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The dynamics of open quantum systems is often solved by stochastic unravelings where the average over the
state vector realizations reproduces the density matrix evolution. We focus on quantum jump descriptions based
on the rate operator formalism. In addition to displaying and exploiting different equivalent ways of writing the
master equation, we introduce state-dependent rate operator transformations within the framework of stochastic
pure state realizations, allowing us to extend and generalize the previously developed formalism. As a conse-
quence, this improves the controllability of the stochastic realizations and subsequently greatly benefits when
searching for optimal simulation schemes to solve open system dynamics. At a fundamental level, intriguingly,
our results show that it is possible to have positive unravelings – without reverse quantum jumps and avoiding
the use of auxiliary degrees freedom – in a number of example cases even when the corresponding dynamical
map breaks the property of P-divisibility, thus being in the strongly non-Markovian regime.

I. INTRODUCTION

Stochastic unravelings are a powerful tool to describe the
dynamics of open quantum systems [1, 2]. With this formal-
ism, the time evolution of the state of the system is described
as the average over different realizations of a stochastic pro-
cess on the set of quantum states. Such stochastic processes
can be separated in two major families: they can be either dif-
fusive [3–10] or the deterministic evolution can be interrupted
by sudden discontinuous jumps [11–19]. In this paper, we will
focus on the latter situation. These quantum jump methods are
particularly convenient for simulating high-dimensional mas-
ter equations and have been linked to several distinct experi-
mental scenarios [20–25].

The standard jump unraveling method for Markovian dy-
namics, namely the Monte-Carlo wave function (MCWF),
consists of jumps whose effects and probabilities are fixed
directly by the rates and operators in the master equation
[11, 12]. The probabilities of the jumps are guaranteed to be
positive if and only if all rates are positive, with the MCWF
method failing whenever this condition is not satisfied. The
positivity of all rates is equivalent, under suitable assumptions
of regularity, to the completely-positive(CP)-divisibility of the
dynamical map [26], meaning that the dynamics can be arbi-
trarily subdivided in intermediate completely positive maps.
The notion of CP-divisibility has been connected to the defi-
nition of Markovianity for open system dynamics [27, 28].

The MCWF method has been generalized to non-positive
rates by the non-Markovian quantum jumps (NMQJ) method
[29, 30]. However, the different stochastic realizations are no
longer independent, thus making the simulations more expen-
sive. Nevertheless, it was shown that it is possible to gen-
eralize the MCWF method and maintaining independent re-
alization also under the weaker assumption of positive(P)-
divisibility of the dynamical maps [31]. This method relies
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on the definition of the rate operator (RO) [32–35] and was
therefore named rate operator quantum jumps (ROQJ). Vio-
lations of P-divisibility have also been linked to a different
definition of non-Markovianity [26, 36]. Interestingly, these
unravelings rely on jumps to mutually orthogonal states and
have been linked to the study of pointer bases [37, 38].

Recently, in [39], the RO formalism has been expanded by
employing the non-unique ways of writing the master equa-
tion by applying arbitrary time-dependent transformations,
thus leading to the formulation of a family of distinct RO
unravelings for the same master equation. In this paper, we
generalize those results by allowing the arbitrary transforma-
tion to depend on the current state of the particular realization.
This generalized RO not only enhances the efficiency of con-
trolling the stochastic realizations, but also enables the char-
acterization of certain dynamics violating P-divisibility, thus
non-Markovian according to all definitions, while preserving
the independence between the different realizations. Notice-
ably, we are able to do so without requiring any additional
ancillary degree of freedom.

The rest of the paper is organized as follows. In Sec. II,
we recall the main features of open system dynamics and of
quantum jump unravelings, focusing on the rate operator for-
malism. In Sec. III, we introduce the generalized RO, by al-
lowing it to depend on the current state of the stochastic real-
ization. This generalized RO is characterized in Sec. IV, with
a particular focus on the conditions for its positivity for all
realizations. In Sec. V, we present some examples showing
the flexibility given by this approach. Importantly, we also
show that it is possible to have an unraveling with a positive
RO for all realizations even for some dynamics which break
P-divisibility. Finally, we present the conclusions of our work
in Sec. VI.

II. RATE OPERATOR FORMALISM

We start by recalling the open quantum systems formalism
and the quantum jump unravelings to describe open system
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dynamics, focusing in particular on the ROQJ formalism.

A. Open quantum systems

The time-local master equation governing the time evolu-
tion of a finite-dimensional open quantum system can be writ-
ten as dρ/dt = Lt[ρ], with the generator Lt given by [40, 41]

Lt[ρ] = −i[H(t), ρ] +
∑
α

γα(t)Lα(t)ρL†α(t) −
1
2
{
Γ(t), ρ

}
, (1)

where H(t) = H(t)† is the system Hamiltonian, Lα(t)
are the Lindblad operators with rates γα(t), and Γ(t) =∑
α γα(t)L†α(t)Lα(t). The rates γα(t) can be temporarily neg-

ative, with the dynamical map Λt = T exp
(∫ t

0 dτLτ
)

being
completely positive [1, 42, 43]. Positivity of the rates, how-
ever, is equivalent to CP-divisibility of the dynamical map, i.e.
∀t ≥ s ≥ 0 it is possible, under suitable regularity conditions
[44], to decompose Λt = Λt,sΛs for completely positive oper-
ators Λt,s. Simple positivity of Λt,s, on the other hand, corre-
sponds to a P-divisible dynamical map, which is equivalent to
[26, 45] ∑

α

γα(t)|⟨φi|Lα(t)|φ j⟩|
2 ≥ 0 (2)

for all orthonormal bases {φi}i, for all i , j.
A common way to look at the master equation (1) in the

context of quantum unravelings is to write it as the sum of a
jump term

Jt[ρ] B
∑
α

γα(t)Lα(t)ρL†α(t) (3)

and a driving term

Dt[ρ] B −i(K(t)ρ − ρK†(t)), (4)

with the effective non-Hermitian Hamiltonian

K(t) B H(t) −
i
2
Γ(t). (5)

On the other hand, such a decomposition is highly non-
unique. In fact, any transformation [39]

Jt[ρ] 7→ J ′t [ρ] B Jt[ρ] +
1
2

(C(t)ρ + ρC†(t)) (6)

K(t) 7→ K′(t) B K(t) −
i
2

C(t), (7)

for an arbitrary operator C(t), preserves Eq. (1). Such a free-
dom in writing the master equation is different from the con-
ventional approach employed in MCWF methods, which re-
lies on the invariance of the master equation under unitary
transformations on the set of Lindblad operators [1].

B. Quantum jump unravelings

In the literature, there have been introduced many different
unravelings consisting of piecewise deterministic processes
on the set of pure states on the system’s Hilbert space H .
The exact dynamics of Eq. (1) is reproduced by averaging
over all stochastic realizations, with the form of the determin-
istic and jump process that can vary significantly for the dif-
ferent unraveling methods. Differently from other methods,
our approach does not use additional degrees of freedom [46–
51], which would require additional computational effort, nor
temporarily negative probabilities for the occupation of cer-
tain states [52].

Whenever CP divisibility holds, it is possible to unravel the
dynamics via the MCWF method [11, 12], with deterministic
evolution

|ψ(t)⟩ 7→ |ψ(t + dt)⟩ =
(1 − iK(t)dt) |ψ(t)⟩
∥(1 − iK(t)dt) |ψ(t)⟩∥

, (8)

where K(t) is the effective non-Hermitian Hamiltonian of
Eq. (5), interrupted by sudden jumps

|ψ(t)⟩ 7→ |ψ(t + dt)⟩ =
Lα(t) |ψ(t)⟩
∥Lα(t) |ψ(t)⟩∥

(9)

with probability

pαψ(t) = γα(t)∥Lα(t) |ψ(t)⟩∥2dt. (10)

Naturally, this method calls for the positivity of all rates γα(t).
The requirement of positivity of all rates can be weakened

by considering the ROQJ formalism. One possible way to do
so consists of unraveling with jumps to the eigenstates of the
operator [31, 32]

Wψ(t) B
(
1 − Pψ(t)

)
Jt[Pψ(t)]

(
1 − Pψ(t)

)
, (11)

where Pψ = |ψ⟩ ⟨ψ|, with probabilities given by the corre-
sponding eigenvalues multiplied by the infinitesimal time in-
crement dt. Following the nomenclature of [39], we call this
unraveling method W-ROQJ, emphasising that the jumps and
their probabilities are fixed by the eigenstates and eigenval-
ues of W. We further note that the pre-jump state ψ(t) is
an eigenstate of Wψ(t), so that the state after the jump is al-
ways orthogonal to ψ(t). The deterministic evolution is gen-
erated by the non-Hermitian non-linear effective Hamiltonian
KW
ψ(t) = K(t) + ∆ψ(t), with

∆ψ(t) =
i
2

∑
α

γα(t)
(
2Lα(t)ℓ∗ψ(t),α(t) − |ℓ∗ψ(t),α(t)|2

)
, (12)

where ℓψ(t),α(t) = ⟨ψ(t)|Lα(t)|ψ(t)⟩. The operator Wψ(t) does
not depend on the particular form (6) of the master equation
[33, 34] and is positive for all states ψ if and only if the dynam-
ics is P-divisible [10]. Therefore, such method can be used
to unravel any P-divisible dynamics, significantly beyond the
range of applicability of the MCWF.
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MCWF W-ROQJ R-ROQJ Ψ-ROQJ NMQJ
CP-divisible ✓ ✓ ✓ ✓ ✓

P- but not CP-divisible × ✓ ◦ ✓ ✓∗

Non-P-divisible × × × ◦ ◦

Independent realizations ✓ ✓ ✓ ✓ ×

Table I. Comparison of the Ψ-ROQJ unravelings with the previously introduced methods; ✓: yes, ×: no, ◦: sometimes, ∗: yes, unless some
rates are negative since the beginning of the dynamics. Each column refers to a distinct unraveling method, the first three rows denote the
applicability of the methods to different classes of dynamics, while the fourth row denotes the possibility to realize each trajectory indepen-
dently from the others. We note in particular that Ψ-ROQJ is the only method that can tackle also some non-P-divisible-dynamics, while
keeping the different realizations independent, as shown in Sec. V B. As explained in the text, the Ψ-ROQJ includes the W- and the R-ROQJ
as special cases, while there is no inclusion among the latter two. The table refers to ROQJ methods without reversed jumps; note that all the
ROQJ methods can be supplemented with reverse jumps [29], leading to correlated realizations and extending their range of applicability to
non-P-divisible dynamics.

The ROQJ method can be extended [39] relying on the non-
uniqueness of the decomposition of the master equation (6)-
(7) and considering jumps |ψ(t)⟩ 7→ |φ j

ψ(t)⟩ to the eigenstates
of the RO

Rψ(t) B J
′
t [Pψ(t)] = Jt[Pψ(t)] +

1
2

(C(t)Pψ(t) + Pψ(t)C†(t))
(13)

with probability

p j
ψ(t) = λ

j
ψ(t)dt (14)

given by the corresponding eigenvalue multiplied by the time
increment dt. We refer to this method as the R-ROQJ. The
deterministic evolution is as in Eq. (8), but using the trans-
formed non-Hermitian Hamiltonian K′(t) of Eq. (7). The non-
uniqueness of the unravelings could allow one to design differ-
ent realizations for the stochastic process, possibly simplify-
ing the computational task of simulating the dynamics. When-
ever P-divisibility holds, the RO can have at most one negative
eigenvalue and the existence of at least one positive RO as in
Eq. (13) is guaranteed by the dissipativity of the dynamics, a
stronger requirement than P-divisibility [39].

Going beyond the MCWF, it is possible to deal with
temporarily negative rates by using the NMQJ technique
as in [29, 30], by considering reverse jumps |ψi(t)⟩ =
Lα(t) |ψ j(t)⟩ /∥Lα(t) |ψ j(t)⟩∥ 7→ |ψ j(t)⟩, with probability de-
pending on the ratio N j(t)/Ni(t) between the occupations of
|ψ j(t)⟩ and |ψi(t)⟩. However, one needs to know the average
state ρ(t) to compute the ratios, and therefore the realizations
become dependent one on the other, making the simulation
more expensive. The same method can be employed simi-
larly also for the RO whenever some eigenvalues are negative.
If, instead, the eigenvalues of the RO, and therefore the jump
probabilities, are positive for all realizations, we say that such
unraveling is a positive unraveling. In this case, the stochastic
realizations are independent, since the jump probabilities can
be calculated from the state of the given individual realization,
and the simulation is more efficient.

III. GENERALIZED RATE OPERATOR

We now proceed to generalize the ROQJ method by exploit-
ing the invariance under Eqs. (6) and (7) on each individual

trajectory. This will significantly extend the class of gener-
ated unravelings of a given master equation with respect to
both W-ROQJ and R-ROQJ, which will indeed be regained as
special instances.

Suppose that, at some time t, the state can be written in
terms of the single realizations as ρ =

∑
i pi(t)Pψi(t). From

the point of view of a single realization |ψ(t)⟩, it is possible
to choose the transformation C of Eq. (6)-(7) to depend not
only on time but also on the current state |ψ(t)⟩ and leaving
the average evolution unaffected. The new generalized RO is
therefore of the form

Ψ-Rψ(t) B Jt[Pψ(t)] +
1
2
(
Cψ(t)Pψ(t) + Pψ(t)C

†

ψ(t)(t)
)
, (15)

with Cψ(t) that can depend non-trivially on the current state
of the realization ψ(t). To emphasize the dependence on the
state ψ(t), we refer to the generalized RO as Ψ-ROQJ. Indeed,
whenever Cψ(t) does not depend on ψ(t), the Ψ-ROQJ reduces
to the R-ROQJ of Eq. (13). The deterministic evolution is non-
linear because of the state-dependence of the effective non-
Hermitian Hamiltonian

Kψ(t) B H(t) −
i
2
Γ(t) −

i
2

Cψ(t). (16)

Since Cψ(t) appears only to applied to |ψ(t)⟩, it is possible
to simplify the transformation by defining the unnormalized
vector

|Φψ(t)⟩ B Cψ(t) |ψ(t)⟩ . (17)

This way, omitting the explicit time dependence, the RO takes
the form

Ψ-Rψ(t) =
∑
α

γαLαPψ(t)L†α

+
1
2
(
|Φψ(t)⟩ ⟨ψ(t)| + |ψ(t)⟩ ⟨Φψ(t)|

)
.

(18)

The unraveling is obtained by considering jumps |ψ(t)⟩ 7→
|φ

j
ψ(t)⟩ to the eigenstates of the RO, with probability p j

ψ(t) =

λ
j
ψ(t) dt, where λ j

ψ(t) is the corresponding eigenvalue. The de-
terministic evolution is, up to normalization, given by

|ψ(t)⟩ 7→ |ψ̃det(t + dt)⟩ = (1 − iKψ(t) dt) |ψ(t)⟩

=(1 − iK(t) dt) |ψ(t)⟩ −
dt
2
|Φψ(t)⟩ .

(19)
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Figure 1. Examples of positivity domain HJt (red), convex com-
bination of projectors on elements of the positivity domain P(HJt )
(lighter red), and the time-evolved Bloch sphere Λt(S(H )) (green)
for three non-P-divisible qubit dynamics at some fixed time t, show-
ing the slice y = 0 of the Bloch sphere. Left: no positive unraveling,
since HJt doesn’t contain any orthonormal basis. Middle: no posi-
tive unraveling, since Λt (S(H )) ⊈ P(HJt ). Right: both necessary
conditions hold, therefore a positive unraveling could exist.

In Appendix A, we show that averaging over all the real-
izations indeed reproduces the master equation (1). The key
argument is that each state |ψi(t)⟩ evolves, on average, as it
would according to (1), for any possible choice of Ψ-Rψi(t).

In Table I, we compare the newly introduced Ψ-ROQJ
with other unraveling methods; namely, MCWF, W-ROQJ, R-
ROQJ and NMQJ. In particular, we take into account their
range of applicability, as well as whether each trajectory can
be realized independently from the others.

IV. CHARACTERIZATION AND LIMITATIONS

In this Section, we introduce the main features of the gen-
eralized RO, showing in particular that it is always possible
to have a positive RO for any P-divisible dynamics. More in-
terestingly, we also discuss some necessary conditions for its
positivity even when P-divisibility is broken.

A. Comparison with the W-ROQJ unravelings

By using the formalism of the W-ROQJ of Eq. (11), it is
always possible to unravel any P-divisible dynamics by con-
sidering orthogonal jumps to the eigenstates of such opera-
tor. It is possible to obtain the same unravelings also with the
Ψ-ROQJ formalism by imposing that ψ(t) is an eigenstate of
the RO: Ψ-Rψ(t) |ψ(t)⟩ = λdet |ψ(t)⟩ for all ψ(t), where λdet is
the corresponding eigenvalue. This way, the other post-jump
states |φ j

ψ(t)⟩ are orthogonal to |ψ(t)⟩ and it can be shown that
the corresponding eigenvalues are (see Appendix B)

λ
j
ψ(t) =

∑
α

γα|⟨φ
j
ψ(t)|Lα|ψ(t)⟩|2, (20)

which, according to Eq. (2), are positive for all states if and
only if the dynamics is P-divisible. This thus shows that W-
ROQJ is a special instance of Ψ-ROQJ and thus that also the
latter can be applied to any P-divisible dynamics (see Table I).

B. Necessary conditions for a positive unraveling

We now investigate when it possible to have a positive un-
raveling for dynamics breaking P-divisibility. This possibility
drastically simplifies the simulations since, for positive unrav-
elings, the different realizations do not depend on each other.
For any non-P-divisible dynamics, there always exists some
state ψ and time t such that Ψ-Rψ ̸≥ 0. In fact, from the con-
dition for P-divisibility (2), there always exists a state ψ⊥, or-
thogonal to ψ, such that

⟨ψ⊥|Ψ-Rψ|ψ⊥⟩ =
∑
α

γα(t)|⟨ψ⊥|Lα(t)|ψ⟩|2 < 0. (21)

Notice that this condition does not depend on the particular
transformation |Φψ⟩ present in (18), but only on Jt. This fact,
however, doesn’t necessarily limit the existence of a positive
unraveling: it could still exist if one is able to describe the
state ρ(t) only using realizations |ψi(t)⟩ for which Ψ-Rψi(t) ≥ 0.

Let us define the set of all states for which the RO can be
positive as the positivity domain

HJt B
{
ψ ∈H | ∀ψ⊥ : ⟨ψ⊥|ψ⟩ = 0,

⟨ψ⊥|Jt[Pψ]|ψ⊥⟩ ≥ 0
}
,

(22)

where H is the system Hilbert space. From Eq. (2), it is
evident that a dynamics is P-divisible if and only if HJt =H
∀t. At variance with the the positivity domain introduced e.g.
in [53, 54], which refers to a subset of the set L(H ) of linear
operators on H , the positivity domain defined in Eq. (22) is
a subset of H . However, HJt is not a Hilbert space, and in
particular it is not even a linear space.

A positive unraveling can exist only if it is possible to write
any state as a convex combination ρ(t) =

∑
i pi(t)Pψi(t) using

only states ψi(t) ∈ HJt ∀t. Naturally, if HJt = ∅ for some
time, it is not possible to have a positive unraveling. If we fur-
ther assume invertibility of the dynamical map, then it is also
not possible if HJt is zero-measured: if, for any initial state,
all stochastic realizations were inside a zero-measure set, then
the whole set of quantum states S(H ) would be mapped to a
zero-measure set, thus breaking invertibility.

On the other hand, if HJt is sufficiently large, we can con-
sider using the freedom given by the generalized RO to have
all realizations |ψi(t)⟩ ∈ HJt ∀t. There are two necessary
conditions that HJt must obey in order to have a positive un-
raveling:

1. It must contain an orthonormal basis, otherwise some
of states that have jumped at time t − dt would violate
positivity.

2. Each state ρ(t) can be written as convex combinations of
elements of HJt . Equivalently, let P(HJt ) be the set of
all convex combinations projectors Pψ, with ψ ∈ HJt ,
then

Λt (S(H )) ⊆ P(HJt ) ∀t. (23)

These condition are depicted pictorially in Fig. 1. Interest-
ingly, they do not depend on the unraveling but only on the
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dynamical map Λt. Therefore it is possible to rule out the
possibility to have a positive unraveling for some dynamics
by simply looking at Λt. On the other hand, as we will see
in Sec. V C such conditions can be satisfied even by non P-
divisible dynamics, which in fact do admit a positive unravel-
ing

It is worth emphasizing that, although currently not known,
the conditions for having a positive unraveling with the Ψ-
ROQJ formalism cannot depend only locally on time. In fact,
the left-hand side of condition 2. does depend on the whole
time evolution before P-divisibility is broken. Therefore it
could happen that for two dynamics, although having the same
behavior at times when divisibility is broken, their evolution
might differ at previous times and so the inclusion of condition
2. may or may not hold depending solely on the times before
the violation of divisibility. This will be illustrated explicitly
in the evolution considered in Sec. V.

V. CONTROL OF THE REALIZATIONS

We now proceed to present some examples of unravelings
obtained using the Ψ-ROQJ formalism, showing its increased
flexibility compared to the previous methods. In particular,
we demonstrate that it is possible to have positive unravelings
also for dynamics violating P-divisibility.

A. Phase covariant dynamics

Let us consider a generic qubit phase covariant dynamics,
i.e. a dynamics Λt satisfying covariance with respect to phase
transformations, namely

e−iσztΛt[ρ]eiσzt = Λt[e−iσztρeiσzt]. (24)

A phase covariant dynamics has a jump term of the form [55–
57]

J[ρ] = γ+σ+ρσ− + γ−σ−ρσ+ + γzσzρσz, (25)

where σ+ = |1⟩ ⟨0| = σ†−, and a free Hamiltonian H ∝ σz.
Such dynamics is CP-divisible if and only if all rates are pos-
itive, and P-divisible whenever [58, 59]

γ± ≥ 0, and γz ≥ −
1
2
√
γ+γ−. (26)

We now show that, as long as P-divisibility holds, it is al-
ways possible to have a positive unraveling using only three
states: the eigenstates |0⟩ , |1⟩ of σz, and |ψdet(t)⟩, the ini-
tial state deterministically evolved up to time t according to
Eq. (19). The possibility of using such a small effective en-
semble drastically simplifies the simulations. The RO is cho-
sen such that |ψdet(t)⟩ only jumps to |0⟩ , |1⟩ and, after one jump
has occurred, only jumps |1⟩ ↔ |0⟩ are present, without any
deterministic evolution. Thus, the effective ensemble used for
the simulations only contains three states. The possibility of
considering such finite (and small) effective ensemble, signif-
icantly enhances the computational efficiency of this method,

since one is not required to compute at each time-step the evo-
lution of all states, but only needs to update the probability of
occupation of such states. This fact is particularly interesting
in comparison with the NMQJ method that, expect for some
special cases, needs infinitely many states in the effective en-
semble.

If no jumps have occurred, it is possible to have jumps
|ψ(t)⟩ 7→ |0⟩ , |1⟩, with |ψ(t)⟩ deterministically evolved ac-
cording to Eq. (19), by imposing that |0⟩ is an eigenstate of
Ψ-Rψ(t). This corresponds to a transformation defining the RO
of Eq. (17) of the form

|Φψ(t)⟩ = α

2γz −
ϕ1√

1 − |α|2

 |0⟩ + ϕ1 |1⟩ , (27)

where |ψ(t)⟩ = α |0⟩ +
√

1 − |α|2 |1⟩, with α that, without loss
of generality, can be assumed to be real because of phase co-
variance, while ϕ1 which can be chosen freely inside a suit-
able time- and state-dependent interval ϕ1 ∈ [ϕlb

1 , ϕ
ub
1 ] (for the

details, the definition of ϕlb
1 , ϕ

ub
1 and the proof of the positiv-

ity, see Appendix C). The freedom in choosing ϕ1 allows us
to have different realizations for the unraveling: even if the
post-jump states are fixed, it is possible to unravel the dynam-
ics with different jump rates and deterministic evolutions. In
particular, for ϕ1 = ϕ

lb
1 , only jumps |ψ(t)⟩ 7→ |1⟩ are allowed,

while for ϕ1 = ϕ
ub
1 , only |ψ(t)⟩ 7→ |0⟩. On the other hand, for

any ϕ1 = λϕlb
1 + (1 − λ)ϕub

1 , 0 < λ < 1, the unraveling re-
mains positive, with jumps to both eigenstates of σz and with
the possibility of choosing different jump rates depending on
λ.

1. Eternally non-Markovian dynamics

To move further, we focus on a simple, yet significant ex-
ample, namely, the eternally non-Markovian dynamics, i.e. a
phase covariant dynamics with rates [60, 61]

γ+(t) = γ−(t) = 1, γz(t) = −
1
2

tanh t. (28)

The negativity of γz at all times implies that such dynamics is
CP-indivisible at all times, and therefore cannot be unraveled
using the standard MCWF nor its non-Markovian generaliza-
tion [29, 30] because of the negativity of the rate since the
very beginning of time. However, it is possible to unravel it
using the generalized RO. In addition, it is possible to realize
qualitatively different realizations of the stochastic process. In
Fig. 2 (a)-(b), we show unravelings obtained either with only
jumps to |0⟩ or to |1⟩ by suitably choosing ϕ1. The code used
for obtaining the simulations is available at [62]. Additionally,
it can also be unraveled with jumps to |±⟩ = (|0⟩± |1⟩)/

√
2, by

imposing |±⟩ to be eigenstates of Ψ-Rψ(t), thus giving

|Φ±ψ(t)⟩ = 2(1 − γz)
√

1 − |α−|2 |+⟩ , (29)

where |ψ(t)⟩ = α− |−⟩ +
√

1 − |α−|2 |+⟩, with α− that can be
chosen to be real because of phase covariance. Such unrav-
eling is shown in Fig. 2 (c). This model shows the flexibility
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Figure 2. Eternally non-Markovian dynamics, for the initial state |ψ(0)⟩ = α |0⟩ +
√

1 − |α|2 |1⟩, with α ≈ −0.49. Top: z (blue, solid) and x
(green, dashed) components of the Bloch vectors. The thick solid lines are the exact results, the dots are obtained with the RO technique. In
lighter shade, 5 realizations are shown. The unravelings are obtained using N = 103 states. (a): ϕ1 = ϕ

ub
1 and only jumps to |0⟩; (b): ϕ1 = ϕ

lb
1

and only jumps to |1⟩; (c): jumps to |±⟩. Bottom: characterization of the stochastic realizations for different choices of ϕ1 = λϕ
lb
1 + (1− λ)λϕub

1 ,
0 ≤ λ ≤ 1. (d): Shannon entropy H({pi}) = −

∑
i pi log2 pi for the probability distribution {p0, p1, pψ} of the occupations of the states

|0⟩ , |1⟩ , |ψdet(t)⟩; (e): number of jumps, using N = 104 states; (f): computational time (left axis, solid) and total number of jumps (right axis,
dotted).

of the generalized RO, which allows us not just to have an
effective ensemble consisting of only three states, but also to
choose such ensemble in non-unique ways and with different
deterministic evolutions for the initial state.

The possibility of controlling the realizations in many dif-
ferent ways is an evident advantage of the new method pro-
posed since it allows us to choose the most convenient en-
semble, thus improving the computational efficiency of our
model. In Fig. 2 (d), we show the Shannon entropy H({pi}) =
−
∑

i pi log2 pi of the probabilities {p0, p1, pψ} of the occu-
pations of the states |0⟩ , |1⟩ , |ψdet(t)⟩ for different choices of
ϕ1 = λϕ

lb
1 + (1 − λ)ϕub

1 . Therefore, it is possible to choose the
unravelings in order to minimize the amount of classical infor-
mation required to describe the average state ρ =

∑
i piPψi . In

Fig. 2 (e), we show that it is possible to have unravelings with
vastly different number of jumps involved. This is crucial for
the computational efficiency since the fewer jumps involved
the more efficient the simulation is, since one does not need
to diagonalize the RO at each time-step, but only at the rare
times in which a jump happens [63]. This can be done by
connecting the jump probability to the reduction of the norm
of the deterministic state. This fact is shown in Fig. 2 (f), in
which we show a strong dependence between the total number
of jumps, with more efficient simulations for fewer jumps.

B. Positive unraveling for non-P-divisible dynamics

As one of our main results, we now proceed to show that
it is possible to have positive unravelings for some dynamics
that violate P-divisibility. We consider again the phase covari-
ant dynamics (25), and we show that one can have positive
unravelings when P-divisibility is broken by any of the two
conditions of Eq. (26).

1. P-divisibility broken by γz

Let us start from the case that, for some time t,

γz = −
1
2
√
γ+γ− − ε, (30)

where ε > 0 quantifies the violation of P-divisibility according
to the second condition of Eq. (26). Let us consider again a
RO with Φψ in the form of Eq. (27). If, for γz = −

1
2
√
γ+γ−,

any ϕ1 in the interval [ϕlb
1 , ϕ

ub
1 ] gives a positive unraveling, the

effect of ε is that of shrinking the allowed interval [ϕlb
1 , ϕ

ub
1 ] 7→

[ϕlb
1 + 2ε, ϕub

1 − 2ε]. But, for a sufficiently small ε, this new
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Figure 3. Positive unravelings for non-P-divisible phase covariant dynamics for the initial state |ψ(0)⟩ = α |0⟩ +
√

1 − |α|2 |1⟩, with α ≈ 0.92. z
(blue, solid) and x (green, dashed) components of the Bloch vectors. The thick solid lines are the exact results, the dots are obtained with the
RO technique. In lighter shade, 5 realizations are shown. (a): γz < −

1
2
√
γ+γ− as in Eq. (32) with κ = 4; (b): γ+ = γ− < 0 as in Eq. (35) with

κ = 0.25. The unravelings are obtained using N = 104 states.

interval will still exist for all ψ for which ϕlb
1 , ϕ

ub
1 , i.e.√

γ−(t)
γ+(t)

,
1 − |α|2

|α|2
, (31)

where α = ⟨0|ψ⟩. Therefore, a positive unraveling will still
exist, provided that one is able to describe the dynamics with
states |ψi(t)⟩ such that this condition always holds at times for
which P-divisibility is broken. In other words, recalling the
two necessary conditions of Sec. IV B, the positivity domain
HJt is the whole Bloch sphere, excluding the state for which
Eq. (31) holds and their neighbourhood. Therefore, since HJt

is large, we can find unravelings for which condition 2. holds.
Also condition 1. holds, since |0⟩ , |1⟩ ∈HJt and therefore the
positivity domain contains an orthonormal basis at all times.
We are therefore led to unravel the dynamics with jumps to
such orthonormal basis.

As an example, let us consider the rates [64]

γ+(t) = e−t/2, γ−(t) = e−t/4, γz(t) =
κ

2
e−

3
8 t cos(2t), (32)

for which P-divisiblity is violated for κ > 1. In Figure 3 (a),
we show a positive unraveling for κ = 4. Again, it is possi-
ble to use an effective ensemble consisting only of 3 states
{|0⟩ , |1⟩ , |ψdet(t)⟩}, thus greatly simplifying the task of sim-
ulating such non-Markovian dynamics. It is worth noticing
that this particular value of κ = 4 gives positive unraveling
only for some initial states, while for others the eigenval-
ues might become negative. Nevertheless, there exist values
1 < κ ≤ κmax ≈ 1.2 for which P-divisibility is broken and
the unraveling is positive for all initial states. In Appendix D,

we show the existence of such κmax > 1 for which a positive
unraveling exists for all initial states. For all values of κ, the
resulting dynamics is qualitatively similar to the one presented
in Fig. 3 (a) for κ = 4.

The non-Markovian behavior is evident because of the non-
monotonic behavior of the coherence of ρ(t). This non-
monotonicity is entirely captured by the deterministic state,
which evolves towards the equator of the Bloch sphere (thus
increasing its coherence) at times when P-divisibility is bro-
ken. Therefore, a positive unraveling of this type is possible
only as long as the absolute value of the recoherence for ρ(t)
is strictly smaller than the maximal possible recoherence for
|ψdet(t)⟩ times the fraction of realizations in this state before
P-divisibility is broken. For comparison, if one would use the
NMQJ, the recoherence would happen because of the reverse
jumps that recreate the superposition of |0⟩ and |1⟩.

2. P-divisibility broken by γ±

It is possible to have a positive unraveling also when the
violation of P divisibility arises from γ± < 0. Unlike the pre-
vious case, it is not possible to have |0⟩ or |1⟩ in the effective
ensemble because they are not in the positivity domain HJt ,
since

⟨0|Jt[P1]|0⟩ = γ− < 0, (33)

and therefore Ψ-R cannot be positive for these states. On the
other hand, by imposing jumps to |±⟩, it is possible to have a
positive unraveling. Let us focus, for the sake of simplicity, to
the case γ+ = γ− C γ. Imposing jumps to |±⟩ and solving for
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|Φψ(t)⟩ gives us

|Φ±ψ(t)⟩ =

√
1 − |α−|2

α−
[2α−(γ − γz) − ϕ−] |+⟩ + ϕ− |−⟩ , (34)

with |ψ⟩ = α− |−⟩ +
√

1 − |α−|2, with α− that, because of
phase covariance, can be taken to be real. Furthermore, since
γ+ = γ−, it is possible to have |±⟩ which don’t evolve de-
terministically but only via jumps |±⟩ 7→ |∓⟩ with positive
rates, thus having again a three-dimensional effective ensem-
ble {|±⟩ , |ψdet(t)⟩}.

In Figure 3 (b), we show such unraveling for the rates

γ =
1
2

e−t/4[κ + (1 − κ)e−t/4 cos(2t)], γz =
1
2
. (35)

It is possible to notice a revival in the absolute value of tr[ρσz]
for t ≈ 2, which is a clear indication of the non-Markovian
behavior. It is worth noticing that, for both dynamics of Fig-
ure 3, non-Markovianity is also witnessed by a revival of the
trace distance. Therefore, the condition for a positive unravel-
ing cannot coincide with the BLP condition [44, 65] of mono-
tonicity of the trace distance.

Figure 3 (b) also shows why a generic condition for the ex-
istence of a positive unraveling cannot be local in time. Here,
before P-divisibility is broken, the z component of the Bloch
vector is reduced, mapping the whole Bloch ball close to the
equator. This fact is crucial since |0⟩ and |1⟩ (as well as a
neighborhood of them) lie outside HJt , so that the only way to
have a positive unraveling is to be able to describe ρ(t) without
using such states outside HJt . Therefore, the second neces-
sary condition of Sec. IV B can only hold if S(H ) is mapped
towards the equator of the Bloch sphere before P-divisibility
is broken.

C. Non-positive unravelings

Although we have proven that there exist non-P-divisible
dynamics that can be positive unraveled using the Ψ-ROQJ
formalism, these positive unravelings do not exist for all non-
P-divisible dynamics. We now present some examples for
which a positive unraveling using the Ψ-ROQJ does not ex-
ist, by finding dynamics for which the two necessary condi-
tions of Sec. IV B for the existence of positive unravelings are
violated.

First of all, it is easy to notice that, whenever all rates are
negative at the same time, Eq. (21) is satisfied for (almost)
all states, thus HJt is zero-measured, which, as discussed in
Sec. IV B, implies that no positive unraveling can be devised
even with the generalized RO formalism. As a special case, it
is easy to see that a qubit pure dephasing dynamics dρ/dt =
γ(t)(σzρσz − ρ) cannot have a positive unraveling whenever
γ(t) < 0, since

⟨ψ⊥|Ψ-Rψ|ψ⊥⟩ = 4|α|2(1 − |α|2)γ(t) < 0, (36)

where α = ⟨0|ψ⟩ and therefore HJt only contains |0⟩ and |1⟩.

For a generic phase covariant dynamics (25), it is possible
to characterize the positivity domain by considering the in-
finitesimal time evolution of the state ψ. Let rψ be the Bloch
vector associated to the state, then ψ is in HJt if and only if
∥rψ(t)∥ = 1 ≥ ∥rψ(t + dt)∥. For the phase covariant,

∥rψ(t + dt)∥2 = 1 − dt
[
γ+ + γ− + 4γz + 2z(γ− − γ+)

+ z2(γ+ + γ− − 4γz)
]
,

(37)

with z = ⟨ψ|σz|ψ⟩, from which it is easy to determine HJt .
For the special case γ+ = γ− = γ < 0, γz > 0, ψ ∈ HJt if and
only if

|z| ≤

√
g − 2
g + 2

, g = |γ|/γz. (38)

For g < 2, HJt = ∅; for g = 2 it only contains the equator of
the Bloch sphere, and for g→ ∞ only the poles are excluded,
therefore not all phase covariant dynamics can be positively
unraveled.

D. Driven dynamics

Simulating driven dynamics is a notoriously difficult task,
especially when divisibility is violated. We now show that
with the Ψ-ROQJ formalism it is possible to simplify notice-
ably the task. Let us consider, as an example, a phase covari-
ant dynamics with rates

γ+(t) = γ−(t) = γ, γz(t) = −
γ

2
tanh γt, (39)

with γ a positive constant, and a driving

H = βσx. (40)

The jump term, except for the constant factor γ, is the same
as the eternally non-Markovian of Eq. (28). However, the dy-
namics is not phase covariant since the driving, not being pro-
portional to σz, breaks phase covariance Eq. (24).

It is possible to unravel such dynamics, regardless of the
relative strength of the driving β/γ, by simply using a three-
dimensional effective ensemble {|ψdet(t)⟩ , |+⟩ , |−⟩}, with the
driving fully captured by the deterministically evolving state
|ψdet(t)⟩ only.

From |ψdet(t)⟩, it is always possible to impose jumps only
to the eigenstates of the driving σx (for the details see Ap-
pendix E) with positive rates as long as γ ≥ 0. Interestingly,
such RO does not depend on the driving, therefore this method
works for any value of the ratio β/γ. Furthermore, it also
works for time-dependent rates and/or driving.

In Fig. 4 (a), we show the agreement between the exact
solution and the unraveling with the three-dimensional effec-
tive ensemble for a strong driving β = 10γ. Furthermore,
in Fig. 4 (b), we show the trajectory on the Bloch sphere of
the exact solution ρ(t) and of the deterministically evolving
state |ψdet(t)⟩. As ρ(t) spirals towards the asymptotic state
ρ∞, |ψdet(t)⟩ evolves rotating on the same x component of the
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Figure 4. Driven dynamics of Eq. (39) for the ratio β/γ = 10 and initial state |ψ(0)⟩ = α |0⟩ +
√

1 − |α|2 |1⟩, with α ≈ 0.20. (a): z (blue, solid)
and x (green, dashed) components of the Bloch vectors. The thick solid lines are the exact results, the dots are obtained with the RO technique.
In lighter shade, 5 realizations are shown. The unraveling is obtained using N = 104 states. (b): trajectory in the Bloch sphere of ρ(t) (black,
dashed) and of |ψdet(t)⟩.

Bloch sphere of ρ∞. However, this is not the only possible
choice for the deterministic evolution, since for different un-
ravelings one could have qualitatively different evolutions of
|ψdet(t)⟩.

VI. CONCLUSIONS

In this work, we have generalized the RO approach to un-
ravel open system dynamics by allowing the RO to explicitly
depend on the current state of the realization. We have shown
that this gives us additional freedom in controlling the dif-
ferent stochastic realizations of the jump process, even in the
case of strongly driven dynamics, which are notoriously hard
to simulate, by using a small effective ensemble. With this
new method, we have also shown that one is able to choose
the RO in order to optimize the simulations, i.e. by minimiz-
ing the classical entropy of the probability of occupation for
the states in the effective ensemble, thus minimizing the clas-
sical information needed to describe the unravelings, or the
number of jumps needed, thus minimizing the computational
time.

We have also shown that it is possible to simulate some
P-indivisible dynamics which are non-Markovian accord-
ing to the different definitions of quantum non-Markovianity
[26, 28]. This is particularly remarkable since the previous
methods based on the RO do not work whenever P-divisibility

is broken and since our method does not require to establish
correlations among different trajectories, nor to include ad-
ditional degrees of freedom. Future work aims to explicitly
characterize which dynamics can be unraveled with the gen-
eralized RO method.

In the future, we will exploit the generalized RO to study
more complex dynamics, with a particular focus on higher di-
mensional systems, since the ability of fixing a small finite-
dimensional effective ensemble would noticeably simplify the
computational efficiency. We also aim to connect these state-
dependent unravelings with a proper continuous-measurement
scheme. In addition, the possibility of having a broad class
of distinct unravelings could allow us to study open sys-
tems evolving under non-Hermitian Hamiltonians, when con-
ditioned to no jumps happening.
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Appendix A: Connection to the master equation

We now show that the state-dependent unraveling (18) re-
produces exactly the master equation (1).

Suppose that, at some time t, the state of the system is de-
scribed by ρ(t) =

∑
i piPψi(t). Let us focus on one particular

realization |ψi(t)⟩. In the infinitesimal time interval dt, the
state can evolve via a jump

|ψi(t)⟩ 7→ |φ
j
ψ(t)⟩, j = 1, ..., d (A1)

to an eigenstate of Ψ-Rψi(t), with probability p j
ψi(t)
= λ

j
ψi(t)

dt,

with λ j
ψi(t)

being the corresponding eigenvalue. Alternatively,
it can evolve deterministically

|ψi(t)⟩ 7→ |ψdet
i (t + dt)⟩ =

(1 − i Kψi(t)dt) |ψi(t)⟩
∥(1 − i Kψi(t)dt) |ψi(t)⟩∥

, (A2)

with probability

pdet
ψi(t) = 1 −

∑
j

p j
ψi(t)
= 1 − tr

[
Ψ-Rψi(t)

]
dt. (A3)

It is easy to see that, at the first order in dt,

∥(1 − i Kψi(t)dt) |ψi(t)⟩∥2 = 1 − tr
[
Ψ-Rψi(t)

]
dt = pdet

ψi(t). (A4)

Therefore, the average evolution for |ψi(t)⟩ is

Pψi(t) 7→ pdet
ψi(t)Pψdet

i (t+dt)

+ dt
d∑

j=1

λ
j
ψi(t)

Pφ
j
ψi (t)

= − i dt(Kψi(t)Pψi(t) − Pψi(t)K
†

ψi(t)
)

+ dtΨ-Rψi(t) + Pψi(t).

(A5)

Therefore, Pψi(t) evolves, on average, as by the master equa-
tion (1). If one averages over all possible states |ψi(t)⟩, the ex-
act master equation (1) is obtained also for ρ(t), thus showing
that such unravelings indeed reproduce the exact dynamics.

Appendix B: Proof of Eq. (20)

In the unravelings using the W-operator, the jumps are to
states orthogonal to the pre-jump state, with positive rates
whenever the dynamics is P-divisible. Analogous unravelings
can also be obtained using Ψ-R by imposing

Ψ-Rψ(t) |ψ(t)⟩ = λdet |ψ(t)⟩ , (B1)

which, in the basis {|ψi⟩}i, with |ψ1⟩ = |ψ(t)⟩, corresponds to
the choice

Cψ(t) = c11Pψ1 − 2
d∑

i=2

⟨ψi|Jt[Pψ1 ]|ψ1⟩ |ψi⟩ ⟨ψ1| , (B2)

with Re c11 ≥ − ⟨Jt[Pψ(t)]⟩ψ(t) to ensure the positivity of λdet.
Besides this constraint, c11 is a free parameter that can be
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used to modify the free evolution. Also, any additional term
proportional to |ψi⟩ ⟨ψ j|, j ≥ 2, in (B2) does not affect the
unraveling, since Cψ(t) only acts on |ψ(t)⟩. Any eigenstate
|φi⟩ , |ψ(t)⟩ of Ψ-Rψ(t) must be orthogonal to |ψ(t)⟩, therefore
|φi⟩ = (1 − Pψ(t)) |φi⟩ and

Ψ-Rψ(t) |φi⟩ =Ψ-Rψ(t)(1 − Pψ(t)) |φi⟩

=λi
ψ(t) |φi⟩

=λi
ψ(t)(1 − Pψ(t)) |φi⟩ .

(B3)

Multiplying on the left by (1 − Pψ(t)), we obtain that |φi⟩ is an
eigenstate also of Wψ = (1 − Pψ)Jt[Pψ](1 − Pψ). Therefore,
Wψ and Ψ-Rψ(t) have the same eigenstates and eigenvalues

λi
ψ(t) =

∑
α

γα|⟨φi|Lα(t)|ψ(t)⟩|2, (B4)

which are positive if and only if the dynamics is P-divisible.

Appendix C: Positive unraveling for P-divisible phase covariant
dynamics

Starting from the phase covariant master equation, impos-
ing |0⟩ to be an eigenstate of the RO corresponds to |Φψ⟩ as in
Eq. (27). If no jump has occurred, it is easy to see by direct
calculation that the eigenvalues λi, corresponding to the rates
for the jumps |ψ⟩ 7→ |i⟩, are

λ1 = α
2γ+ + γz(1 − α2) +

√
1 − α2ϕ1, (C1)

λ0 = (1 − α2)γ− + 3α2γz −
α2

√
1 − α2

ϕ1. (C2)

Imposing the positivity of the eigenvalues, one findsϕ1 ≥ −
α2
√

1−α2
γ+ − γz

√
1 − α2 C ϕlb

1

ϕ1 ≤
(1−α2)3/2

α2 γ− + 3
√

1 − α2γz C ϕub
1 .

(C3)

Any ϕ1 ∈ [ϕlb
1 , ϕ

ub
1 ] gives λi ≥ 0 and therefore a positive un-

raveling. This is possible only provided that ϕub
1 ≥ ϕlb

1 . To
show that this is indeed the case, one can use the conditions
for P-divisibility (26) to obtainϕlb

1 ≤
1
2

√
γ+γ−(1 − α2) − γ+ α2

√
1−α2
C ϕ̃lb

1

ϕub
1 ≥

(1−α2)3/2

α2 γ− −
3
2

√
γ+γ−(1 − α2) B ϕ̃ub

1 .
(C4)

It is easy to verify that

ϕ̃ub
1 − ϕ̃

lb
1√

γ+γ−(1 − α2)
= x +

1
x
− 2, x =

√
γ+
γ−

α2

1 − α2 , (C5)

and x + 1/x ≥ 2 ∀x ≥ 0. Therefore, it is always possible to
chose ϕ1 ∈ [ϕ̃lb

1 , ϕ̃
ub
1 ] ⊆ [ϕlb

1 , ϕ
ub
1 ] giving a positive unraveling.

After a jump has occurred, only the states |0⟩ and |1⟩ are
present in the realization. It is possible to have a positive rate
for the jumps |0⟩ ↔ |1⟩ by choosing

|Φ
post
ψ ⟩ = −γz |ψ⟩ , ψ = 0, 1. (C6)

In order to show that the effective ensemble is indeed
{|0⟩ , |1⟩ , |ψdet(t)⟩}, we also have to show that |0⟩ does not
evolve deterministically according to Eq. (19). This is easy to
show by noticing that |0⟩ is an eigenstate of Γ and |Φpost

0 ⟩ ∝ |0⟩.
Additionally, if there is a non-trivial Hamiltonian H that does
not break phase-covariance (i.e. H ∝ σz), then |0⟩ must be
also an eigenstate of H. Therefore, |0⟩ remains fixed under
the free evolution. It is possible to prove analogously that also
|1⟩ does not evolve, thus showing that the effective ensemble
is indeed three-dimensional.

Appendix D: Proof of the positivity of the unravelings for
non-P-divisible dynamics

Let us now show that it is possible to have a positive un-
raveling for the non-P-divisible dynamics of Eq. (32). Let us
start by noticing that, after a jump has occurred, the jump rates
|0⟩ 7→ |1⟩ and |1⟩ 7→ |0⟩ are proportional, respectively, to γ−
and γ+ and therefore they are positive.

For the deterministically evolving state, instead, there are
some states for which Eq. (31) holds, and therefore the rate
would not be positive. However, we now show that it is possi-
ble to describe the dynamics without using such states. Let us
write the initial state as |ψ0⟩ = cos θ |0⟩+ eiφ sin θ |1⟩. Because
of phase covariance, we can consider, without loss of general-
ity, φ = 0 and 0 ≤ θ ≤ π/2. Let ϕ̃lb

1 B ϕlb
1 + 2ε, ϕ̃ub

1 B ϕub
1 + 2ε

and fix the transformation |Φψ⟩ defining the RO as in Eq. (27).
We can use the fact that ϕ1 can be chosen arbitrarily inside the
interval [ϕ̃lb

1 , ϕ̃
ub
1 ] and choose it as

ϕ1 =

ϕ̃lb
1 , if θ ≥ θ̄
ϕ̃ub

1 , if θ < θ̄
. (D1)

We then sample numerically the dynamics arising from differ-
ent values of κ and θ̄ for all initial states. In Fig. 5, we show
all positive unravelings obtained using θ̄ = 1.3, for all initial
states and different values of κ. Interestingly, for all values of
κ ≤ 1.2, it is possible to have a positive unraveling for all ini-
tial states. This value of 1.2 is only a lower bound for the true
κmax, but it suffices to show the existence of positive unrav-
elings for all initial states for some non-P-divisible dynamics.
The price we have to pay to obtain this is to have a RO that de-
pends also on the initial state, but this is by no means different
from the dependence on the current state only.

Appendix E: RO for the driven dynamics

Let us consider, without loss of generality, γ = 1. It is
possible to impose jumps |ψdet(t)⟩ 7→ |±⟩ by choosing

|Φψ⟩ =

√
1 − |α|2

α∗

[
α(1 − 2γz) + α∗ + ϕ∗0

]
|1⟩ + ϕ0 |0⟩ (E1)

where ψ = α |−⟩ +
√

1 − |α|2 |+⟩.
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Figure 5. Positive unravelings of the dynamics of Eq. (32) for differ-
ent choices of κ and initial states. The initial state is parametrized as
|ψ0⟩ = cos θ |0⟩+sin θ |1⟩, 0 ≤ θ ≤ π/2, while the transformation |Φψ⟩
defining the RO as in Eq. (27), with ϕ1 chosen according to Eq. (D1).
For all values of κ ≤ 1.2, a positive unraveling exists for all initial
states.

The jump rates only depend on the real parameter ξ =
ϕ−α

∗ + ϕ∗−α = 2 Re ϕ−α∗ and are given by

2λ0 = (1 + 2γx)(1 − |α|2) + |α|2 + ξ (E2)

2|α|2λ1 = − ξ(1 − |α|2) + (1 − 2γx)(1 − |α|2)(α∗2 + α2)

+ |α|4(1 + 2γx) + 3|α|2(1 − |α|2)
(E3)

and are positive whenever

ξ ≥ −(1 + 2γz)(1 − |α|2) − |α|2 C ξlb

ξ ≤ (1 − 2γz)(α∗2 + α2) + 3|α|2 + |α|4

1−|α|2 (1 + 2γz) C ξub .

(E4)
It is easy to show that ξub ≥ ξlb for any γ ≥ 0 or, in other
words, that there always exists a solution for ξ ∈ [ξlb, ξub].
Therefore, it is always possible to choose ϕ− so that the rates
for the jumps |ψdet(t)⟩ 7→ |±⟩ are always positive.
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