrained samples (30% of the whole 
collected data). Data were systematically split into calibration and 
validation set guaranteeing the same variability of the initial data pool 
in terms of vinegar producers, origins, adulteration levels, and adul
terant. In detail, referring to sample codes reported in Table 1S, the 
procedure guaranteed the presence in the test set of 9 authentic samples 
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(AC1 x 3 lots, AC6:AC11) and 18 adulterated samples as follows: 9 at 
25% adulteration level (3 lot for AC1 with AE1, AC2 with AE2, AC3 with 
AE1), 2 at 5% (AC2AE1, AC2AE2), 2 at 10% (AC1AE1, AC1AE2), 2 at 
15% (AC5AE1, AC5AE2), and 2 at 20% (AC1AE1, AC1AE2). 

The LDA modelling was implemented as proper solution for the 
specific authentication issue since the two considered classes (i.e. 
authentic and adulterated vinegars) are meaningfully defined and suit
ably sampled (Oliveri, 2017). As LDA utilizes discriminant canonicals to 
calculate the centre of matrix covariance, it needs a number of samples 
exceeding the number of variables. Thus, fifteen variables were selected 
from the monodimensional spectra dataset by the SELECT algorithm, 
implemented in V-PARVUS package (Forina et al., 1988). The algorithm 
selects the variable with the largest Fisher weight, then decorrelates the 
other predictors; the procedure is repeated iteratively until a fixed 
number of variables is selected (i.e. 15 variables in this study). The 
dataset of T2 and the fifteen variables selected from monodimensional 
spectra were used for LDA, using the V-PARVUS package, to discrimi
nate between authentic and adulterated samples' classes. Model per
formances were evaluated in terms of correct classification ability in 
calibration, cross-validation, and prediction. 

3. Results and discussion 

3.1. Data inspection 

A representative 1H NMR profile of wine vinegar is reported in Fig. 2; 
as expected, the signals associated with the major components (i.e., 
organic acids, ethanol, sugars, and amino acids) are clearly visible. In 
particular, it is possible to identify acetic acid (singlet signal at 1.91 
ppm), ethanol (triplet signal at 1.16 ppm and quadruplet signal at 4.65 
ppm), malic acid (double doublet signal at 2.85 and 2.76 ppm), succinic 
acid (singlet at 2.45 ppm), and citric acid (two doublet signals at 2.98 
and 2.89 ppm), which are the main chemical markers in wine vinegar. 
Anomeric forms α and β of glucose show signals in the spectral region 
between 3.0 and 5.5 ppm and are observed in very small intensity. The 
signals of amino acids are also very small. The assignment of the NMR 
peaks agrees with previous NMR studies (Caligiani et al., 2007). 

In Fig. 3 examples of the LF-NMR monodimensional spectra are re
ported, divided according to the three regions used in statistical analysis: 
the aliphatic/alcoholic region A from 3.75 to 0.95 ppm (Fig. 3A); the 
region B from 3.75 to 2.00 ppm (Fig. 3B); the spectral region C from 1.50 
to 0.90 ppm (Fig. 3C). In particular, Fig. 3 shows the LF-NMR spectra of 
one authentic white wine vinegar and its adulterations from 5 to 25%, 

Fig. 1. Schematic representation of the vinegar sample set.  

Fig. 2. 1H NMR spectra of authentic white wine vinegar recorded at 600 MHz, with water suppression.  
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revealing a link between the intensities of certain signals and the degree 
of adulteration. With the increase in adulteration level, an enlargement 
of the acetic acid band is observed, leading to the incorporation of the 
signal at 2.07 ppm, attributable to acetyl-sugar; moreover, all signals 
generally decrease in intensity. In the region between 3.75 and 3.00 ppm 
the overlapping signals of the sugar are observed. Well resolved signals 
are observed at 3.03–2.45 ppm, attributable to citric, malic and succinic 
acids, respectively. In the adulterated vinegar samples, the LF-NMR 
profile changes only for the intensity of the signals (Fig. 3B and C), 
with a dilution and broadening effect as the adulteration levels increase. 

Baroni et al. (2009) investigated the interaction of water molecules 
with vinegar components by measuring the NMR relaxation times, i.e. 
the spin-lattice (T1) and the spin-spin (T2) relaxation times of water 
protons; the measurement of T1 and T2 resulted useful for the charac
terization of aging process and fraud detection. Fig. 4A and C report the 
trends of T2 for acetic acid and water of one authentic white wine vin
egar and its adulterations. To better highlight the differences between 
authentic and adulterated samples, the T2 values are also shown after 
natural logarithmic transformation (Figs. 4B and 4D). It is possible to 
observe that an increase in the adulteration level with spirit vinegar 
leads to an increase in T2 values and changes in their slope, especially at 
the highest adulteration level (i.e., 25%). 

3.2. Data exploration 

The pre-processed dataset of the monodimensional spectra was 
explored by means of PCA, considering the three different spectral 
ranges A, B, and C. The PC1 vs PC2 score plot obtained by the PCA 
performed on the whole aliphatic/alcoholic region A (Fig. 5A) showed a 
clear separation of the samples adulterated at 25% v/v from the other 
samples. Indeed, samples adulterated at the highest level were charac
terized by positive PC1 values, whereas all the other samples had 
negative PC1 scores. The loading plot (Fig. 5B) confirmed what observed 
in the monodimensional spectra: The main responsible of the sample 
distribution is the disappearance of the signal attributed to acetyl-sugar 
(at 2.07 ppm), which is incorporated into the broad peak of acetic acid 
when the adulteration is at high levels. 

The exploratory data analysis on the T2 dataset for acetic acid, after 
natural logarithm transformation, revealed a good sample distribution 
according to the adulteration level. Indeed, almost all the authentic 
samples were characterized by negative PC1 scores (Fig. 5C) and almost 
all the samples adulterated at 25% v/v had positive PC1 values, whereas 
the samples adulterated at lower levels (from 5 to 20% v/v) are 
distributed in-between. The loading plot (Fig. 5D) confirmed that the 
sample pattern is due to the change in slope of the spin-spin relaxation 
time of acetic acid, as already observed in the data after logarithmic 

Fig. 3. Selected regions of the LF-NMR monodimensional spectra for one of the authentic white wine vinegars and its adulterations from 5 to 25%. A: aliphatic/ 
alcoholic region from 3.75 to 0.90 ppm; B: region from 3.75 and 2.00 ppm; C: region from 1.50 to 0.90 ppm. 
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transformation (Fig. 4D). No distribution trends according to adultera
tion level were observed for T2 of water (data not shown). 

From T2 vs Q residual plot obtained from PCA, few outliers were 
observed and consequently removed from the datasets used for the 
construction of the classification models; in details, one outlier was 
detected for the monodimensional spectra and three for T2. 

3.3. Classification models 

By using the monodimensional spectral data, the best performance in 
discriminating authentic and adulterated vinegars was obtained by the 
LDA model developed with the whole aliphatic/alcoholic region (region 
A, from 3.75 to 0.95 ppm). All the samples were correctly classified in 
the a priori assigned class in calibration, cross-validation, and prediction 
(Table 1). The 15 selected variables were the ones with higher weights in 
the PCA previously commented (i.e., around 2.00 ppm and 3.5 ppm), 
attributable to acetyl-sugar, sugar, and glycerol. In detail, the signals 
around 1.7 ppm have not been discussed in previous literature con
cerning vinegar. However, they have been previously assigned to 
citrulline (1.7 and 1.95 δ) in fruit juice analysis (Belton et al., 1996). 
Furthermore, the variables selected in the range 2.50 to 3.00 ppm could 

be related to the specific chemical markers of wine vinegar, i.e. malic 
acid (double doublet signal at 2.85 and 2.76 ppm), succinic acid (singlet 
at 2.45 ppm), and citric acid (two doublet signals at 2.98 and 2.89 ppm) 
(Caligiani et al., 2007). Finally, the variables selected from 3.40 ppm to 
3.70 ppm are probably related to sugar signals (Caligiani et al., 2007). 

The LDA models developed selecting the data of the sub-regions B 
and C gave a good prediction ability. Indeed, both models gave a 100% 
correct classification rate in prediction for the authentic samples. 
However, their cross-validation phases ware not equally performing, 
thus suggesting less robustness in the model performance for both B and 
C region. 

Not as good results were obtained by modelling T2 data. The models 
developed with acetic acid or water T2 failed in discriminating authentic 
from adulterated samples (Table 1). This could be the reason why T2 
spin–spin relaxation measurements data have been scarcely used for 
detection of fraudulent behavior in the vinegar sector (Baroni et al., 
2009). 

The LDA models developed using the monodimensional spectra re
gions overcome what have been presented in the scientific literature 
until now. Indeed, different classification strategies have been applied to 
model NMR data for fraudulent behavior detection, from agronomic 

Fig. 4. T2 spin-spin relaxation time for water (A and B) and for acetic acid (C and D) for one of the authentic white wine vinegars and its adulterations from 5 to 25%.  
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Fig. 5. Principal Component Analysis models developed with LF-NMR monodimensional spectra (A, score plot; B, loading plot) and acetic acid T2 (C, score plot; D, 
loading plot) datasets. 

Table 1 
Results of Linear Discriminant Analysis for discrimination of authentic and adulterated vinegars: correct classification percentages obtained with the 15 most 
informative variables selected for the aliphatic/alcoholic region from 3.75 to 0.90 ppm (region A), the region from 2.00 to 3.75 ppm (region B), and the region from 
1.50 to 0.90 ppm (region C), as well as for the acetic acid and water T2 spin–spin relaxation times. For the spectral data, also the selected variables are indicated. N, 
number of samples in each class.  

Dataset  Calibration Cross-validation Prediction  

Authentic Adulterated Authentic Adulterated Authentic Adulterated  

N¼ 23 34 23 34 9 18 

Range A 100.0 100.0 100.0 100.0 100.0 100.0 

Selected variables (ppm) 1.751, 1.754, 1.755, 2.503, 2.504, 2.544, 2.571, 2.974, 
2.992, 3.003, 3.461, 3.502, 3.636, 3.647, 3.664 

Range B 90.4 93.0 73.9 83.8 100.0 83.3 

Selected variables (ppm) 
3.364, 3.368, 3.373, 3.491, 3.664, 3.742, 3.744, 3.752, 

3.753, 3.663, 3.667, 3.728, 3.734, 3.735, 3.745 
Range C 95.8 97.2 79.2 86.1 100.0 94.7 

Selected variables (ppm) 
0.919, 0.921, 0.926, 1.082, 1.149, 1.163, 1.239, 1.288, 

1.302, 1.316, 1.320, 1.322, 1.362, 1.478, 1.499 
T2 water 78.3 85.3 56.5 73.5 66.7 55.6 
T2 acetic acid 82.6 82.4 60.9 64.7 44.4 77.8  
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production methods (organic/conventional) to origin protection. In 
particular, great attention was paid to the protection of high-quality 
wine vinegars, such as protected designations of origin (PDOs). For 
example, Ríos-Reina, Callejón, Savorani, Amigo, and Cocchi (2019) 
obtained a reliable PLS-DA model to discriminate Spanish PDOs 
(“Vinagre de Jerez”, “Vinagre de Condado de Huelva”, and “Vinagre de 
Montilla-Moriles”). The 65 samples analyzed were divided by the 
Duplex algorithm into a calibration (47 samples) and a test (27 samples) 
set to build and validate the model, respectively. The robustness and 
reliability of the model, constructed with a small number of samples, 
was assured by repeating 5 times the splitting process. The weighted 
correct classification rate was higher than 90%. Similarly, different 
research groups developed models to discriminate Traditional Balsamic 
Vinegar of Modena and Balsamic Vinegar of Modena according to aging, 
obtaining sensitivity and specificity higher than 85% in cross-validation 
(Truzzi, Marchetti, Piazza, & Bertelli, 2023) or 80% correct classifica
tion in external prediction (Consonni et al., 2008). Also in this case the 
sample number was limited. From an initial pool of 72 vinegars of 
known age, 53 samples were selected by a D-optimal onion design, thus 
guaranteeing a closely resemble structure of the initial pool in terms of 
distribution of young, old, and very old samples. 

More recently, Mascareli et al. (2023) developed PLS-DA on NMR 
data to classify vinegar according to raw materials and aging time. They 
obtained 100% accuracy in prediction when discriminating alcohol from 
fruit-based vinegars. However, those results were obtained by HF-NMR 
requiring sample preparation with D2O and authentic vinegars, thus not 
considering possible adulterations. Before PLS-DA, samples of each class 
were split using the Kennard-Stone algorithm in training set (67% of 
samples) and test set (33% of samples). 

Less research activity has been conducted to detect illegal adultera
tion practices (i.e., watering, sugaring, addition of synthetic acetic acid 
or table grapes) using NMR spectroscopy, especially in comparison with 
other techniques such as NIR (Ríos-Reina, Camiña, Callejón, & Azcarate, 
2021). Boffo et al. (2009) developed KNN, SIMCA, and PLS-DA models 
from 1H NMR spectra, obtaining a prediction ability of 100% when 
discriminating wine, apple, alcohol, and agrin authentic vinegars. Even 
though they reached a full prediction ability, they used a quite small 
number of samples (7 wine, 4 apple, 11 alcohol and agrin) to build the 
models and only 5 samples for the validation procedure, thus impairing 
the robustness of the proposed models. 

Comparing the results obtained in the present work with the research 
activities reported in the literature, it is possible to postulate that the 
stated hypothesis can be confirmed. In particular, a high correct classi
fication rate (up to 100% in prediction) was achieved with a reliable 
sampling design and rigorous data analysis for a feasibility study. The 
obtained results give to LF-NMR a relevant position in the field of vin
egar adulteration among the other spectroscopic approaches (Cavdar
oglu & Ozen, 2021) more prone to miniaturization (Grassi & Alamprese, 
2024). Indeed, the present work demonstrated the feasibility to 
discriminate white wine vinegars from adulterated one by LF-NMR 
without sample pretreatment thank to the development of LDA models 
based on fifteen variables selected among the signals recorded in the 
range 3.75 to 0.90 ppm. 

4. Conclusions 

In conclusion, the study demonstrated that LF-NMR monodimen
sional spectra can be successfully used in LDA models to discriminate 
white wine vinegars from products adulterated with alcohol vinegars. 
The proposed method has the advantage to use the sample without 
pretreatment, thus resulting in a rapid and non-destructive untargeted 
approach. Moreover, the use of a LF-NMR spectrometer instead of a HF- 
one makes the method more approachable by food industries, being the 
instruments cheaper and more user-friendly. 

The success of the proposed untargeted approach paves the way for 
the study of wider authentication models, based on a larger number of 

samples and including different possible adulterants. Wide and robust 
authentication models are indeed of great importance for food industries 
and control bodies, to fight commercial frauds in the sector of vinegar. 
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