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Abstract—Smartphones and wearable devices, along with Arti-
ficial Intelligence, can represent a game-changer in the pandemic
control, by implementing low-cost and pervasive solutions to
recognize the development of new diseases at their early stages
and by potentially avoiding the rise of new outbreaks. Some
recent works show promise in detecting diagnostic signals of
COVID-19 from voice and coughs by using machine learning
and hand-crafted acoustic features. In this paper, we decided to
investigate the capabilities of the recently proposed deep embed-
ding model L3-Net to automatically extract meaningful features
from raw respiratory audio recordings in order to improve
the performances of standard machine learning classifiers in
discriminating between COVID-19 positive and negative subjects
from smartphone data. We evaluated the proposed model on
3 datasets, comparing the obtained results with those of two
reference works. Results show that the combination of L3-Net
with hand-crafted features overcomes the performance of the
other works of 28.57% in terms of AUC in a set of subject-
independent experiments. This result paves the way to further
investigation on different deep audio embeddings, also for the
automatic detection of different diseases.

Index Terms—Audio embeddings, Deep Learning, m-health,
COVID-19

I. INTRODUCTION

COVID-19 pandemic has highlighted the limitations of

national healthcare systems in containing the spread of a

virus at a large scale. Until effective vaccines were avail-

able, countries struggled for more than a year in flattening

the pandemic curve by testing the population and isolating

infected people, causing, as a side effect, an economical

crisis that affected the whole society [1]. Researchers from

all over the world have proposed diverse digital solutions to

mitigate the pandemic and study its diffusion, most of them

characterized by a massive use of Artificial Intelligence (AI)

technologies and big data [2], [3]. For example, Machine

Learning (ML) classifiers have been successfully employed

to identify COVID-19 cases from blood tests [4], while Deep

Learning (DL) models achieved incredibly high performance

(i.e., 99.6% accuracy [5]) in analyzing chest X-ray and lung

Computed Tomography (CT) images, thus supporting medical

personnel in rapidly diagnosing positive subjects and providing

appropriate medical treatments. AI-based solutions have been

also proposed to deal with other aspects of the pandemic,

including: estimation of patient mortality and survival rate

based on medical annotation, demographic and physiological

data [6], [7]; extraction of COVID-19 symptoms from unstruc-

tured data by exploiting Natural Language Processing (NLP)

techniques [8]; DL-based video tracking to detect suspicious

COVID-19 patients in public places [9].

Another aspect of the pandemic that has been recently

investigated is the definition of scalable and low-cost digital

solutions for fast screening, aimed at recognizing the onset of

new cases and possibly preventing new outbreaks. Specifically,

smartphones and mobile health systems (m-health) can repre-

sent pervasive instruments for the early detection of COVID-

19 by exploiting embedded sensors, with particular attention

to microphones and generated audio signals, considering that

COVID-19 is a respiratory illness characterized by specific

dysfunctions in respiratory physiology, affecting patterns of

breathing, speech, and coughing [10].

Schuller et al. [11] firstly investigated how the automatic

analysis of speech and audio data can contribute to fight the

pandemic crisis, presenting the potential of Computer Audition

techniques (CA, i.e., computer-based speech and sound anal-

ysis) [12]. Subsequently, researchers investigated the effective

applicability of those techniques in real scenarios. Initial

studies focused on small patients’ cohorts trying to automati-

cally distinguish between COVID-19 cough and cough sounds

related to other pathologies [13]. However, this requires a huge

amount of data that could not be collected rapidly. Therefore,

[13] presents both a preliminary evaluation of a cough detector

system aimed at distinguishing cough signals from noise and

an AI tool for COVID-19 diagnosis based on data collected

from 70 subjects in controlled environments. Other works

released mobile and web apps to directly collect crowdsourced

datasets from the population [14]–[16]. As a first analysis, res-

piratory sound samples (e.g., cough and breath) are generally

processed by using standard modeling procedures proposed in

the CA literature to extract different sets of features (referred

as hand-crafted acoustic features) [17]. Then, DL-based ap-

proaches have been proposed [18], [19], including the use of

deep audio embeddings to enrich standard CA features [14].

In this paper, we investigate the feasibility of using the

recently proposed Learn, Listen and Learn (L3-Net) [20]

embedding model to improve the detection of COVID-19.

Specifically, we employ a pre-trained version of L3-Net to

extract latent features from audio files, thus relying on Trans-

fer Learning to characterize raw audio samples in a low-

dimensional space, which highlights the differences among the

data. In addition, we combine deep embeddings with hand-
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crafted acoustic features already recognized in literature so as

to further enhance the system performances.

To evaluate the proposed solution, we directly compare

it with two reference works: [19] and [14]. We perform a

series of subject-independent experiments by using the same

reference datasets and we demonstrate that L3-Net overcomes

the reference works in terms of different standard metrics:

28.57% AUC, 23.75% Precision, and 39.43% Recall. More-

over, since we would like to investigate the real feasibility

of the proposed solution as a m-health system component,

we provide a preliminary evaluation of the complexity of

the proposed approach by taking into account the typical

memory constraints of personal mobile devices. Specifically,

we compare different ML classifiers and DL-based feature ex-

traction models in order to identify the best trade-off between

classification performances and model’s size.

II. RELATED WORK

In the last couple of years, during the pandemic, researchers

have explored several audio processing techniques, already

known in the CA field, to develop effective and low-cost

COVID-19 screening methods based on respiratory data [21],

especially derived from smartphone embedded microphones.

We can classify the proposed methods in 3 main approaches.

First, the use of speech and audio analysis to extract hand-

crafted features that characterize different aspects of the

acoustic signal for classification purpose. This includes, for

example, basic frequency-based and temporal features [22],

[23], but also sets of features especially designed for voice

and paralinguistic applications (e.g., GeMAPS [24] and COM-

PARE [25], [26]), which have been successfully employed

to detect different diseases in the past, including tuberculo-

sis [27], asthma [28], and Parkinson [29]. Alsabek et al. [30]

are among the first who studied the relevance of using the Mel-

Frequency Cepstral Coefficients (MFCCs) features to detect

COVID-19 from both cough and breathing sounds, while Han

et al. [14] used both basic features and COMPARE set to detect

COVID-19 from voice samples. Moreover, Han et al. [17]

compared the use of GeMAPS and COMPARE to analyze

speech recordings from COVID-19 patients to categorize their

health status from four aspects, including severity of illness,

sleep quality, fatigue, and anxiety.

The main drawback of these techniques is that designed

features might not be optimal for the classification objective,

and they are typically outperformed by DL models [31]. In

order to overcome this issue, a second approach has been

investigated, consisting in converting the audio files into

a visual representation (e.g., time-frequency spectrogram or

Mel-spectrogram) that can be used as input to a Convolutional

Neural Network (CNN) model for both features extraction

and classification. This category includes, for example, the

application AI4COVID proposed by Imran et al. [13] based

only on cough recordings. Specifically, they modelled the

audio sample as both Mel-spectrogram and MFCC, which

are then processed by an ensemble model composed of two

CNNs and one Support Vector Machine (SVM) to categorize

the cough into 4 classes: COVID-19, bronchitis, pertussis,

and normal cough. A similar solution has been proposed by

Mohammed et al. [32], where different visual representations

of cough recordings (e.g., Mel-spectrogram, Chromagram, and

Power-Spectrogram) have been compared to train an end-

to-end CNN architecture. Such approaches are particularly

interesting because they avoid the features engineering and

selection phases in the data processing pipeline, mainly relying

on the intrinsic capabilities of DL to automatically modelling

the raw input data. However, due to the scarcity of public

COVID-19 respiratory sound data, their training has been

performed on small-size datasets, typically composed by a

few hundreds of samples. DL models, especially those with

complex architectures, tend to overfit in such settings, often

providing unreliable results.

The third approach, which we can consider as hybrid, deals

with the mentioned DL drawback by using a combination of

hand-crafted acoustic features and audio embeddings extracted

by pre-trained deep models. Representative of this category

is [33], in which the authors used a set of acoustic features

and a pre-trained DL model to train a shallow ML classifier

(e.g, Logistic Regression, LR) to identify COVID-19 subjects

from cough and breath audio recordings. Specifically, as

deep features extraction model, they employed VGGish [34],

a CNN-based embedding model trained on the large-scale

YouTube-8M dataset (approximately 2.6 billion audio/video

features), thus taking advantage of Transfer Learning concept

to deal with the shortage of COVID-19 audio data [35].

Given its simplicity and effectiveness, we consider the third

approach as the most suitable to implement an early detection

system for COVID-19 on mobile devices. For this reason,

in this work, we propose an enhancement of the solution

presented in [33], investigating the use of the more recent L3-

Net model to extract deep audio embeddings from respiratory

sound recordings. Compared with VGGish, L3-Net processes

not only audio data, but also video streams, and it has been

designed especially to model the correspondence between the

two. In this way, it is able to extract a meaningful set of

embeddings, which have been proven to outperform other

embedding models in several audio classification tasks [36],

[37]. To the best of our knowledge, this is the first attempt of

using such a model for the early detection of COVID-19.

III. ACOUSTIC FEATURES AND L3-NET DEEP AUDIO

EMBEDDINGS

In this section, we present the high-level architecture we

propose to improve COVID-19 detection from smartphone

data. Specifically, Figure 1 shows the flow diagram of the

entire data process, that can be summarized in 6 main steps:

(i) the audio sample is firstly collected through the device

microphone; (ii) we extract several hand-crafted acoustic fea-

tures already proposed in the CA literature for similar tasks

and considered the main standard features; (iii) concurrently,

we use L3-Net deep model to extract deep audio embeddings

from the raw audio sample; (iv) acoustic features and deep

embeddings are then combined in a single features vector,



(i)

Device
mic Audio segmentation

Spectrogram

Embeddings(iii)

Fully-connected
layers Class

probabilities
(CNN output)

Convolutional layers
(Features extraction) Not used

(ii) Acoustic features
PCA (iv)

(v) Shallow
Classifier

COVID-19
Diagnosis

Fig. 1: Flow diagram of the proposed system.

which is further reduced by using Principal Component Anal-

ysis (PCA); (v) eventually, the user’s audio is classified as

potentially positive or negative COVID-19 example by using

a shallow ML classifier, such as SVM or LR.

A. Acoustic features extraction

To transform the raw audio sample into a numerical rep-

resentation manageable by a ML classifier, we use acous-

tic features and the L3-Net embeddings, both independently

and integrated. In terms of acoustic features, we implement

the common approach used in similar audio-based medical

applications [12]. Firstly, the audio sample recorded by the

user’s device microphone is re-sampled to a standard value

for audio tasks (e.g., 16kHz or 22kHz). Then, we manually

extract common audio features related to both the frame (i.e.,

a chunk of the audio) and the segment (i.e., the entire audio

sample) perspectives from the raw audio waveform, including

frequency-based, structural, statistical, and temporal charac-

teristics. Specifically, the complete list of acoustic features we

consider in this work is presented in Table I and it is the same

already used in [14].

The total number of acoustic features we extract from the

audio sample is 477, including standard statistics (e.g., mean,

median, max/min values, and skewness) to describe time-

series descriptors for the entire audio signal, i.e., for RMS

Energy, Spectral Centroid, Roll-Off Frequency, Zero-crossing

rate crossing, MFCC, ∆-MFCC, and ∆2-MFCC.

B. L3-Net for deep audio embeddings

Among the hand-crafted features, we use L3-Net to extract

deep latent features from the raw file. As we mentioned in

Section II, this model has been designed to learn embeddings

by identifying if a video image frame and an audio segment

come from the same video. This allows to train the model

in a self-supervised way: since both matched and mismatched

image-audio pairs can be automatically generated by extracting

the image and audio from the same or different videos, no

manual labeling is required to train the model.

L3-Net architecture consists of two distinct CNN sub-

networks to extract different embeddings for the video and au-

dio inputs, respectively. To check the correspondence between

both embeddings, a fusion network is used. It concatenates

both embeddings and uses two fully connected layers as

well as a softmax layer for binary classification. As far as

the audio embeddings is concerned, L3-Net extracts a 512-

dimensional features vector from overlapping windows with

1-second length and a 0.1 hop size of Mel-spectrograms

images generated with 256 Mel bins. We take the mean and

standard deviation of each dimension across all the windows

to characterize the entire audio segment as a 1024-dimensional

features vector (i.e., 512× 2).

As depicted in Figure 1 (step (iii)), we use this model

as feature extractor. In other words, we discard the fully-

connected layers and final output of the deep model, and keep

only the features extraction part: the CNN sub-network that

processes the audio and its corresponding embeddings layer.



TABLE I: Hand-crafted acoustic features.

Feature Description

Duration total length (in seconds) of the audio sample, after removing possible starting and ending silence
Onset number of pitch onsets (i.e., “events”) in the audio signal
Tempo rate of beats that occur at regular intervals throughout the entire audio signal
Period the frequency with the highest amplitude among those obtained from the Fast Fourier Transform (FFT)
RMS Energy root-mean-square of the signal power (i.e., the magnitude of the short-time Fourier transform)
Spectral Centroid the centroid value of the frame-wise magnitude spectrogram. It can be used to identify percussive and sustained sounds [22]
Roll-off Frequency the frequency under which the 85% of the total energy of the frame-wise spectrum is contained [22]
Zero-crossing rate the number of times the signal value crosses the zero axe, and it is computed for each frame
MFCC the shape of the cosine transformation of the sound logarithmic spectrum, expressed in Mel-bands [38]

∆-MFCC and ∆2-MFCC the first and second order derivatives of MFCC along time

Moreover, to cope with the shortage of COVID-19 respiratory

sound data, we rely on the OpenL3 [37] model, which has

been trained on approximately 2 millions videos contained in

the AudioSet dataset [39]. In this way, we follow the Transfer

Learning approach, by exploiting the training of L3-Net on a

massive amount of data in a different application domain to

take advantage of its ability to characterize audio samples.

C. Features combination and classification

As a final step, we combine the acoustic features and deep

audio embeddings (Figure 1, step (iv)), thus obtaining a single

representation of the original audio sample composed by a

total of 1501 features.

As discussed in Section II, due to the moderate size of the

available audio-based COVID-19 datasets (a few thousands of

samples in the best case), in order to predict the user’s COVID-

19 condition we rely on shallow ML classifiers (Figure 1, step

(v)), which have been proven to provide excellent results in

similar applications, even with a limited amount of training

data. Preliminarily, in order to avoid the well-known curse

of dimensionality problem that can affect the performance of

several classifiers, we use PCA to reduce the dimension of

the input samples and to remove possible noisy or redundant

features.

IV. EXPERIMENTAL EVALUATION

In order to evaluate the effectiveness of L3-Net to automati-

cally extract effective latent features for COVID-19 detection,

we perform two main sets of experiments by using 3 datasets:

COSWARA [15] and Virufy [40] are publicly available, while

we obtained the access to the Cambridge dataset [33] through

a data transfer agreement between CNR and Cambridge Uni-

versity for research purposes. We then compare the obtained

classification performances with the other solutions presented

in the literature and detailed in Section II.

In addition, since we are interested in the real implementa-

tion of this model in m-health platforms, we provide a prelimi-

nary evaluation of the complexity of the proposed approach by

comparing different combinations of features sets and shallow

classifiers in terms of memory usage, considering the limited

resources of personal mobile devices. This allows us also to

identify the best candidate solution for the development of a

prototype application on real mobile devices.

Fig. 2: Number of audio samples in the 3 considered datasets,

grouped by their respective labels.

A. Datasets

Figure 2 shows the main peculiarities of the three datasets,

highlighting the number of audio samples obtained by negative

(Healthy) and positive (COVID-19) subjects.

The first dataset is part of the COSWARA research project

of the Indian Institute of Science (IISc), Bangalore, attempting

to build a diagnostic tool for COVID-19 using different audio

recordings of individuals, including breathing, cough and

speech sounds. Currently, the project is still ongoing and it

is continuing the data collection stage through crowdsourcing.

Through the use of a web and a mobile application, the

researchers asked volunteers to send their health status along

with different types of audio recordings: two samples of cough

(shallow and heavy), two audios of breath (shallow and deep),

two recordings of counting numbers (normal and fast), and the

phonation of sustained vowels. The dataset is freely available

on the official Github repository of the project 1. Similarly

to [19], in this work we take into account only cough sounds,

whose 2758 have been shared by people who have declared

they were healthy and 860 are labelled as COVID-19 positive

examples.

Virufy is a no-profit corporation developing AI technology

to detect COVID-19 from cough patterns. They publicly

released a dataset, collected by 69 voluntary subjects who

were visiting an Indian hospital for COVID-19 test 2. Even

1https://github.com/iiscleap/Coswara-Data
2https://github.com/virufy/virufy-cdf-india-clinical-1

https://github.com/iiscleap/Coswara-Data
https://github.com/virufy/virufy-cdf-india-clinical-1


though the number of samples in this dataset is limited (i.e.,

69 audio samples, one per person), the labels with which they

have been tagged are very accurate because they are based on

COVID-19 PCR test results obtained by qualified personnel of

the hospital. The total number of samples obtained by healthy

subjects is only 7, while the number of COVID-19 cough

samples is 62. As we detail in Section IV-B, we use this dataset

in combination with COSWARA to compare our proposal with

a reference solution based on cough sound recordings [19].

The Cambridge dataset [33] has been collected by the

Mobile System Research Lab of the University of Cambridge

as part of the ERC EAR research project, which aims at

exploiting microphones of mobile devices to collect human

body sounds as indicators of disease or disease onsets. Sim-

ilarly to COSWARA, Cambridge contains respiratory sounds

crowdsourced by using both web and mobile applications. It

is composed by a total of 1034 audio samples donated by 356

people, who also self-reported their health status related to

COVID-19. The dataset is divided in different groups, based

on the users’ medical condition: positive subjects with/without

cough, healthy subjects without any symptoms, healthy sub-

jects with cough, and asthmatic people with/without cough. In

Figure 2, we summarize the dataset characteristics, considering

as COVID-19 the 282 samples related to people who have

tested positive to the virus (with or without cough), while the

other 752 samples are considered as Healthy.

B. Evaluation protocol and metrics

In order to compare our proposal with the state-of-the-

art, we consider the following works as reference baselines:

(i) [33] based on the combination of acoustic features and

audio embeddings produced by VGGish model applied to

Cambridge dataset; and (ii) [19] based on the ensemble of

CNN evaluated by combining COSWARA and Virufy in one

single dataset of cough audio samples.

For a fair comparison, we reproduce as much as possible

the experiments performed by the reference works. On the one

hand, for comparison with [19], we perform a standard binary

classification task, i.e., we simply distinguish between positive

and negative subjects based on the cough audio samples

contained in both COSWARA and Virufy. On the other hand,

the comparison with [33] is based on the three different classi-

fication tasks defined in the baseline paper and that we detail in

the following: Task 1 (COVID-positive vs COVID-negative):

distinguishing between people who have declared they tested

positive for COVID-19 (COVID-positive) and users who have

not declared a positive test for COVID-19 with a clean medical

history, without symptoms, no smoking, and living where

COVID-19 was not prevalent at the recording time; Task 2

(COVID-positive with cough vs COVID-negative): similar to

the previous task, but in this case we consider as COVID-

positive the people who tested positive and declared cough as a

symptom; and Task 3 (COVID-positive with cough vs COVID-

negative with asthma and cough): distinguishing between

people who have declared they tested positive for COVID-19

TABLE II: Grid search parameters.

Algorithm Parameter Values

SVM

regularization [10−3
, . . . , 103]

kernel [rbf, poly, sigmoid]

kernel coefficient [10−3
, . . . , 10]

degree of poly kernel [2, . . . , 5]

AB
estimators [10, 20, 50, 100]
learning rate [1, .5, .1, .05, .01, .001]

LR
penalty [l1, l2]

regularization [10−3
, . . . , 103]

RF

estimators [10, 20, 50, 100]
min samples split [2, 8, 10, 12]
max depth [10, 30, 50]
split criterion [entropy, gini]

PCA explained variance [.7, .8, .9. .95, .99]

and reported cough as symptom, and negative subjects with

asthma and cough.

Moreover, to avoid bias in the experiments based on pat-

terns of specific users, we adopt the Leave-One-Subject-Out

(LOSO) approach, thus ensuring that samples from the same

user do not appear in both training and test splits. Specifically,

we use a nested cross-validation-like approach as follows.

Firstly, in an outer loop, we randomly shuffle the entire dataset

for 10 times, based on the users. Then, after each shuffle, we

keep 80% of the users as developing set and 20% as test set,

and we ensure that the classes in both the sets are always

balanced by randomly undersampling the majority class.

The development set is then used in an inner 5-fold cross

validation for hyperparameters tuning. This include: (i) se-

lection of the best features to combine with the deep audio

embeddings; (ii) finding the best PCA coefficient, that is, the

amount of variance that needs to be explained by the held

components; and (iii) finding the best ML classifier and fine-

tuning its parameters. In these experiments, we test 4 broadly

used ML classification algorithms: SVMs, LR, Random Forest

(RF), and AdaBoost (AB); and we tune their hyperparameters

by performing an exaustive search through grid-search with

the parameters value spaces specified in Table II.

As far as the features selection is concerned, we followed

the approach used in [33], by testing the following sets of

features: (F1) deep audio embeddings only; (F2) embeddings

with Period, Tempo, and Duration; (F3) embeddings with

all the acoustic features, except ∆-MFCC and ∆2-MFCC;

and (F4) embeddings with all the hand-crafted features. In

addition, for the experiments with the Cambridge dataset, we

also evaluate which type of audio files (i.e., Modality) allows

us to obtain the best performance among those available in

the dataset: Cough, Breath, or the combination of the two.

Finally, we calculate the average classification performances

over the outer 10 splits by using 3 standard metrics: Area

Under the ROC Curve (AUC), which provides an aggre-

gate measure of performance across all possible classification

thresholds; Precision, which measures the ability of the clas-

sifier not to misclassify positive examples; and Recall (also



known as Sensitivity), which indicates the ability of a classifier

to correctly label all the positive samples in the test set.

C. Results

Table III summarizes the classification performances of the

proposed solution compared with the reference baselines, high-

lighting the best configurations and results (in terms of mean

and standard deviation) obtained through the nested cross-

validation. Specifically, for the Cambridge dataset, we report

for each task the configuration of the best baseline and related

metrics, to be compared both with the results we obtained

by using the same setup, and with our best configuration.

By contrast, for the experiments with COSWARA+VIRUFY,

we use as baseline reference the best configuration reported

in [19], that is, the combination of the top 4 audio representa-

tions found in their evaluation: Spectrogram, Mel-spectrogram,

Power-spectrogram, and MFCC.

In the first set of experiments, we can note that our solution

based on L3-Net is able to usually obtain better results than

the baseline, but with different configurations. In the first

task, the embeddings generated by L3-Net allows to obtain

the same AUC score and a higher true-positive rate (i.e.,

+6, 94% in terms of Precision) by using the same Modality

(Cough+Breath) and features set (F2) as the baseline, but

by using SVM as shallow classifier instead of LR and less

PCA components. In Task 2, our solution shows a higher

false-negative rate (i.e., −16.67% in terms of Recall), but

overcomes the baseline for both AUC (+2, 4%) and Precision

(+15%), thus correctly detecting COVID-19 subjects 92% of

the time. Surprisingly, the L3-Net embeddings extracted from

audio samples of Breath seem more effective than using the

Cough recordings, making the latter less relevant to distinguish

between COVID-positive with cough and COVID-negative

subjects in this dataset. Finally, in the last task, our proposal is

far better than the baseline in distinguishing between COVID-

positive subjects with cough from COVID-negative subjects

with asthma and cough, overcoming the reference solution for

all the considered metrics: +10% AUC, +18.84% Precision,

and +14.49% in terms of Recall.

While the experiments with the Cambridge dataset show the

advantage of using L3-Net over VGGish for COVID-19 detec-

tion, the test performed with the COSWARA+Virufy dataset

clearly demonstrate the effectiveness of Transfer Learning

in our scenario. Our proposal obtains perfect classification

performances, considerably overcoming the baseline in all the

three evaluation metrics: +28.57% AUC, +23.75% Precision,

and +39.43% Recall. This is surely due to the amount of

data points contained in the dataset, which enable the shallow

classifier to correctly capture the intrinsic patterns among the

samples. Moreover, it further motivates our choice of using a

pre-trained DL model instead of training it from scratch: using

the knowledge learnt during the training with millions of data

samples, OpenL3 is able to better characterize the audio data,

even though they refer to a different context than the ones

used during the training. By contrast, training end-to-end a

complex DL model as the one proposed in [19] requires a

considerable amount of annotated data [41], which typically

far more exceeds the number of samples contained in the

considered datasets.

V. MEMORY FOOTPRINT

In order to investigate the feasibility of a COVID-19 de-

tection system embedded on commercial mobile devices, we

compare the memory footprint of the different ML classifiers

considered in the conducted experiments so as to find the best

trade-off between classification performances and model size.

Figure 3 shows the memory size (in MB) and classification

accuracy (AUC) of the 4 shallow classifiers presented in

Section IV, taking into account the best Modality and Features

sets. Since the input dimension can greatly affect the models

sizes, we also show their differences among the considered

values of PCA coefficients.

According to the results, we can note that LR, the simplest

classifier, is also the one with the lower footprint in all the

experiments (i.e., 0.1 MB at most), but it can achieve the

best AUC score in two settings (i.e., Cambridge Task 2 and

COSWARA+Virufy). On the other hand, AB and RF are

generally the most demanding models in terms of memory

(up to 11 MB for AB, and approximately 3.05 MB for RF).

However, AB obtains the best result in the Cambridge Task

3 experiment, requiring a limited memory by using 0.70 as

PCA coefficient (i.e., 0.06 MB). Finally, SVM generally has an

average memory footprint compared with the other classifiers,

ranging from 0.01 and 0.1 MB (except for the last experiment),

and it scores the best result in Cambridge Task 1 with PCA

0.7, requiring only 0.05 MB for an AUC score of 0.80.

The obtained results clearly show that all the considered

ML classifiers are viable for being installed on mobile devices,

with a low impact on the general memory usage.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we investigate the use of the recent embedding

model L3-Net to train shallow classifiers aimed at identifying

COVID-19 subjects from cough and breathing audio samples.

L3-Net demonstrated to outperform several Deep Learning

solutions in other audio classification tasks, and it can further

improve the classification performances in this specific task.

To deal with the shortage of public COVID-19 audio data,

we employed OpenL3, an instance of L3-Net pre-trained on

approximately 2 millions videos. In this way, applying the

Transfer Learning paradigm, we exploited the training of L3-

Net on a massive amount of data, thus taking advantage of its

ability to effectively characterize audio data and improve the

detection of COVID-19 from respiratory sound samples.

Through an extensive evaluation, employing three public

datasets, we evaluated the effectiveness of L3-Net to au-

tomatically extract latent features for COVID-19 detection,

comparing its performance with two baseline approaches: the

original VGGish-based proposal, and an ensemble of four

Convolutional Neural Networks trained from scratch. The

obtained results clearly show the great advantage of our pro-

posal over the other solutions, achieving a gain of 10% AUC



TABLE III: Classification results

Dataset Task Method Modality Features Classifier PCA Mean (± std)

AUC Precision Recall

Cambridge

1
baseline Cough + Breath F2 LR .95 .80 (.07) .72 (.06) .69 (.11)

our (same) Cough + Breath F2 LR .95 .76 (.092) .69 (.095) .68 (.158)
our (best) Cough + Breath F2 SVM .70 .80 (.068) .77 (.096) .68 (.139)

2
baseline Cough F2 SVM .90 .82 (.18) .80 (.16) .72 (.23)

our (same) Cough F2 SVM .90 .69 (.227) .74 (.187) .61 (.276)
our (best) Breath F1 LR .80 .84 (.168) .92 (.106) .60 (.237)

3
baseline Breath F3 SVM .70 .80 (.14) .69 (.20) .69 (.26)
our (same) Breath F3 SVM .70 .64 (.254) .69 (.154) .66 (.269)
our (best) Breath F1 AB .70 .88 (.066) .82 (.152) .79 (.192)

COSWARA + Virufy
baseline Top 4 Ensemble CNN - .77 .80 .71
our F3 LR .99 .99 (.001) .99 (.006) .99 (.007)

(a) Cambridge Task 1

10 3 10 2 10 1

Memory (MB)
0.65

0.70

0.75

0.80

0.85

AU
C
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(c) Cambridge Task 3
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(d) COSWARA+Virufy

Fig. 3: Memory footprint of the considered shallow classifiers for each value of PCA coefficient in the different experiments.

compared with the former baseline, and 28.57% AUC with

respect to the latter. In addition, we also performed a series of

experiments to evaluate the trade-off between the classification

accuracy and the memory occupancy of 4 shallow classifiers,

based on different input size. Support Vector Machines and

Logistic Regression performed the best, obtaining a high level

of accuracy and, at the same time, requiring only few KB of

memory, representing the best candidates to be deployed on

mobile devices.

As a future work, we would like to make an extensive

comparison of different deep audio embeddings models for

COVID-19 detection and, if other datasets are available,

for the automatic detection of other important diseases, like

Parkinson or post-stroke, in which audio and speech analysis

can provide fundamental diagnostic information. Finally, from

the algorithmic point of view, we would like to combine

different public datasets for fine-tuning OpenL3 on COVID-19

respiratory data, defining a single model combining features

extraction and classification tasks.
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“Deep learning for audio signal processing,” IEEE Journal of Selected

Topics in Signal Processing, vol. 13, no. 2, pp. 206–219, 2019.
[32] E. A. Mohammed, M. Keyhani, A. Sanati-Nezhad, S. H. Hejazi,

and B. H. Far, “An ensemble learning approach to digital
corona virus preliminary screening from cough sounds,” Scientific

Reports, vol. 11, no. 1, p. 15404, Jul 2021. [Online]. Available:
https://doi.org/10.1038/s41598-021-95042-2

[33] C. Brown, J. Chauhan, A. Grammenos, J. Han, A. Hasthanasombat,
D. Spathis, T. Xia, P. Cicuta, and C. Mascolo, “Exploring automatic
diagnosis of covid-19 from crowdsourced respiratory sound data,”
Proceedings of the 26th ACM SIGKDD International Conference on

Knowledge Discovery & Data Mining, Aug 2020. [Online]. Available:
http://dx.doi.org/10.1145/3394486.3412865

[34] S. Hershey, S. Chaudhuri, D. P. W. Ellis, J. F. Gemmeke, A. Jansen,
R. C. Moore, M. Plakal, D. Platt, R. A. Saurous, B. Seybold, M. Slaney,
R. J. Weiss, and K. Wilson, “Cnn architectures for large-scale audio
classification,” in 2017 IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), 2017, pp. 131–135.
[35] F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong, and

Q. He, “A comprehensive survey on transfer learning,” Proceedings of

the IEEE, vol. 109, no. 1, pp. 43–76, 2021.
[36] S. Grollmisch, E. Cano, C. Kehling, and M. Taenzer, “Analyzing the

potential of pre-trained embeddings for audio classification tasks,” in
2020 28th European Signal Processing Conference (EUSIPCO), 2021,
pp. 790–794.

[37] J. Cramer, H.-H. Wu, J. Salamon, and J. P. Bello, “Look, listen, and learn
more: Design choices for deep audio embeddings,” in ICASSP 2019 -

2019 IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), 2019, pp. 3852–3856.
[38] B. J. Mohan and R. B. N., “Speech recognition using mfcc and dtw,” in

2014 International Conference on Advances in Electrical Engineering

(ICAEE), 2014, pp. 1–4.
[39] J. F. Gemmeke, D. P. W. Ellis, D. Freedman, A. Jansen, W. Lawrence,

R. C. Moore, M. Plakal, and M. Ritter, “Audio set: An ontology and
human-labeled dataset for audio events,” in 2017 IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP), 2017,
pp. 776–780.

[40] G. Chaudhari, X. Jiang, A. Fakhry, A. Han, J. Xiao, S. Shen, and
A. Khanzada, “Virufy: Global applicability of crowdsourced and clinical
datasets for ai detection of covid-19 from cough,” arXiv preprint

arXiv:2011.13320, 2020.
[41] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature,

vol. 521, no. 7553, pp. 436–444, May 2015. [Online]. Available:
https://doi.org/10.1038/nature14539

https://www.frontiersin.org/article/10.3389/fdgth.2021.564906
https://www.frontiersin.org/article/10.3389/fdgth.2020.00005
https://www.sciencedirect.com/science/article/pii/S2352914820303026
http://dx.doi.org/10.21437/Interspeech.2020-2768
https://www.sciencedirect.com/science/article/pii/S0031320321004696
https://www.sciencedirect.com/science/article/pii/S0167865519301163
https://doi.org/10.1038/s41598-021-95042-2
http://dx.doi.org/10.1145/3394486.3412865
https://doi.org/10.1038/nature14539

	I Introduction
	II Related Work
	III Acoustic features and L3-Net Deep Audio Embeddings
	III-A Acoustic features extraction
	III-B L3-Net for deep audio embeddings
	III-C Features combination and classification

	IV Experimental evaluation
	IV-A Datasets
	IV-B Evaluation protocol and metrics
	IV-C Results

	V Memory footprint
	VI Conclusions and future work
	References

