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Abstract. In a recent paper, motivated by the study of central extensions of
associative algebras, George Janelidze introduces the notion of weakly action
representable category. In this paper, we show that the category of Leibniz
algebras is weakly action representable and we characterize the class of acting
morphisms. Moreover, we study the representability of actions of the category
of Poisson algebras and we prove that the subvariety of commutative Poisson
algebras is not weakly action representable.

Introduction

Internal object actions were defined in [1] by F. Borceux, G. Janelidze and
G. M. Kelly in order to recapture categorically several algebraic notions of ac-
tion, such as the action of a group G on another group H , the action of a Lie
algebra g on another Lie algebra h and so on. In the same paper, the authors in-
troduced the notion of representable action: an object X has representable actions
if the functor Actp´, Xq, sending each object B to the set of actions of B on X ,
is representable (see Section 1 for further details). In [2], action representability
was extensively studied in the semi-abelian context and it was proved that, for ex-
ample, the category of commutative associative algebras over a field is not action
representable.

In [3] D. Bourn and G. Janelidze introduced the weaker notion of action accessible
category in order to include relevant examples that do not fit in the frame of action
representable categories (such as rings, associative algebras and Leibniz algebras
amongst others). A. Montoli proved in [15] that all categories of interest in the
sense of G. Orzech [16] are action accessible. On the other hand, the paper [4]
showed that a weaker notion of actor (namely, the universal strict general actor,
USGA for short) is available for any category of interest C.

Recently, G. Janelidze introduced in [10] the notion of weakly representable ac-
tion: for an object X in a semi-abelian category C, a weak representation of the
functor Actp´, Xq is a pair pT, τq, where T is an object of C and τ : Actp´, Xq 
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HomCp´, T q is a monomorphism of functors. When such monomorphism exists,
one says that X has weakly representable actions and T is a weak actor of X . In
particular, when C is a category of interest and USGApXq is an object of C, then
Actp´, Xq has a weak representation (see Corollary 3.2).

A semi-abelian category C is said to be weakly action representable if every object
X in C has a weak representation of actions. This is true, for instance, for the
category AAlg

F
of associative algebras over a field F [10]. Notice that a category

of interest needs not necessarily be weakly action representable, as observed by
J. R. A. Gray in [9]. However, thanks to the results of [4], we get that, for every
object X in a category of interest C, there exists a monomorphism of functors
Actp´, Xq  HomCG

p´,USGApXqq, where CG is a suitable category containing C

as a full subcategory (see Proposition 3.1).
We analyze in details two specific cases: the category LeibAlg

F
of Leibniz alge-

bras (Section 2) and the category PoisAlg
F

of Poisson algebras (Section 4), where
F is a fixed field with charpFq ‰ 2. We show that the first one is a weakly action
representable category and we provide a complete description of acting morphisms,
i.e. morphisms into a weak actor corresponding to internal actions, in this case and
for associative algebras.
Moreover, we study the representability of actions in the category PoisAlg

F
by de-

scribing explicitly a universal strict general actor rV s “ USGApV q, for any Poisson
algebra V , and the corresponding monomorphism of functors

τ : Actp´, V q  HomNAlg2

F

p´, rV sq,

where NAlg2
F

is the category of algebras over F with two not necessarily associative
bilinear operations. Finally we show that the subvariety CPoisAlg

F
of commuta-

tive Poisson algebras is not weakly action representable. We leave the general case
of PoisAlg

F
as an open problem.

1. Preliminaries

Semi-abelian categories were introduced in [11] in order to provide a categorical
setting which would capture algebraic properties of groups, rings and algebras. Let
us recall that a category C is semi-abelian when it is finitely complete, Barr-exact,
pointed, protomodular and has finite coproducts.

One notion which is central in the present article is that of split extension. Let
X,B be objects of a semi-abelian category C; a split extension of B by X is a
diagram

(1) 0 X A B 0
k α

β

in C such that α ˝β “ idB and pX, kq is a kernel of α. Notice that protomodularity
implies that the pair pk, βq is jointly strongly epic, α is indeed the cokernel of k and
diagram (1) represents an extension of B by X in the usual sense. Morphisms of
split extensions are morphisms of extensions that commute with the sections. Let
us observe that, again by protomodularity, a morphism of split extensions fixing X

and B is necessarily an isomorphism. For an object X of C, we define the functor

SplExtp´, Xq : Cop Ñ Set

which assigns to any object B of C, the set SplExtpB,Xq of isomorphism classes
of split extensions of B by X , and to any arrow f : B1 Ñ B the change of base
function f˚ : SplExtpB,Xq Ñ SplExtpB1, Xq given by pulling back along f .
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A feature of semi-abelian categories is that one can define a notion of internal
action. If we fix an object X , actions on X give rise to a functor

Actp´, Xq : Cop Ñ Set.

In fact, we will not describe explicitly internal actions, since there is a natural
isomorphism of functors Actp´, Xq – SplExtp´, Xq, and split extensions are more
handy to work with (we refer the interested reader to [2], where this isomorphism
is described in detail). This justifies the terminology in the definition that follows.

Definition 1.1. A semi-abelian category C is action representable if for every
object X in C, the functor SplExtp´, Xq is representable. This means that there
exists an object rXs of C, called the actor of X, and a natural isomorphism

SplExtp´, Xq – HomCp´, rXsq.

The prototype examples of action representable categories are the category Grp

of groups and the category LieAlgR of Lie algebras over a commutative ring R. In
the first case, it is well known that every split extension of B by X is represented
by a homomorphism B Ñ AutpXq, where the actor AutpXq of X is the group of
automorphisms of the group X . In the case of Lie algebras, a split extension of B
by X is represented by a homomorphism B Ñ DerpXq, where DerpXq is the Lie
algebra of derivations of X . Therefore, DerpXq is the actor of X .

However the notion of action representable category has proven to be quite
restrictive. For instance, in [8] the authors proved that, if a variety V of non-
associative algebras (over a field F with charpFq ‰ 2) is action representable, then
V “ LieAlg

F
.

In [10] G. Janelidze introduced a weaker notion for the representability of actions
in a semi-abelian category C.

Definition 1.2. A semi-abelian category C is weakly action representable if for
every objext X in C, the functor SplExtp´, Xq admits a weak representation. This
means that there exist an object T of C and a monomorphism of functors

τ : SplExtp´, Xq  HomCp´, T q.

An object T as above is called weak actor of X; a morphism ϕ : B Ñ T P ImpτBq
is called acting morphism.

Notice that every action representable category C is weakly action representable.
In this case, T “ rXs is the actor of X , τ is a natural isomorphism and every arrow
ϕ : B Ñ rXs is an acting morphism.

1.1. Associative Algebras. The case of associative algebras over a field F is stud-
ied in [10]: the category AAlg

F
of associative algebras over F is weakly action

representable. Let us recall the basic constructions.
Given an associative algebra X , a weak actor of X is the associative algebra

BimpXq “ tpf ˚ ´,´ ˚ fq P EndpXq ˆ EndpXqop | ¨ ¨ ¨

¨ ¨ ¨ | f˚pxyq “ pf˚xqy, pxyq˚f “ xpy˚fq, xpf˚yq “ px˚fqy, @x, y P Xu

of bimultipliers of X (see [13], where they are called bimultiplications). Moreover,
the isomorphism classes of split extensions of an associative algebra B by X are in
bijection with the class of morphisms

B Ñ BimpXq, a ÞÑ pa ˚ ´,´ ˚ aq, @a P B,

which satisfy the condition

(2) a ˚ px ˚ bq “ pa ˚ xq ˚ b, @a, b P B, @x P X,
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i.e. the left multiplier a ˚ ´ and the right multiplier ´ ˚ b are permutable. Notice
that pa ˚ ´,´ ˚ aq can be considered respectively the left and the right components
of the action of a P B on X .

Eq. (2) can be used to characterize the class of acting morphisms in the category
AAlg

F
. In [13] Mac Lane described, for a ring Λ, the Λ´bimodule structures over

an abelian group K in terms of ring morphisms from Λ to the ring of bimultipliers
of K. The following is a straightforward generalization to actions on an object
which is not necessarily abelian.

Proposition 1.3. Let B and X be associative algebras over F and let

ϕ P HomAAlg
F
pB,BimpXqq

defined by

ϕpaq “ pa ˚ϕ ´,´ ˚ϕ aq, @a P B.

Then ϕ is an acting morphism if and only if

a ˚ϕ px ˚ϕ bq “ pa ˚ϕ xq ˚ϕ b,

for every a, b P B and for every x P X.

Proof. We recall from [10] that a weak representation of an associative algebra X

is given by a pair pBimpXq, τq, where

τ : SplExtp´, Xq  HomAAlg
F
p´,BimpXqq

is the monomorphism of functors which associate with any split extension A of B
by X , as in diagram (1), the morphism ϕ : B Ñ BimpXq defined by

ϕpaq “ pa ˚ϕ ´,´ ˚ϕ aq “ pβpaq ¨A ´,´ ¨A βpaqq,

for every a P B. It follows from the associativity of the algebra A that the left
multiplier a ˚ϕ ´ and the right multiplier ´ ˚ϕ b are permutable, for every a, b P B.
Conversely, with any morphism ϕ : B Ñ BimpXq satisfying

a ˚ϕ px ˚ϕ bq “ pa ˚ϕ xq ˚ϕ b, @a, b P B, @x P X,

we can associative the split extension of B by X given by the semi-direct product
B ˙ X , as in the proof of [2, Proposition 2.1], i.e. ϕ P ImpτBq.

�

1.2. Jordan Algebras. An example of variety of non-associative algebras over a
field F which is not a weakly action representable category is given by Jordan alge-
bras. Recall that a Jordan algebra over a field F is a non-associative commutative
algebra pJ, ¨q over F which satisfies the Jordan identity

pxyqpxxq “ xpypxxqq, @x, y P J.

In [10] G. Janeldize showed that every weakly action representable category is
action accessible (see [3]). In fact the variety JordAlg

F
of Jordan algebras over F

is not action accessible (see [5]), hence it is not weakly action representable.

2. Leibniz Algebras

We assume that F is a field with charpFq ‰ 2.

Definition 2.1 ([12]). A (right) Leibniz algebra over F is a vector space g over
F endowed with a bilinear map (called commutator or bracket) r´,´s : g ˆ g Ñ g

which satisfies the (right) Leibniz identity

rrx, ys , zs “ rrx, zs, ys ` rx, ry, zss , @x, y, z P g.
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Every Lie algebra is a Leibniz algebra and every Leibniz algebra with skew-
symmetric commutator is a Lie algebra. In fact, the full inclusion i : LieAlg

F
Ñ

LeibAlg
F

has a left adjoint π : LeibAlg
F

Ñ LieAlg
F

that associates, with every
Leibniz algebra g, its quotient g{gann, where gann “ xrx, xs |x P gy is the Leibniz
kernel of g. Note that gann is an abelian algebra.

We define the left and the right center of a Leibniz algebra

Zlpgq “ tx P g | rx, gs “ 0u , Zrpgq “ tx P g | rg, xs “ 0u

and we observe that they coincide when g is a Lie algebra. The center of g is
Zpgq “ Zlpgq X Zrpgq. In general Zrpgq is an ideal of g, while the left center may
not even be a subalgebra.

2.1. Derivations and Biderivations. The definition of derivation is the same as
in the case of Lie algebras.

Definition 2.2. Let g be a Leibniz algebra over F. A derivation of g is a linear
map d : g Ñ g such that

dprx, ysq “ rdpxq, ys ` rx, dpyqs , @x, y P g.

The right multiplications of g are particular derivations called inner derivations
and an equivalent way to define a Leibniz algebra is to say that the (right) adjoint
map adx “ r´, xs is a derivation, for every x P g. On the other hand the left adjoint
maps are not derivations in general.

With the usual bracket rd1, d2s “ d1 ˝ d2 ´ d2 ˝ d1, the set Derpgq is a Lie algebra
and the set Innpgq of all inner derivations of g is an ideal of Derpgq. Furthermore,
Autpgq is a Lie group and the associated Lie algebra is Derpgq.

The definitions of anti-derivation and biderivation for a Leibniz algebra were
introduced by J.-L. Loday in [12].

Definition 2.3. An anti-derivation of a Leibniz algebra g is a linear map D : g Ñ g

such that

Dprx, ysq “ rDpxq, ys ´ rDpyq, xs, @x, y P g.

One can check that, for every x P g, the left multiplication Adx “ rx,´s de-
fines and anti-derivation. We observe that in the case of Lie algebras, there is no
difference between a derivation and an anti-derivation.

Remark 2.4. The set of anti-derivations of a Leibniz algebra g has a Derpgq-module
structure with the multiplication

d ¨ D – rD, ds “ D ˝ d ´ d ˝ D,

for every d P Derpgq and for every anti-derivation D.

Definition 2.5. Let g be a Leibniz algebra. A biderivation of g is a pair pd,Dq
where d is a derivation and D is an anti-derivation, such that

rx, dpyqs “ rx,Dpyqs, @x, y P g.

The set of all biderivations of g, denoted by Biderpgq, has a Leibniz algebra
structure with the bracket

rpd,Dq, pd1, D1qs “ pd ˝ d1 ´ d1 ˝ d,D ˝ d1 ´ d1 ˝ Dq, @pd,Dq, pd,D1q P Biderpgq

and it is possibile to define a Leibniz algebra morphism

g Ñ Biderpgq

by

x ÞÑ p´ adx,Adxq, @x P g.
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The pair p´ adx,Adxq is called inner biderivation of g and the set of all inner
biderivations forms a Leibniz subalgebra of Biderpgq. We refer the reader to [14] for
a complete classification of the Leibniz algebras of biderivations of low-dimensional
Leibniz algebras over a general field F with charpFq ‰ 2.

2.2. Split Extensions of Leibniz algebras. By studying biderivations of a Leib-
niz algebra h, we can classify the split extensions with kernel h. This relies on the
correspondence between actions and split extensions available in any semi-abelian
category, as explained in Section 1. Since the variety of Leibniz algebra is a cate-
gory of interest (see [16]), it is convenient here to describe internal actions in terms
of the so-called derived actions.

Definition 2.6. Let

(3) 0 h ĝ g 0
i π

s

be a split extension of Leibniz algebras. The pair of bilinear maps

l : g ˆ h Ñ h, r : h ˆ g Ñ h

defined by

lxpbq “ rspxq, ipbqsĝ, rypaq “ ripaq, spyqsĝ, @x, y P g, @a, b P h,

where lx “ lpx,´q and ry “ rp´, yq, is called the derived action of g on h associated
with (3).

Given a pair of bilinear maps

l : g ˆ h Ñ h, r : h ˆ g Ñ h,

one can define a bilinear operation on the direct sum of vector spaces g ‘ h

rpx, aq, py, bqspl,rq “ prx, ysg, ra, bsh ` lxpbq ` rypaqq, @px, aq, py, bq P g ‘ h.

By Theorem 2.4 in [16], this defines a Leibniz algebra structure on g‘h if and only
if the pair pl, rq is a derived action of g on h. This in turn is equivalent to a set of
conditions on the pair pl, rq, as explained in the following proposition, which is a
special case of Proposition 1.1 in [7].

Proposition 2.7. pg ‘ h, r´,´spl,rqq is a Leibniz algebra if and only if

(L1) rxpra, bsq “ rrxpaq, bs ` ra, rxpbqs;
(L2) lxpra, bsq “ rlxpaq, bs ´ rlxpbq, as;
(L3) ra, rxpbq ` lxpbqs “ 0;
(L4) rrx,ys “ rry, rxs “ ry ˝ rx ´ rx ˝ ry;
(L5) lrx,ys “ rry, lxs “ ry ˝ lx ´ lx ˝ ry;
(L6) lx ˝ ply ` ryq “ 0;

for every x, y P g and for every a, b P h. The resulting Leibniz algebra is the semi-
direct product of g and h and it is denoted by g ˙ h.

Remark 2.8. Notice that, for any split extension (3) and the corresponding derived
action pl, rq, there is an isomorphism of Leibniz algebra split extensions

0 h g ˙ h g 0

0 h ĝ g 0

i2

idh

π1

θ

i1

idg

i π

s

where i1, i2, π1 are the canonical injections and projection and θ : g ˙ h Ñ ĝ is
defined by θpx, aq “ spxq ` ipaq, for every px, aq P g ‘ h.
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Remark 2.9. The first three equations of Proposition 2.7 state that, for every
x P g, the pair

p´rx, lxq

is a biderivation of the Leibniz algebra h. Moreover, from the equalities (L4)-(L5),
we have that the linear map

ϕ : g Ñ Biderphq

defined by
ϕpxq “ p´rx, lxq, @x P g

is a Leibniz algebra morphism. Indeed

ϕprx, ysgq “ p´rrx,ysg , lrx,ysgq “ p´rry, rxs, rry, lxsq

and

rϕpxq, ϕpyqsBiderphq “ rp´rx, lxq, p´ry , lyqsBiderphq “ pr´rx,´rys, rlx,´rysq “

“ prrx, rys,´rlx, rysq “ p´rry, rxs, rry, lxsq.

On the other hand, given a Leibniz algebra morphism

ϕ : g Ñ Biderphq

with notation
ϕpxq “ prr´, xss, rrx,´ssq, @x P g,

satisfying
rrx, rry, ass ´ rra, yssss “ 0, @x, y P g, @a P h,

we can associate the split extension

0 h pg ‘ h, r´,´sϕq g 0
i π

s

where the Leibniz algebra structure of g ‘ h is given by

rpx, aq, py, bqsϕ “ prx, ysg, ra, bsh ` rrx, bss ´ rra, yssq, @px, aq, py, bq P g ‘ h.

However a generic morphism from g to Biderphq needs not give rise to a split
extension, as the following example shows.

Example 2.10. ([6]) Let g “ F be the abelian one-dimensional algebra. Then the
morphism ϕ : F Ñ BiderpFq “ EndpFq2 defined by

ϕpaq “ pda, Daq,

where
dapxq “ ´ax, Dapxq “ ax, @a, x P F

does not define a split extension of F by itself. Indeed in general

DapDbpxq ´ dbpxqq “ apbx ´ p´bxqq “ 2abx ‰ 0.

Example 2.11. The (bi-)adjoint extension
Let g be a Leibniz algebra and consider the canonical action of g on itself given by
the pair of linear maps

rx “ adx “ r´, xs, @x P g,

ly “ Ady “ ry,´s, @y P g.

We have a split extension of g by itself with associated morphism

g Ñ Biderpgq

defined by
x Ñ p´ adx,Adxq, @x P g,

which obviously satisfies the condition

Adx ˝pAdy ` adyq “ 0, @x, y P g.
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Indeed, for every z P g

rx, ry, zs ` rz, yss “ rx, ry, zss ` rx, rz, yss “

“ rrx, ys, zs ´ rrx, zs, ys ` rrx, zs, ys ´ rrx, yszs “ 0

Thus the Leibniz algebra morphism which defines the inner biderivations of g is
associated with the canonical (bi-)adjoint extension of g by itself.

Example 2.12. Let h be a Leibniz algebra. It is well known that (see [4] for more
details), if h has trivial center (i.e. Zphq “ 0) or if h is perfect (which means that
rh, hs “ h), then for every pd,Dq, pd1, D1q P Biderphq we have

DpD1pxq ´ d1pxqq “ 0, @x P h.

Thus, given any Leibniz algebra g, we can associate a split extension of g by h with
any morphism

g Ñ Biderphq

and Biderphq is the actor of h.

Remark 2.13. Let g and h be Lie algebras and let ĝ be a Lie algebra split extension
of g by h. Then, as observed above, we have that

ĝ – pg ‘ h, r´,´srq,

where the Lie bracket is defined by

rpx, aq, py, bqsr “ prx, ysg, ra, bsh ´ rxpbq ` rypaqq, @px, aq, py, bq P g ‘ h.

In this case the left component of the action of g on h is defined by

lxpbq “ ´rxpbq, @x P g, @b P h,

thus the equation (L6) is automatically satisfied and every morphism

g Ñ Biderphq, x ÞÑ prr´, xss, rr´, xssq, @x P g

represents a split extension of g by h in the category LieAlg
F
. Moreover the subal-

gebra of Biderphq

tpd, dq | d P Derphqu

is a Lie algebra isomorphic to Derphq.

We can now claim the following result.

Theorem 2.14. Let g and h be Leibniz algebras over F.

(i) The isomorphism classes of split extensions of g by h are in bijection with
the Leibniz algebra morphisms

ϕ : g Ñ Biderphq, ϕpxq “ prr´, xss, rrx,´ssq, @x P g,

which satisfy the condition

(4) rrx, rry, ass ´ rra, yssss “ 0, @x, y P g, @a P h.

(ii) The category LeibAlg
F

of Leibniz algebras over F is weakly action repre-
sentable.

(iii) A weak actor of an object h in LeibAlg
F

is the Leibniz algebra Biderphq.
(iv) ϕ P HomLeibAlg

F
pg,Biderphqq is an acting morphism if and only if it satis-

fies condition p4q.

Proof.

(i) The first statement follows from Remark 2.9.
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(ii) Given any Leibniz algebra h, we take T “ Biderphq and we define τ in the
following way: for every Leibniz algebra g, the component

τg : SplExtpg, hq Ñ HomLeibAlg
F
pg,Biderphqq

is the morphism in Set which associates with any split extension

0 h ĝ g 0
i π

s

the morphism ϕpl,rq : g Ñ Biderphq defined by

x ÞÑ p´rx, lxq, @x P g

(see Definition 2.6). The transformation τ is natural. Indeed, for every
Leibniz algebra morphism f : g1 Ñ g, it is easy to check that the following
diagram in Set

SplExtpg, hq Hompg,Biderphqq

SplExtpg1, hq Hompg1,Biderphqq

τg

SplExtpf,hq Hompf,Biderphqq

τg1

is commutative. Moreover, for every Leibniz algebra g, the morphism τg is
an injection since every element of SplExtpg, hq is uniquely determined by
the corresponding action of g on h, i.e. by the pair of bilinear maps

l : g ˆ h Ñ h, r : h ˆ g Ñ h .

Thus τ is a monomorphism of functors and the category LeibAlg
F

is weakly
action representable.

(iii) It follows immediately from (ii) that a weak actor of h is the Leibniz algebra
of biderivations Biderphq.

(iv) Finally ϕ P HomLeibAlg
F
pg,Biderphqq is an acting morphism if and only if it

defines a split extension of g by h, i.e. if and only if it satisfies the condition

rrx, rry, ass ´ rra, yssss “ 0, @x, y P g, @a P h.

�

3. Categories of Interest

The result of the previous section can be viewed as a particular case of Propo-
sition 3.1 below, that is valid more in general for categories of interest. In [4] the
authors studied the problem of representability of actions for a category of interest
C. They introduced a corresponding category CG of objects satisfying a suitable
smaller set of identities than C, so that C becomes a subvariety of CG. They proved
that, for every object X in C, there exists an object USGApXq of CG, called universal
strict general actor of X , with the following property: for every object B in C and
for every action ξ of B on X , there exists a unique morphism ϕ : B Ñ USGApXq
in CG such that ξ is uniquely determined by the action of ϕpBq on X . It was clear
from their investigation that categories of interest are not action representable in
general. In fact J. R. A. Gray showed in [9] that a category of interest may not
even be weakly action representable. However, by the results in [4], we can deduce
the following.
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Proposition 3.1. Let C be a category of interest and let X be an object of C. Then
there exists a monomorphism of functors

τ : Actp´, Xq  HomCG
p´,USGApXqq.

If moreover USGApXq is an object of C, then the pair pUSGApXq, τq is a weak
representation of Actp´, Xq.

Proof. By the above discussion, for every object B in C, there exists an injection

τB : ActpB,Xq  HomCG
pB,USGApXqq.

We want to prove that the collection tτBuBPC gives rise to a natural transformation
τ .

Consider in C a morphism f : B1 Ñ B and an action ξ of B on X . The naturality
of τ is equivalent to saying that

τB1 pf˚pξqq “ pτBpξqq ˝ f,

for every such f and ξ, where f˚ “ Actpf,Xq. This follows immediately from
Definition 3.6 of [4].

Since C is a full subcategory of CG, when USGApXq belongs to C, the pair
pUSGApXq, τq is a weak representation for the functor Actp´, Xq. �

Corollary 3.2. Let C be a category of interest. If USGApXq is an object of C for
every X in C, then C is a weakly action representable category.

In view of the last results, an explicit description of the USGA in concrete cases
is very useful. Two examples were studied in [4]:

‚ the category AAlg
F
, where USGApXq “ BimpXq, for every associative

algebra X ;
‚ the category LeibAlg

F
, where USGApgq “ Biderpgq, for every Leibniz

algebra g.

In the next section we provide such description in the case of Poisson algebras.

4. Poisson Algebras

The main goal of this section is to study the representability of actions of the
category PoisAlg

F
of Poisson algebras and to prove that the full subcategory

CPoisAlg
F

of commutative Poisson algebra is not weakly action representable.
We assume again that F is a field with charpFq ‰ 2.

Definition 4.1. A Poisson algebra over F is a vector space P over F endowed with
two bilinear maps

¨ : P ˆ P Ñ P

r´,´s : P ˆ P Ñ P

such that pP, ¨q is an associative algebra, pP, r´,´sq is a Lie algebra and the Poisson
identity holds:

rp, qts “ rp, qst ` qrp, ts, @p, q, t P P,

i.e. the adjoint map rp,´s : P Ñ P is a derivation of the associative algebra pP, ¨q.
A Poisson algebra P is said to be commutative if pP, ¨q is a commutative associative
algebra.

Now we recall the main properties of split extension of Poisson algebras.
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Definition 4.2. Let

(5) 0 V P̂ P 0
i π

s

be a split extension of Poisson algebras. The triple of bilinear maps

l : P ˆ V Ñ V, r : V ˆ P Ñ V, rr´,´ss : P ˆ V Ñ V

defined by

p˚ y “ sppq ¨
P̂
ipyq, x˚ q “ ipxq ¨

P̂
spqq, rrp, yss “ rsppq, ipxqs

P̂
, @p, q P P,@x, y P V,

where p ˚ ´ “ lpp,´q and ´ ˚ q “ rp´, qq, is called the derived action of P on V

associated with (5).

As in the case of Leibniz algebras, given a triple of bilinear maps

l : P ˆ V Ñ V, r : V ˆ P Ñ V, rr´,´ss : P ˆ V Ñ V,

one can define two bilinear operations on P ‘ V

pp, xq ˛ pq, yq “ ppq, x ¨V y ` p ˚ y ` x ˚ qq

and

tpp, xq, pq, yqu “ prp, qs, rx, ysV ` rrp, yss ´ rrq, xssq,

for every pp, xq, pq, yq P P ‘ V , and this defines a Poisson algebra structure on the
vector space P ‘V if and only if the triple pl, r, rr´,´ssq is a derived action of P on
V .

This is equivalent to a set of conditions on pl, r, rr´,´ssq, as explained in the
following proposition (again, see Theorem 2.4 in [16] and Proposition 1.1 in [7]).

Proposition 4.3. pP ‘ V, ˛, t´,´uq is a Poisson algebra if and only if

(P1) pP ‘ V, ˛q is an associative algebra, i.e. the following equalities hold
‚ p ˚ px ¨V yq “ pp ˚ xq ¨V y;
‚ px ¨V yq ˚ p “ x ¨V py ˚ pq;
‚ x ¨V pp ˚ yq “ px ˚ pq ¨V y;
‚ pp ˚ xq ˚ q “ p ˚ px ˚ qq;
‚ ppqq ˚ x “ p ˚ pq ˚ xq;
‚ x ˚ ppqq “ px ˚ pq ˚ q;

(P2) pP ‘ V, t´,´uq is a Lie algebra, i.e.
‚ rrp, rx, ysV ss “ rrrp, xss, ysV ` rx, rrp, ysssV ;
‚ rrrp, qs, xss “ rrp, rrq, xssss ´ rrq, rrp, xssss;

(P3) rrpq, xss “ p ˚ rrq, xss ` rrp, xss ˚ q;
(P4) rp, qs ˚ x “ p ˚ rrq, xss ´ rrq, p ˚ xss;
(P5) x ˚ rp, qs “ rrq, xss ˚ p ´ rrq, x ˚ pss;
(P6) p ˚ rx, ysV “ rp ˚ x, ysV ´ rrp, yss ¨V x;
(P7) rx, ysV ˚ p “ rx ˚ p, ysV ´ x ¨V rrp, yss;
(P8) rrp, x ¨V yss “ rrp, xss ¨V y ` x ¨V rrp, yss;

for every p, q P P and for every x, y P V . The resulting Poisson algebra is the
semi-direct product of P and V and it is denoted by P ˙ V .

Remark 4.4. We recall that, for any split extension (5), we have an isomorphism
of split extensions

0 V P ˙ V P 0

0 V P̂ P 0

i2

idV

π1

θ

i1

idP

i π

s
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where i1, i2, π1 are the canonical injections and projection and θ : P ˙ V Ñ P̂ is
defined by θpp, xq “ sppq ` ipxq, for every pp, xq P P ‘ V .

The category PoisAlg
F

has two obvious forgetful functors to the categories
AAlg

F
and LieAlg

F
. Now, the category of Lie algebras is action representable:

any split extension of a Lie algebra P by another Lie algebra V corresponds to a
Lie algebra morphism ϕ : P Ñ DerpV q. On the other hand, we know that AAlg

F

is a weakly action representable category and a split extension of an associative
algebra P by another associative algebra V corresponds to an associative algebra
morphism ϕ : P Ñ BimpV q. Notice that DerpV q is an actor, while BimpV q is only
a weak actor (see Section 1), in fact they are both universal strict general actors
in the sense of [4]. It is not clear whether the category PoisAlg

F
is weakly action

representable, therefore in this section we start by describing a universal strict
general actor USGApV q, when V is a Poisson algebra. As explained in Section 3,
in general USGApV q lies in a larger category CG, which in this case is the category
NAlg2

F
of algebras over F with two not necessarily associative bilinear operations.

Thus we look for a suitable subspace

rV s ď BimpV q ˆ DerpV q

and this must be endowed with two bilinear operations

¨rV s, r´,´srV s : rV s ˆ rV s Ñ rV s

such that we can associate with every split extension of P by V in PoisAlg
F

a
morphism

φ : P Ñ rV s

in NAlg
2
F
, defined by

φppq “ pp ˚ ´,´ ˚ p, rrp,´ssq, @p P P.

Thus

φppqq “ φppq ¨rV s φpqq

and

φprp, qsq “ rφppq, φpqqsrV s.

In other words, by using Proposition 4.3, the operations in rV s must satisfy the
following two conditions

‚ pp ˚ ´,´ ˚ p, rrp,´ssq ¨rV s pq ˚ ´,´ ˚ q, rrq,´ssq “
“ pppqq ˚ ´,´ ˚ ppqq, p ˚ rrq,´ss ` rrp,´ss ˚ qq

‚ rpp ˚ ´,´ ˚ p, rrp,´ssq, pq ˚ ´,´ ˚ q, rrq,´ssqsrV s “
“ pp ˚ rrq,´ss ´ rrq, p ˚ ´ss, rrq,´ss ˚ p ´ rrq,´ ˚ pss, rrp, rrq,´ssss ´ rrq, rrp,´ssssq

for every p, q P P .

We define rV s as the subspace of all triples pf, F, dq of BimpV q ˆ DerpV q
satisfying the following set of equations:

(V1) fprx, ysV q “ rfpxq, ysV ´ dpyq ¨V x;
(V2) F prx, ysV q “ rF pxq, ysV ´ x ¨V dpyq;
(V3) dpx ¨V yq “ dpxq ¨V y ` x ¨V dpyq;

for every x, y P V .

Remark 4.5. The subspace rV s is not empty, since

px ¨V ´,´ ¨V x, rx,´sV q P rV s

for every x P V . This triples are called inner multipliers of V .

Now we are ready to enunciate and prove the following.
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Theorem 4.6. Let pV, ¨V , r´,´sV q be a Poisson algebra.

(i) The space rV s with the bilinear operations

pf, F, dq ¨rV s pf 1, F 1, d1q “ pf ˝ f 1, F 1 ˝ F, f ˝ d1 ` F 1 ˝ dq

rpf, F, dq, pf 1, F 1, d1qsrV s “ pf ˝ d1 ´ d1 ˝ f, F ˝ d1 ´ d1 ˝ F, d ˝ d1 ´ d1 ˝ dq

is an object of NAlg2
F
;

(ii) The set InnpV q of all inner multipliers of V is a subalgebra of rV s and it is
a Poisson algebra itself;

(iii) For every object pP, ¨, r´,´sq in PoisAlg
F
, the set of isomorphism classes

of split extension of P by V are in bijection with the morphisms

φ “ pφ1, φ2, φ3q : P Ñ rV s

in NAlg2
F
, such that pφ1, φ2q : P Ñ BimpV q is an acting morphism in the

category AAlg
F
.

(iv) There exists a monomorphism of functors

τ : SplExtp´, V q  HomNAlg2

F

p´, rV sq,

such that an arrow pφ : P Ñ rV sq P ImpτP q if and only if pφ1, φ2q is an
acting morphism in AAlg

F
.

(v) If prV s, ¨rV s, r´,´srV sq is a Poisson algebra, then the pair prV s, τq becomes
a weak representation for the functor SplExtp´, V q.

Proof.

(i) In order to show that rV s is an object of NAlg
2
F
, we have to prove that the

bilinear operations are well defined. We observe that

pf ˝ d1 ´ d1 ˝ f, F ˝ d1 ´ d1 ˝ F q P BimpV q

and

f ˝ d1 ` F 1 ˝ d P DerpV q,

for every pf, F, dq, pf 1, F 1, d1q P rV s. This follows from equations (V1)-(V2)-
(V3), since

pf ˝ d1 ´ d1 ˝ fqpx ¨V yq “ pf ˝ d1 ´ d1 ˝ fqpxq ¨V y,

pF ˝ d1 ´ d1 ˝ F qpx ¨V yq “ x ¨V pF ˝ d1 ´ d1 ˝ F qpyq,

x ¨V pf ˝ d1 ´ d1 ˝ fqpyq “ pF ˝ d1 ´ d1 ˝ F qpxq ¨V y

and

pf ˝ d1 ` F 1 ˝ dqprx, ysV q “

“ rpf ˝ d1 ` F 1 ˝ dqpxq, ysV ` rx, pf ˝ d1 ` F 1 ˝ dqpyqsV ,

for every x, y P V . Moreover the resulting triples

pf ˝ f 1, F 1 ˝ F, f ˝ d1 ` F 1 ˝ dq

pf ˝ d1 ´ d1 ˝ f, F ˝ d1 ´ d1 ˝ F, d ˝ d1 ´ d1 ˝ dq

belong to rV s, i.e. they satisfy equations (V1)-(V2)-(V3). Here we show
this statement only for the second triple, since for the first triple the com-
putations are similar. We have that

pf ˝ d1 ´ d1 ˝ fqrx, ysV “

“ fprd1pxq, ysV ` rx, d1pyqsV q ´ d1prfpxq, ysV ´ dpyq ¨V xq “

“ rfpd1pxqq, ysV ´ dpd1pyqq ¨V x ´ rd1pfpxqq, ysV ` d1pdpyqq ¨V x “

“ rpF ˝ d1 ´ d1 ˝ F qpxq, ysV ´ pd ˝ d1 ´ d1 ˝ dqpyq ¨V x.
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In the same way one can check that

pF ˝ d1 ´ d1 ˝ F qrx, ysV “ rpF ˝ d1 ´ d1 ˝ F qpxq, ysV ´ x ¨V pd ˝ d1 ´ d1 ˝ dqpyq.

Finally
pd ˝ d1 ´ d1 ˝ dqpx ¨V yq “

“ dpd1pxq ¨V y ` x ¨V d1pyqq ´ d1pdpxq ¨V y ` x ¨V dpyqq “

“ dpd1pxqq ¨V y ` x ¨V dpd1pyqq ´ d1pdpxqq ¨V y ´ x ¨V d1pdpyqq “

“ pd ˝ d1 ´ d1 ˝ dqpxq ¨V y ` x ¨V pd ˝ d1 ´ d1 ˝ dqpyq.

Thus rV s is an object of NAlg2
F
.

(ii) The subspace InnpV q is precisely the image of the morphism

Inn : V Ñ rV s

defined by

x ÞÑ px ¨V ´,´ ¨V x, rx,´sV q, @x P V.

(iii) We associate with any split extension.

0 V P̂ P 0
i π

s

in the category PoisAlg
F

the morphism

P Ñ rV s

in NAlg2
F
, defined by

p Ñ pp ˚ ´,´ ˚ p, rrp,´ssq, @p P P,

where the bimultiplier pp ˚ ´,´ ˚ pq and the derivation rrp,´ss are as in

Definition 4.2. Since P̂ is also a split extension of pP, ¨q by pV, ¨V q in the
category AAlg

F
, we have that

p ˚ px ˚ qq “ pp ˚ xq ˚ q,

for every p, q P P and x P V . Conversely, given a Poisson algebra P and a
morphism φ “ pφ1, φ2, φ3q P HomNAlg2

F

pP, rV sq defined by

φppq “ pp ˚φ ´,´ ˚φ p, rrp,´ssφq, @p P P,

such that pφ1, φ2q : P Ñ BimpV q is an acting morphism in AAlg
F
, we can

associate with φ the split extension of Poisson algebras

0 V pP ‘ V, ˛pφ1,φ2q, t´,´uφ3
q P 0

i π

s

where

pp, xq ˛pφ1,φ2q pq, yq “ ppq, x ¨V y ` p ˚φ y ` x ˚φ qq

and

tpp, xq, pq, yquφ3
“ prp, qs, rx, ysV ` rrp, yssφ ´ rrq, xssφq,

for every pp, xq, pq, yq P P ‘V . One can check that these bilinear operations
define a Poisson algebra structure on P ‘ V .

(iv) We define

τ : SplExtp´, V q  HomNAlg2

F

p´, rV sq

in the following way: for every object P in PoisAlg
F
, τP associates with

any split extensions of P by V the morphism

P Ñ rV s

defined as in (iii). By the description of split extensions in Definition 4.2,
each component τP is injective since every morphism which belongs to
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ImpτP q determines a unique split extension of P by V . One can check that
the family of injections

τP : SplExtpP, V q  HomNAlg2

F

pP, rV sq

is natural in P . By (iii), an arrow φ “ pφ1, φ2, φ3q P HomNAlg2

F

pP, rV sq

belongs to ImpτP q if and only if pφ1, φ2q P HomAAlg
F
pP,BimpV qq is an

acting morphism.
(v) The last statement follows from Proposition 3.1, since rV s “ USGApV q.

�

The following example shows that prV s, ¨rV s, r´,´srV sq is not in general a Poisson
algebra.

Example 4.7. Let V “ F
2 be the the abelian two-dimensional algebra (i.e. x ¨V y “

rx, ysV “ 0, for every x, y P V ). It turns out that

rV s “ EndpV q3 – M2pFq3,

as vector spaces, since every linear endomorphism of V is represented by a 2 ˆ 2

matrix with respect to a fixed basis. Then the bilinear operations of rV s can be
represented as

pA,B,Cq ¨rV s pA1, B1, C 1q “ pAA1, B1B,AC 1 ` B1Cq,

rpA,B,Cq, pA1, B1, C 1qsrV s “ pAC 1 ´ C 1A,BC 1 ´ C 1B,CC 1 ´ C 1Cq,

for every pA,B,Cq, pA1, B1, C 1q P M2pFq3 and one can check that rV s is not a Pois-
son algebra since, for instance, the bracket r´,´srV s is not skew-symmetric.

By Theorem 3.9 of [4], we can deduce that the category PoisAlg
F

is not action
representable. Indeed, since for a Poisson algebra V , USGApV q is not in general a
Poisson algebra, then V does not admit an actor.

The following remark shows that there are special cases where τ becomes a
natural isomorphism.

Remark 4.8. Let pV, ¨V , r´,´sV q be a Poisson algebra such that the annihilator

AnnpV q “ tx P V | x ¨V y “ y ¨V x “ 0, @y P V u

of the associative algebra pV, ¨V q is trivial or pV 2, ¨V q “ pV, ¨V q. In this case we
have that

(6) f ˝ F 1 “ F 1 ˝ f,

for every pf, F q, pf 1, F 1q P BimpV q (see [4] for more details). It follows that, for
any other Poisson algebra P , every arrow

φ : P Ñ rV s

belongs to ImpτP q and we have a natural isomorphism

SplExtp´, V q – HomNAlg2

F

p´, rV sq.

Notice that the conditions AnnpV q “ 0 and V 2 “ V are not necessary to obtain
equation (6). For instance, if V “ F is the abelian one-dimensional algebra, then
AnnpV q “ V , V 2 “ 0, rV s – F

3 as vector spaces (every linear endomorphism of V
is of the form ϕa : x ÞÑ ax, with a P F) and every left multiplier of V commutes
with every right multiplier. Moreover it turns out that

pϕa, ϕb, ϕcq ¨rV s pϕa1 , ϕb1 , ϕc1 q “ pϕaa1 , ϕb1b, ϕac1`b1cq

is an associative product and

rpϕa, ϕb, ϕcq, pϕa1 , ϕb1 , ϕc1 qsrV s “ p0, 0, 0q.
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Thus rV s is a Poisson algebra and

SplExtp´, V q – HomPoisAlg
F
p´, rV sq

i.e. rV s is the actor of V . This is a special case of the following more general result.

Theorem 4.9. Let V be a Poisson algebra such that equation (6) holds. The
following statements are equivalent:

(i) rV s is a Poisson algebra;
(ii) the functor SplExtp´, V q admits a weak representation;
(iii) rV s is the actor of V , hence SplExtp´, V q is representable.

Proof. (i) ñ (iii). If rV s is an object of PoisAlg
F
, we have a natural isomorphism

SplExtp´, V q – HomPoisAlg
F
p´, rV sq.

(iii) ñ (ii). If rV s is the actor of V , then the pair prV s, τq is trivially a weak
representation of SplExtp´, V q.
(ii) ñ (i). Finally, if we suppose that the functor SplExtp´, V q admits a weak
representation pM,µq, then, by composition, we have a monomorphism of functors

i˚ ˝ µ ˝ τ´1 : HomNAlg2

F

p´, rV sq  HomNAlg2

F

p´,Mq,

where τ is the natural transformation defined in Theorem 4.6 and

i˚ : HomPoisAlg
F
p´,Mq  HomNAlg2

F

p´,Mq

is given by the full inclusion of the category PoisAlg
F

in NAlg2
F
. From the Yoneda

Lemma, it follows that rV s is a subobject of M in the category NAlg2
F
. But M is

also an object of PoisAlg
F
, thus rV s is a Poisson algebra. �

Now, if we suppose that the category PoisAlg
F

is weakly action representable,
then the functor SplExtp´, V q admits a weak representation for every Poisson
algebra V . By the last theorem, rV s would be an object of PoisAlg

F
, for

any Poisson algebra V satisfying equation (6). Thus an explicit example of
a Poisson algebra V of this kind such that rV s is not an object of PoisAlg

F

would prove that the category is not weakly action representable. This is a re-
sult that we obtain for the subvariety CPoisAlg

F
of commutative Poisson algebras.

If V is a commutative Poisson algebra, then we define rV sc as the algebra of all
pairs pf, dq P MpV q ˆ DerpV q, where

MpV q “ tf P EndpV q | fpxyq “ fpxqy, @x, y P V u

is the associative algebra of multipliers of V , such that

(V1) fprx, ysV q “ rfpxq, ysV ´ dpyq ¨V x;
(V2) dpx ¨V yq “ dpxq ¨V y ` x ¨V dpyq;

endowed with the two bilinear operations

pf, dq ¨rV sc pf 1, d1q “ pf ˝ f 1, f ˝ d1 ` f 1 ˝ dq,

rpf, dq, pf 1, d1qsrV sc “ pf ˝ d1 ´ d1 ˝ f, d ˝ d1 ´ d1 ˝ dq,

for every pf, dq, pf 1, d1q P rV sc. One can check that rV sc is isomorphic to the subal-
gebra of rV s of triples of the form pf, f, dq.

Using the notation of Theorem 4.6, one can associate, with any split extension
of P by V in CPoisAlg

F
, a morphism

φ : P Ñ rV sc, p ÞÑ pp ˚ ´, rrp,´ssq, @p P P

in NAlg2
F
. Conversely, if P and V are commutative Poisson algebras, every mor-

phism φ : P Ñ rV sc in NAlg2
F

defines a commutative Poisson algebra split exten-
sion. Indeed, by (iii) of Theorem 4.6, such φ P ImpτP q if and only if p ÞÑ p ˚ ´
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defines an action in the category CAAlg
F

of commutative associative algebra over
F, and moreover ActCAAlg

F
p´, V q – HomAAlg

F
p´,MpV qq (see [2]). Thus there

exists a natural isomorphism

SplExtp´, V q – HomNAlg2

F

p´, rV scq

and we have the following characterization whose proof is similar to the one of
Theorem 4.9.

Theorem 4.10. Let V be a commutative Poisson algebra. The following statements
are equivalent:

(i) rV sc is a commutative Poisson algebra;
(ii) the functor SplExtp´, V q admits a weak representation;
(iii) rV sc is the actor of V , hence SplExtp´, V q is representable.

This allows us to conclude with the following.

Remark 4.11. The category CPoisAlg
F

of commutative Poisson algebras is not
weakly action representable.
Otherwise the functor SplExtp´, V q would admit a weak representation, for any
object V in CPoisAlg

F
. By Theorem 4.10, this would be equivalent to saying that

rV sc is a commutative Poisson algebra. We get a contradiction since, if for example
V “ F

2 is the two-dimensional abelian algebra, then

rV sc “ MpV q ˆ DerpV q “ EndpV q2

as a vector space, and it is easy to check that the bilinear operation

pf, dq ¨rV sc pf 1, d1q “ pf ˝ f 1, f ˝ d1 ` f 1 ˝ dq

is not commutative.

Open Problem. Eventually, our investigation does not clarify whether the cate-
gory PoisAlg

F
of all Poisson algebras over F is weakly action representable or not.

A key point in the proof of Theorem 4.9 is the fact that equation (6) is equivalent
to saying that the monomorphism of functors

τ : SplExtp´, V q  HomNAlg2

F

p´, rV sq

is a natural isomorphism. Since in the commutative case equation (6) is always
satisfied, we were able to find the counterexample of Remark 4.11.

Thanks to Theorem 4.9, finding a concrete counterexample of a Poisson algebra
V satisfying equation (6) and such that rV s is not a Poisson algebra would prove
that PoisAlg

F
is not weakly action representable.
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