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1 Introduction

Several discrete distributions in probability concern nonnegative integer valued ran-
dom variables. A random variable X has a power series distribution if

P(X = k) = dkδ
k

D(δ)
for each integer k ≥ 0,

where δ > 0 is called power parameter, {dk : k ≥ 0} is a family of nonnegative
numbers and the normalization D(δ) := ∑

k≥0 dkδ
k ∈ (0,∞) is called the series

function. Typically, analytical properties of the series function D(·) can be related to
some statistical properties of the power series distribution. Moreover, the probability
generating function of a power series distributed random variables X can be easily
expressed in terms of the function D; in fact we have

E[uX] = D(uδ)

D(δ)
for all u > 0.

The reference [19] made great advances in the theory of power series distributions.
Another important contribution was given by the modified power series distribu-
tions in [14], which include distributions derived from Lagrangian expansions (see,
e.g., [4]). Other more recent references on these distributions concern some families
which contain the geometric distribution as a particular case: the generalized hyper-
geometric family, the q-series family and the Lerch family. Among the references on
the Lerch family we recall [13] and [15]; see also [17] as a reference on the related
Hurwitz–Lerch zeta function.

In this paper we consider a family of random variables {N(t) : t ≥ 0}, whose
univariate marginal distributions are expressed in terms of a family of power series
distributions {Pj : j ≥ 0} with power parameter δ; moreover, for all j ≥ 0, we
set δ := δj (t) for some functions {δj (·) : j ≥ 0}. A precise definition is given at
the beginning of Section 3 (some assumptions are needed and they are collected in
Condition 1) and it is a generalization of the basic model with a unique power series
distribution, i.e. the case with

P(N(t) = k) = dk(δ(t))
k

D(δ(t))
for each integer k ≥ 0

for some coefficients {dk : k ≥ 0}, a series function D(·) and a function δ(·).
We recall that, when we deal with the basic model, we have suitable weighted

Poisson distributed random variables; in fact, for each integer k ≥ 0, we have

P(N(t) = k) = w(k)
(λδ(t))k

k! e−λδ(t)∑
j≥0 w(j)

(λδ(t))j

j ! e−λδ(t)
, with w(k) = k!

λk
dk.

This kind of structure was already highlighted in [1, Section 4] for the case δ(t) = tν

and dk = λk

�(νk+1)
(for some ν ∈ (0, 1]), and therefore w(k) = k!

�(νk+1)
. Weighted

Poisson distributions are often related to the concepts of overdispersion and under-
dispersion; for some insights on this topic see, e.g., [5, 6], the recent paper [3] and
references therein.
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Our main results in the present paper concern large (and moderate) deviations as
t → ∞ for the above mentioned general family {N(t) : t ≥ 0}. We remind that the
theory of large deviations deals with asymptotic computation of small probabilities
on an exponential scale (see, e.g., [7] as a reference on this topic).

At the best of our knowledge, we are not aware of similar results in the literature
for power series distributions; therefore we think that our general results may find
applications in several models and may bring to further investigations. In this paper
we apply the results to different classes of fractional counting processes found in
the literature, where the function D(·) can be expressed in terms of the Prabhakar
function (the definition of this function will be recalled in Section 2.2). Namely, in
Section 4 we shall present two particular examples. The first one is related to the
fractional process in [20], and it allows us to generalize some large deviation results
in the current literature, as discussed at the end of Section 4.1. The second one is
related to a fractional process in [10], and we discuss a class of cases for which
certain conditions on some involved parameters fail.

We also point out that the model in [20] is a particular case of the family in
[3, Section 3.1, Eq. (48)], where the weights are expressed by a ratio of Gamma
functions; thus, as a possible future work, one might try to investigate a wider class
of models defined by suitable generalizations of the Prabhakar function.

We conclude the introduction with the outline of the paper. We start with some
preliminaries in Section 2. In Section 3 we give a precise definition of the model, and
we prove the results. Finally, in Section 4, we apply our results to some examples of
fractional counting processes found in the literature.

2 Preliminaries

In this section we start with some preliminaries on large deviations. Moreover, in
view of the examples presented in Section 4, we present some preliminaries on some
special functions.

2.1 On large deviations

We start with the definition of large deviation principle (LDP from now on). In view
of what follows, our presentation concerns the case t → ∞; moreover, for simplicity,
we refer to a family of real-valued random variables {Xt : t > 0} defined on the same
probability space (�,F , P ).

A lower semicontinuous function I : R → [0,∞] is called rate function, and it
is said to be good if all its level sets {{x ∈ R : I (x) ≤ η} : η ≥ 0} are compact. Then
{Xt : t > 0} satisfies the LDP with speed vt → ∞ and rate function I if

lim sup
t→∞

1

vt

log P(Xt ∈ C) ≤ − inf
x∈C

I (x) for all closed sets C

and

lim inf
t→∞

1

vt

log P(Xt ∈ O) ≥ − inf
x∈O

I (x) for all open sets O.
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The notion of moderate deviations is used when we have a class of LDPs for
families of centered (or asymptotically centered) random variables which depend on
some positive scaling factors {a(t) : t > 0} such that

a(t) → 0 and vta(t) → ∞ as t → ∞ (1)

and, moreover, all these LDPs (whose speed functions depend on the scaling factors)
are governed by the same quadratic rate function vanishing at zero. We can also say
that, as usually happens, this class of LDPs fills the gap between a convergence to
zero and an asymptotic normality (see Remark 4).

The main tool for large deviations used in this paper is the Gärtner–Ellis theorem
(see, e.g., [7, Theorem 2.3.6]; actually we can refer to the statement (c) only), and
here we recall its statement for real-valued random variables. In view of this, we also
recall that a convex function f : R → (−∞,∞] is essentially smooth (see, e.g., [7,
Definition 2.3.5]) if the interior of Df := {θ ∈ R : f (θ) < ∞} is nonempty, f is
differentiable throughout the interior of Df , and f is steep (i.e. |f ′(t)| is divergent
as t approaches to any finite point of the boundary of Df ). In our applications the
function f is always finite everywhere and differentiable; therefore f is essentially
smooth because the steepness condition holds vacuously.

Theorem 1. Let {Xt : t > 0} be a family of real-valued random variables defined
on the same probability space (�,F , P ) and let vt be such that vt → ∞. Moreover
assume that, for all θ ∈ R, there exists

f (θ) := lim
t→∞

1

vt

logE
[
eθXt

]
as an extended real number; we also assume that the origin θ = 0 belongs to the
interior of the set D(f ) := {θ ∈ R : f (θ) < ∞}. Then, if f is essentially smooth
and lower semicontinuous, the family of random variables {Xt/vt : t > 0} satisfies
the LDP with speed vt and good rate function f ∗ defined by f ∗(x) := supθ∈R{θx −
f (θ)}.

2.2 On special functions for some fractional counting processes

In this paper, for α ∈ (0, 1] and β, γ > 0, we consider the Prabhakar function E
γ
α,β(·)

defined by

E
γ
α,β(u) :=

∑
k≥0

uk(γ )k

k!�(αk + β)
(for u ∈ R),

where

(γ )k :=
{

1 if k = 0,

γ (γ + 1) · · · (γ + k − 1) if k ≥ 1

is the rising factorial (Pochhammer symbol). The Prabhakar function is also known
as the Mittag-Leffler function with three parameters; the Mittag-Leffler function with
two parameters concerns the case γ = 1, and the classical Mittag-Leffler function
concerns the case β = γ = 1. Here we are interested to the case of a positive
argument u and we refer to the asymptotic behavior of E

γ
α,β(·) as the argument tends

to infinity (see, e.g., [11, page 23], which concerns a result in [18] where the argument
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z of E
γ
α,β(·) is complex; obviously we are interested in the case | arg(z)| < απ

2 ). In
particular, for some ω(u) such that ω(u) → 0 as u → ∞, we have

E
γ
α,β(u) = 1

�(γ )
eu1/α

u
γ−β

α
1

αγ

∑
k≥0

cku
− k

α (1 + ω(u)), (2)

where the coefficients {ck : k ≥ 0} are obtained by a suitable inverse factorial ex-
pansion. Moreover, when we shall present the first application of our results to some
fractional counting processes (see Section 4.1), we shall restrict the attention to the
case with a positive integer γ ; then we refer to [11, Eq. (4.4)], i.e.

E
γ+1
α,β (u) = 1

αγ γ !
γ∑

j=0

d
(γ )

j,α,βE1
α,β−j (u) (3)

for some coefficients {d(γ )

j,α,β : j ∈ {0, 1, . . . , γ }} defined by a recursive expression

provided by [11, Eq. (4.6)], and in particular we have d
(γ )
γ,α,β = 1. We also recall the

following asymptotic formula for the case γ = 1 (see, e.g., [12, Eq. (4.4.16)]), i.e.

E1
α,β(u) = 1

α
u

1−β
α eu1/α + O(1/u) as u → ∞. (4)

As we shall see, the Prabhakar function plays an important role in the examples pre-
sented in Section 4 based on some fractional counting processes found in the litera-
ture. We also mention that a different use of the Prabhakar function can be found in [9]
for the definition of a new class of Lévy processes (called Prabhakar Lévy processes).

3 Model and results

We consider a family of power series distributions {Pj : j ≥ 0} such that, for each
j ≥ 0, Pj has the probability mass function

pj (k) := dk,j δ
k

Dj (δ)
for each integer k ≥ 0,

where δ > 0, and {dk,j : k ≥ 0} is a sequence of nonnegative numbers such that

Dj(δ) :=
∑
k≥0

dk,j δ
k ∈ (0,∞).

Then we consider a family of random variables {N(t) : t ≥ 0} whose probability
mass functions depend on {dk,k : k ≥ 0} only; more precisely, assuming that

∑
j≥0

dj,j δ
j

Dj (δ)
∈ (0,∞) for all δ > 0,

we have

P(N(t) = k) :=
dk,k(δk(t))

k

Dk(δk(t))∑
j≥0

dj,j (δj (t))j

Dj (δj (t))

for each integer k ≥ 0,

and δj (t) → ∞ as t → ∞ (for all j ≥ 0).
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Remark 1. In the next Section 4 we show how our results can be applied to some
stochastic processes found in some literature. Actually the authors of these works
use the term “stochastic process” even if they do not specify the joint distributions
of the involved random variables. In our results we do not need to define the joint
distributions of the random variables {N(t) : t ≥ 0}; indeed we only need to consider
their univariate marginal distributions and, for this reason, we use the term “family
of random variables”. In a possible future work one could investigate the possibility
to define all the finite-dimensional distributions in order to prove sample-path large
deviation results.

In our results some hypotheses are needed, and they are collected in the next
Condition 1.

Condition 1. We consider the following hypotheses.

(B1): There exists n ≥ 0 such that the elements of both sequences {Pj : j ≥ 0} and
{δj (·) : j ≥ 0} do not depend on j ≥ n; in particular, for j ≥ n, we simply
write dk in place of dk,j , D(·) in place of Dj(·), and δ(·) in place of δj (·).
Moreover we assume that there exist two functions v : (0,∞) → (0,∞) and
� : (0,∞) → R such that v(t) → ∞ as t → ∞,

lim
t→∞

1

v(t)
log D(ut) = �(u) for all u > 0, (5)

and �(·) is a differentiable function.

(B2): The set {k ≥ 0 : dk,k > 0} is unbounded; thus, if we refer to the case k ≥ n,
the set {k ≥ 0 : dk > 0} is unbounded.

(B3): For all k ∈ {0, 1, . . . , n − 1} we have:

lim
t→∞

dk,k(δk(t))
k

Dk(δk(t))

dk(δ(t))
k

D(δ(t))

= 0 if dk > 0, (6)

and dk,k = 0 if dk = 0.

Firstly we note that the function �(·) is increasing. Moreover, if n = 0, we have
the basic model with a unique power series distribution and, in particular, (B3) holds
vacuously (because the set {0, 1, . . . , n − 1} in (B3) is empty).

Remark 2. Here we illustrate two consequences of (B2) and (B3) in Condition 1.
Firstly (B2) allows to avoid the case P(0 ≤ N(t) ≤ M) = 1 (for all t ≥ 0) for
some M ∈ (0,∞); in fact, in such a case, it is easy to check that the results proved
below hold with �(θ) = 0 for all θ ∈ R, where � is the function defined in Eq. (11).
Moreover (B2) and (B3) yield

lim
t→∞

dk,k(δk(t))
k

Dk(δk(t))
= 0 and lim

t→∞
dk(δ(t))

k

D(δ(t))
= 0 for all k ≥ 0. (7)

In fact, for all k ≥ 0, there exist h > k such that dh > 0, and therefore

0 ≤ dk(δ(t))
k

D(δ(t))
≤ dk(δ(t))

k

dh(δ(t))h
→ 0 (as t → ∞);
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moreover the first limit in Eq. (7) follows from the second one in Eq. (7) together
with (B3).

We also briefly discuss some particular cases concerning the functions v(·) and
�(·) in Eq. (5).

Remark 3. Assume that there exists

lim
t→∞

v(ut)

v(t)
=: v̄(u) for all u > 0 (8)

as a finite limit; then the limit in Eq. (5) can be verified only for u = 1, and we have

�(u) = �(1)v̄(u) for all u > 0.

In particular, if v(·) is a regularly varying function of index � > 0 (see, e.g., [8,
Definition A3.1(b)]), the limit in Eq. (8) holds with v̄(u) = u�. On the other hand,
if v(·) is a slowly varying function (see, e.g., [8, Definition A3.1(a)]), the limit in
Eq. (8) holds with v̄(u) = 1 (and this case is not interesting).

In view of what follows, it is useful to introduce the following notation:

Rn(u, t) :=
{

0 if n = 0,∑n−1
k=0

(
dk,k(uδk(t))

k

Dk(δk(t))
− dk(uδ(t))k

D(δ(t))

)
if n ≥ 1,

(9)

where n is the value in Condition 1. Then we have

lim
t→∞ Rn(u, t) = 0; (10)

this is trivial if n = 0 and, if n ≥ 1, this is a consequence of Eq. (7) (for k ∈
{0, 1, . . . , n − 1}).

We start with the first result.

Proposition 1. Assume that Condition 1 holds. Then
{

N(t)
v(δ(t))

: t > 0
}

satisfies the

LDP with speed v(δ(t)) and good rate function �∗ defined by

�∗(x) := sup
θ∈R

{θx − �(θ)}, where �(θ) := �(eθ ) − �(1). (11)

Proof. We want to apply the Gärtner–Ellis theorem (Theorem 1). In order to do this
we remark that, for all θ ∈ R, we have

1

v(δ(t))
logE

[
eθN(t)

]

= 1

v(δ(t))
log

∑
k≥0

dk,k(e
θ δk(t))

k

Dk(δk(t))∑
j≥0

dj,j (δj (t))j

Dj (δj (t))

= 1

v(δ(t))
log

∑
k≥0

dk,k(e
θ δk(t))

k

Dk(δk(t))
− 1

v(δ(t))
log

∑
j≥0

dj,j (δj (t))
j

Dj (δj (t))
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= 1

v(δ(t))
log

⎛
⎝D(δ(t))

∑
k≥0

dk,k(e
θ δk(t))

k

Dk(δk(t))

⎞
⎠

− 1

v(δ(t))
log

⎛
⎝D(δ(t))

∑
j≥0

dj,j (δj (t))
j

Dj (δj (t))

⎞
⎠ .

So, if we prove that

lim
t→∞

1

v(δ(t))
log

⎛
⎝D(δ(t))

∑
k≥0

dk,k(uδk(t))
k

Dk(δk(t))

⎞
⎠ = �(u) for all u > 0, (12)

where �(·) is the function in Condition 1, the limit in Eq. (12) with u = eθ and u = 1
yields

lim
t→∞

1

v(δ(t))
logE

[
eθN(t)

]
= �(eθ ) − �(1) = �(θ) for all θ ∈ R, (13)

where �(·) is the function in Eq. (11). Then the desired LDP holds as a straighforward
application of Theorem 1.

So in the remaining part of the proof we show that the limit in Eq. (12) holds.
This will be done by considering n ≥ 1; actually, for n = 0, we have the same
computations and some parts are even simplified. Firstly, if we consider the function
Rn(u, t) defined in Eq. (9), for all u > 0 we have

∑
k≥0

dk,k(uδk(t))
k

Dk(δk(t))
= D(uδ(t))

D(δ(t))
+ Rn(u, t); (14)

in fact we have

∑
k≥0

dk,k(uδk(t))
k

Dk(δk(t))
=

n−1∑
k=0

dk,k(uδk(t))
k

Dk(δk(t))
+

∑
k≥n

dk(uδ(t))k

D(δ(t))

=
∑
k≥0

dk(uδ(t))k

D(δ(t))
+ Rn(u, t),

and we get Eq. (14) by taking into account the definition of D(·). Then Eq. (14) yields

D(δ(t))
∑
k≥0

dk,k(uδk(t))
k

Dk(δk(t))
= D(uδ(t)) + Rn(u, t)D(δ(t))

= D(uδ(t))

(
1 + Rn(u, t)

D(δ(t))

D(uδ(t))

)
;

thus (if we take the logarithms, divide by v(δ(t)) and let t go to infinity) the limit in
Eq. (12) holds if we show that

lim
t→∞ Rn(u, t)

D(δ(t))

D(uδ(t))
= 0 for all u > 0. (15)
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So we complete the proof by showing that the limit in Eq. (15) holds. In fact, we
have

Rn(u, t)
D(δ(t))

D(uδ(t))
=

n−1∑
k=0

(
dk,k(uδk(t))

k

Dk(δk(t))
− dk(uδ(t))k

D(δ(t))

)
D(δ(t))

D(uδ(t))

=
n−1∑
k=0

⎛
⎝ dk,k(uδk(t))

k

Dk(δk(t))

dk(uδ(t))k

D(δ(t))

dk(uδ(t))k

D(δ(t))
− dk(uδ(t))k

D(δ(t))

⎞
⎠ D(δ(t))

D(uδ(t))

=
n−1∑
k=0

⎛
⎝ dk,k(δk(t))

k

Dk(δk(t))

dk(δ(t))
k

D(δ(t))

− 1

⎞
⎠ dk(uδ(t))k

D(δ(t))

D(δ(t))

D(uδ(t))

=
n−1∑
k=0

⎛
⎝ dk,k(δk(t))

k

Dk(δk(t))

dk(δ(t))
k

D(δ(t))

− 1

⎞
⎠ dk(uδ(t))k

D(uδ(t))
,

and the desired limit in Eq. (15) holds by the limit in Eq. (6), and by the second limit
in Eq. (7) (here we have uδ(t) instead of δ(t), and that limit still holds).

Now we study moderate deviations. More precisely, we prove a class of LDPs
which depends on any possible choice of positive numbers {a(t) : t > 0} such that (1)
holds with vt = v(δ(t)), which is the speed in Proposition 1. We remark that �′′(0)

that appears below (Proposition 2 and Remark 4) cannot be negative; in fact, as we
have seen in the proof of Proposition 1, the function � is the pointwise limit of log-
arithms of moment generating functions, which are convex functions (see, e.g., [7,
Lemma 2.2.5(a)]).

Proposition 2. Assume that Condition 1 holds and, if we refer to the function �(·)
in that condition, let �(·) be the function in Eq. (11). Assume that there exists �′′(1),
and therefore there exists �′′(0). Moreover assume that, for D(·), δ(·) and v(·) in
Condition 1 (and for �(·) in Eq. (11)), the following conditions hold:

if u(t) → 1 as t → ∞, then
H1(t) := log D(u(t)δ(t))

D(δ(t))
− v(δ(t))(�(u(t)) − �(1)) is bounded; (16)

H2(t) := √
v(δ(t))

(
�′(0) − δ(t)D′(δ(t))

v(δ(t))D(δ(t))

)
is bounded; (17)

H3(t) := 1√
v(δ(t))

(
δ(t)D′(δ(t))

D(δ(t))
− E[N(t)]

)
is bounded. (18)

Then, for every choice of {a(t) : t > 0} such that Eq. (1) holds with vt = v(δ(t)),{
N(t)−E[N(t)]

v(δ(t))

√
v(δ(t))a(t) : t > 0

}
satisfies the LDP with speed 1/a(t) and good

rate function �̃∗ defined by

�̃∗(x) :=
⎧⎨
⎩

x2

2�′′(0)
for �′′(0) > 0,{

0 if x = 0,

∞ if x 
= 0,
for �′′(0) = 0.

(19)
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Proof. We want to apply the Gärtner–Ellis theorem (Theorem 1). So, in what follows,
we show that

lim
t→∞

1

1/a(t)
logE

[
e

θ
a(t)

N(t)−E[N(t)]
v(δ(t))

√
v(δ(t))a(t)

]
= θ2

2
�′′(0) =: �̃(θ) for all θ ∈ R;

(20)
in fact it is easy to verify that

�̃∗(x) := sup
θ∈R

{θx − �̃(θ)}

coincides with the rate function in the statement of the proposition.
Firstly we observe that

�t(θ) := 1

1/a(t)
logE

[
e

θ
a(t)

N(t)−E[N(t)]
v(δ(t))

√
v(δ(t))a(t)

]

= a(t)

⎛
⎜⎜⎜⎜⎜⎝log

∑
k≥0

dk,k

(
e

θ√
v(δ(t))a(t) δk(t)

)k

Dk(δk(t))∑
j≥0

dj,j (δj (t))j

Dj (δj (t))

− θ√
v(δ(t))a(t)

E[N(t)]

⎞
⎟⎟⎟⎟⎟⎠ .

Moreover, we set again u(t) := e
θ√

v(δ(t))a(t) ; in fact, by Eq. (1) with vt = v(δ(t)), we
have u(t) → 1 because

√
v(δ(t))a(t) → ∞. Then we can check that

�t(θ) = A1(t) + A2(t) + A3(t),

where

A1(t) := a(t)

×

⎛
⎜⎜⎜⎜⎜⎝log

∑
k≥0

dk,k

(
e

θ√
v(δ(t))a(t) δk(t)

)k

Dk(δk(t))∑
j≥0

dj,j (δj (t))j

Dj (δj (t))

− v(δ(t))�

(
θ√

v(δ(t))a(t)

)
⎞
⎟⎟⎟⎟⎟⎠

= a(t)

(
log

D(u(t)δ(t))
D(δ(t))

+ Rn(u(t), t)

1 + Rn(1, t)
− v(δ(t))�

(
θ√

v(δ(t))a(t)

))

(in the last equality we take into account Eq. (14) with u = u(t) and u = 1),

A2(t) := v(δ(t))a(t)

(
�

(
θ√

v(δ(t))a(t)

)
− θ

v(δ(t))
√

v(δ(t))a(t)

δ(t)D′(δ(t))
D(δ(t))

)
,

and

A3(t) := a(t)
θ√

v(δ(t))a(t)

(
δ(t)D′(δ(t))

D(δ(t))
− E[N(t)]

)
.
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So, if we refer to the function �̃(·) in Eq. (20), we complete the proof if we show that
(for all θ ∈ R)

lim
t→∞ A1(t) = 0, lim

t→∞ A2(t) = �̃(θ), lim
t→∞ A3(t) = 0. (21)

We start by considering H1(t) in Eq. (16), and we have

H1(t) = log
D(u(t)δ(t))

D(δ(t))
− v(δ(t))�

(
θ√

v(δ(t))a(t)

)

by the definition of the function �(·) in Eq. (11) and by u(t) = e
θ√

v(δ(t))a(t) . Then we
can easily verify that

A1(t) = a(t)H1(t) + a(t)

(
log

D(u(t)δ(t))
D(δ(t))

+ Rn(u(t), t)

1 + Rn(1, t)
− log

D(u(t)δ(t))

D(δ(t))

)

= a(t)H1(t) + a(t) log

(
1 + Rn(u(t), t)

D(δ(t))

D(u(t)δ(t))

)
− a(t) log(1 + Rn(1, t)),

where, since a(t) → 0, a(t)H1(t) → 0 by Eq. (16), and a(t) log(1 + Rn(1, t)) → 0
by Eq. (10) with u = 1. Moreover, we have

lim
t→∞ Rn(u(t), t)

D(δ(t))

D(u(t)δ(t))
= 0;

in fact this is trivial if n = 0 and, if n ≥ 1, we have

0 ≤ |Rn(u(t), t)| D(δ(t))

D(u(t)δ(t))

=
n−1∑
k=0

∣∣∣∣dk,k(u(t)δk(t))
k

Dk(δk(t))
− dk(u(t)δ(t))k

D(δ(t))

∣∣∣∣ D(δ(t))

D(u(t)δ(t))

=
n−1∑
k=0

∣∣∣∣∣∣
dk,k(u(t)δk(t))

k

Dk(δk(t))

dk(u(t)δ(t))k

D(δ(t))

− 1

∣∣∣∣∣∣
dk(u(t)δ(t))k

D(u(t)δ(t))

=
n−1∑
k=0

∣∣∣∣∣∣
dk,k(δk(t))

k

Dk(δk(t))

dk(δ(t))
k

D(δ(t))

− 1

∣∣∣∣∣∣
dk(u(t)δ(t))k

D(u(t)δ(t))

and, since u(t) → 1, the last expression tends to zero by the limit in Eq. (6), and by
the second limit in Eq. (7). Then the first limit in Eq. (21) is verified.

Now we consider the Taylor formula for �(·), and we have

�(η) = �(0)︸︷︷︸
=0

+�′(0)η + �′′(0)

2
η2 + o(η2)
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where o(η2)

η2 → 0 as η → 0. Then

A2(t) = v(δ(t))a(t)

(
�

(
θ√

v(δ(t))a(t)

)
− θ√

v(δ(t))a(t)

δ(t)D′(δ(t))
v(δ(t))D(δ(t))

)

= v(δ(t))a(t)

((
�′(0) − δ(t)D′(δ(t))

v(δ(t))D(δ(t))

)
θ√

v(δ(t))a(t)

+ �′′(0)

2

θ2

v(δ(t))a(t)
+ o

(
1

v(δ(t))a(t)

))

= √
a(t)θH2(t) + �′′(0)

2
θ2 + v(δ(t))a(t)o

(
1

v(δ(t))a(t)

)
,

and the second limit in Eq. (21) holds by Eq. (17) and a(t) → 0, and also by
v(δ(t))a(t) → ∞.

Finally, we have
A3(t) = √

a(t)θH3(t),

and the third limit in Eq. (21) holds by Eq. (18) and a(t) → 0.

We conclude with some consequences of Proposition 2, which are typical features
of moderate deviations.

Remark 4. The class of LDPs in Proposition 2 fill the gap between two following
asymptotic behaviors.

1. The weak convergence of
{

N(t)−E[N(t)]√
v(δ(t))

: t > 0
}

to the centered Normal dis-

tribution with variance �′′(0) (in fact the proof of Proposition 2 still works if
a(t) = 1 and, in such a case, the first condition in Eq. (1) fails).

2. The convergence of
{

N(t)−E[N(t)]
v(δ(t))

: t > 0
}

to zero (in probability) which corre-

sponds to the case a(t) = 1
v(δ(t))

(in such a case the second condition in Eq. (1),
with vt = v(δ(t)), fails).

Actually in the second case we have in mind cases in which the limit

lim
t→∞

E[N(t)]
v(δ(t))

= �′(0) (22)

holds. To better explain this fact we remark that, if the limit in Eq. (22) holds, then
we have

lim
t→∞

1

v(δ(t))
logE

[
eθ(N(t)−E[N(t)])]

= lim
t→∞

1

v(δ(t))
logE

[
eθN(t)

]
− θ

E[N(t)]
v(δ(t))

= �(θ) − θ�′(0)

for all θ ∈ R (here we take into account the limit in Eq. (13)); then, if we
apply the Gärtner–Ellis theorem (Theorem 1), the family of random variables
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N(t)−E[N(t)]

v(δ(t))
: t > 0

}
satisfies the LDP with speed v(δ(t)) and good rate function

J defined by

J (y) := sup
θ∈R

{θy − (�(θ) − θ�′(0))} = �∗(y + �′(0)),

and the rate function J uniquely vanishes at y = 0 (because �∗(x) uniquely vanishes
at x = �′(0)).

4 Application of results to some fractional counting processes

In this section we present two examples of applications of our results to some frac-
tional counting processes found in the literature; so we refer to the content of Sec-
tion 2.2. The first example (in Section 4.1) concerns the basic model, i.e. the case
n = 0; the second example (in Section 4.2) depends on two sequences of parameters
{αj : j ≥ 0} and {α̃j : j ≥ 0} satisfying suitable conditions. So, in Section 4.2.2,
we discuss a class of cases for which such conditions fail, and we cannot refer to a
straightforward application of our results because the hypotheses of the Gärtner–Ellis
theorem (Theorem 1) fail.

4.1 An example related to the basic model

A reference for this example is [20]; some other connections with the literature are
presented below in the last paragraph of this section. In this example we have n = 0.
For β, γ, λ > 0 and α ∈ (0, 1], we set

dk := λk(γ )k

k!�(αk + β)
,

where (γ )k is the rising factorial; therefore we get

D(u) = E
γ
α,β(λu),

where E
γ
α,β(·) is the Prabhakar function.

We start with a discussion on Condition 1. Moreover we discuss Eqs. (16), (17)
and (18) in Proposition 2; in this case we assume that γ is a positive integer.

Discussion on Condition 1. We start noting that (B2) and (B3) trivially holds. More-
over, as far as (B1) is concerned, we have

v(δ(t)) := (δ(t))1/α and �(u) := (λu)1/α,

and therefore we have �(θ) = λ1/α(eθ/α − 1)
(23)

(we refer to Eq. (2) for the limit in Eq. (5)). Note that the function v(·) in Eq. (23)
is regularly varying with index � = 1

α
; in fact (see Remark 3) we have �(u) =

�(1)v̄(u) with v̄(u) = u1/α and �(1) = λ1/α .
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Discussion on Eqs. (16), (17) and (18) in Proposition 2 (when γ is a positive integer).
In view of what follows, we remark that, by Eqs. (3)–(4) and d

(γ )
γ,α,β = 1, we have

E
γ+1
α,β (u) = 1

αγ γ !

⎛
⎝E1

α,β−γ (u) +
γ−1∑
j=0

d
(γ )

j,α,βE1
α,β−j (u)

⎞
⎠

= eu1/α

αγ+1γ !

⎛
⎝u

γ+1−β
α +

γ−1∑
j=0

d
(γ )

j,α,βu
j+1−β

α + O(e−u1/α

/u)

⎞
⎠

= eu1/α
u

γ+1−β
α

αγ+1γ !

⎛
⎝1 +

γ−1∑
j=0

d
(γ )

j,α,βu
j−γ

α + o(u−1/α)

⎞
⎠

= eu1/α
u

γ+1−β
α

αγ+1γ !
(

1 + O(u−1/α)
)

. (24)

We start with Eq. (16). We take u(t) → 1 as t → ∞ and, by Eq. (24), we have

H1(t) = log
E

γ
α,β (λu(t)δ(t))

E
γ
α,β(λδ(t))

− (δ(t))1/α(λ1/α(u(t))1/α − λ1/α)

= log
e(λu(t)δ(t))1/α

(λu(t)δ(t))
γ−β

α

(
1 + O((u(t)δ(t))−1/α)

)
e(λδ(t))1/α

(λδ(t))
γ−β

α

(
1 + O((δ(t))−1/α)

)
− (λδ(t))1/α((u(t))1/α − 1)

= γ − β

α
log u(t) + log

(
1 + O((u(t)δ(t))−1/α)

)
− log

(
1 + O((δ(t))−1/α)

)
→ 0 (as t → ∞).

Thus H1(t) is bounded and Eq. (16) holds.
Now we consider Eq. (17). We recall that

D′(u) = λ
d

du
E

γ
α,β(λu) = λγE

γ+1
α,α+β(λu)

(see, e.g., [16, Eq. (1.9.5) with n = 1]). Then, since �′(0) = λ1/α

α
, again by Eq. (24)

we get

H2(t) =
√

(δ(t))1/α

(
�′(0) − δ(t)λγE

γ+1
α,α+β(λδ(t))

(δ(t))1/αE
γ
α,β(λδ(t))

)

= (δ(t))1/(2α)

(
λ1/α

α

−
(δ(t))1−1/αλγ

e(λδ(t))1/α
(λδ(t))

γ+1−α−β
α

αγ+1γ !
(
1 + O((δ(t))−1/α)

)
e(λδ(t))1/α

(λδ(t))
γ−β

α

αγ (γ−1)!
(
1 + O((δ(t))−1/α)

)
⎞
⎟⎠
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= (δ(t))1/(2α)

(
λ1/α

α
− λ1/α

α

(
1 + O((δ(t))−1/α)

1 + O((δ(t))−1/α)

))

= λ1/α

α
(δ(t))1/(2α) O((δ(t))−1/α)

1 + O((δ(t))−1/α)

= λ1/α

α

O((δ(t))−1/(2α))

1 + O((δ(t))−1/α)
→ 0 (as t → ∞).

Thus H2(t) is bounded and Eq. (17) holds.

Remark 5. We have just shown that H2(t) → 0 as t → ∞; then we can immediately
verify the limit in Eq. (22) in Remark 4 noting that

H2(t) = √
v(δ(t))

(
�′(0) − E[N(t)]

v(δ(t))

)
and v(δ(t)) → ∞.

We conclude with Eq. (18) which can be immediately verified; in fact we have
H3(t) = 0 because n = 0, and therefore H3(t) is bounded.

Connections with the literature. If we set β = γ = 1 and δ(t) = tα , we recover the
case in [1, Section 4], and therefore the case in [2] with m = 1. Moreover the function
� in Eq. (23) coincides with the function �α,λ(θ) in the proof of Proposition 4.1 in
[1] and with the function �(θ) in [2, Eq. (7)] specialized to the case m = 1 (in both
cases the parameter ν in [1] and [2] coincides with α here). In particular, we recover
the case of Proposition 2 in [2] with m = 1 by applying Proposition 2 to the example
in this section with β = γ = 1 and δ(t) = tα .

We also note that, by Eq. (23), we get

�′(0) = λ1/α

α
and �′′(0) = λ1/α

α2 .

In particular, the equality �′′(0) = λ1/α

α2 coincides with the equality in [2, Eq. (9)]
for the matrix C specialized to the case m = 1 (and therefore the matrix reduces to a
number); in fact, if we consider α in place of the parameter ν in [2], we get

c(α) := 1

α

(
1

α
− 1

)
λ1/α + 1

α
λ1/α = λ1/α

α2 .

4.2 An example with eventually constant parameters
A reference for this example is [10]; more precisely we refer to the definition in (3.5)
therein. Here we assume that n ≥ 1; in fact, if n = 0, we have a particular case of
Example 1. For λ > 0 and for some {αj : j ≥ 0} with αj ∈ (0, 1] for all j ≥ 0, we
set

dk,j := λk

�(αj k + 1)
(for all k, j ≥ 0);

therefore we get
Dj(u) = E1

αj ,1(λu),

where E1
αj ,1(·) is the Mittag-Leffler function (with α = αj ).
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As far as the functions {δj (·) : j ≥ 0} are concerned, here we consider the case

δj (t) := t α̃j

for some α̃j ∈ (0, 1] (for all j ≥ 0). Note that the parameters {α̃j : j ≥ 0} allow to
have a generalization of the case in [10, Eq. (3.5)], which can be recovered by setting
α̃j = 1 (for all j ≥ 0).

4.2.1 On the conditions in Section 3
We start with a discussion on Condition 1. Moreover we discuss Eqs. (16), (17)
and (18) in Proposition 2. In particular, as far as Condition 1 is concerned, we present
sufficient conditions on the parameters {αj : j ≥ 0} and {α̃j : j ≥ 0} in order to have
(B3); moreover, in order to explain what can happen when these sufficient conditions
fail, a class of cases is studied in detail in the next Section 4.2.2.

Discussion on Condition 1. We start with (B1). It is easy to check that we have to
consider the following restrictions on the parameters that do not appear in [10]: there
exist n ≥ 1 and α̃, α ∈ (0, 1] such that

α̃j = α̃ and αj = α for all j ≥ n.

Thus we have
δ(t) = t α̃

and, for j ≥ n, we can refer to the application to fractional counting processes in
Section 4.1 with β = γ = 1; thus we set

dk := λk

�(αk + 1)
(for all k ≥ 0),

and we have
D(u) := E1

α,1(λu).

Then, referring to the statement above with Eq. (23) (with β = γ = 1), we can say
that (B1) holds with

v(t) = t1/α and �(u) = (λu)1/α;
thus, in particular, we have

v(δ(t)) = t α̃/α.

Condition (B2) trivially holds because all the coefficients {dk,j : k, j ≥ 0} are
positive. We also note that the limits in Eq. (7) hold; in fact (see Remark 2) we have

dk,k(δk(t))
k

Dk(δk(t))
= λk

�(αkk + 1)

(t α̃k )k

E1
αk,1

(λt α̃k )
→ 0 (as t → ∞) (25)

and
dk(δ(t))

k

D(δ(t))
= λk

�(αk + 1)

(t α̃)k

E1
α,1(λt α̃)

→ 0 (as t → ∞), (26)

where the limits hold by Eq. (4) with u = λtα̃k and u = λtα̃ .
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Finally we discuss (B3). We trivially have dk > 0 and, moreover,

dk,k(δk(t))
k

Dk(δk(t))

dk(δ(t))
k

D(δ(t))

=
λk

�(αkk+1)
(t α̃k )k

E1
αk,1(λt α̃k )

λk

�(αk+1)
(t α̃ )k

E1
α,1(λt α̃)

= �(αk + 1)

�(αkk + 1)
t(α̃k−α̃)k

E1
α,1(λt α̃)

E1
αk,1

(λt α̃k )
;

thus, by taking into account again Eq. (4) with u = λtα̃k and u = λtα̃ , the limit in
Eq. (6) holds if, for all k ∈ {0, 1, . . . , n − 1}, we have

α̃

α
− α̃k

αk

< 0 (27)

or
α̃

α
− α̃k

αk

= 0 and α̃k − α̃ < 0.

Discussion on Eqs. (16), (17) and (18) in Proposition 2. For Eqs. (16) and (17) we
can refer to the discussion for Example 1, with β = γ = 1. For Eq. (18) we start
noting that

H3(t) = 1√
v(δ(t))

(
δ(t)D′(δ(t))

D(δ(t))
− E[N(t)]

)

= 1√
v(δ(t))

⎛
⎜⎝∑

k≥1

k
dk(δ(t))

k

D(δ(t))
−

∑
k≥1

k
dk,k(δk(t))

k

Dk(δk(t))

⎛
⎝∑

k≥0

dk,k(δk(t))
k

Dk(δk(t))

⎞
⎠−1

⎞
⎟⎠ .

We remark that, by Eq. (14) with u = 1,

∑
k≥0

dk,k(δk(t))
k

Dk(δk(t))
= 1 + Rn(1, t);

thus we can easily check that

H3(t) = (1 + Rn(1, t))−1

√
v(δ(t))

×
⎛
⎝(1 + Rn(1, t))

∑
k≥1

k
dk(δ(t))

k

D(δ(t))
−

∑
k≥1

k
dk,k(δk(t))

k

Dk(δk(t))

⎞
⎠

= (1 + Rn(1, t))−1

√
v(δ(t))

⎛
⎝Rn(1, t)

∑
k≥1

k
dk(δ(t))

k

D(δ(t))

+
⎛
⎝∑

k≥1

k
dk(δ(t))

k

D(δ(t))
−

∑
k≥1

k
dk,k(δk(t))

k

Dk(δk(t))

⎞
⎠
⎞
⎠

= (1 + Rn(1, t))−1Rn(1, t)
δ(t)D′(δ(t))

v(δ(t))D(δ(t))

√
v(δ(t))



224 C. Macci et al.

+ (1 + Rn(1, t))−1

√
v(δ(t))

n−1∑
k=1

k

(
dk(δ(t))

k

D(δ(t))
− dk,k(δk(t))

k

Dk(δk(t))

)
.

Then we have the following statements.

• dk(δ(t))
k

D(δ(t))
,

dk,k(δk(t))
k

Dk(δk(t))
→ 0 by Eqs. (25) and (26).

• By Eq. (14) with u = 1 (and by Eqs. (25) and (26) again)

Rn(1, t) =
n−1∑
k=0

(
λk

�(αkk + 1)

(t α̃k )k

E1
αk,1

(λt α̃k )
− λk

�(αk + 1)

(t α̃)k

E1
α,1(λt α̃)

)
→ 0;

actually, as it was explained for Eqs. (25) and (26), we can say that Rn(1, t)→ 0
exponentially fast, and therefore

Rn(1, t)
√

v(δ(t)) → 0,

because v(δ(t)) = t α̃/α .

• δ(t)D′(δ(t))
v(δ(t))D(δ(t))

→ �′(0), because we can refer to the limit in Eq. (22) stated in
Remark 5 (for the previous example) with β = γ = 1.

In conclusion, H3(t) tends to zero, and therefore it is bounded. Thus Eq. (18) is
verified.

4.2.2 A choice of the parameters for which Eq. (27) fails
In this section we illustrate what can happen if Eq. (27) fails. For simplicity we con-
sider the case n = 1; however we expect to have a similar situation even if n ≥ 2
(but the computations are more complicated). Thus we consider the framework in
Section 4.2 with n = 1 and

α̃

α
− α̃0

α0
> 0.

We recall that d0, d0,0 > 0. The aim is to show that, for all θ ∈ R, there exists the
limit

�(θ) := lim
t→∞

1

v(δ(t))
logE

[
eθN(t)

]
= lim

t→∞
1

v(δ(t))
log

∑
k≥0

dk,k(e
θ δk(t))

k

Dk(δk(t))∑
j≥0

dj,j (δj (t))j

Dj (δj (t))

∈ R,

(28)
but the function �(·) is not differentiable and we cannot consider a straightforward
application of the Gärtner–Ellis theorem (Theorem 1), as we did in Proposition 1.

Firstly we analyze Rn(u, t) in Eq. (9). Under our hypotheses it does not depend
on u, and therefore we simply write R1(t); then we have

R1(t) := d0,0

D0(δ0(t))
− d0

D(δ(t))
= d0,0

E1
α0,1

(λt α̃0)
− d0

E1
α,1(λt α̃)

.
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So we can say that R1(t) > 0 eventually (i.e. for t large enough) and R1(t) → 0 as
t → ∞ by Eq. (4) with u = λtα̃0 and u = λtα̃ . Moreover,

1

v(δ(t))
log R1(t) = 1

t α̃/α
log

(
d0,0

E1
α0,1

(λt α̃0)
− d0

E1
α,1(λt α̃)

)

= 1

t α̃/α
log

⎛
⎜⎝ d0

E1
α,1(λt α̃)

⎛
⎜⎝

d0,0

E1
α0,1(λt α̃0 )

d0
E1

α,1(λt α̃)

− 1

⎞
⎟⎠
⎞
⎟⎠

= 1

t α̃/α
log

(
d0

E1
α,1(λt α̃)

)
+ 1

t α̃/α
log

⎛
⎜⎝

d0,0

E1
α0,1(λt α̃0 )

d0
E1

α,1(λt α̃)

− 1

⎞
⎟⎠

and

lim
t→∞

1

v(δ(t))
log R1(t) = lim

t→∞
1

t α̃/α
log(d0e

−(λt α̃)1/α

)

+ lim
t→∞

1

t α̃/α
log

(
d0,0

d0
e−(λt α̃0 )1/α0+(λt α̃)1/α − 1

)

= −λ1/α + lim
t→∞

−(λt α̃0)1/α0 + (λt α̃)1/α

t α̃/α
;

thus, by taking into account that α̃
α

− α̃0
α0

> 0, we get

lim
t→∞

1

v(δ(t))
log R1(t) = 0. (29)

Now we take into account Eq. (14). Then, by Eq. (5) in Condition 1, for all u > 0
we have

lim
t→∞

1

v(δ(t))
log

D(uδ(t))

D(δ(t))
= �(u) − �(1).

Then we can prove the following result.

Lemma 1. For all u > 0 we have limt→∞ 1
v(δ(t))

log
∑

k≥0
dk,k(uδk(t))

k

Dk(δk(t))
=

max {�(u) − �(1), 0}.
Proof. Firstly, by Eq. (14) with n = 1 and recalling that R1(t) > 0 eventually (i.e.
for t large enough), we can apply Lemma 1.2.15 in [7] and, by Eq. (29), for all u > 0,
we have

lim sup
t→∞

1

v(δ(t))
log

∑
k≥0

dk,k(uδk(t))
k

Dk(δk(t))

= max

{
lim sup
t→∞

1

v(δ(t))
log

D(uδ(t))

D(δ(t))
, lim sup

t→∞
1

v(δ(t))
log R1(t)

}
= max {�(u) − �(1), 0} .
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Moreover, in a similar way (actually here the application of Lemma 1.2.15 in [7] is
not needed), for all u > 0, we have

lim inf
t→∞

1

v(δ(t))
log

∑
k≥0

dk,k(uδk(t))
k

Dk(δk(t))

≥
{

lim inft→∞ 1
v(δ(t))

log D(uδ(t))
D(δ(t))

= �(u) − �(1) if u > 1,

lim inft→∞ 1
v(δ(t))

log R1(t) = 0 if u ∈ (0, 1],
which yields

lim inf
t→∞

1

v(δ(t))
log

∑
k≥0

dk,k(uδk(t))
k

Dk(δk(t))
≥ max {�(u) − �(1), 0} ,

because �(·) is an increasing function.

Finally, if we refer to the limit computed in Lemma 1 with u = eθ , there exists
the limit in Eq. (28) (for all θ ∈ R) and we have

�(θ) = max
{
�(eθ ) − �(1), 0

} − max
{
�(e0) − �(1), 0

}
= max

{
�(eθ ) − �(1), 0

}
.

Moreover, by Eqs. (11) and (23), we get

�(θ) = max {�(θ), 0} = max
{
λ1/α(eθ/α − 1), 0

}
.

In conclusion, the function �(·) is not differentiable at the origin θ = 0, indeed the

left derivative is equal to zero and the right derivative is equal to λ1/α

α
.

Acknowledgments

The authors wish to thank the anonymous referees for their careful reading and sug-
gestions to improve the presentation of the paper. The authors also thank Roberto
Garra, Roberto Garrappa, and Francesco Mainardi for some discussion on the Prab-
hakar function. We also thank Camilla Feroldi for the activity on her thesis (which
contains a preliminary version of some results in this paper) under the supervision of
Elena Villa.

Funding

All the authors acknowledge the support of Indam-GNAMPA (research project
“Stime asintotiche: principi di invarianza e grandi deviazioni”). Claudio Macci
and Barbara Pacchiarotti also acknowledge the support of the MIUR Excellence
Department Project awarded to the Department of Mathematics, University of Rome
Tor Vergata (CUP E83C18000100006) and of University of Rome Tor Vergata
(research program “Beyond Borders”, project “Asymptotic Methods in Probability”
(CUP E89C20000680005)).



Asymptotic results for families of random variables having power series distributions 227

References

[1] Beghin, L., Macci, C.: Large deviations for fractional Poisson processes. Stat. Probab.
Lett. 83, 1193–1202 (2013). MR3041393. https://doi.org/10.1016/j.spl.2013.01.017

[2] Beghin, L., Macci, C.: Asymptotic results for a multivariate version of the alterna-
tive fractional Poisson process. Stat. Probab. Lett. 129, 260–268 (2017). MR3688542.
https://doi.org/10.1016/j.spl.2017.06.009

[3] Cahoy, D., Di Nardo, E., Polito, F.: Flexible models for overdispersed and underdis-
persed count data. Stat. Pap. 62, 2969–2990 (2021). MR4332214. https://doi.org/10.1007/
s00362-021-01222-7

[4] Consul, P.C., Shenton, L.R.: Some interesting properties of Lagrangian distri-
butions. Commun. Stat. 2, 263–272 (1973). MR0408069. https://doi.org/10.1080/
03610917308548270

[5] del Castillo, J., Pérez-Casany, M.: Weighted Poisson distributions for overdispersion
and underdispersion situations. Ann. Inst. Stat. Math. 50, 567–585 (1998). MR1664520.
https://doi.org/10.1023/A:1003585714207

[6] del Castillo, J., Pérez-Casany, M.: Overdispersed and underdispersed Poisson gener-
alizations. J. Stat. Plan. Inference 134, 486–500 (2005). MR2200069. https://doi.org/
10.1016/j.jspi.2004.04.019

[7] Dembo, A., Zeitouni, O.: Large Deviations Techniques and Applications, 2nd edn.
Springer, New York (1998). MR1619036. https://doi.org/10.1007/978-1-4612-5320-4

[8] Embrechts, P., Klüppelberg, C., Mikosch, T.: Modelling Extremal Events. Springer,
Berlin (1997). MR1458613. https://doi.org/10.1007/978-3-642-33483-2

[9] Gajda, J., Beghin, L.: Prabhakar Lévy processes. Stat. Probab. Lett. 178, 109162 (2021).
9 pp. MR4279303. https://doi.org/10.1016/j.spl.2021.109162

[10] Garra, R., Orsingher, E., Polito, F.: State dependent fractional point processes. J. Appl.
Probab. 52, 18–36 (2015). MR3336844. https://doi.org/10.1239/jap/1429282604

[11] Giusti, A., Colombaro, I., Garra, R., Garrappa, R., Polito, F., Popolizio, M., Mainardi,
F.: A practical guide to Prabhakar fractional calculus. Fract. Calc. Appl. Anal. 23, 9–54
(2020). MR4069921. https://doi.org/10.1515/fca-2020-0002

[12] Gorenflo, R., Kilbas, A.A., Mainardi, F., Rogosin, S.V.: Mittag-Leffler Functions, Re-
lated Topics and Applications. Springer, Heidelberg (2014). MR3244285. https://doi.org/
10.1007/978-3-662-43930-2

[13] Gupta, P.L., Gupta, R.C., Ong, S.H., Srivastava, H.M.: A class of Hurwitz-Lerch zeta dis-
tributions and their applications in reliability. Appl. Math. Comput. 196, 521–531 (2008).
MR2388708. https://doi.org/10.1016/j.amc.2007.06.012

[14] Gupta, R.C.: Modified power series distribution and some of its applications. Sankhya,
Ser. B 36, 288–298 (1974). MR0391334

[15] Kemp, A.W.: Families of power series distributions, with particular reference to the Lerch
family. J. Stat. Plan. Inference 140, 2255–2259 (2010). MR2609484. https://doi.org/
10.1016/j.jspi.2010.01.021

[16] Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Dif-
ferential Equations. Elsevier, Boston (2006). MR2218073

[17] Luo, M.J., Parmar, R.K., Raina, R.K.: On extended Hurwitz-Lerch zeta function. J. Math.
Anal. Appl. 448, 1281–1304 (2017). MR3582282. https://doi.org/10.1016/j.jmaa.2016.
11.046

http://www.ams.org/mathscinet-getitem?mr=3041393
https://doi.org/10.1016/j.spl.2013.01.017
http://www.ams.org/mathscinet-getitem?mr=3688542
https://doi.org/10.1016/j.spl.2017.06.009
http://www.ams.org/mathscinet-getitem?mr=4332214
https://doi.org/10.1007/s00362-021-01222-7
https://doi.org/10.1007/s00362-021-01222-7
http://www.ams.org/mathscinet-getitem?mr=0408069
https://doi.org/10.1080/03610917308548270
https://doi.org/10.1080/03610917308548270
http://www.ams.org/mathscinet-getitem?mr=1664520
https://doi.org/10.1023/A:1003585714207
http://www.ams.org/mathscinet-getitem?mr=2200069
https://doi.org/10.1016/j.jspi.2004.04.019
https://doi.org/10.1016/j.jspi.2004.04.019
http://www.ams.org/mathscinet-getitem?mr=1619036
https://doi.org/10.1007/978-1-4612-5320-4
http://www.ams.org/mathscinet-getitem?mr=1458613
https://doi.org/10.1007/978-3-642-33483-2
http://www.ams.org/mathscinet-getitem?mr=4279303
https://doi.org/10.1016/j.spl.2021.109162
http://www.ams.org/mathscinet-getitem?mr=3336844
https://doi.org/10.1239/jap/1429282604
http://www.ams.org/mathscinet-getitem?mr=4069921
https://doi.org/10.1515/fca-2020-0002
http://www.ams.org/mathscinet-getitem?mr=3244285
https://doi.org/10.1007/978-3-662-43930-2
https://doi.org/10.1007/978-3-662-43930-2
http://www.ams.org/mathscinet-getitem?mr=2388708
https://doi.org/10.1016/j.amc.2007.06.012
http://www.ams.org/mathscinet-getitem?mr=0391334
http://www.ams.org/mathscinet-getitem?mr=2609484
https://doi.org/10.1016/j.jspi.2010.01.021
https://doi.org/10.1016/j.jspi.2010.01.021
http://www.ams.org/mathscinet-getitem?mr=2218073
http://www.ams.org/mathscinet-getitem?mr=3582282
https://doi.org/10.1016/j.jmaa.2016.11.046
https://doi.org/10.1016/j.jmaa.2016.11.046


228 C. Macci et al.

[18] Paris, R.B.: Asymptotics of the special functions of fractional calculus. In: Handbook of
Fractional Calculus with Applications, vol. 1, pp. 297–325. De Gruyter, Berlin (2019).
MR3888406

[19] Patil, G.P.: Certain properties of the generalized power series distribution. Ann. Inst. Stat.
Math. 14, 179–182 (1962). MR0156395. https://doi.org/10.1007/BF02868639

[20] Pogány, T.K., Tomovski, Ž.: Probability distribution built by Prabhakar function. Related
Turán and Laguerre inequalities. Integral Transforms Spec. Funct. 27, 783–793 (2016).
MR3544402. https://doi.org/10.1080/10652469.2016.1201817

http://www.ams.org/mathscinet-getitem?mr=3888406
http://www.ams.org/mathscinet-getitem?mr=0156395
https://doi.org/10.1007/BF02868639
http://www.ams.org/mathscinet-getitem?mr=3544402
https://doi.org/10.1080/10652469.2016.1201817

	Introduction
	Preliminaries
	On large deviations
	On special functions for some fractional counting processes

	Model and results
	Application of results to some fractional counting processes
	An example related to the basic model
	An example with eventually constant parameters
	On the conditions in Section 3
	A choice of the parameters for which Eq. (?? fails



