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Abstract
Segmentation and image intensity discretization impact on radiomics workflow. The aim of this study is to investigate the 
influence of interobserver segmentation variability and intensity discretization methods on the reproducibility of MRI-based 
radiomic features in lipoma and atypical lipomatous tumor (ALT). Thirty patients with lipoma or ALT were retrospectively 
included. Three readers independently performed manual contour-focused segmentation on T1-weighted and T2-weighted 
sequences, including the whole tumor volume. Additionally, a marginal erosion was applied to segmentations to evaluate its 
influence on feature reproducibility. After image pre-processing, with included intensity discretization employing both fixed 
bin number and width approaches, 1106 radiomic features were extracted from each sequence. Intraclass correlation coef-
ficient (ICC) 95% confidence interval lower bound ≥ 0.75 defined feature stability. In contour-focused vs. margin shrinkage 
segmentation, the rates of stable features extracted from T1-weighted and T2-weighted images ranged from 92.68 to 95.21% 
vs. 90.69 to 95.66% after fixed bin number discretization and from 95.75 to 97.65% vs. 95.39 to 96.47% after fixed bin width 
discretization, respectively, with no difference between the two segmentation approaches (p ≥ 0.175). Higher stable feature 
rates and higher feature ICC values were found when implementing discretization with fixed bin width compared to fixed 
bin number, regardless of the segmentation approach (p < 0.001). In conclusion, MRI radiomic features of lipoma and ALT 
are reproducible regardless of the segmentation approach and intensity discretization method, although a certain degree of 
interobserver variability highlights the need for a preliminary reliability analysis in future studies.
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Introduction

Atypical lipomatous tumor (ALT) and lipoma are the most 
common soft-tissue lesions [1]. According to the 2020 edi-
tion of the World Health Organization classification [2], the 
term ALT is reserved for low-grade adipocytic neoplasms 
arising at anatomical sites for which surgery is generally  
curative, including the extremities and trunk [2]. ALTs have  
a relatively indolent disease course compared to well- 
differentiated liposarcomas, namely lipomatous lesions with 
the same histology but located in deep anatomical sites such 
as the retroperitoneum, mediastinum, and spermatic cord, 
where there is a higher risk for recurrence and dedifferen-
tiation related to lower chances of achieving negative surgi-
cal margins [2]. In line with this relatively indolent clinical 
behavior, treatment strategy has progressively shifted from 
extensive surgery to marginal excision in ALTs, which is 
now considered an appropriate option to achieve local con-
trol while taking into account the morbidity rates associated 
with surgery [3]. On the other hand, lipomas are benign lipo-
matous lesions, which do not require any treatment unless 
symptomatic or due to cosmetic concerns [3]. Lipomas are 
rare in deep locations, such as the retroperitoneum, but very 
common in the extremities and trunk [1]. Thus, an accurate 
distinction between ALT and lipoma is desirable to offer 
optimal patient care.

In the diagnostic pathway of lipomatous soft-tissue 
lesions, magnetic resonance imaging (MRI) is the imag-
ing method of choice for diagnosis and differentiating ALT 
from lipoma, with high sensitivity and substantial specific-
ity [4–6]. In detail, according to a recent meta-analysis, the 
sensitivity and specificity of radiologists evaluating mul-
tiple combined imaging parameters (called “radiologist 
gestalt”) range from 76 to 100% and 37 to 77%, respec-
tively, if only studies focusing on lipoma and ALT are 
considered [4]. Nonetheless, a certain degree of interob-
server variability has emerged even among expert readers 
[5–7], with kappa values ranging from 0.23 to 0.7 accord-
ing to this meta-analysis [4]. Preliminary imaging studies 
applying radiomics have shown promise for improving 
diagnostic accuracy and characterizing lipomatous soft-
tissue lesions more objectively [8]. Radiomics includes 
the extraction and analysis of quantitative parameters from 
medical images, known as radiomic features [9–11]. A 
crucial step of radiomic workflows is feature reproduc-
ibility assessment, as these quantitative parameters may 
suffer from interobserver variability, particularly regarding 
tumor delineation while performing manual segmentation 
[12–15]. Segmentation margins are also critical because 
the peritumoral area may influence the reproducibility of 
radiomic features and their diagnostic performance [15, 
16]. Furthermore, in radiomic workflows, the effects of 

different image intensity discretization methods on feature 
reproducibility are debated [17–19]. In literature, the intra-
class correlation coefficient (ICC) is commonly employed 
to evaluate radiomic feature reproducibility [16, 20–23].

The aim of this study is to investigate the influence of 
interobserver manual segmentation variability on the repro-
ducibility of MRI-based radiomic features in lipoma and 
ALT, also considering the impact of different image inten-
sity discretization methods.

Materials and Methods

Design and Population

Institutional Review Board approved this retrospective study 
and waived the need for informed consent. This study was 
designed to meet the numerical requirements of a reproduc-
ibility analysis in terms of patients and readers involved, 
namely 30 lesions and 3 different readers, according to the 
ICC guidelines by Koo and Li [24]. An electronic search of 
the pathology information system was performed, and 30 
patients with lipomatous soft-tissue tumors were included 
(median age 58 [range 40–79] years). Inclusion criteria were 
as follows: (i) lipoma or ALT proven by post-surgical pathol-
ogy, which was based on microscopic findings and MDM2 
immunohistochemistry or fluorescence in situ hybridization; 
(ii) 1.5-T MRI performed within 3 months before surgery, 
including turbo spin echo T1-weighted and T2-weighted 
sequences without fat suppression. Exclusion criteria were 
ALT local recurrence and poor image quality or image arti-
facts affecting segmentation and radiomic analysis.

Details regarding location, size, and main imaging 
characteristics of the included lipomas and ALTs are pro-
vided in Table 1. All examinations were performed on one 
of two 1.5-T MRI systems (Magnetom Avanto or Mag-
netom Espree, Siemens Healthineers, Erlangen, Germany). 
Axial T1-weighted and T2-weighted MRI sequences were 
extracted for image analysis. The median matrix size and 
slice thickness were 512 × 512 (range 320–512 × 216–512) 
and 3.5 (range 3–5) mm, respectively. The median TE and 
TR were 11 (range 10–21) and 663 (range 454–800) ms on 
T1-weighted sequences, respectively. The median TE and 
TR were 100 (range 80–146) and 3664 (range 2000–7444) 
ms on T2-weighted sequences, respectively. All extracted 
DICOM images were converted to the NiFTI format prior 
to the analysis.

Image Segmentation

A musculoskeletal radiologist with 4 years of experience  
in musculoskeletal tumor imaging (S.G.), a general 
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radiologist (V.G.), and a medical resident (J.B.) indepen-
dently performed manual image segmentation using the 
open-source software ITK-SNAP (v3.8) [25]. The read-
ers knew the study would deal with lipomatous soft-tissue 
tumors, but they were blinded to any additional information 
regarding pathology or disease course. Manual contour-
focused segmentation was performed by drawing a region 
of interest (ROI) slice by slice to include the whole tumor 

volume on both axial T1-weighted and T2-weighted MRI 
sequences. Thereafter, margin shrinkage segmentation was 
computed by applying a marginal erosion to evaluate the 
influence of segmentation margins on feature reproducibility 
(Fig. 1). In detail, ROI shrinkage was performed using the 
fslmaths erosion function of the FMRIB Software Library 
[26]. The default kernels, namely a 3 × 3 × 3 box centered at 
the target voxel, were employed.

Table 1   Location, size and 
main imaging characteristics of 
the ALTs and lipomas included 
in this study

Maximum diameter is expressed as median (range)

ALT Lipoma

Anatomical site Arm, n = 2
Forearm or hand, n = 4
Leg, n = 1
Thigh, n = 9

Arm, n = 4
Forearm or hand, n = 5
Leg, n = 1
Thigh, n = 4

Location relative to fascia All deep to the deep peripheral fascia 
surrounding muscles

All deep to the deep periph-
eral fascia surrounding 
muscles

Maximum diameter 145 (43–292) mm 83 (32–155) mm
Thick septations (> 2 mm) Yes, n = 10

No, n = 6
Yes, n = 6
No, n = 8

Non-fatty nodular/irregular com-
ponents

Yes, n = 1
No, n = 15

Yes, n = 0
No, n = 14

Fig. 1   The upper and lower rows present two different examples of 
lesion annotation. These include the original images (a, f) with cor-
responding contour-focused segmentation presented as a mask (b, g) 

and relative 3D volume (c, h). Finally, the results of automated mar-
gin shrinkage are shown for both the mask (d, i) and volume (e, j)
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Radiomic Analysis

Image pre-processing and feature extraction were performed 
using PyRadiomics (v3.0.1) [27], an open-source Python 
software. Image pre-processing consisted of resampling to a 
2 × 2 × 2 isotropic voxel, intensity normalization (mean value 
of 300 and standard deviation of 100) and discretization with 
both options of fixed bin number and fixed bin width, as imple-
mented in PyRadiomics. In detail, discretization was obtained 
using both a fixed bin number of 64 and a fixed bin width of 7.

Original images were used for extraction of first-order, 
shape-based and texture features, which were grouped accord-
ing to PyRadiomics official documentation (https://​pyrad​iomics.​
readt​hedocs.​io/​en/​latest/​featu​res.​html) and included: 18 first-
order features, 14 shape-based features, 22 Gy-level cooccur-
rence matrix (GLCM) features, 16 Gy-level size zone matrix 
(GLSZM) features, 16 Gy-level run length matrix (GLRLM) 
features, 14 Gy-level dependence matrix (GLDM) features, and 
5 neighboring gray tone difference matrix (NGTDM).

In addition to the original images, Laplacian of Gauss-
ian (LoG)–filtered (sigma = 2, 4, 6) and wavelet-transformed 
images (all possible low and high pass filter combinations) 

were obtained for extraction of first-order and texture fea-
tures. Shape-based features are independent from gray-level 
value distribution and therefore were only computed on the 
original images. A total of 1106 features were extracted from 
original, LoG-filtered, and wavelet-transformed images for 
each MRI sequence.

Statistical Analysis

Interobserver reliability was assessed using two-way, ran-
dom-effects, single-rater agreement ICC 95% confidence 
interval (CI) lower bound. Features were considered stable 
when achieving good (0.75 ≤ ICC 95% CI lower bound < 0.9) 
to excellent (ICC 95% CI lower bound ≥ 0.9) interobserver 
reliability [24]. Differences among stable feature rates were 
evaluated using chi-square test. Differences among ICC 95% 
CI lower bound values were evaluated using Friedman test 
for repeated samples and Wilcoxon signed rank test with 
continuity correction for pairwise comparisons. A two-sided 
p-value < 0.05 indicated statistical significance [28]. Data 
analysis was performed using the pandas and numpy Python 
software and the “irr” R package [29, 30].

Fig. 2   Contour-focused (original ROI) vs. margin shrinkage (eroded 
ROI) segmentation after image intensity discretization with fixed 
bin number. Box and whisker plots show the interobserver reproduc-
ibility of feature classes grouped according to image type and MRI 
sequence. GLCM, gray-level cooccurrence matrix; GLDM, gray-level 

dependence matrix; GLRLM, gray-level run length matrix; GLSZM, 
gray-level size zone matrix; ICC, intraclass correlation coefficient; 
LoG, Laplacian of Gaussian; NGTDM, neighboring gray tone differ-
ence matrix

https://pyradiomics.readthedocs.io/en/latest/features.html
https://pyradiomics.readthedocs.io/en/latest/features.html
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Results

Stable Feature Rates by Intensity Discretization 
Method and Segmentation Approach

After implementing image intensity discretization with fixed 
bin number, in contour-focused vs. margin shrinkage segmenta-
tion, the stable feature rates were 95.21% (n = 1053) vs. 95.66% 
(n = 1058) and 92.68% (n = 1025) vs. 90.69% (n = 1003) for 
T1-weighted and T2-weighted images, respectively, with no 
statistical difference (p = 0.298). In Fig. 2, box and whisker 
plots show the interobserver reproducibility of feature classes 
derived from contour-focused and margin shrinkage segmen-
tations, grouped according to image type and MRI sequence. 
The matching stable features derived from contour-focused and 
margin shrinkage segmentations performed on T1-weighted 
and T2-weighted images were 92.68% (n = 1025) and 86.80% 
(n = 960), respectively, as detailed in Supplementary Files 1–2.

After implementing image intensity discretization with 
fixed bin width, in contour-focused vs. margin shrinkage 

segmentation, the stable feature rates were 97.65% (n = 1080) 
vs. 95.39% (n = 1055) and 95.75% (n = 1059) vs. 96.47% 
(n = 1067) for T1-weighted and T2-weighted images, respec-
tively, with no statistical difference (p = 0.175). In Fig. 3, 
box and whisker plots show the interobserver reproducibility 
of feature classes derived from contour-focused and margin 
shrinkage segmentations, grouped according to image type 
and MRI sequence. The matching stable features derived 
from contour-focused and margin shrinkage segmentations 
performed on T1- and T2-weighted images were 94.30% 
(n = 1043) and 93.76% (n = 1037), respectively, as detailed 
in Supplementary Files 3–4.

In image intensity discretization with fixed bin number 
vs. fixed bin width, the latter discretization method yielded 
higher rates of stable features regardless of the segmen-
tation approach (p < 0.001). Tables 2, 3, 4 and 5 show 
the number and percentage of stable features that were 
obtained with different combinations of discretization 
methods and segmentation approaches, grouped accord-
ing to feature class and image type.

Fig. 3   Contour-focused (original ROI) vs. margin shrinkage (eroded 
ROI) segmentation after image intensity discretization with fixed 
bin width. Box and whisker plots show the interobserver reproduc-
ibility of feature classes grouped according to image type and MRI 
sequence. GLCM, gray-level cooccurrence matrix; GLDM, gray-level 

dependence matrix; GLRLM, gray-level run length matrix; GLSZM, 
gray-level size zone matrix; ICC, intraclass correlation coefficient; 
LoG, Laplacian of Gaussian; NGTDM, neighboring gray tone differ-
ence matrix



	 Journal of Imaging Informatics in Medicine

Table 2   Discretization with fixed bin number and contour-focused 
segmentation. Number and percentage of stable features with good 
(0.75 ≤ ICC 95% CI lower bound < 0.9) and excellent (ICC 95% CI 

lower bound ≥ 0.9) interobserver reproducibility grouped according to 
feature class and image type

GLCM gray-level cooccurrence matrix, GLDM gray-level dependence matrix, GLRLM gray-level run length matrix, GLSZM gray-level size zone 
matrix, ICC intraclass correlation coefficient, LoG Laplacian of Gaussian, NGTDM neighboring gray tone difference matrix

Image Feature class Image type Total feature 
number (n)

ICC ≥ 0.75 (n) ICC ≥ 0.90 (n) ICC ≥ 0.75 (%) ICC ≥ 0.90 (%)

T1w First order LoG 54 54 50 100 92.59
Original 18 17 17 94.44 94.44
Wavelet 144 138 130 95.83 90.28

Shape Original 14 13 13 92.86 92.86
GLCM LoG 66 63 51 95.45 77.27

Original 22 22 20 100 90.91
Wavelet 176 166 157 94.32 89.2

GLDM LoG 42 40 36 95.24 85.71
Original 14 14 13 100 92.86
Wavelet 112 107 98 95.54 87.5

GLRLM LoG 48 45 34 93.75 70.83
Original 16 16 15 100 93.75
Wavelet 128 120 104 93.75 81.25

GLSZM LoG 48 43 26 89.58 54.17
Original 16 15 7 93.75 43.75
Wavelet 128 120 77 93.75 60.16

NGTDM LoG 15 15 14 100 93.33
Original 5 5 5 100 100
Wavelet 40 40 39 100 97.5

Overall 1106 1053 906 95.21 81.92
T2w First order LoG 54 52 49 96.3 90.74

Original 18 17 15 94.44 83.33
Wavelet 144 134 123 93.06 85.42

Shape Original 14 13 8 92.86 57.14
GLCM LoG 66 63 56 95.45 84.85

Original 22 21 18 95.45 81.82
Wavelet 176 162 143 92.05 81.25

GLDM LoG 42 40 36 95.24 85.71
Original 14 13 10 92.86 71.43
Wavelet 112 106 84 94.64 75

GLRLM LoG 48 45 36 93.75 75
Original 16 15 10 93.75 62.5
Wavelet 128 114 87 89.06 67.97

GLSZM LoG 48 47 29 97.92 60.42
Original 16 15 4 93.75 25
Wavelet 128 108 67 84.38 52.34

NGTDM LoG 15 15 14 100 93.33
Original 5 5 4 100 80
Wavelet 40 40 38 100 95

Overall 1106 1025 831 92.68 75.14
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Table 3   Discretization with fixed bin number and margin shrinkage 
segmentation. Number and percentage of stable features with good 
(0.75 ≤ ICC 95% CI lower bound < 0.9) and excellent (ICC 95% CI 

lower bound ≥ 0.9) interobserver reproducibility grouped according to 
feature class and image type

GLCM gray-level cooccurrence matrix, GLDM gray-level dependence matrix, GLRLM gray-level run length matrix, GLSZM, gray-level size 
zone matrix, ICC intraclass correlation coefficient, LoG Laplacian of Gaussian, NGTDM neighboring gray tone difference matrix

Image Feature class Image type Total feature 
number (n)

ICC ≥ 0.75 (n) ICC ≥ 0.90 (n) ICC ≥ 0.75 (%) ICC ≥ 0.90 (%)

T1w First order LoG 54 54 53 100 98.15
Original 18 18 17 100 94.44
Wavelet 144 143 132 99.31 91.67

Shape Original 14 14 11 100 78.57
GLCM LoG 66 63 52 95.45 78.79

Original 22 22 18 100 81.82
Wavelet 176 166 143 94.32 81.25

GLDM LoG 42 40 37 95.24 88.1
Original 14 14 11 100 78.57
Wavelet 112 108 96 96.43 85.71

GLRLM LoG 48 44 34 91.67 70.83
Original 16 16 13 100 81.25
Wavelet 128 121 104 94.53 81.25

GLSZM LoG 48 43 28 89.58 58.33
Original 16 16 9 100 56.25
Wavelet 128 116 75 90.63 58.59

NGTDM LoG 15 15 15 100 100
Original 5 5 5 100 100
Wavelet 40 40 37 100 92.5

Overall 1106 1058 890 95.66 80.47
T2w First order LoG 54 53 48 98.15 88.89

Original 18 16 14 88.89 77.78
Wavelet 144 142 123 98.61 85.42

Shape Original 14 13 7 92.86 50
GLCM LoG 66 62 49 93.94 74.24

Original 22 20 14 90.91 63.64
Wavelet 176 157 139 89.2 78.98

GLDM LoG 42 39 37 92.86 88.1
Original 14 12 10 85.71 71.43
Wavelet 112 99 88 88.39 78.57

GLRLM LoG 48 41 32 85.42 66.67
Original 16 12 9 75 56.25
Wavelet 128 110 98 85.94 76.56

GLSZM LoG 48 41 31 85.42 64.58
Original 16 14 8 87.5 50
Wavelet 128 112 82 87.5 64.06

NGTDM LoG 15 15 14 100 93.33
Original 5 5 5 100 100
Wavelet 40 40 37 100 92.5

Overall 1106 1003 845 90.69 76.4
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Table 4   Discretization with fixed bin width and contour-focused 
segmentation. Number and percentage of stable features with good 
(0.75 ≤ ICC 95% CI lower bound < 0.9) and excellent (ICC 95% CI 

lower bound ≥ 0.9) interobserver reproducibility grouped according to 
feature class and image type

GLCM gray-level cooccurrence matrix, GLDM gray-level dependence matrix, GLRLM gray-level run length matrix, GLSZM gray-level size zone 
matrix, ICC intraclass correlation coefficient, LoG Laplacian of Gaussian, NGTDM neighboring gray tone difference matrix

Image Feature class Image type Total feature 
number (n)

ICC ≥ 0.75 (n) ICC ≥ 0.90 (n) ICC ≥ 0.75 (%) ICC ≥ 0.90 (%)

T1w First order LoG 54 54 50 100 92.59
Original 18 17 17 94.44 94.44
Wavelet 144 138 130 95.83 90.28

Shape Original 14 13 13 92.86 92.86
GLCM LoG 66 66 63 100 95.45

Original 22 22 19 100 86.36
Wavelet 176 176 169 100 96.02

GLDM LoG 42 41 38 97.62 90.48
Original 14 14 12 100 85.71
Wavelet 112 112 106 100 94.64

GLRLM LoG 48 47 43 97.92 89.58
Original 16 16 14 100 87.5
Wavelet 128 128 121 100 94.53

GLSZM LoG 48 39 32 81.25 66.67
Original 16 13 8 81.25 50
Wavelet 128 124 93 96.88 72.66

NGTDM LoG 15 15 12 100 80
Original 5 5 5 100 100
Wavelet 40 40 40 100 100

Overall 1106 1080 985 97.65 89.06
T2w First order LoG 54 52 49 96.3 90.74

Original 18 17 15 94.44 83.33
Wavelet 144 134 123 93.06 85.42

Shape Original 14 13 8 92.86 57.14
GLCM LoG 66 66 64 100 96.97

Original 22 22 17 100 77.27
Wavelet 176 174 164 98.86 93.18

GLDM LoG 42 42 38 100 90.48
Original 14 14 12 100 85.71
Wavelet 112 106 92 94.64 82.14

GLRLM LoG 48 47 43 97.92 89.58
Original 16 16 12 100 75
Wavelet 128 123 113 96.09 88.28

GLSZM LoG 48 44 31 91.67 64.58
Original 16 15 6 93.75 37.5
Wavelet 128 115 94 89.84 73.44

NGTDM LoG 15 15 12 100 80
Original 5 5 4 100 80
Wavelet 40 39 38 97.5 95

Overall 1106 1059 935 95.75 84.54
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Table 5   Discretization with fixed bin width and margin shrinkage 
segmentation. Number and percentage of stable features with good 
(0.75 ≤ ICC 95% CI lower bound < 0.9) and excellent (ICC 95% CI 

lower bound ≥ 0.9) interobserver reproducibility grouped according to 
feature class and image type

GLCM gray-level cooccurrence matrix, GLDM gray-level dependence matrix, GLRLM gray-level run length matrix, GLSZM gray-level size zone 
matrix, ICC intraclass correlation coefficient, LoG Laplacian of Gaussian, NGTDM neighboring gray tone difference matrix

Image Feature class Image type Total feature 
number (n)

ICC ≥ 0.75 (n) ICC ≥ 0.90 (n) ICC ≥ 0.75 (%) ICC ≥ 0.90 (%)

T1w First order LoG 54 54 53 100 98.15
Original 18 18 18 100 100
Wavelet 144 143 132 99.31 91.67

Shape Original 14 14 11 100 78.57
GLCM LoG 66 66 63 100 95.45

Original 22 22 21 100 95.45
Wavelet 176 171 165 97.16 93.75

GLDM LoG 42 40 36 95.24 85.71
Original 14 14 14 100 100
Wavelet 112 107 104 95.54 92.86

GLRLM LoG 48 46 41 95.83 85.42
Original 16 16 16 100 100
Wavelet 128 121 119 94.53 92.97

GLSZM LoG 48 38 30 79.17 62.5
Original 16 16 12 100 75
Wavelet 128 110 93 85.94 72.66

NGTDM LoG 15 15 13 100 86.67
Original 5 5 4 100 80
Wavelet 40 39 35 97.5 87.5

Overall 1106 1055 980 95.39 88.61
T2w First order LoG 54 53 51 98.15 94.44

Original 18 16 16 88.89 88.89
Wavelet 144 142 125 98.61 86.81

Shape Original 14 13 7 92.86 50
GLCM LoG 66 66 62 100 93.94

Original 22 22 21 100 95.45
Wavelet 176 173 165 98.3 93.75

GLDM LoG 42 42 39 100 92.86
Original 14 13 10 92.86 71.43
Wavelet 112 108 93 96.43 83.04

GLRLM LoG 48 48 43 100 89.58
Original 16 15 13 93.75 81.25
Wavelet 128 126 111 98.44 86.72

GLSZM LoG 48 45 33 93.75 68.75
Original 16 14 7 87.5 43.75
Wavelet 128 113 97 88.28 75.78

NGTDM LoG 15 14 14 93.33 93.33
Original 5 4 4 80 80
Wavelet 40 40 38 100 95

Overall 1106 1067 949 96.47 85.8



	 Journal of Imaging Informatics in Medicine

Feature ICC Values by Intensity Discretization 
Method and Segmentation Approach

The median and interquartile (first to third) range ICC 95% 
CI lower bound values of radiomic feature extracted from 
both T1-weighted and T2-weighted sequences are reported 
in Table 6, grouped according to image intensity discretiza-
tion method and segmentation approach. A significant dif-
ference among ICC values was found using Friedman test 
for repeated samples on both T1-weighted and T2-weighted 
sequences (p < 0.001). In pairwise comparisons, higher fea-
ture ICC 95% CI lower bound values were found when per-
forming image intensity discretization with fixed bin width 
compared to fixed bin number, regardless of the segmenta-
tion approach, on both T1-weighted and T2-weighted images 
(p < 0.001). On T1-weighted images, no difference in terms of 
ICC 95% CI lower bound was found between contour-focused 
and margin shrinkage segmentations after both discretization 
methods with fixed bin number (p = 0.8) and width (p = 0.62). 
On T2-weighted images, no difference in terms of ICC 95% 
CI lower bound was found between the two segmentation 
approaches after discretization with fixed bin number (p = 0.24). 
On T2-weighted images, higher ICC 95% CI lower bound val-
ues were found when performing margin shrinkage segmenta-
tion after intensity discretization with fixed bin width, com-
pared to contour-focused segmentation (p < 0.001). In Fig. 4, 
box and whisker plots show the interobserver reproducibility of 
all features extracted from each MRI sequence using different 
discretization methods and segmentation approaches.

Discussion

The main finding of our study is that the rates of stable radi-
omic features extracted from T1-weighted and T2-weighted 
MRI sequences were very high (90% or higher) regardless of 

the discretization method and segmentation approach. The 
discretization method with fixed bin width yielded higher 
stable feature rates and higher feature ICC values compared 
to fixed bin number, regardless of the segmentation approach 
with or without marginal erosion (p < 0.001). Additionally, 
no difference in stable feature rates was found between the 
segmentation approaches, regardless of the discretization 
method (p ≥ 0.175). Overall, a small but still not negligible 
degree of segmentation variability highlighted the need to 
include a reliability analysis in radiomic studies.

Radiomics has a great potential as a non-invasive biomarker 
to quantify several tumor characteristics, both standalone and 
combined with artificial intelligence methods such as machine 
learning [31–33]. However, it faces challenges to clinical 
implementation [34]. A great variability in radiomic features 
has emerged as a major issue across studies, and image seg-
mentation is the most critical step [11]. As segmentation is 
time-consuming if performed manually, prior to conducting 
radiomic studies, methodological analyses would be desirable 
to preliminarily evaluate the robustness of different segmen-
tation approaches and avoid biases due to non-reproducible, 
noisy features. Similar analyses were previously performed in 
kidney [16], lung and head and neck [14], and cartilaginous 
bone [15] lesions. Regarding lipomatous soft-tissue tumors, 
most radiomic studies included a feature reproducibility assess-
ment as a dimensionality-reduction method in their radiomic 
workflow, which was built with the aim of differentiating 
benign from malignant (including low-grade) lesions [35–42]. 
More recently, Sudjai et al. compared the effects of intra- and 
interobserver segmentation variability on the reproducibility 
of 2D and 3D MRI-based radiomic feature reproducibility in 
lipoma and ALT [43]. A region growing-based semiautomatic 
contour-focused segmentation was performed on T1-weighted 
sequences by two readers and only original images were used 
for feature extraction, resulting in 43 out of 93 (46.2%) 2D fea-
tures and 76 out of 107 (71%) 3D features with an absolute 
agreement ICC ≥ 0.75, which defined feature stability [43]. 

Table 6   ICC values by 
discretization method and 
segmentation approach. 
Median and interquartile (first 
to third) range ICC 95% CI 
lower bound values of radiomic 
features extracted from both 
T1-weighted and T2-weighted 
sequences, grouped according 
to discretization method and 
segmentation approach

Image Discretization method Segmentation approach ICC 95% CI lower bound

Median Interquartile range 
(first to third)

T1w Fixed bin number Contour focused 0.971 0.932–0.986
Margin shrinkage 0.974 0.929–0.986

Fixed bin width Contour focused 0.982 0.957–0.992
Margin shrinkage 0.983 0.957–0.992

T2w Fixed bin number Contour focused 0.954 0.900–0.978
Margin shrinkage 0.955 0.907–0.983

Fixed bin width Contour focused 0.969 0.936–0.989
Margin shrinkage 0.977 0.939–0.991
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Based on their findings, we focused our study on 3D segmen-
tations only, as they yielded higher stable feature rates. We 
compared two image intensity discretization methods (fixed bin 
number vs. fixed bin width) and two segmentation approaches 
(contour-focused vs. margin shrinkage) on both T1-weighted 
and T2-weighted sequences, involving three different readers 
as suggested by the ICC guidelines by Koo and Li [24]. After 
extraction of features from original, filtered and transformed 
images (1106 features per sequence compared to 107 in the 
previous study [43]), we found higher rates of stable features 
(90% or higher per sequence, regardless of the discretization 
method and segmentation approach) using ICC 95% CI lower 
bound ≥ 0.75 as a stricter cutoff to define feature stability. This 
difference could be attributed to the use of filtered and trans-
formed (in addition to the original) images for feature extrac-
tion in our study, as well as to the different experiences of the 
readers involved in image segmentation, namely a statistician 
and a research scientist in the previous study [43] and three 
physicians in our study. Despite these differences, a common 
conclusion that can be drawn from the previous [43] and our 
studies is that most 3D MRI radiomic features of lipoma and 
ALT have good reproducibility, although a certain degree of 
segmentation variability exists.

In our study, T1-weighted and T2-weighted MRI 
sequences demonstrated good reproducibility regardless of 
the image intensity discretization method employed in image 
pre-processing, which was performed using both options of 
fixed bin number and fixed bin width, with stable feature 
rates respectively ranging from 90.69 to 95.66% and from 
95.39 to 97.65%. The discretization method with fixed bin 
width resulted in higher stable feature rates and higher 
feature ICC values, thus providing more robust features 
compared to discretization with fixed bin number in our 
series. This finding is in line with previous positron emis-
sion tomography and MRI studies showing better feature 
reproducibility when implementing fixed bin width [44, 45]. 
Margin shrinkage led to an improvement in terms of feature 
ICC values compared to contour-focused segmentation only 
when implementing discretization with fixed bin width on 
T2-weighted images. Conversely, no difference in terms of 
feature ICC values was found between the two segmentation 
approaches when implementing discretization with fixed bin 
width on T1-weighted images or fixed bin number regardless 
of the employed MRI sequence. Additionally, no difference 
in terms of stable feature rates was found between the two 
segmentation approaches, regardless of the discretization 
method. Thus, a definite conclusion regarding the superior-
ity of one segmentation approach over the other cannot be 
drawn. This confirms the need for a preliminary assessment 
of feature reproducibility in radiomic workflows and is in 
line with literature emphasizing the importance of reproduc-
ibility in artificial intelligence and radiology [46–48].

Some limitations of our study should be addressed. First, 
it has a retrospective design, as a prospective analysis is 
not strictly necessary for radiomic studies [49]. Second, the 
retrospective design accounts for the exclusion of contrast-
enhanced MRI, which was not performed consistently in 
our series of lipomas and ALTs. This is in line with recent 
studies suggesting that the value of contrast administration 
may be limited in lipoma and ALT [6, 50], with no clear 
improvement in diagnostic accuracy following the addition 
of contrast-enhanced sequences to a non-contrast MRI pro-
tocol [50]. Finally, due to its scope, this was a single institu-
tion study, and the generalizability of our results should be 
confirmed on more varied datasets.

Conclusions

Radiomic features of lipoma and ALT extracted from 
T1-weighted and T2-weighted MRI sequences are repro-
ducible regardless of the segmentation approach and seg-
mentation method, although a minimal degree of segmenta-
tion variability exists and highlights the need to perform a 
preliminary reproducibility analysis in radiomic studies. As 

Fig. 4   Interobserver reproducibility by discretization method and seg-
mentation approach. Box and whisker plots show the interobserver 
reproducibility of all features extracted using different discretization 
methods and ROIs without (contour focused segmentation) or with 
marginal erosion (margin shrinkage segmentation), grouped accord-
ing to MRI sequence. FBN, fixed bin number; FBW, fixed bin width
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stable feature rates were similar between contour-focused 
and margin shrinkage segmentations, it could be reason-
able to prefer the former approach for ease of use in clinical 
practice. Image intensity discretization with fixed bin width 
provided higher stable feature rates and feature ICC values 
compared to discretization with fixed bin number. Thus, the 
former discretization method might be favored when per-
forming image pre-processing in future radiomic studies 
dealing with lipomatous soft-tissue tumors.
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