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ABSTRACT: A phosphine-catalyzed domino assembly of six units of
2-bromomethyl acrylates afforded polyalkenyl adducts containing two
cyclohexenyl rings. This reaction occurs under mild conditions
providing the final product by formation of seven carbon−carbon
bonds and four stereocenters. Experimental and computational
studies support an initial dimerization of the substrate, which in
turn trimerizes involving two totally regio- and stereocontrolled
Diels−Alder cycloadditions. The yield of the hexamerization of the 2-
bromomethyl acrylates depends on the size of the ester function. The protocol has also proved to be practicable on a gram scale.

Over the past two decades, nucleophilic phosphine
catalysis has emerged as a powerful tool in organic

synthesis.1 Specifically, the initial addition of a tertiary
phosphine to an electrophilic π system generates a zwitterionic
species that can in turn evolve in different ways, often in
cascade processes.2−4 In this context, Morita−Baylis−Hill-
mann (MBH) adducts are very interesting electrophilic
partners. Lu and co-workers reported the PPh3-catalyzed
annulation between 2-halomethyl acrylates and N-phenyl-
maleimide5 or tropone, to afford [3 + 3] or [3 + 6]
cycloadducts, respectively.6 More recently, by using PCy3-
catalyst, Huang described a [3 + 3] annulation between MBH
carbonates and 4-amino-cyclohexandienones (Scheme 1, eq
1)7 as well as the sequential [2 + 4]/[2 + 3] annulation
between MBH carbonates and 7-alkenyl-indoles (Scheme 1, eq
2).8 Finally, Guo discovered a Ph2PCy catalyzed annulation
between diazenes and MBH carbonates (Scheme 1, eq 3).9

As part of our ongoing studies on the development of new
domino processes,10 we report on a reaction that generates
bicyclic structures through the assembly of six 2-
(bromomethyl)acrylate units (Scheme 1, eq 4).
The treatment of methyl 2-(bromomethyl)acrylate (1a)

with PPh3 (40 mol %) and triethylamine (1.0 mmol) for 24 h
at room temperature afforded the bicyclic structure 2 in 63%
yield, as confirmed by a single-crystal X-ray diffraction analysis
(Scheme 2).
Such a striking totally regio- and stereoselective hexameriza-

tion involving the generation of seven C−C bonds and the
control of four stereocenters prompted us to further investigate
this reactivity. By extending the reaction time to 72 h, the yield
was increased to 81% (Table 1, entry 1). By increasing the
reaction temperature to 40 °C for 7 h or using 1.0 mmol of

PPh3 for 24 h did not improve the yield (Table 1, entries 2, 3).
Conversely, the use of a catalytic amount of PPh3 (10 mol %)
gave only traces of the pentaenic product and a complex
mixture of degradation products (Table 1, entry 4). The use of
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Scheme 1. Selected Phosphine-Mediated Reactions
Involving MBH Adducts or Derivatives
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DIPEA, Na2CO3, or K2CO3 as bases, instead of TEA, led to
unsatisfactory results (Table 1, entries 5−7). Replacing Ph3P
with Cy3P, nBu3P, or JohnPhos furnished only tarry products
(Table 1, entries 8−10). On the other hand, the use of tri-2-
furylphosphine led to 2 in 69% yield (Table 1, entry 11). The
use of (±)-BINAP gave only traces of 2 at r.t., while heating
the mixture at 40 °C allowed only a moderate yield
improvement (Table 1, entries 12 and 13).
A set of additional experiments completed our initial study

(Scheme 3). The hexamerization process also took place from
methyl 2-chloromethyl acrylate 1b, providing 2 in 78% yield.
Conversely, the corresponding MBH acetate or carbonate was
not reactive. Finally, repetition of the hexamerization of 1a on
a 3.0 mmol scale gave 2 in 76% yield after a 120 h reaction.

Different MBH esters were next tested to check the scope of
this new phosphine-catalyzed cascade reaction. Accordingly,
ethyl, benzyl, n-butyl, and tert-butyl 2-(bromomethyl)acrylates
(1e−h) smoothly afforded the corresponding pentaenic
bicyclic structures 3−6 in variable yields depending on the
steric hindrance of the ester. Conversely, 2-(bromomethyl)-
acrylic acid, 2-(bromomethyl)acryl N,N-dimethylamide, and
the simple allyl bromide failed in the phosphine-catalyzed
assembly.
A possible reaction mechanism is proposed in Scheme 4 for

compound 2. Conjugate addition of triphenylphosphine to 2-

(bromomethyl)acrylate followed by bromide elimination
generates phosphonium bromide II via I, which, in the
presence of triethylamine, gives the corresponding ylide III. A
second conjugate addition/elimination sequence takes place
between III and a new unit of acrylate to generate adduct IV.
Subsequent deprotonation of IV by triethylamine triggers
triphenylphosphine elimination with generation of conjugated
triene VI via V. However, as the most acidic H atom in IV is
on the carbon atom directly linked to the phosphorus atom,
the generation of V may pass through the reversible formation
of an unproductive ylide (not shown), or ylide formation is
followed by a 1,2 proton shift.
From this point, the generation of pentaenic product 2

appears to derive from two consecutive Diels−Alder (DA)
cycloadditions involving three units of key triene VI. In
particular, while two units of VI act as dienes, the third one
plays the role of a double dienophile. The formation of 2 as
single regio- and stereoisomer of Ci point group symmetry
implies that an exo-control (C2 dienophile/C4 diene Si*/Re*)
is at work during the first cycloaddition to give intermediate
VII, while an opposite exo-control (C5 dienophile/C4 diene
Re*/Si*) takes place in the second cycloaddition. This means
that besides the regioselectivity, a total diastereoselectivity is at
work in both of the cycloadditions.
Since the proposed mechanism is based on the involvement

of triene VI, it was essential to prove the formation of this key
intermediate. Despite several trials, detection of VI in crude
reaction mixtures, even after short reaction times, was fruitless.
Hence, indirect detection of VI was planned. We chose a nitrile
oxide as a trapping agent, as this 1,3-dipole is known to
regioselectively react with electron-poor dipolarophiles.11 After
a 15 min exposure of 2-(bromomethyl)acrylate to triphenyl-

Scheme 2. PPh3-Catalyzed Hexamerization of Methyl 2-
(Bromomethyl)acrylatea,b,c

aReaction conditions: methyl acrylate (1.0 mmol), PPh3 (0.4 mmol),
TEA (1.0 mmol), DCM (0.1 M), r.t., 24 h. bIsolation yields. cCCDC
2286203 is the Cambridge Structural Database entry for 2.

Table 1. Phosphine-Catalyzed Hexamerization of Methyl 2-
(Bromomethyl)acrylate to 2

entrya PR3 base temp (°C) 2 (%)b

1c PPh3 TEA r.t. 81
2d PPh3 TEA 40 77
3e PPh3 TEA r.t. 71
4f PPh3 TEA r.t. traces
5 PPh3 DIPEA r.t. 56
6 PPh3 Na2CO3 r.t. degrad.
7 PPh3 K2CO3 r.t. degrad.
8 PCy3 TEA r.t. degrad.
9 PBun

3 TEA r.t. degrad.
10 Johnphos TEA r.t. degrad.
11 (2-Furyl)3P TEA r.t. 69
12 BINAP TEA r.t. traces
13 BINAP TEA 40 26

aReaction conditions: 1a (1.0 mmol), phosphine (40 mol %), base
(1.0 mmol), DCM (0.1 M), 24 h. bIsolation yields. cReaction time: 72
h. dReaction time: 7 h. ePPh3 (1.0 mmol).

fPPh3 (10 mol %).

Scheme 3. PPh3-Catalyzed Hexamerization of Differently
SubstitutedAcrylatesa,b

aReaction conditions: acrylates 1b-j (1.0 mmol), PPh3 (0.4 mmol),
TEA (1.0 mmol), DCM (0.1 M), r.t., 72 h. bIsolation yields. cGram
scale reaction: 1a (3.0 mmol), PPh3 (1.2 mmol), TEA (3.0 mmol),
DCM (0.1 M), r.t., 5 days. d5 days.

Scheme 4. Proposed Mechanism for the Conversion of 2-
(Bromomethyl)acrylate 1a into Dicyclohexenyl Product 2
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phosphine and triethylamine, the addition of chloroxime 7 and
triethylamine (to generate benzonitrile oxide) afforded the
centrosymmetric bis-isoxazoline 8 as the sole product (Scheme
5). Again, the double cycloaddition was totally regio- and
stereoselective, as confirmed by X-ray diffraction analysis of a
single crystal of 8.

Given the presence of five ethylenic bonds in 2, we
considered its functionalization via 1,3-dipolar cycloaddition to
increase the molecular complexity. Accordingly, treatment of 2
with benzonitrile oxide (in situ generated from 7 and TEA)
afforded the tetracyclic centrosymmetric bis-isoxazole 9 in 56%
yield as the sole product, whose structure was confirmed by X-
ray diffraction analysis (Scheme 6, path B). So, once again, the

reaction was totally regio- and stereoselective. Compound 9
could also be obtained in good yield (48%) in a one-pot process
by generating in situ benzonitrile oxide in the presence of 2,
which was in turn in situ generated from 1a, providing on the
whole a dimerization/double DA cycloaddition/double 1,3-
dipolar cycloaddition process (Scheme 6, path A).
To understand the reason for such a total stereoselectivity,

DFT calculations were performed.12,13 The lowest energy
geometry (Table S1, Supporting Information (SI)) for each
ground state and transition state (TS) was used for evaluating
the enthalpy (Figure 1A and B) and free energy (Figure S1A
and B; SI) paths of the first and second cycloaddition. As to
the first cycloaddition, we modeled the reaction between two

molecules of monomer VI to provide intermediate VII in both
the 3R,4R (VII-RR) and 3R,4S (VII-RS) stereochemistries. We
found that the path leading to the former stereoisomer was
kinetically favored over the second, with activation barriers
(ΔH‡) = 9.2 and 15.6 kcal/mol, respectively, from the
activated complex (AC-VII vs TS-VII). No relevant difference
was found in reaction enthalpy (ΔH), suggesting that VII-RR
and VII-RS are thermodynamically equivalent (Figure 1A). As
to the second cycloaddition, we investigated the reaction
between the kinetically favored VII-RR and monomer VI,
leading to the 2-RRSS and 2-RRRR diastereoisomers (Figure
1B). In this case, the former compound was favored over 2-
RRRR both kinetically (ΔH‡ = 9.3 and 16.9 kcal/mol,
respectively; AC-2 vs TS-2) and thermodynamically (ΔH =
−33.0 and −23.3 kcal/mol, respectively; 2 vs AC-2).
We analyzed the difference between TS-2-RRSS and TS-2-

RRRR by performing a topological analysis of the electron
density using the Bader’s Quantum Theory of Atoms in
Molecules (QTAIM).14,15 In QTAIM, both covalent and
noncovalent interactions are defined by a bond path (BP) and
by a bond critical point (BCP). The value of electron density
ρ(r) at the BCP is a measure of the strength of the interaction.
Results are summarized in Figure S2A, B (SI) and Table S2
(SI), where BPs connecting noncovalently bound oxygen and
hydrogens (HB) are reported with the corresponding BCPs.
From the molecular graphs, it can be observed that four HB
BCPs (BCP1−4) are found for TS-2-RRRR (Figure S2A, SI),
three of which belong to intermolecular BPs connecting the
two reactants. Conversely, eight HB BCPs were found in TS-2-

Scheme 5. Capture of Triene Intermediate by 1,3-Dipolar
Cycloadditiona,b,c

aReaction conditions: step 1: 1a (1.0 mmol), PPh3 (0.4 mmol), TEA
(1.5 mmol), DCM (0.1 M), r.t., 15 min.; step 2: 7 (2.0 mmol), TEA
(1.5 mmol), r.t., 24 h. bIsolation yields. cCCDC 2286201 is the
Cambridge Structural Database entry for 8.

Scheme 6. Dimerization/Diels−Alder/1,3-Dipolar
Cycloadditions from 1aa,b,c

aReaction conditions: path A: 1a (1.0 mmol), PPh3 (0.4 mmol),
DCM (0.1 M), r.t., 72 h; then: 7 (2.0 mmol), TEA (1.5 mmol), r.t.,
24 h; path B: 2 (1.0 mmol), 7 (2.0 mmol), TEA (1.5 mmol), DCM
(0.1 M), r.t., 24 h. bIsolation yields. cCCDC 2286202 is the
Cambridge Structural Database entry for 9.

Figure 1. DFT and QTAIM analysis of the reaction mechanism
leading to experimentally isolated and nonisolated stereoisomers. (A)
Enthalpy path and stationary points for the dimerization of VI, leading
to VII-RS and VII-RR. (B) Enthalpy path and stationary points for the
addition of VII-RR to VI, leading to 2-RRRR (not isolated) and 2-
RRSS (isolated) stereoisomers. ΔH values relative to the isolated
reactants are reported in parentheses in kcal/mol.
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RRSS, six of which were intermolecular. Additionally, the total
electron density ρ(r) of HB BCPs is 0.066659 and 0.047609 au
for TS-2-RRSS and TS-2-RRRR, respectively. This indicates
stronger, as well as more numerically abundant, interactions
among the reactants in the former TS, justifying the selectivity
observed both theoretically and experimentally.
In conclusion, we have disclosed a highly effective

phosphine-catalyzed procedure that allows assembly, in a
totally regio- and stereoselective way, of six molecules of 2-
(bromomethyl)acrylates through the formation of seven
carbon−carbon bonds and four stereocenters. The resulting
sole product is a centrosymmetric pentaene containing two
cyclohexenyl units derived from a dimerization/double DA
cycloaddition sequence. A key intermediate of this domino
sequence is the 2,5-dicarbomethoxy-1,3,5-triene VI, whose
formation was evidenced by its trapping through a 1,3-dipolar
cycloaddition with benzonitrile oxide. Furthermore, adduct 2
was also found to undergo a double and totally selective 1,3-
dipolar cycloaddition with benzonitrile oxide, generating a
tetracyclic bis-isoxazole adduct as the sole product. DFT
computations of the two DA steps supported the proposed
mechanism. Computed ΔH‡ are consistent with a reaction
occurring at room temperature as well as with the observed
selectivity. Future studies will be directed toward expanding
the scope of the reaction between 1 and other 1,3-dipoles to
achieve new structures and higher complexity.
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