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Abstract

Signal filtering is a challenging problem arising in many
applications such as Electrocardiogram (ECG) signal
processing. Among the techniques that are used for
signal denoising, quadratic variation (QV) regularization
and smoothness priors have received significant attention
during the past. In this paper, we propose a new
approach to smoothing filter design, which is based on a
delay differential equation (DDE). The proposed method
is generic and can be used for smoothing filter design with
different frequency responses. As an example, a specific
DDE is used in the regularization term of the optimization
algorithm. It depends on the regularization parameter
and the delay, where the former is related to the cutoff
frequency and the latter is set by user. The DDE smoothing
filter was analyzed in the frequency domain. It was shown
that smoothness priors and QV regularization are special
cases of the DDE smoothing filter when the delay tends
to infinity. As an application, the proposed smoothing
filter was used for ECG signal denoising over data from
the PhysioNet PTB database. The results confirm that the
proposed smoothing filter outperforms QV regularization
for ECG baseline wander removal.

1. Introduction

The electrocardiogram (ECG) is a bioelectric signal,
which records the electrical activity of the heart by means
of electrodes attached to the skin. The analysis of ECG
proves to be very helpful in explaining the functioning of
the heart and identifying various pathological conditions.
Hence, it is an important and widely used diagnostic
tool. Unfortunately, during ECG recordings, other
signals (anything other than the muscular activity of
the heart) might pollute the ECG (noise or artifact).
Noises are usually originating from external sources
such as power line interference, respiration, varying
electrode-skin conductance, electronic noise due to nearby
instrumentation, and muscle interference [1]. Low
frequency interferences (baseline wander or BW) is one
of the main artifacts affecting the ECG signal. BW is

a low-frequency additive noise and its frequency range
is typically less than 0.5 Hz. Unfortunately, BW masks
important features of the ECG signal. Hence, the problem
of removing ECG baseline wandering for a proper analysis
and display is of great importance in biomedical signal
processing. That is why the problem of BW removal is
the subject of many researches. Among other methods,
quadratic variation (QV) regularization or smoothness
prioirs have received significant attention. In this paper,
we proposed a modification of QV regularization which is
based on a delay differential equation (DDE).

2. Method

2.1. Background

The smoothing approach defined by QV regularization
or smoothness prioirs [2], is to estimate an unknown signal
x(t) from its noisy observation y(t) = x(t) + v(t) using
the following least-square estimation (LSE) problem:

argmin
x(t)

∫
[y(τ)− x(τ)]

2
dτ + λ

∫
[Dpx(τ)]

2
dτ (1)

where Dpx = dp

dtpx denotes the p-th order derivative of
the signal and λ denotes the regularization factor which is
used to balance the fidelity term (minimum mean square
error) and signal smoothness. In this article, instead of the
derivative of the signal, we propose to use a DDE model
for the signal as the penalty term in the smoothing problem
defined in (1). In the following section the proposed DDE
smoothing filter is presented.

2.2. Smoothing filter design using a DDE
model

Let us consider the following DDE model

d

dt
x(t) + α0x(t) +

m∑
i=1

αix(t− Ti) = 0, (2)

where Ti are time delays and αi a set of coefficients. By
adopting (2) as constraint for x(·) in the regularization
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term of (1), in place of Dpx(τ), the desired signal x̂(t)
can be estimated by solving

x̂(t) = argmin
x(t)

∫
[y(τ)− x(τ)]

2
dτ+λ

∫
[f(τ) ∗ x(τ)]2 dτ,

(3)
where ∗ denotes the convolution and

f(t) =
d

dt
δ(t) + α0δ(t) +

m∑
i=1

αiδ(t− Ti),

with δ(t) the Dirac delta function. The optimal solution
is [3]

x̂(t) = [δ(t) + λf(−t) ∗ f(t)]
⊗

∗ y(t), (4)

where [·]
⊗

denotes the deconvolution operator. The
impulse response of the DDE smoothing filter is

g(t) = [δ(t) + λf(−t) ∗ f(t)]
⊗

. (5)

In the following section, the method is analyzed in the
frequency domain.

2.3. Frequency domain analysis

Taking the Laplace transform of Eq. (5), the transfer
function of the proposed DDE smoothing filter is

G(s) =
1

1 + λF (s)F (−s)
,

where

F (s) = s+ α0 +

m∑
i=1

αie
−sTi .

In the Fourier domain

G(ω) =
1

1 + λF (ω)F (−ω)

where

F (ω) = jω + α0 +

m∑
i=1

αie
−jωTi .

Note that G(ω) is a zero-phase (acausal) frequency
response.

3. Applications

In this section, a maximally flat and minimum stop-band
attenuation smoothing filter is designed.

3.1. Maximally flat and minimum stop-
band attenuation smoothing filter

Let us consider the following DDE model, depending on
the delay T

d

dt
x(t) =

1

T

[
x

(
t+

T

2

)
− x

(
t− T

2

)]
. (6)

By adopting (6) as constrain for x(t), a new penalty for the
solution can be found as∫ b

a

(
d

dt
x(τ)− 1

T

[
x

(
τ +

T

2

)
− x

(
τ − T

2

)])2

dτ,

while in eq. (4) we have

f(t) =
d

dt
δ(t)− 1

T

[
δ

(
t+

T

2

)
− δ

(
t− T

2

)]
,

and in the transfer function F (s) = s− (es
T
2 − e−sT

2 )/T .
Finally, in Fourier domain

G1,T (ω) =
1

1 + λ
[
ω − 2

T sin
(
ω T

2

)]2 . (7)

As mentioned before, G1,T (ω) is a zero-phase frequency
response. Suppose that a smoothing filter with a −6
dB cutoff frequency ωc = 2πfc is desired. Then the
regularization factor, denoted by λc, is univocally defined
and can be numerically calculated by solving the following
equation:

1

1 + λc

(
ωc − 2

T sinωc
T
2

)2 =
1

2
,

leading to the following optimal value:

λc =
1(

ωc − 2
T sinωc

T
2

)2 .
Finally, the frequency response of the smoothing filter is
found by substituting λc in (7):

G1,T (ω) =
1

1 +

(
ω − 2

T sinω T
2

ωc − 2
T sinωc

T
2

)2

which depends on the desired cutoff frequency and delay
T . It is notable that, when T → ∞, G(ω) is equal to

G1,T (ω) =
1

1 +

(
ω

ωc

)2 ,

which is exactly the frequency response of the first order
smoothness priors or QV regularization [4]. The frequency
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(b)ωc = 0.4.
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(d)ωc = 0.8.

Figure 1. Amplitude response of the proposed smoothing filter, G1,T (ω), for different values of T .

response of the smoothing filter for different values of ωc

is shown in Fig. 1. While the smoothness priors is a
special case of the proposed smoothing filter when T tends
to infinity, for small values of T , the latter acts better in the
pass-band (closer to 1) and stop-band (larger attenuation).
Also, the roll-off is faster. These properties can be
improved further using p-order differential equations, as
in the following DDE model

dp

dtp
x(t) =

1

T

dp−1

dtp−1

[
x

(
t+

T

2

)
− x

(
t− T

2

)]
. (8)

If we use it as the penalty term in the optimization problem,
then the solution (the estimated signal) is

x̂(t) = [δ(t) + λfp(−t) ∗ fp(t)]
⊗

∗ y(t),

where

fp(t) = Dpδ(t)− 1

T

[
Dp−1δ

(
t+

T

2

)
−Dp−1δ

(
t− T

2

)]
The transfer function of the smoothing filter is:

Gp,T (s) =
1

1 + λFp(s)Fp(−s)
,

where Fp(s) = sp−1
[
s− (es

T
2 − e−sT

2 )/T
]
. In the

Fourier domain, the frequency response becomes

Gp,T (ω) =
1

1 + λ

(
ωp−1

[
ω − 2

T
sinω

T

2

])2 .

The value of λ corresponding to the cutoff frequency ωc is

λc =
1(

ωp−1
c

[
ωc −

2

T
sinωc

T

2

])2 .

leading to

Gp,T (ω) =
1

1 +

[(
ω

ωc

)p−1 ω − 2
T sinω T

2

ωc − 2
T sinωc

T
2

]2 .

As an illustration, the amplitude response of the smoothing
filter for ωc = 0.4 with p ∈ (1, 2, 5, 10) and different
values of T is shown in Fig. 2. In the pass-band, the
amplitude response tends to one and in the stop-band it
tends to zero as p increases. In other words, the amplitude
response tends to the ideal values for large values of p.
When T → ∞, the transfer function is equal to

Gp,T (ω) =
1

1 + (ω/ωc)2p
.

which is exactly the same as the p-th order smoothness
priors [4].

3.2. ECG Baseline Wandering Removal

In order to evaluate the performance of the proposed
approach, we tested its discrete version for BW removal
from ECG signals. The derivations in discrete time can be
found in [5]. We employed BW-free ECG records, which
were corrupted by a priori known low-frequency noise. In
this way, the result of filtering can be compared with the
original signal, and the quality of BW removal measured,
in terms of the corresponding estimation error, using the
NSR defined by:

NSR =

√∑
k(xk − x̂k)2∑

k x
2
k

, (9)

where xk and x̂k are the original and estimated signal,
respectively. Real ECG signal were obtained from the
PhysioNet PTB Diagnostic ECG Database [6], which
contains 549 records from 290 subjects. Each record
consists of twelve conventional ECG leads plus the three
Frank’s ones, sampled at 1kHz with 16-bit resolution. The
baseline noises were generated by (10) and then added to
each ECG.

v(t) =

10∑
i=0

ci cos(2πfit), (10)

Page 3



0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

(a)T = 0.2π.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

(b)T = π.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

(c)T = 2π.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

(d)T = 3π.

Figure 2. Amplitude response of the proposed smoothing filter, Gp,T (ω), for ωc = 0.4 and different values of p.
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Figure 3. Mean values of NSR for ECG BW removal by
QV regularization and the proposed filter, as a function of
the power of the baseline noise corrupting the ECG signal.

where fi and ci were randomly selected such that 0 <
fi ≤ 0.5 and 1 ≤ ci ≤ 10. The baseline noise was added
with varying SNR (from −10 to 40 dB). We compared our
results with those obtained in [2], using QV regularization.
The mean of NSR versus different input SNRs, as achieved
by our approach and QV regularization are plotted in Fig.
3. The former outperformed the latter.

4. Conclusion

In this paper, a new approach to smoothing filter
design was proposed. In the presented approach, a delay
differential equation (DDE) was employed as a constraint
in a regularized least square optimization framework to
estimate the desired signal from its noisy observation. The
QV regularization and smoothness priors are special cases
of the proposed smoothing filter when the window length
tends to infinity. The pass-band flatness, the steepness of
the roll-off and the stop-band attenuation of the proposed
DDE smoothing filter is controlled by the order of the
differential equation (p) and the window length (T ). As

p increases the amplitude response goes to one in the pass-
band and the steepness of the roll-off increases.
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