
Received: 23 May 2022 Revised: 6 February 2023 Accepted: 10 February 2023 Published on: 3 March 2023

DOI: 10.1002/net.22145

R E S E A R C H A R T I C L E

On optimally solving sub-tree scheduling for wireless sensor
networks with partial coverage: A branch-and-cut algorithm

Nicola Bianchessi

Dipartimento di Informatica, Università degli

Studi di Milano, Milan, Italy

Correspondence
Nicola Bianchessi, Dipartimento di Informatica,

Università degli Studi di Milano, Via Celoria 18,

I-20133 Milan, Italy.

bianchessi@di.unimi.it

Abstract
Given a wireless sensor network, we consider the problem to minimize its total

energy consumption over consecutive time slots with respect to communication

activities. Nonempty and disjoint subsets of nodes are required to be active and

connected under a tree topology configuration in the different time slots, and each

network node must be active in a unique time slot. Moreover, the power required

by the same pair of network nodes to communicate on the associated direct chan-

nel may vary in the different time slots. The problem has been recently introduced

in the literature under the name Sub-Tree Scheduling for Wireless Sensor Networks

with Partial Coverage. We focus on the exact solution of the problem. We present a

branch-and-cut (BC) algorithm based on a novel integer linear programming formu-

lation which allows avoiding the introduction of symmetries in the solution space. In

particular, the algorithm relies on an efficient and nontypical separation algorithm

for known valid inequalities, and on an easy-to-implement primal bound heuristic.

The effectiveness of the BC algorithm is empirically shown through an extensive

experimental analysis involving 300 newly generated benchmark instances with up

to 200 network nodes and 8 time slots. Additionally, the experimental results show

that the BC algorithm represents a valid computational tool to benchmark the per-

formance of heuristics addressing the problem, and can be used in practice, as an

heuristic solver, to tackle problem instances that are not too large.

KEYWORDS

branch-and-cut algorithm, consecutive time slots, energy consumption minimiza-

tion, partial coverage, sub-tree scheduling, wireless sensor network

1 INTRODUCTION

A wireless sensor network (WSN) consists of sensor devices deployed across a geographic area to sense the environment by mea-

suring physical parameters such as temperature, motion and so forth. Energy consumption is among the major issues concerning

the design/management of WSNs [2, 25]. In fact, WNSs are usually deployed in remote areas where the replacement of batteries

in sensors is difficult, if not impossible. Thus, by reducing energy consumption in WNSs it is possible to increase their lifetime.

Each sensor node in a WSN performs three basic activities: sensing, computation (processing), and communication. It is

usually assumed that in each network node energy is primarily consumed due to communication activities (sending/receiving

data), and that the energy to perform sensing and computation is negligible compared to the former [7, 20, 21].

Kulshrestha and Mishra [16] classify the approaches aimed at reducing energy consumption in WSNs into two groups:

energy efficiency [3] and energy balancing [13] approaches. In the taxonomy proposed, the approaches belonging to the subclass

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original

work is properly cited.

© 2023 The Authors. Networks published by Wiley Periodicals LLC.

Networks. 2023;81:499–513. wileyonlinelibrary.com/journal/net 499

https://orcid.org/0000-0002-5722-5476
http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/journal/NET
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fnet.22145&domain=pdf&date_stamp=2023-03-03


500 BIANCHESSI

energy balancing/duty cycling/sleep scheduling are based on the idea that network nodes may be alternatively put in active and

sleep mode for a certain time interval, so as to reduce their energy consumptions in sleep mode (mode in which sensing and

communication activities are interrupted). To this subclass of approaches belongs those discussed in [1, 6, 10, 12, 17, 19, 22,

24, 26]. We focus on the optimization problem introduced by [1] under the name Sub-Tree Scheduling for Wireless Sensor

Networks with Partial Coverage (STSWSN-PC).

The STSWSN-PC seeks for the minimization of the total energy consumption of a WSN over consecutive time slots with

respect to communication activities (e.g., of the total connectivity power costs associated with the use of a WSN over consecutive

time slots). Requirements defining the problem are that nonempty and disjoint subsets of nodes have to be active and connected

under a tree topology configuration in the different time slots (while the remaining nodes are temporary put into sleep mode),

and that each network node must be active in a unique time slot. The operating scenario/policy assumed is the following. Sensors

are deployed in the geographic area that has to be monitored. The deployment of the sensors is defined a priori according to the

specific practical application at hand. Given a planning horizon T = {1, … , |T|} of |T| time slots, the nodes that are active

in time slot t ∈ T perform sensing and communication activities, while the remaining nodes are put in sleep mode to save

energy. In an additional round at time slot |T|+ 1, all nodes become active and may communicate among themselves so that all

the necessary information concerning the monitored area can be collected and elaborated. Then, the whole process is repeated

iteratively for the entire lifetime of the network. In particular, the operating policy does not guarantee that the coverage level

of sensors is, continuously over time, 100% of the geographic area. This is the concept of partial coverage. However, requiring

that a nonempty subset of nodes have to be active in each time slot ensures a minimum level of monitoring/coverage of the area

over time. Furthermore, note that the operating policy implies to set the duration of the time slots such that the information

collected in time slot 1 do not become obsolete before the additional round in time slot |T|+ 1. (A similar operating policy has

been considered also in [23] to the aim of maximizing the coverage of the sensed area for each subset of nodes, but without

considering the connectivity of the active nodes.) Finally, as for energy consumption, the power required by the same pair of

network nodes to communicate on the associated direct channel may vary in the different time slots. Adasme [1] assumed that

connectivity power costs may be estimated with effective prediction methods (taking into account all necessary parameters)

for relatively long planning horizons (see, i.e., [4]), so that power measurements do not become invalid as soon as they are

determined. For a more in-depth discussion about the motivations behind the study of the problem, and an extensive description

of its technicalities, we refer the interested readers to [1].

Besides introducing the problem, an additional major contribution of [1] consists of presenting two effective meta-heuristics,

based on variable neighbor search [11, 18] and simulating annealing [14] paradigm, respectively, and making use of the

Kruskal’s algorithm [15]. The heuristics are tested on large problem instances, defined by considering up to 400 network nodes

and 8 time slots, with a time limit of 2 h. According to the results obtained, the main finding of the author is that the heuristic

based on variable neighbor search has to be preferred when relatively high-quality solutions (w.r.t the total (connectivity) power

costs) must be computed quickly. Whereas, preference goes to the heuristic based on simulated annealing when minimizing the

total power costs is the major issue. Moreover, in order to optimally solve the STSWSN-PC, and/or provide computational tools

to benchmark the performance of the heuristics proposed, the author presented mixed integer quadratic/linear programming for-

mulations for the problem, to be solved by means of state-of-the-art commercial solvers. The best results are obtained by solving

a Mixed Integer Linear Programming (MILP) formulation by means of the state-of-the-art commercial MILP solver at hand.

In this study, we focus on the exact solution of the STSWSN-PC. Our overall/main contribution is the presentation of a

branch-and-cut (BC) algorithm which improves the state-of-the-art w.r.t. existing exact algorithms addressing the problem.

Particular contributions are:

• We model the problem by means of a novel ILP formulation which allows avoiding the introduction of symmetries in

the solution space. Even if the binary variables we consider are polynomial in number, the formulation is defined by an

exponential number of constraints. This excludes the possibility to explicitly define the formulation and solve it directly

through the MILP solver at hand, and in particular to use the solver as a black-box optimization tool. However, the

formulation allows the design of a BC algorithm in which the constraints exponential in number are temporarily ignored

at the beginning of the solution process, and then dynamically inserted into the formulation when violated by computed

(fractional/integer) solutions.

• The constraints exponential in number in the novel ILP formulation are the generalized version of the subtour elimination

constraints (GSECs), introduced by [8]. By exploiting the specific features of the STSWSN-PC, we devise an efficient

and nontypical separation algorithm for the GSECs that relies only on the computation of connected components.

• During the solution process, state-of-the-art commercial MILP solvers usually run internal (primal bound) heuristics

in order to compute, as quickly as possible, tight primal bounds and, consequently, speed up the convergence of the

whole solution process. When nonredundant constraints are removed from the formulation, like in our case, the solutions

computed by the internal heuristics may be infeasible. In order to make the most of the MILP solver at hand, we design an

 10970037, 2023, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/net.22145 by U

niversita D
i M

ilano, W
iley O

nline L
ibrary on [22/05/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



BIANCHESSI 501

easy-to-implement primal bound heuristic and embed it into the BC algorithm. The heuristic receives in input an integer

solution which is infeasible to the original problem, and makes it feasible in polynomial time. The value of the solution

computed may eventually improve the current primal bound and restrict the search space.

Experimental results support the validity of the contributions and are briefly illustrated in the following. We tested the BC

algorithm on 300 instances generated as described in [1], with up to 200 network nodes and 8 time slots. In particular, we allowed

only single-thread runs, so as to get deterministic results, and set the time for each run to 1 h. (i) All the instances with up to 60

(80) network nodes are solved to optimality with a maximum solution time of 44 (510) s. All but 2 instances with 100 network

nodes are optimally solved. (For the 2 nonsolved instances, the percentage optimality gap is about 2%.) (ii) Notably enough, the

BC algorithm was always able to compute valid upper (primal) and lower (dual) bounds (even with a time limit of 150 s). In [1],

with a time limit of 2 h, (i) the largest instances optimally solved consider up to 40 network nodes and 2 time slots, and (ii) feasible

solutions are computed only for instances with up 70 network nodes and 4 time slots. Moreover, as discussed in Section 4.2,

the experimental results show that the BC algorithm is a valid computational tool to benchmark the performance of heuristics

addressing the problem, and can be used in practice, as an heuristic solver, to tackle problem instances that are not too large.

The remainder of the article is organized as follows. In Section 2, we formally define the STSWSN-PC and provide the math-

ematical formulation that leads the basis for the branch-and-cut (BC) algorithm, which is discussed in Section 3. Experimental

results are presented in Section 4, before final conclusions are drawn in Section 5.

2 PROBLEM DEFINITION AND FORMULATION

2.1 Problem definition
Let T = {1, … , |T|} be a set of consecutive time slots of arbitrary duration. The STSWSN-PC can be defined over a sequence

of undirected, weighted, complete graphs Gt = (N,Et). All the graphs share a common node set N = {1, … , n} representing

the nodes of the WSN. Then, each graph Gt
is defined by its own set of edges E = {(i, j)|i < j, i, j ∈ N}, where edge (i, j)

represents the possibility to use a direct communication channel between nodes i and j, in time slot t, at a connectivity power

cost pt
ij. A solution s to the problem is defined by subsets of active nodes St

⊂ N, St ≠ ∅, t ∈ T , such that (i) in each St
nodes

are connected under a tree topology, (ii) St′ ∩ St′′ = ∅, t′ ≠ t′′, t′, t′′ ∈ T , and (iii) ∪t∈TSt = N. Given a feasible solution s to the

problem, let Et
⊆ Et

be the subset of edges selected in the solution w.r.t. time slot t ∈ T , and thus corresponding to the direct

communication channels ensuring the connection under a tree topology for the active nodes in St
, t ∈ T . The aim is to find a

solution s associated with the minimum total power costs p(s) =
∑

t∈T
∑

(i,j)∈E
t pt

ij. (It is worth mentioning that the formulation

presented in Section 2.2, and the branch-and-cut algorithm presented in Section 3, apply also for sparse graphs Gt = (N,Et). In

fact, as pointed out in [1], complete graphs may represent sparse ones by simply penalizing the edges not to be considered in

optimal solutions.) A sample instance of the problem is illustrated in Figure 1A, together with a corresponding optimal solution.

2.2 Mathematical formulation
We model the problem by means of a compact formulation that uses two sets of variables. Binary variables zt

i, which are equal

to 1 if node i is scheduled to be active in time slot t ∈ T , 0 otherwise, and binary variables xt
ij, which model whether a direct

communication channel is used between nodes i and j in time slot t ∈ T , xt
ij = 1, or not, xt

ij = 0. Then, define Et(S) as the subset

of edges of Et
having both endpoints in S ⊆ N. The formulation is as follows.

min

∑

t∈T

∑

(i,j)∈Et

pt
ijxt

ij, (1a)

s.t.
∑

t∈T
zt

i = 1, i ∈ N, (1b)

∑

(i,j)∈Et

xt
ij =

∑

i∈N
zt

i − 1, t ∈ T , (1c)

∑

j∈N|(i,j)∈Et

xt
ij ≤ (|N| − 1 − (|T| − 1))zt

i, i ∈ N, t ∈ T , (1d)

∑

(i,j)∈Et(S)
xt

ij ≤
∑

i∈S
zt

i − zt
h, S ⊂ N, |S| ≥ 2, h ∈ S, t ∈ T , (1e)

zt
i ∈ {0, 1}, i ∈ N, t ∈ T , (1f)

xt
ij ∈ {0, 1}, (i, j) ∈ Et

, t ∈ T . (1g)

 10970037, 2023, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/net.22145 by U

niversita D
i M

ilano, W
iley O

nline L
ibrary on [22/05/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



502 BIANCHESSI

(A)

(B)

FIGURE 1 Nonempty and disjoint subsets of active nodes connected under a tree topology configuration in the different time slots.

The objective function (1a) minimizes the total power costs. Constraints (1b) impose that each network node has to be active

in a unique time slot. Constraints (1c) ensure that the total number of edges selected for each time slot t ∈ T equals the total

number of active nodes minus one. This is the necessary condition to obtain a subtree in each time slot. Consistency among

the xt
ij and zt

i variables are imposed in constraints (1d) for each i ∈ N and t ∈ T . Coefficient (|N| − 1 − (|T| − 1)) comes from

the fact that an active node can be connected to at most |N| − 1 additional active nodes in each time slot, and that at least one

node has to be active in each time slot. Then, constraints (1e), the generalized version of the subtour elimination constraints

(GSECs) introduced by [8], impose that any connected component resulting from an assignment of binary values to variables

zt
i and xt

ij, t ∈ T , does not contain cycles. Thus, for any assignment of binary values to variables zt
i and xt

ij, t ∈ T , constraints

(1e), together with constraints (1c) and (1d), guarantee the definition of subsets of active nodes St
⊂ N, St ≠ ∅, connected under

 10970037, 2023, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/net.22145 by U

niversita D
i M

ilano, W
iley O

nline L
ibrary on [22/05/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



BIANCHESSI 503

a tree topology in each time slot t ∈ T . In particular, St ≠ ∅ is implied by (1c). Finally, constraints (1f) and (1g) define the

domains of the variables.

Modeling the problem directly on graphs Gt = (N,Et), t ∈ T , avoids introducing symmetries in the solution space. Never-

theless, the number of constraints (1e) is exponential in the cardinality of N. This excludes the possibility to explicitly define

model (1) and solve it directly through a commercial Mixed-Integer Linear Programming (MILP) solver, even for relatively

small instances of the problem. Thus, we designed a branch-and-cut (BC) algorithm, based on model (1), in which constraints

(1e) are dynamically inserted into the formulation when violated by fractional/integer solutions.

3 BRANCH-AND-CUT ALGORITHM

In this section, we present the main components of the branch-and-cut (BC) algorithm we devised for solving the STSWSN-PC.

The BC algorithm considers the initial Linear Programming (LP) relaxation of model (1) defined by (1a), (1b)-(1d), and

the linear relaxation of the integrality constraints (1f) and (1g). For the presentation of the components, we denote by s = (z, x)
the (fractional) solution to current LP relaxation (the initial LP relaxation, eventually augmented by branching and cutting

constraints). Then, we define Et
⊆ Et

as the subset of edges corresponding to the direct communication channels to use in time

slot t ∈ T according to solution s, that is, edges (i, j) ∈ Et
such that 0 < xt

ij ≤ 1. Finally, we define Ht = (Nt
⊂ N,Et) as the

graph induced by edges in Et
.

3.1 Static valid inequalities
In order to strengthen the initial LP relaxation, we include in it constraints (2a) and (2b), bounding respectively the minimum

and maximum cardinality of the subsets of active nodes St
, t ∈ T .

∑

i∈N
zt

i ≥ 1, t ∈ T , (2a)

∑

i∈N
zt

i ≤ |N| − (|T| − 1), t ∈ T . (2b)

Similarly, we impose constraints bounding the maximum number of direct communication channels that can be established per

time slot, (3a), and in total, (3b).

∑

(i,j)∈Et

xt
ij ≤ (|N| − 1 − (|T| − 1)), t ∈ T , (3a)

∑

t∈T

∑

(i,j)∈Et

xt
ij ≤ |N| − 1. (3b)

3.2 Separation algorithm for the GSECs
The separation algorithm we devised is exact for integer solutions, in the sense that at least one violated GSEC is found if one

exists, and heuristic when the solution to the current LP relaxation is fractional. In this latter case, when the algorithm does not

compute any violated GSEC, branching is performed to remove the current fractional solution from the search space.

The main steps of the algorithm are discussed in the following.

Step 1

By applying the algorithm described in [9, p. 222], connected components (CCs) are computed for each graph Ht = (Nt
,Et),

t ∈ T .

Step 2

When the solution is integer and the number of CCs in each graph Ht = (Nt
,Et), t ∈ T , is equal to 1, no violated GSEC exists.

This is due to constraints (1c), which ensure that a unique CC in a graph Ht
is a tree. Thus, the solution is feasible to (1). The

separation algorithm terminates. Otherwise, the algorithm performs the following step.

Step 3

This step is reached if (i) the solution is fractional (independently of the number of CCs in each graph Ht = (Nt
,Et), t ∈ T)

or (ii) when the solution is integer and the number of CCs is greater than 1 for at least one graph Ht
, t ∈ T . Let 𝜅 be an

 10970037, 2023, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/net.22145 by U

niversita D
i M

ilano, W
iley O

nline L
ibrary on [22/05/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



504 BIANCHESSI

(A) (B)

(C) (D)

FIGURE 2 A fractional solution for the instance described in Figure 1A. Next to the nodes (edges) are reported the nonzero values of the corresponding zt

(xt
ij) variables. The solution does not violate any GSEC that can be defined on the basis of the connected components appearing in the different time slots.

integer parameter, equal to 2 if the solution is integer, and 1 otherwise. Then, let 
t = {Ct

1, … ,Ct
|

t
|
} represent the set of the

CCs in time slot t ∈ T . For each t ∈ T such that |
t
| ≥ 𝜅, the algorithm considers each connected component Ct

i ∈ 
t

and

checks whether
∑

(i,j)∈E
t
(C

t
i)

xt
ij >

∑

i∈C
t zt

i − zt
h for some h ∈ Ct

or not. More precisely, when
∑

(i,j)∈E
t
(C

t
i)

xt
ij − (

∑

i∈C
t zt

i − zt
h)

is greater than 0.05 for some h ∈ Ct
, the violated GSEC associated with time slot t, subset of nodes Ct

, and node h∗ =
argmaxh∈C

t{
∑

(i,j)∈E
t
(C

t
) xt

ij−(
∑

i∈C
t zt

i − zt
h)} is inserted into the current LP relaxation. (For a given graph Ht

, it may happen that

GSECs for several connected components are added at the same time to the current LP relaxation.)

In case (i), the fractional values (z, x) characterizing solution s may allow the definition of CCs (eventually containing cycles)

that do not violate the corresponding GSECs (independently of the number of CCs in each graph Ht = (Nt
,Et), t ∈ T). This

is illustrated in Figure 2, in which the fractional solution represented is relative to the sample instance described in Figure 1A.

Moreover, values (z, x) may allow the definition of CCs (eventually not containing cycles) that do violate the corresponding

GSECs. This is shown in Figure 3, in which, always w.r.t. the instance described in Figure 1A, another fractional solution is

depicted.

On the contrary, in case (ii), as the number of CCs is greater than 1 for at least one graph Ht
, t ∈ T , the integer solution is

infeasible and, in particular, there must exist a connected component Ct∗
⊂ Nt∗

, t∗ ∈ T , for which edges in Et∗ (Ct∗ ) define a

cycle and, therefore, for which the corresponding GSEC is violated. In fact, let Ht′
be one of the graphs for which the number

of associated CCs is greater than 1. Each connected component Ct′
i ∈ 

t′
would not include cycles if |Et′(Ct′

i )| = |Ct′
i | − 1.

This means that the total number of edges associated with variables xt′
ij equal to 1 should be

∑

C
t′
i ∈

t′ |Ct′
i |− 1 =

∑
i∈N zt′

i − |
t′
|.

 10970037, 2023, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/net.22145 by U

niversita D
i M

ilano, W
iley O

nline L
ibrary on [22/05/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



BIANCHESSI 505

(A) (B)

(C) (D)

FIGURE 3 A fractional solution for the instance described in Figure 1A. Next to the nodes (edges) are reported the nonzero values of the corresponding zt

(xt
ij) variables. The connected components associated with violated GSECs are: {0, 5, 6} in time slot 1, and {0, 4} and {1, 2, 3, 6, 7, 9} in time slot 2.

However, constraints (1c), imposes
∑
(i,j)∈Et′ xt′

ij =
∑

i∈N zt′
i − 1. Thus, in time slot t′, further |

t′
| − 1 ≥ 1 edges are associated

with variables xt′
ij equal to 1. Each of these edges connect two nodes already (not directly) connected in some Ct′

i ∈  t′
,

defining thus a cycle. In case (ii), by applying Step 3, the algorithm is always able to compute the connected component Ct∗
.

An infeasible integer solution to the instance described in Figure 1A, including a connected component whose edges define a

cycle, is illustrated in Figure 4.

Notably enough, by exploiting the specific features of the STSWSN-PC, the separation algorithm relies only on the

computation of the CCs for each graph Ht = (Nt
,Et), t ∈ T .

3.3 Primal bound heuristic
In order to speed up the BC algorithm, we embedded into the algorithm a primal bound heuristic. The heuristic is triggered

whenever an integer solution violating the GSECs is found.

Again, we start from the CCs in each graph Ht = (Nt
,Et), t ∈ T .

For a given t ∈ T , when the number of CCs is greater than 1, we consider the set of CCs sorted in nonincreasing order

according to the cardinality of the components themselves, that is, the set 
t = {Ct

1, … ,Ct
|

t
|
} such that |Ct

i| ≥ |Ct
i+1|,

1 ≤ i ≤ |
t
| − 1. Then, for each Ct

i ∈ 
t
, we define a minimum cost spanning tree w.r.t. nodes in Ct

i and edges in Et(Ct
i).

To this aim, we apply an implementation of the Kruskal’s algorithm [15]. Finally, we iteratively merge all the trees associated

 10970037, 2023, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/net.22145 by U

niversita D
i M

ilano, W
iley O

nline L
ibrary on [22/05/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



506 BIANCHESSI

(A)
(B)

(C) (D)

FIGURE 4 An infeasible integer solution for the instance described in Figure 1A. Next to the nodes (edges) are reported the nonzero values of the

corresponding zt
(xt

ij) variables. In time slot 1, the edges of connected components {2, 6, 7, 9} define a cycle: the GSEC associated with the connected

component is violated.

with the CCs. More precisely, at iteration i < |
t
|, we merge the tree associated with the connected component Ct

i+1 with that

resulting from the merge of the trees associated with connected components Ct
k, k ≤ i. The merge is performed by considering

the cheapest edge in Et
joining 1-degree nodes of the two trees. The merge is always possible as each tree with n > 1 nodes has

at least two 1-degree nodes.

When a single tree spanning all the nodes in Nt
has been defined for each t ∈ T , a feasible solution s′ to (1) has been

computed. The value p(s′) may eventually improve the current primal bound and restrict the search space.

4 EXPERIMENTAL ANALYSIS

We tested the BC algorithm on instances generated as described in [1]. Problem instances are completely defined by undirected,

weighted, complete graphs G = (N,Et), t ∈ T [1, section 1]. Thus, for each instance, we generated complete undirected graphs

G = (N,Et) by associating with each edge (i, j) ∈ Et
an integer power connectivity cost pt

ij randomly drawn form the interval (0;

1000] 𝜇Ws. The magnitude of the interval allows to fairly compare the performance of the presented BC algorithm with those of

the exact algorithms proposed in [1]. We considered 10 instances for each |N| ∈ {20, 40, 60, 80, 100, 120, 140, 160, 180, 200}
and |T| ∈ {2, 4, 8}, for a total of 300 instances.

 10970037, 2023, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/net.22145 by U

niversita D
i M

ilano, W
iley O

nline L
ibrary on [22/05/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



BIANCHESSI 507

(A)

(B)

FIGURE 5 Solution of the linear relaxation of (1) plus constraints (2) and (3); root node of the branch-and-bound tree; subsets of instances with |N| ≤ 100.

The BC algorithm has been implemented in C++, by using CPLEX 20.1 Concert Technology, and compiled in release mode

with MS Visual Studio Community 2022. The experiments have been carried out on a 64-bit Windows PC, with the Intel Xeon

processor W-1250P, 4.10 GHz, and 32 GB of RAM. CPLEX built-in cuts have been used in all experiments. Due to numerical

instability we set IloCplex::NumericalEmphasis = CPX ON. Moreover, we set IloCplex::ParallelMode to

1 in order to force CPLEX to always use deterministic algorithms, and parameter IloCplex::Threads has been set to 1 in

order to get deterministic results. In fact, due to threads synchronization, by embedding user defined components into CPLEX,

its behavior become nondeterministic. For all the other CPLEX’s parameters, we kept their default values.

In order to assess the impact of the main components of the BC algorithm, and finalize its design, we have initially run

some preliminary experiments on a subset of the generated instances. Then, the performance of the final version of the BC

algorithm has been assessed on the full set of instances. The analysis of the results obtained is reported thereafter. Instances

and instance-wise detailed results concerning the experiments discussed in Section 4.2 are publicly available [5].

4.1 Preliminary experiments
We first compared the performance of the BC algorithm by allowing or not the separation of fractional solutions by means

of the algorithm described in Section 3.2, that is, the algorithm for the separation of the GSECs. We limited the performance

comparison to what concerns the solution of the LP relaxation at the root node of the branch-and-bound tree. To this aim, only

for this specific subset of preliminary experiments, we temporarily set IloCplex::HeurFreq = -1, preventing CPLEX

to run its internal primal bound heuristics.

For the subsets of instances considered, we report in Figure 5A the geometric means of the ratios of lower bounds taken

over the 10 instances of each subset. For a given subset, we computed instance by instance the ratio LBGSECs∕LBNO-GSECs
,

and provided the graphical representation of the geometric mean over the 10 instances of the subset. For example, the fourth

bar associated with an average ratio LBGSECs∕LBNO-GSECs
of about 1.06, above 1, means that, for the subset of instances

|N| = 40; |T| = 2, lower bounds computed by applying the separation of the GSECs are consistently greater (by a factor 1.06

on average) than those computed without separating the GSECs. The results reported show that it is beneficial applying the

separation of the GSECs for all the subsets but subset |N| = 20; |T| = 2. In particular, the impact of GSECs on the tightening

of the lower bounds seems to decrease with the increase of |T|, allowing however to improve the bounds by about a factor of at

least 1.04, on average, for |N| ≥ 60. Then, in Figure 5B we show the corresponding geometric means of the ratios of solution

times needed to solve the linear relaxation of model (1) plus constraints (2) and (3). The ratios are reported only for subset of

instances for which the BC algorithm, running under at least one of the two settings, required more than 1 s, on average, to solve

the instances in the subset. The results depicted show that the average solution time may double by applying the separation of

 10970037, 2023, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/net.22145 by U

niversita D
i M

ilano, W
iley O

nline L
ibrary on [22/05/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



508 BIANCHESSI

TABLE 1 Computational results on instances with 40 ≤ |N| ≤ 100 - TL = 300 s.

Subset BC-S-H BC-S-H BC-S-H BC-S-H

|N| |T| Time Nodes Opt Gap Time Nodes Opt Gap Time Nodes Opt Gap Time Nodes Opt Gap
(%) (%) (%) (%)

40 2 0.3 0.1 10 0.3 0.1 10 0.3 0.1 10 0.3 0.2 10

4 1.4 0.2 10 1.2 0.4 10 1.3 0.2 10 1.0 0.3 10

8 2.5 0.2 10 3.1 0.6 10 2.3 0.2 10 2.4 0.4 10

Av./Tot. 1.4 0.2 30 1.5 0.4 30 1.3 0.2 30 1.2 0.3 30

60 2 1.1 0.2 10 1.0 0.5 10 1.1 0.2 10 1.4 0.7 10

4 10.2 0.8 10 6.6 1.8 10 8.2 0.6 10 7.0 2.3 10

8 14.4 0.7 10 17.6 2.8 10 14.3 0.7 10 16.2 2.7 10

Av./Tot. 8.6 0.6 30 8.4 1.7 30 7.9 0.5 30 8.2 1.9 30

80 2 36.5 1.5 10 38.7 14.2 9 0.5 (1) 35.9 1.5 9 2.0 (1) 46.3 20.2 9 0.6 (1)

4 79.0 1.9 9 10.8 (1) 45.0 9.6 10 107.9 2.4 9 8.6 (1) 53.8 10.9 9 1.3 (1)

8 154.4 3.0 7 5.3 (3) 162.5 17.3 7 7.5 (3) 163.4 3.2 8 10.6 (2) 150.1 16.5 7 19.5 (3)

Av./Tot. 90.0 2.2 26 6.7 (4) 82.0 13.7 26 5.8 (4) 102.4 2.4 26 7.9 (4) 83.4 15.9 25 12.1 (5)

100 2 184.2 3.1 6 4.5 (4) 149.5 41.0 7 2.3 (3) 167.9 3.1 6 3.3 (4) 205.4 52.8 5 2.7 (5)

4 293.6 3.0 1 9.5 (9) 175.4 25.1 7 3.8 (3) TL 3.2 0 10.4 (10) 178.1 25.8 7 4.9 (3)

8 TL 2.2 0 26.5 (10) TL 17.1 0 19.4 (10) TL 2.3 0 28.1 (10) TL 16.5 0 44.6 (10)

Av./Tot. 259.3 2.8 7 16.0 (23) 208.3 27.8 14 13.3 (16) 256.0 2.9 6 16.6 (24) 227.9 31.7 12 26.3 (18)

Av./Tot. 89.8 1.4 93 14.6 (27) 75.1 10.9 100 11.8 (20) 91.9 1.5 92 15.3 (28) 80.2 12.4 97 23.2 (23)

the GSECs. However, it is worth mentioning that the average solution time remains less than 7.5 s for the instances of subset

|N| = 100; |T| = 8, that is, the instances associated with the greatest solution times.

Having empirically shown the usefulness of applying the separation algorithm of the GSECs to cut off fractional solutions,

in order to finalize the design of the BC algorithm we proceeded as follows. We derived four different variants from the BC

algorithm, BC-S-H, BC-S-H, BC-S-H, and BC-S-H, by switching off:

• the possibility to apply the separation algorithm of the GSECs to cut off fractional solutions at nonroot nodes of the

branch-and-bound tree (S);

• the possibility to apply the primal bound heuristic described in Section 3.3 (H).

For every variant, we solved the 150 instances with |N| ≤ 100 nodes. The time limit (TL) for each run was set to 300 s.

Each algorithmic variant was able to solve all the instances with |N| = 20 nodes by exploring in most of the cases only the

root node of the tree, and with an average computing time less than 1 s. The average results for the remaining instances with

40 ≤ |N| ≤ 100 nodes are reported in Table 1.

For each combination of number of nodes (|N|) and time slots (|T|), and each algorithmic variant, we report the aver-

age solution time (Time) in seconds, the average number of branch-and-bound nodes explored (Nodes), and the number of

feasible instances solved to the optimality (Opt). Then, if any, for instances not optimally solved for which valid lower/dual

and upper/primal bounds have been found, we report the average percentage optimality gap (Gap (%)) and, in brackets, the

number of instances over which the average gap is computed. In particular, the gap is computed according to the formula

100 ∗ (UB∗ − LB∗)∕UB∗, where UB∗ (LB∗) is the best upper (lower) bound value computed during the search. Note that each

row of the table reports the aggregate results for the subset of 10 instances associated with the same values of |N| and |T|.
Additionally, note that the average number of nodes explored in column “Nodes” is reported in thousands.

Looking at the results reported for instances with |N| ≥ 60, especially at the average solution times and number of instances

solved to optimality, we can observe that the problem becomes more difficult to solve at the increase of the number of nodes

in the network (|N|) and the number of time slots (|T|). The average number of instances solved to optimality decreases with

the increase of |N| and/or |T|. Accordingly, the average solution time grows steadily. The average percentage optimality gap

follows a trend similar to that of the average solution time. These considerations apply to all the algorithmic variants.

Comparing the average number of nodes explored for BC-S-H and BC-S-H against the corresponding values for BC-S-H and

BC-S-H, respectively, we can see that, by always applying the separation of the GSECs, the time required to solve each node

of the branch-and-bound tree increases substantially. In fact, the average number of nodes explored decreases by about one

order of magnitude. This makes BC-S-H and BC-S-H more effective than the respective counterparts (BC-S-H and BC-S-H),

especially w.r.t. the number of optimal solutions found. This latter consideration seems to be slightly in contrast with the average

 10970037, 2023, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/net.22145 by U

niversita D
i M

ilano, W
iley O

nline L
ibrary on [22/05/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



BIANCHESSI 509

results for specific subsets of instances. For example, for instances of subset |N| = 80; |T| = 2, BC-S-H and BC-S-H compute

respectively 9 and 10 optimal solutions. Similarly, BC-S-H computes one more optimal solution than BC-S-H for instances of

subset |N| = 80; |T| = 8 and |N| = 100; |T| = 2. Additionally, w.r.t. subset |N| = 80; |T| = 8, BC-S-H is slightly better

than BC-S-H as for both the average solution time and average percentage optimality gap (for the same number of instances

not solved). Nevertheless, these small deviations from the general trend substantially depend on the different branch-and-bound

trees explored by the algorithms. The overall results support the greater efficacy of BC-S-H and BC-S-H over BC-S-H and

BC-S-H, respectively. Furthermore, thanks to the possibility of applying the primal bound heuristic, BC-S-H is slightly better

than BC-S-Hwith respect to both the number of instances optimally solved and the average solution time, halving in addition the

average percentage gap for the instances not solved to optimality. To some extent, when the size of the problem instances is not

too large, this makes BC-S-H also suitable to be used in practice as an heuristic. We elaborate more on this in the next section.

We conclude our preliminary analysis briefly reporting on the average results that BC-S-H computes when constraints (2)

and (3) are not included into the model. By considering again the instances with 40 ≤ |N| ≤ 100 nodes, and a time limit of

300 s for each run, we get the following overall results:

• 102 instances solved to optimality;

• an average solution time of 74.4 s;

• an average percentage gap for the instances not solved to optimality of 17.4%.

This large value of the average percentage gap empirically shows the usefulness of including the static valid inequalities (2)

and (3) into the model.

As a consequence of all the analysis outlined in this section, we run the final experiments by using BC ≡ BC-S-H as final

version of the BC algorithm.

4.2 Global assessment
We run BC to solve the full set of generated instances with a TL of 1 h.

Results are reported in Table 2. The structure of Table 2 is similar to that of Table 1, but now the aggregate results for each

combination of number of nodes (|N|) and time slots (|T|) are reported for the unique algorithmic variant BC. In particular, the

average percentage optimality gap (Gap (%)) is computed over all the instances in each subset. Moreover, column (Root | Gap
(%)) and (Root | Time) report the average percentage optimality gap and the average computing time, respectively, after the

solution of the linear relaxation of model (1), plus constraints (2) and (3), at the root node of the branch-and-bound tree. Values

in column (Root | Gap (%)) are computed according to the formula 100 ∗ (UB∗ − LBroot)∕UB∗.
The most striking result is that BC is able to optimally solve 60% of the instances (182 over 300). In particular:

• all but 2 instances with |N| ≤ 100 have been optimally solved;

• all the instances with |N| ≤ 60 (|N| ≤ 80) have been solved to optimality with and average solution time less than 20

(200) s (see subset of instances |N| = 60; |T| = 8 (|N| = 80; |T| = 8));

• for |T| equal to 2, 4, and 8, instances are optimally solved up to |N| equal to 200, 200, and 140, respectively.

As for the average percentage optimality gap (i.e., a measure of quality concerning the primal/dual bounds computed):

• for |T| = 2, it is slightly above 5% only for instances with |N| = 180 nodes;

• for |T| = 4, it is above 10% only for instances with |N| = 200; equal to 15.73% for subset of instances |N| = 200; |T| = 4;

• for |T| = 8, it is less than 6.5% (19%) for all subset instances with |N| ≤ 120 (|N| ≤ 140).

Thus, BC outperforms the exact algorithms proposed in [1] that, with a time limit of 2 h, were able to optimally solve only

instances with up to 40 network nodes and 2 time slots, and to compute feasible solutions only for instances with up 70 network

nodes and 4 time slots.

The average computing time required to solve the root node of the branch-and-bound tree is less than 44.2 s (see subset of

instances |N| = 200; |T| = 8). Already after the solution of the root node, the average percentage optimality gap is less than

5.5% (8.5%) for instances solved to optimality with up to 100 network nodes and 4 (8) time slots. With respect to all the instances

optimally solved, the average and maximum percentage optimality gap (after the solution of the root node) are respectively

3.44% and 10.47%. Therefore, BC, besides being an effective exact solution algorithm, represents a valid computational tool to

benchmark the performance of heuristics addressing the problem.

Results concerning average percentage optimality gap are further elaborated in Figure 6 for instances with |N| ≥ 80 (for

each subset of instances with |N| ≤ 80, the average percentage optimality gap is always less than 0.7% already with a TL of

300 s). For each value of |T| ∈ {2, 4, 8}, and each subset of instances with |N| ≥ 80, we illustrate the variation of the average

percentage optimality gap at the increase of the available computing time. Even by setting the time limit to 150 s, BC is always

 10970037, 2023, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/net.22145 by U

niversita D
i M

ilano, W
iley O

nline L
ibrary on [22/05/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



510 BIANCHESSI

TABLE 2 Computational results on the full set of instances - TL = 1 h.

Subset BC

Root

|N| |T| Time Opt Gap Gap Time
(%) (%)

20 ≤ |N| ≤ 100

20 2 0.1 10 0.00 0.00 0.1

4 0.1 10 0.00 0.48 0.1

8 0.3 10 0.00 1.16 0.2

Av./Tot. 0.2 30 0.00 0.55 0.1

40 2 0.4 10 0.00 1.97 0.1

4 1.2 10 0.00 1.84 0.3

8 3 10 0.00 4.24 0.7

Av./Tot. 1.5 30 0.00 2.68 0.4

60 2 1 10 0.00 2.50 0.2

4 6.7 10 0.00 3.58 0.9

8 17.8 10 0.00 5.40 2

Av./Tot. 8.5 30 0.00 3.83 1

80 2 53.5 10 0.00 2.73 0.4

4 48.5 10 0.00 3.56 1.8

8 195.2 10 0.00 7.35 3.9

Av./Tot. 99 30 0.00 4.55 2

100 2 585.1 9 0.18 4.12 0.7

4 246.1 10 0.00 5.45 3.3

8 1293.3 9 0.20 8.31 7.2

Av./Tot. 708.2 28 0.13 5.96 3.7

Subset BC

Root

|N| |T| Time Opt Gap Gap Time
(%) (%)

120 ≤ |N| ≤ 200

120 2 1607.7 7 0.67 3.32 1.1

4 1069.9 8 1.63 5.64 4.4

8 3480.4 1 6.24 12.28 11.8

Av./Tot. 2052.6 16 2.84 7.08 5.8

140 2 2753.3 3 1.95 4.39 2.6

4 2371.2 4 1.61 5.61 5.9

8 3106.1 3 18.72 22.31 16.3

Av./Tot. 2743.5 10 7.43 10.77 8.3

160 2 3221.2 2 4.85 6.68 3.7

4 2887.1 3 6.88 10.09 9.4

8 TL 0 36.53 38.73 23.1

Av./Tot. 3236.1 5 16.08 18.50 12

180 2 TL 0 5.88 7.12 5.2

4 3320.1 1 9.70 12.09 11.6

8 TL 0 49.50 50.84 30.5

Av./Tot. 3506.8 1 21.69 23.35 15.8

200 2 3272.8 1 4.21 5.34 7.8

4 3437.6 1 15.73 17.66 24.2

8 TL 0 55.06 56.06 44.2

Av./Tot. 3436.8 2 25.00 26.35 25.4

 10970037, 2023, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/net.22145 by U

niversita D
i M

ilano, W
iley O

nline L
ibrary on [22/05/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



BIANCHESSI 511

(A)

(B)

(C)

FIGURE 6 Average percentage optimality gap at computing time equal to 150, 300, 600, 900, 1800, or 3600 s.

 10970037, 2023, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/net.22145 by U

niversita D
i M

ilano, W
iley O

nline L
ibrary on [22/05/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



512 BIANCHESSI

able to compute valid primal and dual bounds. Already with a TL of 900 s, by considering all the subsets of instances with

|N| ≤ 100, the average percentage optimality gap is above 0.2% only for subset |N| = 100; |T| = 8, with a value of 3.5%.

Always by considering a TL of 900 s, as for the average percentage optimality gap concerning all the instances:

• for |T| = 2, it is slightly above 7% only for instances with |N| = 180 nodes;

• for |T| = 4, it is above 5% only for instances with |N| equal to 160, 180, and 200, respectively equal to 12.25%, 15.99%,

and 15.73%;

• for |T| = 8, it is less than 3.5% (24%) for all instances with |N| ≤ 100 (|N| ≤ 120).

This makes BC also suitable to be used in practice, as an heuristic solver, to address problem instances that are not too large.

5 CONCLUSIONS

In this study, we considered the problem to minimize the total connectivity power costs associated with the use of a wireless

sensor network over consecutive time slots. Nonempty and disjoint subsets of nodes are required to be active and connected

under a tree topology configuration in the different time slots, and each network node must be active in a unique time slot.

Moreover, the power required by the same pair of network nodes to communicate on the associated direct channel may vary

in the different time slots. The problem has been recently introduced in the literature to the aim of extending the lifetime of

WSNs. We focused on the exact solution of the problem. We presented a branch-and-cut (BC) algorithm which improves the

state-of-the-art w.r.t. existing exact solution algorithms, as shown by means of extensive computational experiments on 300

newly generated benchmark instances with up to 200 network nodes and 8 time slots. The BC algorithm is based on a novel

Integer Linear Programming formulation which allows avoiding the introduction of symmetries in the solution space, on an

efficient and nontypical separation algorithm for the generalized subtour elimination constraints, and on an easy-to-implement

primal bound heuristic to restrict the search space. To the best of our knowledge, the largest problem instances optimally solved

so far in the literature (with a time limit of 2 h) consider up to 40 network nodes and 2 time slots. By forcing single-thread runs,

the presented BC algorithm solves to optimality instances with up to 60 (80) network nodes and 8 time slots with a maximum

solution time of 44 (510) s. With a time limit of 1 h, the algorithm is able to optimally solve instances with up to 200, 200, and

140, network nodes for a number of time slots respectively equal to 2, 4, and 8. Additionally, being able to compute tight dual

bounds, the BC algorithm may represent a valid computational tool to benchmark the performance of heuristics addressing the

problem. Finally, even by setting the time limit to 150 s, the BC algorithm is always able to compute valid primal and dual

bounds. With a time limit of 900 s, the average optimality gap is less than 3.5% for instances with up 100 network nodes and 8

time slots. In particular, when the number of time slots is 2 (4), the average percentage optimality gap is always less than 7.5%

(16%). When the number of time slots is 8, the gap is less than 3.5% (24%) for instances with up to 100 (120) network nodes.

This makes the BC algorithm also suitable to be used in practice, as an heuristic solver, to address problem instances which are

not too large.

ACKNOWLEDGMENT

Open Access Funding provided by Universita degli Studi di Milano within the CRUI-CARE Agreement.

DATA AVAILABILITY STATEMENT
The data that support the findings of this study are openly available in UNIMI Dataverse at https://doi.org/10.13130/RD_

UNIMI/IHTWC0.

ORCID
Nicola Bianchessi https://orcid.org/0000-0002-5722-5476

REFERENCES

[1] P. Adasme, Optimal sub-tree scheduling for wireless sensor networks with partial coverage, Comput. Stand. Interfaces 61 (2019), 20–35.

[2] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, Wireless sensor networks: A survey, Comput. Netw. 38 (2002), no. 4, 393–422.

[3] G. Anastasi, M. Conti, M. Di Francesco, and A. Passarella, Energy conservation in wireless sensor networks: A survey, Ad Hoc Netw. 7 (2009),

no. 3, 537–568.

[4] A. J. Anderson, Channel prediction in wireless communications, Phd Thesis, The University of Edinburgh, Edinburgh, 2015. http://hdl.handle.

net/1842/16188.

 10970037, 2023, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/net.22145 by U

niversita D
i M

ilano, W
iley O

nline L
ibrary on [22/05/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.13130/RD_UNIMI/IHTWC0
https://doi.org/10.13130/RD_UNIMI/IHTWC0
https://orcid.org/0000-0002-5722-5476
https://orcid.org/0000-0002-5722-5476
http://hdl.handle.net/1842/16188
http://hdl.handle.net/1842/16188


BIANCHESSI 513

[5] N. Bianchessi, Sub-tree scheduling for wireless sensor networks with partial coverage (STSWSN-PC) dataset, UNIMI Dataverse (2023). https://

doi.org/10.13130/RD_UNIMI/IHTWC0.

[6] N. H. Bidoki, M. B. Baghdadabad, G. Sukthankar, and D. Turgut, “Joint value of information and energy aware sleep scheduling in wireless
sensor networks: A linear programming approach,” 2018 IEEE International Conference on Communications (ICC). IEEE, Kansas City, MO,

USA, 2018, pp. 1–6. https://doi.org/10.1109/ICC.2018.8422392

[7] E. Bulut and I. Korpeoglu, Sleep scheduling with expected common coverage in wireless sensor networks, Wirel. Netw 17 (2011), 19–40.

[8] G. Dantzig, R. Fulkerson, and S. Johnson, Solution of a large-scale traveling-salesman problem, J. Oper. Res. Soc. Am. 2 (1954), no. 4, 393–410.

[9] M. T. Goodrich and R. Tamassia, Algorithm design and applications, Wiley, USA, 2014.

[10] B. Guruprakash, C. Balasubramanian, and R. Sukumar, An approach by adopting multi-objective clustering and data collection along with node
sleep scheduling for energy efficient and delay aware WSN, Peer-to-Peer Networking Appl. 13 (2020), no. 1, 304–319.

[11] P. Hansen and N. Mladenović, Variable neighborhood search, Springer US, Boston, MA, 2003, 145–184.

[12] A. Hawbani, X. Wang, Y. Sharabi, A. Ghannami, H. Kuhlani, and S. Karmoshi, LORA: Load-balanced opportunistic routing for asynchronous
duty-cycled WSN, IEEE Trans. Mob. Comput. 18 (2019), no. 7, 1601–1615.

[13] F. Ishmanov, A. S. Malik, and S. W. Kim, Energy consumption balancing (ecb) issues and mechanisms in wireless sensor networks (wsns): A
comprehensive overview, Eur. Trans. Telecommun. 22 (2011), no. 4, 151–167.

[14] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, Optimization by simulated annealing, Science 220 (1983), no. 4598, 671–680.

[15] J. B. Kruskal, On the shortest spanning subtree of a graph and the traveling salesman problem, Proc. Am. Math. Soc. 7 (1956), no. 1, 48–50.

[16] J. Kulshrestha and M. K. Mishra, Energy balanced data gathering approaches, issues and research directions, Telecommun. Syst. 76 (2021),

no. 2, 299–327.

[17] S. Kumar and H. Kim, Energy efficient scheduling in wireless sensor networks for periodic data gathering, IEEE Access 7 (2019), 11410–11426.

[18] N. Mladenović and P. Hansen, Variable neighborhood search, Comput. Oper. Res. 24 (1997), no. 11, 1097–1100.

[19] M. Natarajan and S. Subramanian, A cross-layer design: Energy efficient multilevel dynamic feedback scheduling in wireless sensor networks
using deadline aware active time quantum for environmental monitoring, Int. J. Electron. 106 (2019), no. 1, 87–108.

[20] V. Raghunathan, C. Schurgers, S. Park, and M. Srivastava, Energy-aware wireless microsensor networks, IEEE Signal Process. Mag. 19 (2002),

no. 2, 40–50.

[21] Rost, P. and Fettweis, G. P. On the transmission-computation-energy tradeoff in wireless and fixed networks. 2010 IEEE Globecom Workshops.

IEEE, Miami, FL, USA, 2010, pp. 1394–1399. https://doi.org/10.1109/GLOCOMW.2010.5700167.

[22] A. A. Shallahuddin, M. F. A. Kadir, M. A. Mohamed, A. F. A. Abidin@Bharun, N. S. M. Usop, and Z. A. Zakaria, “An enhanced adaptive duty
cycle scheme for optimum data transmission in wireless sensor network,” Information science and applications, K. J. Kim and H.-Y. Kim (eds.),

Springer Singapore, Singapore, 2020, pp. 33–40.

[23] S. Slijepcevic and M. Potkonjak, “Power efficient organization of wireless sensor networks,” IEEE International Conference on Communications.
Conference Record (Cat. No.01CH37240) ICC. IEEE, Helsinki, Finland, 2001, Vol 2, pp. 472–476. https://doi.org/10.1109/ICC.2001.936985.

[24] X. Wang, X. Wu, and X. Zhang, Optimizing opportunistic routing in asynchronous wireless sensor networks, IEEE Commun. Lett. 21 (2017),

no. 10, 2302–2305.

[25] T. Yardibi and E. Karasan, A distributed activity scheduling algorithm for wireless sensor networks with partial coverage, Wirel. Netw 16 (2010),

no. 1, 213–225.

[26] X. Zhang, L. Tao, F. Yan, and D. K. Sung, Shortest-latency opportunistic routing in asynchronous wireless sensor networks with independent
duty-cycling, IEEE Trans. Mob. Comput. 19 (2020), no. 3, 711–723.

How to cite this article: N. Bianchessi, On optimally solving sub-tree scheduling for wireless sensor networks with
partial coverage: A branch-and-cut algorithm, Networks. 81 (2023), 499–513. https://doi.org/10.1002/net.22145

 10970037, 2023, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/net.22145 by U

niversita D
i M

ilano, W
iley O

nline L
ibrary on [22/05/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.13130/RD_UNIMI/IHTWC0
https://doi.org/10.13130/RD_UNIMI/IHTWC0
https://doi.org/10.1109/ICC.2018.8422392
https://doi.org/10.1109/GLOCOMW.2010.5700167
https://doi.org/10.1109/ICC.2001.936985
https://doi.org/10.1002/net.22145
https://doi.org/10.1002/net.22145
https://doi.org/10.1002/net.22145
https://doi.org/10.1002/net.22145
https://doi.org/10.1002/net.22145
https://doi.org/10.1002/net.22145

	{On optimally solving sub-tree scheduling for wireless sensor networks with partial coverage: A branch-and-cut algorithm}
	1 INTRODUCTION
	2 PROBLEM DEFINITION AND FORMULATION
	2.1 Problem definition
	2.2 Mathematical formulation

	3 BRANCH-AND-CUT ALGORITHM
	3.1 Static valid inequalities
	3.2 Separation algorithm for the GSECs
	3.3 Primal bound heuristic

	4 EXPERIMENTAL ANALYSIS
	4.1 Preliminary experiments
	4.2 Global assessment

	5 CONCLUSIONS

	ACKNOWLEDGMENT
	DATA AVAILABILITY STATEMENT
	ORCID
	REFERENCES

