Supporting information

SI.1 HPLC control of the enantiomeric purity of the antipodes of compound 1 SI.2 CD spectra of the antipodes of monomers 2 and 3, recorded in CH₂Cl₂ SI.3 ¹H and ¹³C NMR spectra

SI.3.1: ¹H NMR spectrum of $(S_{ax}, 1R, 2S, 5R)$ -5

SI.3.2: ¹³C NMR spectrum of (*S*_{ax}, 1*R*, 2*S*, 5*R*)-5

SI.3.3: ¹H NMR spectrum of $(R_{ax}, 1R, 2S, 5R)$ -5

SI.3.4: ¹³C NMR spectrum of (*R*_{ax},1*R*,2*S*,5*R*)-5

SI.3.5: ¹H NMR spectrum of IND-CH₂CH₂OH

SI.3.6: ¹³C NMR spectrum of IND-CH₂CH₂OH

SI.3.7: ¹H NMR spectrum of IND-CH₂CH₂OCH₃

SI.3.8: ¹³C NMR spectrum of IND-CH₂CH₂OCH₃

SI.3.9: ¹H NMR spectrum of 6

SI.3.10: ¹³C NMR spectrum of 6

SI.3.11: ¹H NMR spectrum of IND-CH₂CH₃

SI.3.12: ¹³C NMR spectrum of IND-CH₂CH₃

SI.4 Experimental setups for Electrochemical and Spectroelectrochemical experiments

SI.5. A comparative investigation of monomer solutions on different electrodes

SI.6 In-situ EPR spectroelectrochemistry of IND-CH₂CH₃.

SI.7 In-situ UV-Vis spectroelectrochemistry of IND-CH₂CH₂OH and IND-CH₃

SI.8 UV-Vis-NIR spectroelectrochemistry of oligo-IND- CH₂CH₂OCH and oligo-IND-CH₃ films

SI.9 CV patterns of chiral probes Naproxen, Ketoprofen and Ibuprofen in various media, and related Table with peak potential summary

SI.10 Comparison of enantiomer potential differences observed in enantiodiscrimination experiments by changing selector or probe in systematic sequences

SI.11 Reproducibility checks for enantiodiscrimination CV experiments

SI.2 CD spectra of the antipodes of monomers 2 and 3, recorded in $\rm CH_2Cl_2$

SI.3 ¹H and ¹³C NMR spectra of unknown compounds

SI.3.1: ¹H NMR spectrum of (Sax,1R,2S,5R)-5

SI.3.2: ¹³C NMR spectrum of (*S*_{ax},1*R*,2*S*,5*R*)-5

SI.3.4: ¹³C NMR spectrum of (*R*_{ax},1*R*,2*S*,5*R*)-5

SI.3.11: ¹H NMR spectrum of IND-CH₂CH₃

SI.4 Experimental setups for Electrochemical and Spectroelectrochemical experiments

Fig. SI.4.1 Electrochemical minicell for voltammetry experiments. RE: reference electrode, WE: working electrode, CE: counter electrode.

Fig. SI.4.2 Experimental setup for Dropping Mercury Electrode (DME) (left side) and Rotating Disk Electrode (RDE).

Fig. SI.4.3 Left side: scheme of the experimental set up employed for *in situ* thin film spectroelectrochemistry measurement. Right side: picture of the spectroelectrochemical cell, with electrode connections.

Fig. SI.4.4 EPR setup

Fig. SI.4.5 ATR setup

SI.5. A comparative investigation of monomer solutions on different electrodes

	Solvent	<i>E</i> _{lpc} <i>vs</i> Fc ⁺ Fc / V	<i>E</i> _{Ipa} <i>v</i> s Fc ⁺ Fc / V	<i>E</i> lumo, ec ∕ eV	Е номо, ес / eV	Е номо-цимо, ес / eV
IND-CH₃	CH ₂ Cl ₂	n.d.	0.39,0.57 0.81,0.92	n.d.	-5.19	n.d.
	CH₃CN	-2.75	0.44 0.79	-2.05	-5.24	3.19
IND-CH ₂ CH ₃	CH ₂ Cl ₂	n.d.	0.35,0.57 0.80	n.d.	-5.16	n.d.
	CH₃CN	-2.74	0.45 0.80,1.14	-2.74	-5.26	3.20
IND-CH ₂ CH ₃ OCH ₃	CH ₂ Cl ₂	n.d.	0.38,0.59 0.82,1.01	n.d.	-5.17	n.d.
	CH₃CN	-2.48	0.44 0.83, 1.15	-2.32	-5.26	2.94
IND-CH ₂ CH ₃ OH	CH ₂ Cl ₂	n.d.	0.44,0.57 0.81	n.d.	-5.24	n.d.
	CH₃CN	-2.59	0.47 0.75,1.18	-2.21	-5.18	2.97

Table SI 5.1. A synopsis of CV results for the biindole monomers. First reduction and first oxidation peak potentials, normalized vs the Fc⁺|Fc couple, from cyclic voltammetry on glassy carbon GC electrode (at 0.2 V/s scan rate), with corresponding estimated LUMO and HOMO energies and HOMO-LUMO energy gaps. $E_{LUMO(HOMO)}$ levels are calculated from CV data as 1e x [($E_{p,Ic(Ia)}/V$ (Fc⁺|Fc) + 4.8 V (Fc⁺|Fc vs zero)], consistent with Refs [12,13] in the main paper.

OXIDATION in		Е р, Ia	$E^{0}_{1}(E^{\frac{1}{2}})$	$E_{p,IIa}$	$E^{0}_{2}(E^{1/2})$	$E_{ m p,IIIa}$	$E^{0}_{3}(E^{1/2})$
ACN on GC)		
		$E_{\text{Ipa}} vs \text{ Fc}^+ \text{Fc} /V$		E _{IIpa} vs Fc ⁺ Fc / V		$m{E}_{ m IIIpa} vs$ Fc ⁺ Fc / V	
IND-CH ₃	CV	0.44		0.79		1.12	
	RD E		0.41		0.75		0.95
IND-CH ₂ CH ₂ OCH ₃	CV	0.44		0.81		1.15	
	RD E		0.43		0.79		0.98
IND-CH ₂ CH ₂ OH	CV	0.47		0.75		1.18	
	RD E		0.42		0.73		1.1
2,2'-bithiophene	CV			0.89		1.36	
	RDE				0.86		1.16

REDUCTION in				$E_{ m p,IIa}$		$E_{p,IIIa}$	
MeCN							
		$E_{\rm IpC} vs$	$E^{0}_{1}(E^{1/2})$	$E_{\text{IIpC}} vs$	$E^{0}_{2}(E^{1/2})$	$E_{\rm IIIpC} vs$	$E^{0}_{3}(E^{1/2})$
		$Fc^{+} Fc/V$		$Fc^{+} Fc/V$		$Fc^{+} Fc/V$	
IND-CH ₃	GC	-2.64		-2.73		-2.96	
	RDE		-2.62		-2.69		-2.95
	HDME	-2.65		-2.74		-2.99	
	DME		-2.60		-2.69		-2.94
	~ ~						
IND-CH ₂ CH ₂ OCH ₃	GC	-2.66		-2.74		-2.99	
	RDE		-2.62		-2.71		-2.94
	HDME	-2.66		-2.73		-3.04	
	DME		-2.63		-2.71		n.d.
	00	0.50		0 (0		2.00	
IND-CH ₂ CH ₂ OH	GC	-2.58		-2.68		-2.90	
	RDE		-2.59		-2.67		-2.87
	HDME	-2.59		-2.69		-2.91	
	DME		-2.56		-2.66		-2.87
2,2'-bithiophene	GC					-2.88	
	RDE						-2.84
	HDME					-2.88	
	DME						-2.82

Table SI.5.2. A comparative investigation of monomer solutions in MeCN with different techniques and different working electrodes (oxidation: cyclic voltammetry on GC, voltammetry in stationary conditions on RDE; reductions: cyclic voltammetry on GC and HDME, voltammetry in stationary conditions on RDE and DME).

Estimation of HOMO and LUMO energy levels from voltammetric potentials.

LUMO and HOMO energy levels were estimated from the values of first reduction and first oxidation CV peak potentials in the working acetonitrile solvent, respectively, employing the following equation:

$E_{\text{LUMO(HOMO)}} / \text{eV} = -\text{e} \times \left[\left(E_{\text{p,Ic(Ia)}} / \text{V} \left(\text{Fc}^{+} | \text{Fc} \right) + 4.8 \text{ V} \left(\text{Fc}^{+} | \text{Fc vs zero} \right) \right]$

Where

ELUMO(HOMO) = estimated energy level of the LUMO (or HOMO) orbital (respect to the energy of an electron at rest in vacuum, in eV [S. Trasatti, *J. Electroanal. Chem.* **1986**, 209, 417-428.]

e = electron (elementary charge; by expressing it in Coulomb instead, one would translate the energy from the eV scale to the joule scale (1 eV ~ $1.6 \cdot 10^{-19}$ joule))

 $E_{p,Ic(Ia)}$ = first reduction (or first oxidation) CV peak potential (in Volt) in the working acetonitrile solvent for the investigated molecule, referred to the formal potential of the Fc|Fc⁺ redox couple in the same working conditions

4.8 V = approximate estimated value for the absolute potential of $Fc^+|Fc$ in acetonitrile, consistent with the treatment by A. A. Isse, A. Gennaro, *J. Phys. Chem. B* **2010**, *114*, 7894-7899, according to which

$$E_{O|R,S}^{0,SCE aq} = E_{O|R,S}^{0,abs} - E_{SCE,aq}^{abs} + E_L = E_{O|R,S}^{0,abs} - E_{H+|H2,aq}^{abs} - 0.241 + E_L$$
$$= E_{O|R,S}^{0,abs} - 4.281 - 0.241 + E_L = E_{O|R,S}^{0,abs} - 4.522 + E_L$$
$$= E_{O|R,S}^{0,abs} - 4.522 + 0.093$$

(with 0.093 V being an estimated value for the intersolvental liquid juction potential E_L between the saturated aqueous calomel electrode and a 0.1 M tetraalkylammonium supporting electrolyte in acetonitrile [Diggle, J. W.; Parker, A. J. *Aust. J. Chem.* **1974**, *27*, 1617, cited in the above Isse and Gennaro paper])

Applying such expression to the case of the $Fc^+|Fc$ redox couple, for which our formal potential typically measured in acetonitrile vs the SCE is ~0.390 V, we get:

 $E_{\text{Fc+|Fc,S}}^{0,\text{abs}} = E_{\text{Fc+|Fc,S}}^{0,\text{SCE aq}} + E_{\text{SCE,aq}}^{\text{abs}} - E_L = 0.390 + 4.522 - 0.093 = 4.82 \text{ V}$ (rounding to the second digit).

Such value is also nearly coincident with the 4.93±0.10 V value proposed in a theoretical recent paper [M.Z. Makós, P. K. Gurunathan, S. Raugei, K. Kowalski, V.-A. Glezakou, R. Rousseau, *J. Phys. Chem. Lett.* 2022, 13, 42, 10005–10010]. In any case, it is an estimated value for which an uncertainty of one or a few units should be taken into account on the first decimal digit; but for our aim it is quite sufficient.

SI.6 In-situ EPR spectroelectrochemistry of IND-CH₂CH₃

Figure SI.6.1 *In-situ* EPR spectroelectrochemistry patterns recorded for **IND-CH₂CH₃**. Potentials are referred to the Ag pseudoreference electrode.

SI.7 In-situ UV-Vis spectroelectrochemistry of IND-CH₂CH₂OCH₃ and IND-CH₃

Figure SI.7.1 UV-vis spectroelectrochemistry of **IND-CH₂CH₂OCH₃**: 3D and 2D differential absorbance plots with related CV pattern, in CH₂Cl₂ (top) and CH₃CN (top).

Figure SI.7.2 UV-vis spectroelectrochemistry of **IND-CH**₃: 3D and 2D differential absorbance plots with related CV pattern, in CH₂Cl₂ (top) and CH₃CN (top).

SI.8 UV-Vis-NIR spectroelectrochemistry of oligo-IND-CH₂CH₂OCH₃ and oligo-IND-CH₃ films

Figure SI.8.1. UV-Vis-NIR spectroelectrochemistry of **oligo-IND-CH₂CH₂OCH₃** film electrodeposited by 30 oxidation cycles on ITO electrode. Top: Cyclic voltammogram of the film recorded at 20 mV/s in 0.1 M TBAPF₆ and CH₂Cl₂ supporting electrolyte. Bottom: In-situ UV-Vis-NIR spectrum taken every 2 s during the oxidation (left) and back reduction (right) CV scan.

Figure SI.8.2. UV-Vis-NIR spectroelectrochemistry of **oligo-IND-CH**³ film electrodeposited by 20 oxidation cycles on ITO electrode. Top: Cyclic voltammogram of the film recorded at 20 mV/s in 0.1 M TBAPF₆ and CH₂Cl₂ supporting electrolyte. Bottom: In-situ UV-Vis-NIR spectrum taken every 2 s during the oxidation (left) and back reduction (right) CV scan.

SI.9 CV patterns of chiral probes Naproxen, Ketoprofen and Ibuprofen in various media, and related Table with peak potential summary

SI.9.1 Normalized CV patterns of (*S*)-Naproxen on GC electrode at 0.2 V s⁻¹ scan rate in (a) MeCN and (b) CH₂Cl₂, in both cases with 0.1 M TBAPF₆ as supporting electrolyte.

SI.9.2 CV patterns of (*S*)-Naproxen on GC electrode at 0.2 V s^{-1} scan rate in (a) pH 4 buffer and (b) pH 7 buffer. (c): comparison of the oxidation range at pH 4 and pH 7.

The increasing current trend with increasing pH was also found in a previous study ([25] in the main manuscript), although with no provided explanation. It is however worthwhile noticing that according to its $pK_a \sim 4.2$ ([37] in main manuscript) the molecule is practically only in anionic form at pH 7, while in comparable quantities of the undissociated and anionic form at pH 4. In any case, the pH 7 buffer was chosen as a convenient medium for the enantiodiscrimination tests.

b) Ketoprofen

Figure SI.9.3. Normalized CV patterns of (*S*)-Ketoprofen on GC electrode at 0.2 V s⁻¹ scan rate in (a) acetonitrile (ACN) e (b) dichloromethane (DCM), in both cases with 0.1 M TBAPF₆ as supporting electrolyte.

c) Ibuprofen

Figure SI.9.4. Normalized CV pattern of (*S*)-Ibuprofen on GC electrode at 0.2 V s⁻¹ scan rate in acetonitrile (ACN) + 0.1 M TBAPF₆ as supporting electrolyte.

The reduction peak of Ibuprofen is probably due to reduction of the proton from the **COOH** group of the molecule while the oxidation at high potential value can be related to the formation of an aromatic radical cation.

		$E_{\text{Ipa}} vs \text{ Fc}^+ \text{Fc} $	$E_{\rm Ipc} vs {\rm Fc}^+ {\rm Fc} $
		/ V	/ V
Ketoprofen	DCM	n.d	-1.99
	ACN	n.d	-2.2
Naproxen	DCM	1.03	n.d.
	ACN	0.98	-2.79
	pH 4	1.0	n.d.
	pH 7	1.0	n.d.
Ibuprofen	ACN	1.94	-2.9

Comparative Table of CV peak potentials for the three profens in different media

Table SI.9 A comparison of key voltammetric parameters of the three profens in four media (ACN and DCM with 0.1 M TBAPF₆ as supporting electrolyte, and aqueous pH 4 and pH 7 buffers).

SI.10 Comparison of enantiomer potential differences observed in enantiodiscrimination experiments by changing selector or probe in systematic sequences

	PRO	BES	
SELECTORS	(R)-Fc <i>E</i> _p /V	<mark>(S)-Fc</mark> E _p ∕V	⊏p(S)-⊏p(R) / V
(S)-IND-CH ₂ CH ₃	0.49	0.59	0.10
(R)-IND-CH ₂ CH ₂ OCH ₃	0.63	0.43	-0.20
(S)-IND-CH ₂ CH ₂ OH	0.41	0.66	0.25

	PROBES				
SELECTORS	(S)-Naproxen	(S)-Ketoprofen	Enantyum [®]		
	⊏p/ V	⊏p/ V	⊏p/ V		
(R)-IND-CH ₃	1.10				
(S)-IND-CH ₃	1.23				
<i>E</i> _{p(S)} - <i>E</i> _{p(R)} / v	0.13				
(R)-IND-CH ₂ CH ₃	1.10				
(S)-IND-CH ₂ CH ₃	1.20				
<i>E</i> _{p(S)} - <i>E</i> _{p(R)} / v	0.10				
(R)-IND-CH ₂ CH ₂ OCH ₃	1.11	-1.58			
(S)-IND-CH ₂ CH ₂ OCH ₃	1.28	-1.70			
<i>E</i> _{p(S)} - <i>E</i> _{p(R)} / v	0.17	0.12			
(R)-IND-CH ₂ CH ₂ OH	0.91	-1.12	-0.70		
(S)-IND-CH ₂ CH ₂ OH	1.37	-1.65	-1.56		
$E_{p(S)} - E_{p(R)} / V$	0.46	0.53	0.86		

SI.11 Reproducibility checks for enantiodiscrimination CV experiments

Figure SI.10.1 Reproducibility checks for Naproxen enantiodiscrimination CV experiments.

Figure SI.10.2 Reproducibility checks for Ketoprofen enantiodiscrimination CV experiments.