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Abstract: We present analytic expressions for the scattering of light by an extended atomic cloud. We
obtain the solution for the mean-field excitation of different atomic spherical distributions driven by a
uniform laser, including the initial build up, the steady state and the decay after the laser is switched
off. We show that the mean-field model does not describe subradiant scattering due to the negative
interference of the photons scattered by N discrete atoms.
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1. Introduction

The cooperative emission from a system of N two-level excited atoms has been the
object of intense investigation in the past, starting with the pioneering studies on Dicke
superradiance [1]. On the other hand, the diffusive regime of cooperative scattering in
a dense medium has been studied extensively in the past by a diagramatic approach [2],
where light travels over a distance much larger than the mean free path. More recently,
optical properties of atomic clouds beyond the single-atom level have been studied theo-
retically [3,4] and experimentally [5], for which the connections between the perturbative
diffusive theory and the coupled-dipole description have been investigated. Also, coopera-
tive scattering from dense cold atomic clouds has been the object of intense investigation [6].
These studies are complementary to a different regime, where the light scattering induces a
dipole–dipole interaction between the atom pairs, leading to the cooperative processes of
superradiance and subradiance. This regime is characterized as being dominated by the
single scattering of photons by many atoms, whereas the diffusive regime is dominated
by multiple scattering. The transition between single and multiple scattering is controlled
by the optical thickness parameter b(∆) = b0/(1 + 4∆2/Γ2) [7,8], where b0 is the resonant
optical thickness, ∆ is the detuning of the laser frequency from the atomic resonance fre-
quency, and Γ is the transition linewidth. In this context, a new kind of single-photon
superradiance was proposed by Scully and coworkers [9–11] from an extended ensemble
of N atoms prepared by the absorption of a single photon and exhibiting superradiant
decay. A bridge between this single-photon superradiance and the more classical process
of cooperative scattering of an incident laser by N atoms [12] was proposed by a series of
theoretical and experimental papers [13–17]. A more intriguing effect in such systems is
subradiance, also initially proposed by Dicke in 1954 [1], i.e., the destructive interference
effect leading to the partial trapping of light in the system. This effect was predicted [18]
and then observed [19] in a system of driven cold atoms, after which the laser is abruptly
switched off and the emitted photons are detected in a given direction. From a theoret-
ical point of view, subradiance was investigated by mostly studying the eigenvalues of
the system and identified in the most long-lived modes, surviving after the more fast
superradiant modes were extinguished [20–22]. The analysis was based on the numerical
solution of the coupled-dipole model of N two-level atoms driven by a uniform laser field.
A continuous-distribution version of this model allows for an analytical treatment of the
problem. This was performed extensively in a series of papers by Svidzinsky et al. [10,11],
considering the temporal decay of the system initially prepared in some given excited state.
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The stationary problem of the system driven by a uniform laser was studied in terms of
the collective modes in Refs. [23,24]. However, the cooperative decay after the laser has
been switched off has not yet been studied by using the continuous-distribution model (or
the so-called mean-field (MF) model), except in Ref. [22], where, however the solution was
obtained numerically.

The aim of this paper is to provide analytical expressions for the excitation of the
driven system and for the scattered light intensity. This will encompass both the analytical
work by Svidzinsky et al. [10,11], who did not consider a driven system, and the numerical
results of Ref. [22].

We outline that the MF model assumes a coherent interaction between the scatterers,
neglecting granularity and fluctuations in the atomic distribution. These ingredients are
necessary in order to describe the random walk of the scattered photons, leading to the
diffusive regime for sufficiently dense samples [7,8]. Hence, the MF model is not able
to describe the diffusive regime, where the atom scatters a photon many times within a
mean-free path. As already mentioned, a multiple-scattering regime is characterized by
a large optical thickness b = L/`sc, where L is the size of the medium, `sc = 1/nσsc is the
mean-free pass, n is the atomic density, σsc = (6π/k2)/(1 + 4∆2/Γ2) is the scattering cross
section, and k is the laser wavenumber. Hence, the MF model is valid for small optical
thickness b(∆) = b0/(1 + 4∆2/Γ), i.e., for large resonant optical thickness b0 and large
detuning such that b(∆)� 1.

The paper is organized as follows. In Section 2, we present the general MF equations
for continuous atomic distribution. In Section 3, we derive the expression for the average
quantities and the scattered light intensity and power. The particular cases of uniform,
parabolic and Gaussian radial distribution are discussed in Section 4 and compared with
the numerical solution of the discrete model. Conclusions are summarized in Section 5.

2. General Equations

From a microscopic point of view and using a dipole approximation, our medium is
composed of an ensemble of N two-level atoms with positions rj, whose atomic transition
has frequency ωa, linewidth Γ and dipole d (polarization effects are neglected). The system
is driven by a monochromatic plane wave with electric field E0, frequency ω0 and wave
vector k0, detuned from the atomic transition by ∆0 = ω0 −ωa. In the linear regime and in
the Markov approximation (valid if the decay time is larger than the photon time of flight
through the atomic cloud), the problem reduces to the following differential equation for
the atomic dipole amplitudes β j [25]:

dβ j

dt
=

(
i∆0 −

Γ
2

)
β j −

iΩ0

2
eik0·rj − Γ

2 ∑
m 6=j

Gjmβm(t). (1)

where Ω0 = dE0/h̄ is the Rabi frequency and

Gjm =
exp(ik0|rj − rm|)

ik0|rj − rm|
=

sin(k0|rj − rm|)
k0|rj − rm|

− i
cos(k0|rj − rm|)

k0|rj − rm|
(2)

The kernel Gjm describes the coupling between the dipoles, mediated by the photons
exchanged between the dipoles. It has a real component (sine term), describing the cooper-
ative atomic decay, and an imaginary component (cosine term) describing the cooperative
Lamb shift [26]. The latter becomes significant when the number of atoms in a cubic optical
wavelength nλ3 is larger than unity such that the contribution from the virtual photons
becomes relevant.

In light-scattering experiments, disorder plays a role when the number of atoms
projected onto a cross section perpendicular to the incident beam is small enough so that a
light mode focused down to the diffraction limit (that is λ2) is able to resolve and count
the atoms. In other words, the stochastic fluctuations induced by the random positions of
the atoms can be neglected when the total number of atoms N is larger than the number of
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modes σ2 (where σ = k0R and R is the transverse size of the system) that fit into the cloud’s
cross section, i.e., when the optical density is b0 = 3N/σ2 � 1. Under this hypothesis, the
particles can be described by a smooth density n(r) and their probability to be excited by a
field β(r, t). By approximating the sum over j by an integral over the smooth density, i.e.,
∑j →

∫
drn(r), Equation (1) turns into

∂β(r, t)
∂t

=

(
i∆0 −

Γ
2

)
β(r, t)− i

2
Ω0eik0·r − Γ

2

∫
dr′n(r′)

exp(ik0|r− r′|)
ik0|r− r′| β(r′, t). (3)

Using

exp(ik0|r− r′|)
ik0|r− r′| = 4π

∞

∑
n=0

n

∑
m=−n

jn(k0r<)Yn,m(θ, φ)Y∗n,m(θ
′, φ′)h(1)n (k0r>) (4)

where Yn,m(θ, φ) are the spherical harmonics, jn(r) and h(1)n (r) = jn(r) + iyn(r) are the
spherical Bessel and Hankel functions of the first kind, respectively, and r< (r>) is the
smaller (larger) between r and r′. Taking θ as the polar angle with respect to the direction
of the wave vector k0, we can expand

β(r, t) = ∑
n,m

αn,m(t)βn(r)Yn,m(θ, φ). (5)

By substituting it in Equation (3) and assuming a radial distribution n(r), we obtain

∑
n′ ,m′

{
α̇n′ ,m′ −

(
i∆0 −

Γ
2

)
αn′ ,m′

}
βn′(r)Yn′ ,m′(θ, φ) = − i

2
Ω0eik0r cos θ

− Γ
2
(4π)

∫ ∞

0
dr′r′2n(r′)

∫
dΩ′ ∑

n′′ ,m′′
jn′′(k0r<)Yn′′ ,m′′(θ, φ)Y∗n′′ ,m′′(θ

′, φ′)h(1)n′′ (k0r>)

× ∑
n′ ,m′

αn′ ,m′βn′(r
′)Yn′ ,m′(θ

′, φ′), (6)

where dΩ′ = dφ′ sin θ′dθ′. Since∫ 2π

0
dφ
∫ π

0
dθ sin θ Y∗n,m(θ, φ)Yn′ ,m′(θ, φ) = δn,n′δm,m′ (7)

and ∫ 2π

0
dφ
∫ π

0
dθ sin θ Y∗n,m(θ, φ)eik0r cos θ = 2δm,0

√
π(2n + 1)in jn(k0r), (8)

multiplying Equation (6) by Y∗n,m(θ, φ) and integrating over the angles, we obtain

{
α̇n,m −

(
i∆0 −

Γ
2

)
αn,m

}
βn(r) = −iΩ0δm,0

√
π(2n + 1)in jn(k0r)

− Γ
2
(4π)αn,m

∫ ∞

0
dr′r′2n(r′)jn(k0r<)h

(1)
n (k0r>)βn(r′).

(9)

If αn,m(0) = 0, the only components different from zero are those for m = 0. So,
defining αn =

√
(2n + 1)/4π αn,0 and since Yn,0(θ, φ) =

√
(2n + 1)/4π Pn(cos θ), where

Pn(x) is the Legendre polynomial, we write

β(r, θ, t) =
∞

∑
n=0

αn(t)jn(k0r)Pn(cos θ) (10)
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where αn(t) is the solution of the following differential equation:{
α̇n −

(
i∆0 −

Γ
2

)
αn

}
jn(k0r) = −i

Ω0

2
(2n + 1)in jn(k0r)− Γ

2
Fn(r)αn. (11)

where

Fn(r) = 4π

{
h(1)n (k0r)

∫ r

0
dr′r′2n(r′)j2n(k0r′) + jn(k0r)

∫ ∞

r
dr′r′2n(r′)jn(k0r′)h(1)n (k0r′)

}
(12)

We observe that Fn(r) has a real part and an imaginary part. The real part is Re{Fn(r)} =
λn jn(k0r), where

λn = 4π
∫ ∞

0
drr2n(r)j2n(k0r) (13)

is the collective decay rate of the mode n and it corresponds to the contribution of the sine
term of the kernel of Equation (3). The imaginary part is

Im{Fn(r)} = 4π

{
yn(k0r)

∫ r

0
dr′r′2n(r′)j2n(k0r′) + jn(k0r)

∫ ∞

r
dr′r′2n(r′)jn(k0r′)yn(k0r′)

}
(14)

and contributes to the cooperative Lamb shift, arising from the cosine term of the kernel of
Equation (3). When the detuning ∆0 is much larger than the collective Lamb shift, the sine
kernel provides a good approximation to the solution.

3. Average Quantities

Using the expansion (10), we can calculate the average:

〈|β(t)|2〉 =
2π

N

∫ π

0
dθ sin θ

∫ ∞

0
r2n(r)|β(r, θ, t)|2dr

=
2π

N

∞

∑
n,m=0

α∗m(t)αn(t)
∫ ∞

0
r2n(r)jm(k0r)jn(k0r)dr

∫ 1

−1
Pm(x)Pn(x)dx.

(15)

Using ∫ 1

−1
dx Pm(x)Pn(x) =

2
2n + 1

δm,n, (16)

we obtain

〈|β|2〉 =
1
N

∞

∑
n=0

|αn(t)|2λn

2n + 1
. (17)

The far-field amplitude of the radiation scattered by N atoms along the direction of
the wave vector k = k0(sin θ cos φ, sin θ sin φ, cos θ) is

Es(k) = E1

N

∑
j=1

β je
−ik·rj (18)

where E1 = (dk2
0/4πε0r) exp(ik0r). For a continuous distribution,
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Es(k) = E1

∫ 2π

0
dφ′

∫ π

0
sin θ′dθ′

∫ ∞

0
r′2n(r′)β(r′, θ′)e−ik0r′ [sin θ sin θ′ cos(φ−φ′)+cos θ cos θ′ ]dr′

= 2πE1

∫ π

0
sin θ′dθ′

∫ ∞

0
r′2n(r′)β(r′, θ′)J0(k0r′ sin θ sin θ′)e−ik0r′ cos θ cos θ′dr′

= E1

∞

∑
n=0

αni−nλnPn(cos θ) (19)

where J0(x) is the zero-order Bessel function and we use the integral∫ π

0
sin θ′Pn(cos θ′)J0(k0r′ sin θ sin θ′)e−ik0r′ cos θ cos θ′dθ′ = 2i−n jn(k0r′)Pn(cos θ). (20)

The angular distribution of the power scattered by N atoms is

dP
dΩ

=
cε0

2
|Es(k)|r2 =

P1

4π

∣∣∣∣∣ N

∑
j=1

β je
−ik·rj

∣∣∣∣∣
2

=
P1

4π

{
∑

j
|β j|2 + ∑

j
∑

m 6=j
β jβ
∗
me−ik·(rj−rm)

}
(21)

where P1 = ck4
0d2/(32π2ε0). The total scattered power is obtained by integrating over the

solid angle, giving

P = P1

N

∑
j=1

N

∑
m=1

β jβ
∗
m

sin(k0|rj − rm|)
k0|rj − rm|

. (22)

For a continuous distribution,

dP
dΩ

=
P1

4π

N〈|β|2〉+
∣∣∣∣∣ ∞

∑
n=0

αni−nλnPn(cos θ)

∣∣∣∣∣
2
 (23)

By integrating over the solid angle 4π, the total scattered power is

P = P1

∞

∑
n=0

|αn|2λn(1 + λn)

2n + 1
. (24)

4. Specific Radial Distribution

We consider three different spherical distributions, for which exact analytic expressions
can be obtained. These include a sphere with uniform, parabolic and Gaussian profile.

4.1. Uniform Sphere [10,11]

For a uniform sphere of radius R and density n(r) = N/V, where V = (4π/3)R3 and
0 < r < R,

Fn(r) =
3N
R3

{
h(1)n (k0r)

∫ r

0
dr′r′2 j2n(k0r′) + jn(k0r)

∫ R

r
dr′r′2 jn(k0r′)h(1)n (k0r′)

}
(25)

Taking r = R and defining k0R = σ, we obtain

Fn(σ) =
3N
σ3 h(1)n (σ)

∫ σ

0
dxx2 j2n(x). (26)
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Since ∫
x2 j2n(x)dx =

x3

2

{
j2n(x)− jn−1(x)jn+1(x)

}
(27)

we obtain
Fn(σ) = h(1)n (σ)λn (28)

where

λn =
3N
2

{
j2n(σ)− jn−1(σ)jn+1(σ)

}
(29)

is the collective decay rate of the mode n. By inserting these expressions in Equation (11)
with r = R, we obtain, for jn(σ) 6= 0,

α̇n − Γ
{

i(δ−ωn)−
1
2
(1 + λn)

}
αn = −i

Ω0

2
(2n + 1)in (30)

where δ = ∆0/Γ and ωn = [yn(σ)/jn(σ)]λn/2 is the collective Lamb shift of mode n.
Equation (30) can be straightforwardly integrated and, once inserted in Equation (10), leads
to the following expression for the excitation amplitude:

β(r, θ, t) =
Ω0

Γ

∞

∑
n=0

in(2n + 1)jn(k0r)Pn(cos θ)

2(δ−ωn) + i(1 + λn)

[
1− ei(δ−ωn)Γt−(1+λn)Γt/2

]
(31)

If the pump is switched off after the steady state is reached (taken as the time t = 0),

β(free)(r, θ, t) =
Ω0

Γ

∞

∑
n=0

in(2n + 1)jn(k0r)Pn(cos θ)

2(δ−ωn) + i(1 + λn)
ei(δ−ωn)Γt−(1+λn)Γt/2. (32)

Then,

〈|β(free)|2〉 =
Ω2

0
NΓ2

∞

∑
n=0

(2n + 1)λn

4(δ−ωn)2 + (1 + λn)2 e−(1+λn)Γt, (33)

dP
dΩ

=
P1

4π

 ∞

∑
n=0

(2n + 1)λne−(1+λn)Γt

4(δ−ωn)2 + (1 + λn)2 +

∣∣∣∣∣ ∞

∑
n=0

(2n + 1)λnPn(cos θ)

2(δ−ωn)2 + i(1 + λn)
e−iωnΓt−(1+λn)Γt/2

∣∣∣∣∣
2
 (34)

and

P(t) = P1

∞

∑
n=0

(2n + 1)λn(1 + λn)e−(1+λn)Γt

4(δ−ωn)2 + (1 + λn)2 . (35)

We observe that this solution does not describe the subradiant decay after the laser is
cut off since every mode has a decay rate (1 + λn)Γ > Γ, i.e., larger than the single-atom
decay. The MF model is unable to describe subradiance, experimentally observed in [27] and
theoretically discussed in [18]: single photon subradiance arises from the anti-symmetric
states of N atoms, in which only a single excitation among N is present [1,28]. Hence, it
can be described only by the discrete model of Equation (1). Conversely, single-photon
superradiance can be well described by the MF model, as discussed in the following.

For a small cloud, with σ� 1, only the term n = 0, with λ0 ≈ N, decays fast (Dicke
superradiance [1]), while all the other terms with n ≥ 1 are suppressed by a factor σ2n. The
collective shift is ω0 ∼ −N/2σ. The case of a large cloud is illustrated by Figures 1 and 2,
showing λn/N and ωn/N for σ = 20 as obtained from Equation (29). We observe that for
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σ� 1 and n < σ, λn ≈ 3N/2σ2 ≡ λN (dashed blue line in Figure 1) is almost independent
on n and drops to zero for n > σ, approximately as

λn ≈
3πN

4n2n!2

(
σ2

4

)n

. (36)

The collective Lamb shift ωn in the limit σ � 1 and n < σ is approximately ωn ∼
−(λN/2) cot(σ− nπ/2) ∼ (3N/4σ2){tan σ,− cot σ}, where the first value is for n odd and
the second for n is even (dashed blue line and dash-dotted red line in Figure 2, respectively).
We observe that ωn changes sign with n and, with the exception of the values of σ, where
tan σ or cot σ are large, it averages to zero and gives a negligible contribution. For large
detuning δ� 1, it can be neglected.

Figure 3 shows the average excitation probability 〈|β(t)|2〉 vs. Γt for δ = 10, σ = 20
and N = 103: the continuous red line is the MF solution, obtained from Equation (31),
whereas the dash black line is the numerical solution of Equation (1). The timed-Dicke
approximated solution [13,14,29,30] can be obtained by assuming λn ≈ λN , giving

〈|β(t)|2〉 = 1
NΓ2

Ω2
0

4δ2 + (1 + λN)2

∣∣∣1− eiδΓt−(1+λN)Γt/2
∣∣∣2. (37)

This solution, reported in Figure 3 by the dashed blue line, is in good agreement
with the exact solution, confirming that the driving laser brings the atoms into a state well
described by the timed-Dicke approximation, where the remaining subradiant part is only
a small fraction of it.

When the laser is cut off, at short times, the decay is superradiant, with λn ≈ λN and

β(free)(r, θ, t) ≈ (Ω0/Γ)
2δ + i(1 + λN)

eiδΓt−(1+λN)Γt/2
∞

∑
n=0

in(2n + 1)jn(k0r)Pn(cos θ)

=
(Ω0/Γ)

2δ + i(1 + λN)
eik0r cos θ+iδΓt−(1+λN)Γt/2. (38)

Figure 4 shows 〈|β(free)(t)|2〉/〈|β(free)(0)|2〉 vs. Γt in semi-log scale for the same
parameters of Figure 3 after the laser is cut off. The continuous blue line is the MF solution,
Equation (33), the dashed black line is the numerical solution of Equation (1), the dashed-
dotted red line is the timed-Dicke superradiant decay exp(−λNΓt) and the dotted black line
is the single-atom decay exp(−Γt). We observe that the MF solution initially follows the
fast superradiant decay as exp(−λNΓt) and later the single-atom decay exp(−Γt). Instead,
the discrete solution shows a subradiant decay, slower than the single-atom decay. This
behavior is peculiar to the discrete system and cannot be caught by the MF model.

0 5 1 0 1 5 2 0 2 5
0 . 0 0 0

0 . 0 0 1

0 . 0 0 2

0 . 0 0 3

0 . 0 0 4

λ n
/N

n
Figure 1. λn/N for a uniform sphere with σ = 20. The dashed blue line is the value λN/N = 3/2σ2.
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0 5 1 0 1 5 2 0 2 5

- 0 . 0 0 5

0 . 0 0 0

0 . 0 0 5

0 . 0 1 0

0 . 0 1 5

ω
n/N

n
Figure 2. ωn/N for a uniform sphere with σ = 20. The dashed blue line is ωN/N = 3/4σ2 tan σ, the
dash-dotted red line is the value ωN/N = −3/4σ2 cot σ.

0 1 2 3 4 5 6 7 8 9 1 0
0 . 0 0 0

0 . 0 0 2

0 . 0 0 4

0 . 0 0 6

〈|β
|2 〉

Γ t
Figure 3. 〈|β(t)|2〉 (in units of (Ω0/Γ)2) vs. Γt for δ = 10 and a uniform sphere with σ = 20 and
N = 103, from the analytical MF solution (continuous red line), from the numerical solution of the
discrete Equation (1) (dash-dot black line) and from the Timed-Dicke approximated solution, (37)
(dash blue line).

0 1 2 3 4 5 6 7 8 9 1 0
1 E - 5

1 E - 4

0 . 0 0 1

0 . 0 1

0 . 1

1

〈|β
(t)|

2 〉/〈
|β

(0)
|2 〉

Γ t
Figure 4. 〈|β(free)(t)|2〉/〈|β(free)(0)|2〉 vs. Γt for δ = 10 and a uniform sphere with σ = 20 and
N = 103, from the analytical MF solution (continuous blue line) and from the numerical solution
of the discrete Equation (1) (dashed black line). The dashed-dotted red line is the timed-Dicke
approximation, exp(−λNΓt), and the dotted black line is the single atom decay exp(−Γt).
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4.2. Parabolic Profile

Another case that can be solved analytically is a sphere with a parabolic profile, with
radial density n(r) = (15N/8πR3)(1− r2/R2) and 0 < r < R. In this case, we obtain

λn =
15N

2

{
1
3

j2n(σ)−
1
2

jn+1(σ)jn−1(σ)−
1
6

j2n−1(σ)

+
1

3σ

(
n +

3
2

)
jn−1(σ)jn(σ)

− 1
3σ2

(
n +

3
2

)[(
n +

1
2

)
j2n(σ)−

(
n− 1

2

)
jn+1(σ)jn−1(σ)

]}
. (39)

where σ = k0R. The other expressions, obtained from the uniform sphere in Section 4.1,
remain valid. Figure 5 shows λn/N for σ = 20 as obtained from Equation (39). For σ� 1
and n� σ, λn ≈ (5N/2σ2).

0 5 1 0 1 5 2 0 2 5
0 . 0 0 0
0 . 0 0 1
0 . 0 0 2
0 . 0 0 3
0 . 0 0 4
0 . 0 0 5
0 . 0 0 6

λ n
/N

n
Figure 5. λn/N for a sphere with parabolic profile, with σ = 20. The dashed blue line is the value
λN/N = 5/2σ2.

4.3. Gaussian Profile

For a Gaussian profile, with density n(r) = [N/(2π)3/2σ3
R] exp(−r2/2σ2

R), we ob-
tain [23]

λn = N
√

π

2σ
e−σ2

In+1/2(σ
2) (40)

where σ = k0σR and In(x) is the nth-order modified Bessel function. Taking the limit r → ∞
in Equation (12), we obtain the same Equation (30) for αn(t) and the same expression (33)
as for the uniform sphere, where the collective shift ωn = (λn/2) limr→∞{yn(k0r)/jn(k0r)}
may be neglected. For σ large, all the modes up to n ∼ σ are significant and

λn ≈
N

2σ2 e−(n+1/2)2/2σ2
. (41)

The spectrum can be treated as a continuum, with λn ≈ λ(η) = (N/2σ2) exp(−η2/2σ2)
(where η = n + 1/2). Figure 6 shows the discrete values λn/N vs. n for σ = 20 from
Equation (40) (columns) and its continuous approximation (41) (red continuous line).
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0 1 0 2 0 3 0 4 0 5 0 6 0
0 . 0 0 0 0
0 . 0 0 0 2
0 . 0 0 0 4
0 . 0 0 0 6
0 . 0 0 0 8
0 . 0 0 1 0
0 . 0 0 1 2

λ n
/N

n
Figure 6. λn/N vs. n for a sphere with Gaussian profile, with σ = 20, for the exact discrete
expression (40) and its continuous approximation (41) (red continuous line).

Then, the sum in Equation (33) can be approximated by an integral, ∑∞
n=0(2n + 1)→

2
∫ ∞

0 ηdη to obtain

〈|β(free)|2〉 =
2Ω2

0
NΓ2

∫ ∞

0

ηλ(η)

4δ2 + (1 + λ(η))2 e−(1+λ(η))Γtdη

=

(
Ω0

Γ

)2 2σ2

N

∫ N/2σ2

0

dx
4δ2 + (1 + x)2 e−(1+x)Γt, (42)

where we set x = λ(η). In the limit δ� 1,

〈|β(free)|2〉 =

(
Ω0

2δΓ

)2 e−Γt

Γsrt

(
1− e−Γsrt

)
, (43)

where Γsr = (N/2σ2)Γ is the superradiant decay rate. Instead, for δ = 0

〈|β(free)|2〉 =

(
Ω0

Γ

)2 2σ2

N
Γt{γ(−1, (Γ + Γsr)t)− γ(−1, Γt)}, (44)

where γ(a, x) =
∫ x

0 e−uua−1du is the lower incomplete gamma function. For large times, it
can be approximated by

〈|β(free)|2〉 ≈
(

Ω0

Γ

)2 e−Γt

Γsrt

[
1−

(
Γsr

Γ + Γsr

)2
e−Γsrt

]
, (45)

Hence, the decay of the excitation is not exponential in the superradiant regime: at
short times the decay rate is Γsr, and at later times the excitation decays as exp(−Γt)/(Γsrt),
before the slower subradiant decay takes place at time larger than 1/Γ. Figure 7 shows
〈|β(t)|2〉 vs. Γt for δ = 10 and a Gaussian sphere with σ = 20 and N = 103 from the
analytical MF solution (continuous red line) and from the numerical solution of the discrete
Equation (1) (dashed blue line). We observe good agreement between the MF and the
discrete models as long as the laser is on. Just after the laser is cut, the two solutions show
that the excitation decays superradiantly, with a rate Γsr, but at later times, the exact discrete
model shows that the decay is subradiant, with a rate less than the single-atom value Γ
(shown by the dotted black line in Figure 7).
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0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0
1 E - 5

1 E - 4

0 . 0 0 1

0 . 0 1

〈|β
|2 〉

Γ t
Figure 7. 〈|β(t)|2〉 (in units of (Ω0/Γ)2) vs. Γt for δ = 10 and a Gaussian sphere with σ = 20 and
N = 103, from the analytical MF solution (continuous red line) and from the numerical solution of the
discrete Equation (1) (dashed blue line). The dotted black line is the single-atom decay as exp(−Γt).

Figure 8 shows 〈|β(t)|2〉 vs. time for the same case of Figure 7, except that now
δ = 0. In this case, the MF solution (red continuous line) does not reproduce well the
exact discrete solution (dashed blue line), and not when the laser is on. This confirms that
the MF solution does not describe the multiple-scattering regime (and hence the diffusion
regime), characterized by a large optical thickness b = b0/(1 + 4δ2) (where b0 = 3N/σ2 is
the resonant optical thickness). In the case of Figure 8, δ = 0 and b = b0 ∼ 7.5, whereas in
the case of Figure 7, δ = 10 and b � 1. In the MF model, the interaction is coherent and
dominated by collective modes: in order to describe the diffusive dynamics, where the
particles scatter many photons in a mean-free path, the model must include granularity
and fluctuations, which are missed, assuming a smooth, continuous density distribution.

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0
0 . 0 1

0 . 1

1

〈|β
|2 〉

Γ t
Figure 8. 〈|β(t)|2〉 (in units of (Ω0/Γ)2) vs. Γt for δ = 0 and a Gaussian sphere with σ = 20 and
N = 103, from the analytical MF solution (continuous red line) and from the numerical solution of the
discrete Equation (1) (dashed blue line). The dotted black line is the single-atom decay, as exp(−Γt).
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Finally, Figure 9 shows the total scattered power vs. time Ps(t) (in units of the single-
atom value P1), calculated from the MF model, Equation (35), (continuous red line) and
for the exact discrete model, Equation (22), (dashed blue line). The parameters are those of
Figure 7. The MF solution describes rather well the exact behavior, as well as if the transient
oscillations are more strongly damped in the exact solution. Just after the laser is cut, the
decay rate is superradiant, with a rate Γsr = NΓ/2σ2 proportional to the resonant optical
thickness. Subradiant decay occurs at later times, after the power is decreased by several
orders of magnitude.

0 2 4 6 8 1 0 1 2 1 4

2
4
6
8

1 0
1 2

P/P
1

Γ t
Figure 9. P/P1 vs. Γt for δ = 10 and a Gaussian sphere with σ = 20 and N = 103, from the analytical
MF solution (continuous red line) and from the numerical solution of the discrete Equation (22)
(dashed blue line).

5. Conclusions

The aim of this paper was to provide an analytical description of the cooperative
light scattering by an ensemble of atoms driven by a uniform laser beam. We compared
the mean-field (MF) model, where a continuous atomic distribution is assumed, to the
numerical results from the discrete coupled dipoles model. The MF model describes
a coherent interaction between the atoms, neglecting multiple scattering and diffusion
effects due to the random walk of the photon within a mean-free pass distance. For these
reasons, the validity of the MF model is limited to a regime with small optical thickness
b = b0/(1 + 4δ2) � 1 but still cooperative when b0 � 1 and δ � 1. In this regime, the
MF model gives a rather accurate description of the atomic excitation and of the scattered
light intensity when the laser is on but is unable to describe the subradiant decay after the
laser is cut off. This suggests that subradiance is intrinsically related to the discreetness of
the system and to the anti-symmetric properties of the single-excitation N-atomic states.
Contrary to previous works, we do not assume an initial preparation of the atoms in a
superposition of states with a single excitation (the so-called Dicke states), but the excitation
is provided by a classical uniform laser. The atomic system reaches a stationary state which
is dominated by the timed-Dicke symmetric state. When the laser is cut, the early decay is
superradiant, with a rate Γsr ∼ NΓ/(k0R)2, where R is the size of the atomic cloud. The
MF solution can be expressed in terms of collective modes, whose features depend on the
atomic distribution. We discussed the cases of uniform, parabolic and Gaussian spherical
distribution. When the cloud’s size is smaller than an optical wavelength, a single mode
with decay rate NΓ will dominate, whereas for an extended cloud, many modes are present,
up to a number n ∼ k0R: the fastest modes are those with a decay rate proportional to
the resonant optical thickness b0, down to the slower ones with decay rate Γ. So, the last
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surviving modes when the laser is off are those with a single-atom decay rate. In this sense,
the subradiant component of the excited state is lost in a MF description.
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