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2Dipartimento di Scienze, Università degli Studi Roma Tre,
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Control and characterization of networks is a paramount step for the development of many quan-
tum technologies. Even for moderate-sized networks, this amounts to explore an extremely vast
parameters space in search for the couplings defining the network topology. Here we explore the
use of a genetic algorithm to retrieve the topology of a network from the measured probability
distribution obtained from the evolution of a continuous-time quantum walk on the network. Our
result shows that the algorithm is capable of efficiently retrieving the required information even in
the presence of noise.

Networks are a fundamental model to understand the
underlying properties of complex systems. They are
invaluable tools to describe phenomena happening at
different scales ranging from social interactions [1, 2],
to biological processes [3–7], from the configurations of
molecules [8, 9], to the structure of internet [10–13] and
physical systems alike [14–18]. In the context of quan-
tum technologies, networks constitute the prime struc-
ture of communication and computation protocols [19–
23]. Understanding how quantum information can be
reliably transmitted between distant nodes of a network,
or routed among different computational units, is a key
step and requires a full characterization of the network’s
structure. While a direct control may not be attainable
with the required accuracy and precision, a straightfor-
ward strategy to provide such characterization is that
of probing the network with a walker that gathers in-
formation on its topology by undergoing an evolution
which depends on the network’s structure. This is the
case of continuous-time quantum walks (CTQWs) [24–
33], which thus emerge as a natural paradigm for tackling
this task.

Two different scenarios may present: the topology of
the network may be known, but an accurate estima-
tion of the coupling strengths between each node may
be required. This is tantamount to estimating multiple
parameters, and can be address in quantum metrologi-
cal terms [34–37]. It might otherwise be the case that
the topology of the network is not known in advance.
Whether one is interested in characterizing a physical
network or a simulated one, this will be relying on an
experimental platform controlled with set of experimen-
tal parameters Λexp. These need to be mapped to the
associated set of parameters describing the CTQW hap-
pening on the network, ΛQW, i.e. the Hamiltonian pa-
rameters of the quantum walk which, assuming all cou-
pling strengths are fixed to unity and on-site energies to
zero, coincide with the adjacency matrix identifying the
topology of the network. In order to asses the evolution
of the probe, one has to address an observable, such as
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the spatial probability distribution on the network, which
will strongly depend on the network’s topology. How-
ever, since an analytical description of this distribution
for CTQWs is often unattainable, and furthermore the
relation between the QW Hamiltonian and its probabil-
ity distribution is highly non-linear, performing a direct
inversion can be involved. At the same time, the param-
eter space in this instance becomes exceedingly large for
this to be treated as an estimation problem. An alter-
native solution is to cast the issue in terms of a search
problem. Having access solely to the initial state of the
probe and to the measured experimental distributions at
fixed times, the task becomes that of finding an adja-
cency matrix that matches the evolution. Here we tackle
this matter by using a genetic algorithm. We use the
algorithm to successfully retrieve different topologies in
the ideal case as well as when the measured probabilities
are affected by noise.

We consider a CTQW with zero on-site energies, de-
fined by the couplings ΛQW = {Jxy} between two nodes
of the network x and y, such that its Hamiltoian is:

H(ΛQW) =
∑
xy

Jxy |x〉〈y| . (1)

We assume that the couplings Jxy can take only two val-
ues: Jxy = 0 if the link between two nodes is off, or
Jxy = 1 if the link is on, so that each edge is bound
to have the same strength. The Hamiltonian thus coin-
cides with the adjacency matrix of the network, hence,
determining its parameters amounts to determining the
network’s topology. The evolution of a walker in the ini-
tial state |ψ0〉 is described by the unitary operator e−iHt.
The probability of occupying a site x at a time t is then:

px(t,ΛQW) = | 〈x| e−iH(ΛQW)t |ψ0〉 |2. (2)

Given an undirected graph of n sites, our objective is that
of retrieving the couplings ΛQW = {J12, . . . , J(n−1)n},
i.e. a binary string of length nc =n(n−1)/2, having
access only to the initial state of the network and to
the probabilities px(tk,Λ

QW) measured at times tk. We
tackle this challenge by means of a genetic algorithm
(GA). GAs are versatile iterative search algorithms in-
spired by natural selection and have been extensively
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FIG. 1. Conceptual scheme. Given an initial probe state |ψ0〉 and a network with unknown topology controlled by a set of
experimental parameters, we aim at retrieving the topology of the network measuring the probability distributions of the the
probe evolved with a CTQW. This is achievede through a genetic algorithm in which the probability distributions are employed
to evaluate the fitness score, as described in the main text.

employed for quantum tasks [38–41]. They rely on the
evolution of a population of individuals, each defined by
a chromosome string and a fitness score, which breed new
individuals replacing the previous population at each it-
eration. By promoting the reproduction of the fittest
individuals while introducing various mechanisms to en-
sure enough genetic variability, GAs allow to efficiently
retrieve the optimal solution[42, 43].

We encode the chromosomes as binary strings Λi of
length nc, so that each gene constituting the chromo-
some is a coupling Jxy. The fitness of each individual
is evaluated as follows: Λi is used to evolve the initial
state of the probe up to selected times tk obtaining the
probability distributions px(tk,Λi). For practical pur-
poses, we concatenate the probabilities at different times
in a single array that we call πx({tk},Λi). Using multi-
ple times allows to remove eventual ambiguities and to
mitigate the effects of local minima, thus improving the
performance of the algorithm. We then check the dis-
tance between these probabilities and the measured ones
πx({tk},ΛQW) e.g. by using the Kullback-Leibler diver-
gence. When the distance is null, Λi = ΛQW. The value
of the distance will be the fitness score of each individ-
ual. Thus, in our case, the more fit an individual, the
smaller its fitness score. The correct couplings will be
those having a fitness score equal to 0.

The algorithm scheme is shown in Fig. 1 and operates
as follows: An initial random population of size np is gen-
erated, and its fitness is evaluated as described above. An
elitist function selects a small percentage pe of individuals
with the best fitness scores to constitute the hall of fame,
which will be cloned in the next generation. The whole
population is then entered in a tournament where k in-

dividuals at the time compete to be selected for breeding
the next generation. This is achieved through a crossover
strategy in which the chromosomes of the selected par-
ents are mixed with a probability pc. The size of the pop-
ulation is kept constant through each generation, so that
each selected pair of individuals will produce two chil-
dren. In order to ensure genetic diversity, with a small
probability pm, children can undergo mutations, consist-
ing in bit flips. The new born children together with the
cloned hall of fame individuals become the next gener-
ation, and the algorithm continues iteratively, stopping
either when the optimal individual is found (i.e. fitness
score equals to zero), or when a maximum number of gen-
erations ng is reached. A full depiction of the algorithm
and of the implementation of the genetic operations are
reported in the Supplementary Information.

The initial state of the probe as well as the evolution
times at which the probabilities are measured play a fun-
damental role towards the success of the algorithm: for
instance, choosing a localized state may result in dis-
carding part of the network, if composed by two or more
disjoints subnetworks; evolving the state for too short
a time in a large network, may preclude the state to
reach the whole network. While we do not perform a
full optimization of the initial state, we choose one that
allows to explore a large variety of different topologies
and network sizes. Also all the hyperparameters defin-
ing the algorithm (population size np, elitist population
pe, individuals involved in each tournament k, crossover
probability pc, mutation probability pm, max number of
generations ng) can be optimized in accordance with the
task at hand and specifically with the network size. In
our analysis we vary the network size to explore how the
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FIG. 2. Results without noise Retrieved couplings for N runs of the algorithm for star (a-f), complete (h-m), and random
(o-t) networks for varying network sizes: (a,h,o) n=5, (b,i,p) n=6, (c,j,q) n=7, (d,k,r) n=8, (e,l,s) n=9 (f,m,t) n=10. (g,n,u)
success rates as a function of network size. Green indicates a coupling equal to 1, fuchsia a coupling equal to 0.

algorithm scales with an increasing number of couplings,
but for the sake of simplicity we have chosen to keep all
hyperparameters fixed aside from the population size np.
Our results hence are but a lower bound to the achievable
performance attainable by fine-tuning for a fixed network
size.

Here we report the results obtained with a star graph,
a complete graph and a graph with an arbitrary topol-
ogy. This last network is a simplified version of the graph
in Ref [44] describing the relations between the charac-
ters in the novel Les Misérables [45]. Results for ad-
ditional topologies (line and circle) and further details
on the generation of the Les Misérables graph can be
found in the Supplementary Information. In order to test
the algorithm, we inspect networks with nodes from n=5
to n=10, thus we search for binary strings with length
nc = 10 to nc = 45. We measure the probability dis-
tributions at two distinct times, t1 = 0.5 and t2 = 0.6.
As mentioned above, all hyperparameters are kept fixed
(see Supplementary Information), aside from the popu-
lation size np which we scale as np = 2 ·n2c . This ensures
a trade-off between computation time and performance,
and allows us to provide a controlled comparison for the
performance at different sizes. We fix the maximum num-
ber of generations to ng = 100, and, for each configura-
tion, we run the algorithm N=100 times.

We first consider the ideal case in which the probabil-
ity distributions are noiseless. The results are reported
in Fig 2, which shows the couplings values (green = 1,
fuchsia=0) obtained for each run of N for the star (a-f),
complete (h-m) and Les Misérables graph (o-t), as well
as the success rate in each instance (g, n, u). Fig. 2 high-
lights how most of the times when the algorithm fails it
returns the same (wrong) couplings. This effect is due
to the algorithm getting stuck in the same local minima

FIG. 3. Algorithm convergence. Average numbers of gen-
erations required for convergence over N runs of the algorithm
for a star (a), complete (b), and random (c) network as de-
scribed in the main text. The shaded region is the standard
deviation error over the N runs.

because for the chosen evolution times there are multi-
ple configurations leading to probabilities which are very
close to the true one. The most affected network is the
complete, whose success rate, for n=10, drops to 31%.
However, it is sufficient to run the algorithm including
also a third probability measured at time t3 = 1, and
a success rate of 73% is recovered (see the Supplemen-
tary Information). In Fig. 3 we report the number of
generations needed for convergence as a function of n,
which predictably increases with the number of network
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FIG. 4. Results with noise. Success/fail rates over the MC
runs for the algorithm performed on a star network (a-b) and
a complete network (c-d) for Nr = 500 resources (a-c) and
Nr = 5000 resources (b-d). Light green: true positives; Dark
green: false positives; Light red: false negatives; Dark red:
true negatives.

sites, as does the search space. Our results show a re-
markable efficiency of the search algorithm employed: in
fact, the number of possible combinations Λi scales with
2nc , while we are inspecting, at most, 2 · n2c · ng combi-
nations, assuming the worst case scenario in which we
run the algorithm for the maximum number of genera-
tions and completely replace the population each time.
For n=10, when nc = 45 the combinations hence amount
to ∼ 3.5 · 1013, and we are exploring less than ∼ 4 · 105

configurations.
In a real-life scenario, the probabilities p(tk,Λ

QW)
used to evaluate the fitness score would be affected by
noise. This needs to be accounted for when evaluat-
ing the distance by setting a threshold value T below
which two probabilities are considered equal. The al-
gorithm thus needs to be modified to halt whether the
distance between the measured and evaluated probabili-
ties is smaller than T , which counts as a success, or when
it reaches the maximum number of generations, in which
case the algorithm has failed. Depending on the value of
T, there can be four outcomes: 1) True negative: The al-
gorithm fails to reach T and the couplings are not found.
2) False negative: The algorithm fails to reach T, but the
exact string of couplings has been found. This happens
if T is set too low compared to the noise affecting the
probabilities. 3) True positive: the alogirhtm success-
fully finds a fitness below T, and that corresponds to the
exact couplings. 4) False positive: the algorithm success-
fully finds a fitness below T, but the couplings are not
correct. This happens when the threshold is set too high
compared to the noise, and hence the algorithm stops be-

fore it can converge. In order to test this behaviour, we
simulate the measured probabilities for a network with
n=5 for a star topology and a fully connected topology,
using the same hyperparameters as before aside from the
max number of generations which we set to ng = 5. We
know from the ideal case (Fig. 3) that for these topolo-
gies the algorithm converges in more than 5 generations,
so we do expect to have some true negative outcomes.
We simulate the probability measurements with a total
of Nr resources ranging from Nr = 500 to Nr = 5000,
and through a Montecarlo (MC) routine we add Possio-
nian noise to the simulated probabilities. For each MC
run, we average the successes/fails over N=10 runs of
the algorithm. We record the results for threshold val-
ues ranging from T= 4 · 10−4 to T= 0.2. In Fig. 4 we
report the results of the success/fail rates over 100 MC
runs for the star network (a-b) and complete network
(c-d) with Nr = 500 (a-c) and Nr = 5000 (b-d) as a
function of the threshold value (for other Nr see Supple-
mentary Information). As expected, we can observe the
four behaviours described early: when T is too low, the
outcomes are dominated by false negatives (light red),
with a small percentage of true negatives, due to the fact
that the algorithm would take more than 5 generations to
converge. As the threshold increases so do the number of
true positives, while the true negatives remain constant.
For larger thresholds both the true positive and true neg-
ative drop. The algorithm always satisfies the threshold
condition before it can converge to the actual solution.

In conclusion, we have employed a genetic algorithm
to retrieve the topology of a network having access solely
to the initial state of a probe undergoing a CTWQ and
to the measured probability distributions at given times.
We have explored the performance of the algorithm for
different network sizes and topologies, as well as when the
measured probabilities are affected by Poissonian noise.
The algorithm maintains high performance levels for all
the configurations explored, which could be further opti-
mized by fine-tuning the hyperparameters for a specific
network size. The genetic algorithm is particularly suited
to address large parameter spaces, however increasing the
network size by order of magnitudes or remove the con-
straint on the coupling strength would make it challeng-
ing in terms of computational times and resources. In
order to achieve such scalability, a perspective is that of
extending these results to incorporated machine learning
techniques. By relying solely on measured probabilities,
our technique provides a simple but yet effective strat-
egy for the routine characterization of networks, and as
such constitutes an enabling step towards most devel-
oping quantum technologies based on complex networks
[46–51], as well as a tool for exploring new involved sim-
ulation regimes which have non-trivial mapping between
the experimental control and the CTQW parameters [52–
54].
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I. APPENDIX

A. genetic algorithm

The algorithm begins with an initial population initial-
ized by generating np random binary arrays Λi of size nc,
containing the couplings Jxy, which in this representa-
tion correspond to the genes of each individual. These np
chromosomes correspond to the zeroth generation. While
the number of generations is lower than ng, we proceed as

follows: We evaluate the score Si of each string Λi using
the Fitness function described in details in the next sec-
tion. The best fitness score, corresponding to the lowest
value, and the relative couplings are stored. If the score
is equal to zero, the optimal solution has been found,
the algorithm stops and returns it. If the condition is
not met, the algorithm continues by selecting the fittest
pe ·np chromosomes Λi and places them in a hall of fame,
to be cloned in the following generation. Since the pop-
ulation size has to stay constant, we need to create the
remaining np(1− pe) individuals which will populate the
next generation together with those cloned from the hall
of fame. In order to do so we select the best parents from
the whole population (including the hall of fame). This is
achieved with the Tournament selection function, which
randomly selects k individuals at a time and returns the
best among them (lowest fitness score). The random se-
lection of the k competitors ensures that the chosen indi-
viduals are not necessarily the best in the population. In
this way, genetic diversity is ensured to mitigate the pres-
ence of local minima. Once the parents are selected, they
are mixed through the Crossover function, which returns
two children which, with probability pc, are composed by
a mixture of the parents chromosomes. To further ensure
genetic diversity, the genes of the children can undergo
mutations with mutation probability pm. When a muta-
tion happens, the gene is flipped. The generated children
together with the hall of fame constitute the new gener-
ation. The algorithm repeats until either a chromosome
with fitness score equal to zero is found, or the maximum
number of generations is reached. The pseudocode of the
algorithm reported in Algorithm 1.

Algorithm 1 Genetic Algorithm
1: gen← 0
2: Randomly generate np binary arrays {Λi}
3: Pgen ← {Λi} . Initialize population
4: while gen < ng do
5: for i = 0→ np − 1 do
6: Si= Fitness(Λi, π ({tk},ΛQW)) . Evaluate scores
7: end for
8: best← (Min(S),ΛMin(S))
9: if best[0] = 0 then

10: return best
11: end if
12: for i = 0→ penp − 1 do
13: HOFi ← (Λi, Si) sorted by scores . Hall of fame
14: end for
15: Insert HOF into Pgen+1

16: for j = 0→ np(1− pe)/2− 1 do
17: Λj

1,Λ
j
2 ← Tournament(Pgen, S) . Select parents

18: Add Crossover(Λj
1,Λ

j
2) to children . Children

19: end for
20: for i = 0→ np(1− pe)− 1 do
21: Apply Mutation(childreni) . Mutation
22: end for
23: Insert children in Pgen+1

24: gen← gen+ 1
25: end while
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The values of the hyperparameters are reported in Ta-
ble I:

Parameter Value

ng Maximum number of generations 100

np Population size 2 · n2
c

pe Elitist probability 0.02

k Tournament competitors 6

pc Crossover probability 0.85

pm Mutation probability 0.05

TABLE I. Genetic algorithm parameters

B. Genetic Operations

We define the genetic functions which are used in the
algorithm:
Fitness evaluation. The algorithm evaluates the fitness
of each individual in the population Λi by evolving the
initial state using the couplings in Λi and measuring the
distance between the generated and measured probabil-
ities concatenated at different times tk, i.e. πx({tk},Λi)
and πx({tk},ΛQW) respectively. The distance is measured
with the Kullback-Leibler divergence (KLD), defined as:

KLD(Λi) =
∑
x

πx({tk},Λi) log

(
πx({tk},Λi)

πx ({tk},ΛQW)

)
. (3)

We note we have also tried metrics such as the Kol-
mogorov distance, obtaining analogous results.
Torunament selection. We select the individuals for
reproduction among the whole population running re-
peated tournaments between k individuals at a time. We
need to select np(1− pe) individuals so that, since every
couple will produce two children with probability pc, the
size of the population remains unchanged at each itera-
tion. During each tournament, k individuals at random
are selected among the whole population. The fittest one
among the k (i.e. that with the smallest KLD) is chosen
as a parent.
Crossover. Children are created two at a time. Both
are initialized with the chromosome of one of their par-
ents each. With a probability pc, their chromosomes are
crossed over. If the crossover happens, a random inte-
ger number smaller than nc is selected, and serves as the
splitting point for the chromosome of the two parents:
one child’s chromosome will be comprised of the chromo-
some of the first parent up to the splitting point, and of
the second parent thereafter - and viceversa for the other
child.

Mutation For each child, each gene can undergo a muta-
tion with a probability pm. This is achieved by selecting
a random number between 0 and 1. If the number is
smaller than pm, then the gene will be flipped.

The pseudocode for each function is reported in Algo-
rithm 2.

Algorithm 2 Genetic functions

1: function Fitness(Λi, π(tk,Λ
QW)):

2: Evaluate π(tk,Λi)
3: Evaluate KLD(π(tk,Λi), π(tk,Λ

QW))
4: return KLD
5: end function

6: function Tournament(Pgen, S):
7: id← random integer in [0, np]
8: for j = 0→ k − 2 do
9: aux← random integer in [0, np)

10: if S[aux] < S[id] then
11: id← aux
12: end if
13: end for
14: return Λ[id]
15: end function

16: function Crossover(Λ1,Λ2):
17: Generate a random integer x in [0, 1]
18: if x < pc then
19: y ← random integer in [0, nc)
20: child1 ← concatenate(Λ1[0 : y],Λ2[y + 1 : nc − 1])
21: child2 ← concatenate(Λ2[0 : y],Λ1[y + 1 : nc − 1])
22: end if
23: return child1,child2

24: end function

25: function Mutation(childi):
26: for j = 0→ nc − 1 do
27: Generate random x in [0,1]
28: if x < pm then
29: childi[j]← 1−childi[j]
30: end if
31: end for
32: return childi

33: end function

C. Les Misérables graph

In order to test the algorithm on a graph with a ran-
dom topology we adopt a simplified version of the graph
describing the connections between the characters in the
novel Les Misérables by V. Hugo. We use only the main
characters, and we fix all the coupling strengths to 1.
We start from n = 5 characters, and then increase n
by introducing new characters. The resulting graphs are
reported in Fig. 5
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D. Results for additional topologies

In Fig. 6 we report the results obtained without noise
for the line and circle topologies. Panels (a-f) and (h-m)
show the couplings for the N=100 runs of the algorithm,
while panels (g,n) show the success rate. In Fig. 7 we
report the generations needed for convergence.

E. Complete Network with n=10

As shown in the main text, the complete network for
n=10 is the most affected by local minima, which pre-

vent the algorithm to converge to the correct solution
dropping the success rate to 31%. This is because at the
chosen times, there are configurations leading to similar
probabilities than the complete one. However, it is suffi-
cient to repeat the algorithm adding a third probability
measured at t3 = 1, to drastically increase the success
rate up to 73%. The retrieved couplings are reported in
Fig. 8.

F. Results with noise for additional resources

We report additional results with noise for Nr = 1000,
and Nr = 2500 for the star and the complete networks
with n=5. The success/fail rates are shown in Fig. 9
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FIG. 5. Random Graph. Composition of the random graph for n=5-10

FIG. 6. Results for additional topologies - couplings. Retrieved couplings over 100 runs for a line (a-f) and circle (h-m)
network. g) Success rate for line (g) and circle (n).
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FIG. 7. Generations required for convergence for a line net-
work (upper panel) and a circle network (lower panel)

FIG. 8. Retrieved couplings for a n=10 complete network
using probability distribution measured at three evolution
times: t1 = 0.5, t2 = 0.6, and t3 = 1
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FIG. 9. (a-b) Results for star network, (c-d) results for com-
plete graph with Nr = 1000 (a-c) and Nr = 2500 (b-d). Light
red: false negatives, Dark red: true negatives, Light green:
true positives, Dark green: false positives
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