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ABSTRACT

In the era of large surveys, yielding thousands of galaxy clusters, efficient mass proxies at all scales are

necessary in order to fully utilize clusters as cosmological probes. At the cores of strong lensing clusters,

the Einstein radius can be turned into a mass estimate. This efficient method has been routinely used

in literature, in lieu of detailed mass models; however, its scatter, assumed to be ∼ 30%, has not

yet been quantified. Here, we assess this method by testing it against ray-traced images of cluster-

scale halos from the Outer Rim N-body cosmological simulation. We measure a scatter of 13.9% and a

positive bias of 8.8% in M(< θE), with no systematic correlation with total cluster mass, concentration,

or lens or source redshifts. We find that increased deviation from spherical symmetry increases the

scatter; conversely, where the lens produces arcs that cover a large fraction of its Einstein circle, both

the scatter and the bias decrease. While spectroscopic redshifts of the lensed sources are critical for

accurate magnifications and time delays, we show that for the purpose of estimating the total enclosed

mass, the scatter introduced by source redshift uncertainty is negligible compared to other sources

of error. Finally, we derive and apply an empirical correction that eliminates the bias, and reduces

the scatter to 10.1% without introducing new correlations with mass, redshifts, or concentration. Our

analysis provides the first quantitative assessment of the uncertainties in M(< θE), and enables its

effective use as a core mass estimator of strong lensing galaxy clusters.

Keywords: Galaxies: Clusters: General - Gravitational Lensing: Strong - Cosmology: Dark Matter

1. INTRODUCTION

Located at the knots of the cosmic web, galaxy clus-

ters trace regions of over-density in the large-scale struc-

ture of the universe, making them ideal cosmic labo-

ratories. As cosmological probes (see review articles

Allen et al. 2011; Mantz et al. 2014), clusters have been

used to study dark energy (e.g., Frieman et al. 2008;

jremolin@umich.edu

Heneka et al. 2018; Bonilla & Castillo 2018; Huterer &

Shafer 2018) and dark matter (e.g., Bradač et al. 2006;

Clowe et al. 2006; Bradač et al. 2008; Diego et al. 2018),

constrain cosmological parameters (e.g., Gladders et al.

2007; Dunkley et al. 2009; Rozo et al. 2010; Mantz et al.

2010, 2014; de Haan et al. 2016; Bocquet et al. 2019),

measure the baryonic fraction (e.g., Fabian 1991; Allen

et al. 2008; Vikhlinin et al. 2009) and the amplitude

of the matter power spectrum (e.g., Allen et al. 2003).

Crucial to cosmological studies using galaxy clusters is
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a large well-defined sample with a complete characteri-

zation of the selection function of the observations (e.g.,

Hu 2003; Khedekar & Majumdar 2013).

The mass distribution of galaxy clusters (cluster mass

function) provides a connection between the observables

and the underlying cosmology, and can constrain struc-

ture formation models (e.g., Jenkins et al. 2001; Evrard

et al. 2002; Corless & King 2009). The galaxy cluster

dynamical and non-linear hierarchical merging growth

process (Bertschinger 1998) introduces variance in the

astronomical measurements (Evrard et al. 2002; Allen

et al. 2011; Huterer & Shafer 2018). Understanding

the systematic errors and assumptions made when es-

timating the mass of galaxy clusters is paramount as

they depend on observable astrophysical quantities (e.g.,

Evrard et al. 2002; Huterer & Shafer 2018).

With the advent of recent and upcoming large sur-

veys spanning a broad wavelength range, thousands of

strong lensing galaxy clusters will be detected out to

redshift of z ∼ 2 with a high completeness and pu-

rity. Examples include the surveys from the South Pole

Telescope (SPT-3G, Benson et al. 2014; SPT-SZ 2500

deg2, Bleem et al. 2015), Atacama Cosmological Tele-

scope (ACT, Marriage et al. 2011; Hilton et al. 2018),

Cerro Chajnantor Atacama Telescope (CCAT, Mittal

et al. 2018), Dark Energy Survey (DES, Abbott et al.

2018), Euclid (Laureijs et al. 2011; Boldrin et al. 2012),

Vera Rubin Observatory Legacy Survey of Space and

Time (LSST, LSST Science Collaboration et al. 2009),

ROSAT All-Sky Survey (RASS, Ebeling et al. 1998,

2000), and eROSITA (Pillepich et al. 2018). A thor-

ough characterization of the selection function and bias

implicit in the observations and detections is key. In ad-

dition, multi-wavelength coverage of some galaxy clus-

ters will allow for an extensive study of their physical

components.

Studies of the mass profile of galaxy clusters can pro-

vide us with information related to evolution of struc-

ture, formation and feedback processes, and dark mat-

ter properties. The methods used to estimate the mass

of galaxy clusters include X-ray (e.g., Vikhlinin et al.

2009; Ettori et al. 2019; Mantz et al. 2018), Sunyaev-

Zel’dovich effect (SZ, Sunyaev & Zeldovich 1972, 1980;

e.g., Reichardt et al. 2013; Sifón et al. 2013; Planck Col-

laboration et al. 2016), richness (e.g., Yee & Ellingson

2003; Koester et al. 2007; Rykoff et al. 2016), dynamics

(e.g., Gifford & Miller 2013; Foëx et al. 2017), and grav-

itational lensing (e.g., Kneib & Natarajan 2011; Hoek-

stra et al. 2013; Sharon et al. 2015, 2020). Gravita-

tional lensing (weak and strong) is the best technique

to probe the total projected (baryonic and dark mat-

ter) mass density, independent of assumptions on the

dynamical state of the cluster or baryonic physics. At

the cores of galaxy clusters, strong gravitational lensing

measures mass at the smallest radial scales and most ex-

treme over-densities; when coupled with a mass proxy at

a large radii, strong lensing can constrain global prop-

erties of the mass profile, including the concentration

parameter.

Advances in strong lens (SL) modeling, including bet-

ter understanding of SL systematics (Johnson & Sharon

2016), its effects on constraining cosmological parame-

ters (Acebron et al. 2017), magnification (Priewe et al.

2017; Raney et al. 2020), consequences due to the num-

ber of constraints (Mahler et al. 2018), and the use of

spectroscopic and photometric redshifts (Cerny et al.

2018), make strong lens modeling a robust technique

to study galaxy clusters and the background universe

they magnify. A detailed lens model requires extensive

follow-up: (1) imaging to identify multiple images and

(2) spectroscopy of the lensed images to obtain spec-

troscopic redshifts of the sources (e.g., Johnson et al.

2014; Zitrin et al. 2014; Diego et al. 2016; Kawamata

et al. 2016; Lotz et al. 2017; Strait et al. 2018; Lagat-

tuta et al. 2019; Sebesta et al. 2019; Sharon et al. 2020).

The location of the multiple images and the spectro-

scopic redshifts are used as constraints when computing

the SL models. Typically, a detailed SL model for a rich

galaxy cluster can take weeks to finalize, and it is not an

automated process. Given the large numbers of strong

lensing galaxy clusters expected from coming surveys,

an accurate, fast, and well-characterized method of ex-

tracting basic strong lensing information is needed.

In this paper, we evaluate the use of the geometric

Einstein radius to estimate the mass at the core of SL

galaxy clusters. We determine the uncertainties in the

mass estimate, identify its limitations, investigate de-

pendencies on the shape of the projected mass distri-

bution, and find a possible empirical correction to de-

bias the mass estimate. We base our analyses on the

state-of-the-art, dark matter only, ‘Outer Rim’ simula-

tion (Heitmann et al. 2019). The Outer Rim contains

a large sample of massive dark matter halos, and has

sufficient mass resolution to enable precise and accurate

ray-tracing of the strong lensing due to these halos.

This paper is organized as follows. In §2, we describe

the lensing formalism, including a detailed description of

the assumptions of the Einstein radius method to com-

pute the enclosed mass. In §3, we summarize the proper-

ties of the ‘Outer Rim’ simulation, the halo sample used

in our analysis, and the cosmological framework. In §4,

we detail how we measure the Einstein radius from the

ray-traced images and compute both the inferred mass

enclosed by the Einstein radius and the true mass from
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the simulation. In §5, we present our analysis of the

mass estimate and the systematics that contribute to

the scatter and bias. In §6, we investigate the effect of

not having the redshift information of the background

sources (zS) on the mass estimate. In §7, we propose

an empirical correction to de-bias the mass estimate.

Lastly, we present our conclusions and offer a prescrip-

tion for applying our findings to real data in §8.

For consistency with the simulations, we adopt a

WMAP -7 (Komatsu et al. 2011) Flat ΛCDM cosmology

in our analysis ΩΛ = 0.735, ΩM = 0.265, and h = 0.71.

The large scale masses are reported in terms of MNc,

where MNc is defined as the mass enclosed within a ra-

dius at which the average density is N times the critical

density of the universe at the cluster redshift.

2. BACKGROUND: STRONG GRAVITATIONAL

LENSING

Gravitational lensing (see Schneider 2006; Kneib &

Natarajan 2011 for reviews about gravitational lensing)

occurs when photons deviate from their original direc-

tion as they travel to the observer through a locally

curved space-time near a massive object, as described

by Einstein’s General Theory of Relativity. The lens-

ing equation (1) traces the image-plane position of im-

ages of lensed sources to the source plane location of

the background sources. When multiple solutions to

the lensing equation exist, multiply-imaged systems are

possible, defining the strong lensing regime. The lensing

equation is written as:

β = θ −α(θ),

α(θ) =
DLS(zL, zS)

DS(zS)
α̂(θ),

(1)

where β is the position of the lensed source in the source

plane, θ is the image plane location of the images, α(θ)

is the deflection angle, DLS(zL, zS) is the angular diam-

eter distance between the lens and the source, DS(zS) is

the angular diameter distance between the observer and

the source, zL is the redshift of the lens (in our case the

redshift of the galaxy cluster), and zS is the redshift of

the background source. The deflection angle depends on

the gravitational potential of the cluster projected along

the line-of-sight.

The magnification, µ, of a gravitational lens can be

expressed as the determinant of the magnification ma-

trix:

µ−1 = det(A−1) = (1− κ)2 − γ2, (2)

where κ is the convergence and γ is the shear. The lo-

cations of theoretical infinite magnification in the image

plane are called the tangential and radial critical curves,

naming the primary direction along which images (arcs)

are magnified.

For a circularly symmetric lens with the origin cen-

tered at the point of symmetry, the angles α(θ) and β

are collinear with θ. Then the lens equation (eq. 1) be-

comes one-dimensional, β = θ−α(θ), and the deflection

angle is:

α(θ) =
2

θ

∫ θ

0

θdθκ(θ)

=
4GM(< θ)

c2θ

DLS(zL, zS)

DL(zL)DS(zS)

= 〈κ(θ)〉θ,

(3)

where DL(zL) is the angular diameter distance from the

observer to the lens, c is the speed of light, and G is

the gravitational constant. We can then substitute the

deflection angle into the one-dimensional lens equation:

β = θ(1− 〈κ(θ)〉), (4)

where the critical region, defined as 〈κ(θ)〉 = 1, defines

the tangential critical curve. In this circularly symmet-

ric case, α(θ) = θ, Equation 3 becomes

θ2 =
4GM(< θ)

c2
DLS(zL, zS)

DL(zL)DS(zS)
. (5)

Last, substituting the critical surface density, Σcr(zL, zs),

Σcr(zL, zS) =
c2

4πG

DS(zS)

DL(zL)DLS(zL, zS)
, (6)

we obtain the expression of the Einstein radius (Narayan

& Bartelmann 1996; Schneider 2006; Kochanek 2006;

Bartelmann 2010; Kneib & Natarajan 2011):

θ2
E =

M(< θE)

πΣcr(zL, zS)D2
L(zL)

. (7)

Re-arranging Equation 7, the total projected mass en-

closed by the Einstein radius of a circularly symmetric

lens can be computed as:

M(< θE) = Σcr(zL, zS) π [DL(zL)θE ]2. (8)

An Einstein ring results from the exact alignment of

the source, lens, and observer, as well as the circular

symmetry of the lens. This causes an observed ring-like

feature to appear around the lens. However, the three-

dimensional mass density distribution of both simulated

halos and observed clusters is better described by a tri-

axial ellipsoid (Wang & White 2009; Despali et al. 2014;
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Bonamigo et al. 2015). Complete Einstein rings are not

often observed around clusters due to the more com-

plex mass distribution; nevertheless, authors often use

the clustercentric projected distance to a giant arc as a

proxy for the Einstein radius. The mass calculated us-

ing Equation 8 is useful for the study of galaxy clusters,

since it provides a quick estimate of the mass within the

Einstein radius. It was estimated to produce a scatter of

∼ 30% with respect to the true mass enclosed (Bartel-

mann & Steinmetz 1996; Schneider 2006). This uncer-

tainty was adopted in the literature extensively when

estimating the total projected mass enclosed by the Ein-

stein radius (e.g., Allam et al. 2007; Belokurov et al.

2007; Werner et al. 2007; Diehl et al. 2009; Bettinelli

et al. 2016; Dahle et al. 2016; Nord et al. 2016), despite

limited quantification of its accuracy and precision.

3. DATA: SIMULATED LENSES

3.1. The Outer Rim Simulation

To assess the accuracy and precision of the enclosed

mass inferred from the Einstein radius, we use the state-

of-the-art, large-volume, high-mass-resolution, gravity-

only, N-body simulation ‘Outer Rim’ (Heitmann et al.

2019) with the HACC framework (Habib et al. 2016)

carried out at the Blue Gene/Q (BG/Q) system Mira

at Argonne National Laboratory. The cosmology used

assumes a Flat-ΛCDM model, with parameters adopted

from WMAP-7 (Komatsu et al. 2011), h = 0.71 and

ΩM = 0.264789. The size of the simulation box on the

side is L = 3000 Mpc h−1 and it evolves 10, 2403 ≈ 1.1

trillion particles with a mass resolution of mp = 1.85×
109 M� h−1 and a force resolution in co-moving units

of 3 kpc h−1.

The large volume of the simulation run allows for

many massive halos to be included in the same simu-

lation box, covering the redshift range of interest (z ∼
0.1− 0.7), and the high mass resolution provides excel-

lent projected mass profile distributions of the individ-

ual clusters. The large number of massive halos allows

for a rigorous statistical analysis, representative of the

universe and is sufficient to enable strong lensing compu-

tations without the need of re-simulation. In previous

simulation efforts when small numbers of massive ha-

los were present in the simulation box, re-simulation of

those halos was done to increase the sample to better

the statistics (Meneghetti et al. 2008, 2010). The Outer

Rim, amongst other applications, was used to study

dark matter halo profiles and the concentration-Mass

relation (Child et al. 2018) and to construct realistic

strong lensing simulated images (Li et al. 2016).

The majority of the mass in galaxy clusters is in the

form of dark matter. Baryons contribute mostly at the

core of the galaxy cluster, where the brightest cluster

galaxy (BCG) and the hot intra-cluster medium (ICM)

reside. Studies have found non-negligible baryonic ef-

fects from subhaloes of satellite galaxies as well as the

BCG at small θE scale (Meneghetti et al. 2003; Wamb-

sganss et al. 2004; Oguri 2006; Hilbert et al. 2007, 2008;

Wambsganss et al. 2008; Oguri & Blandford 2009). Fully

accounting for these baryonic effects awaits for simula-

tions that include baryonic physics in large cosmological

boxes.

3.2. Simulated SPT-like Strong Lensing Sample

Galaxy cluster halos were identified in the simulation

using a friends-of-friends algorithm with a unit-less link-

ing length of b = 0.168 (Heitmann et al. 2019). The

surface mass density was then computed using a density

estimator. Extensive testing by Rangel et al. (2016)

showed that the mass resolution is robust enough to

compute strong lensing for halos with masses M500 >

2 × 1014 M� h−1. Following an SPT-like selection

function, the halos with a mass larger than M500 >

2.1 × 1014 M� h−1 were selected to form the cluster

sample.

The simulated halo masses (M500, M200) and concen-

trations (c200) that we use in this work were calculated

by Li et al. (2019) and Child et al. (2018). We adopt

the dynamical state values and definitions from Child

et al. (2018); a dynamically-relaxed cluster is identified

where the distance between the dark matter halo cen-

ter and the spherical over-density center is smaller than

0.7R200. When referring to the dynamical state of the

galaxy cluster, the center was defined as the center of

the potential from all the particles in the simulation cor-

responding to the particular dark matter halo.

To select SL clusters out of the mass-limited sample,

we first compute κ(θ) for a background source redshift

of z = 2 for each line of sight. We then identify strong

lensing clusters as all lines of sight for which the Einstein

radius of the critical region that satisfies 〈κ(θ)〉 = 1

is larger than a few arcseconds. The resulting sample

of SPT-like simulated strong lenses includes 74 galaxy

cluster halos spanning the redshift range of zL ∼ 0.16−
0.67.

In Figure 1, we summarize some of the halo properties

of the mass-limited sample and the SL sample. The first

three panels show the distributions of redshifts, masses,

and concentrations. As can be seen in these panels, the

distribution of strong lensing clusters peaks at higher to-

tal mass, higher concentration, and lower redshift than

the mass-limited sample. Similar trends have been iden-

tified in both simulations (Oguri & Hamana 2011; Gio-
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Figure 1. Properties of the Simulated Sample. Top-Left : the total mass (M200), Top-Right : redshift (z), and Bottom-Left :
concentration (c200) distributions of the simulated halos. The mass-limited sample is shown in blue, and strong lenses are in
orange. The masses and concentrations were computed by Li et al. (2019) and Child et al. (2018). The counts are normalized by
the total number of halos in each sample. Bottom-Right : the mass-redshift distribution (M500 - z). Orange squares indicate the
Outer Rim strong lensing cluster halos; grey crosses are observed clusters from the 2500-Square-Degree SPT-SZ Survey (Bleem
et al. 2015). The green circles, and the green dotted line in the Right panels, are strong lensing galaxy clusters from Bleem et al.
(2015), which were identified from very heterogeneous imaging data and are likely not representative of all the strong lenses in
the SPT sample.

coli et al. 2014) and observations (Gralla et al. 2011;

Oguri et al. 2012).

In the forth panel, we plot the mass-redshift distribu-

tion of the simulated clusters and that of the observed

clusters from the SPT-SZ 2500 deg2 survey (Bleem et al.

2015).

As can be seen in the right panels of Figure 1, the

Bleem et al. (2015) strong lensing sample extends to

higher cluster redshifts than our simulated sample. The

effective redshift cut in the simulated sample is imposed

by the selection of cluster-scale lenses by their lensing

efficiency for a zS = 2 source plane. On the other hand,

the observational SL clusters have been identified us-

ing imaging data from various ground- and space-based

observatories. We note that while our simulated sam-

ple is statistically inconsistent with the full Bleem et al.

(2015) strong lensing sample, considering only lenses at

zL < 0.7 a Kolmogorov-Smirnov (KS) test does not re-

ject the hypothesis that the simulated and observed SL

samples are drawn from the same underlying distribu-

tion (KS-statistic 0.264, p-value 0.159). Regardless, the

results presented in this work are not dependent on these

samples being drawn from the same underlying distri-

bution.

The redshift range of the simulated SL sample, zL ∼
0.16−0.67, is similar to that of the Sloan Giant Arc Sur-

vey (SGAS; M. Gladders et al., in preparation; Bayliss

et al. 2011; Sharon et al. 2020), which identified lensing

clusters from giant arcs in shallow optical SDSS imag-

ing. Future studies will extend to higher redshifts to
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complement surveys with samples of galaxy clusters out

to z = 1.75 such as the SPT-SZ 2500-Square-Degree

survey (Bleem et al. 2015).

3.3. Ray Tracing and Density Maps

The ray-traced images and the projected mass distri-

butions of the galaxy clusters have a size of 2048× 2048

pixels and a resolution of dx = 0.′′09 per pixel. For more

details of the exact procedure to obtain the lensing maps

and the ray-traced images, refer to Li et al. (2016). Us-

ing the surface density distributions of these clusters, we

compute all of the lensing maps, including the deflection

angle (α) using Fourier methods, the convergence (κ),

the shear (γ), the magnification (µ), and the tangential

and radial critical curves.

We draw redshifts for 1024 background sources from

a distribution ranging from z ∼ 1.2 to z ∼ 2.7, following

the observed distribution of Bayliss et al. (2011) (shown

in Figure 2). The image plane of each cluster was gen-

erated multiple times, resulting in 5− 24 ray-tracing re-

alizations for each cluster halo. The background sources

were randomly placed in areas of high magnification to

produce highly magnified (total magnification > 5) arcs

easily detected from ground based observations (e.g.,

Bayliss et al. 2011; Sharon et al. 2020).

We note that the ray-tracing did not take into ac-

count structures along the line-of-sight. Structure along

the line-of-sight can boost the total number of lenses ob-

served by increasing the SL cross-section of individual

clusters, having a larger effect on the less massive pri-

mary lensing halos (Puchwein & Hilbert 2009; Bayliss

et al. 2014; Li et al. 2019). The magnification of the

arcs is also affected by the structure along the line-of-

sight requiring particular care when studying the back-

ground source properties (Bayliss et al. 2014; D’Aloisio

et al. 2014; Chiriv̀ı et al. 2018) and using strong lensing

clusters for cosmological studies (Bayliss et al. 2014). A

statistical analysis of how the measurement of the core

mass is affected by line of sight structure is left for future

work.

We use the ray-traced images to compute the mass

enclosed by the Einstein radius, and the surface density

maps as “true” mass to characterize the efficacy of this

mass estimate.

4. METHODOLOGY

Our methodology attempts to mirror the procedures

that would be used in SL analyses of real data. Even

in large surveys such as SPT, this includes a significant

component of manual inspection and identification of SL

evidence. Manual inspection is also required for targeted

spectroscopic follow-up.

1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6
zS

0

20

40

60

80

100

120
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t

Figure 2. Simulated Background Source Redshifts,
zS. The distribution is centered at z = 2, consistent with
the observed redshift distribution of highly magnified giant
arcs (Bayliss et al. 2011).

4.1. Einstein Radius Measurement

The first step is to measure an Einstein radius from

the positions of the lensed images (arcs). To locate the

arcs, we examine each of the ray-traced images by eye to

identify sets of multiple images using their morphology

and expected lensing geometry, mimicking the process of

finding multiply-imaged lensed systems in observational

data. If multi-band information is available lens model-

ers also take advantage of color information of the lensed

images, but in this particular case, color information is

not available from the ray-traced images.

Using this process, we created a catalog with flags

identifying the tangential and radial arcs, corresponding

to the tangential and radial critical curves, respectively

(see §2). Identified lensed images whose classification

(radial or tangential) is unclear were noted. The radial
distribution of the identified arcs is shown in Figure 3.

We find that the distribution of tangential and radial

arcs match our expectations from lensing geometry, the

radial arcs are found near the center while the tangential

arcs are typically found farther out. The distribution we

find is qualitatively consistent with Florian et al. (2016).

Since the Einstein radius is a representation of the

tangential critical curve (Bartelmann 2010; Kneib &

Natarajan 2011), we only include the tangential arcs

when finding the Einstein radius. We fit a circle to the

tangential arcs as explained below; the radii of the re-

sulting circles shall be our Einstein radii, θE .

We explore three alternatives for the centering of the

circle; in the first method (hereafter fixed center) we fix

the center of the circle to the point of highest surface

density of the projected mass from the simulated halo.
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Figure 3. Radial Distribution of the Identified Arcs.
Radial distances are measured with respect to the pixel with
the highest projected mass density of the simulated galaxy
cluster. We display the distribution of the tangential arcs
with an orange dashed line, radial arcs with a green dashed-
dotted line, and those images for which we are unsure with a
red dotted line. The distribution of the radial and tangential
arcs matches our expectation from lensing geometry, having
radial arcs closer to the center while tangential arcs are found
farther out.

Since in observations we do not a priori know where the

center of the dark matter halo is located, in the second

method we set the center as a free parameter (hereafter

free center) with a conservative uniform prior of ±13.′′5

from the projected 3-D potential center of the halo. Be-

cause the free center requires two more free parameters,

the free center minimization was only performed on the

cases where 3 or more multiple images were identified

as tangential arcs. In the observational realm, the BCG

can be, and often is, used as a proxy for the cluster cen-

ter. The third method (hereafter fixed center with BCG

offset) mimics fixing the center to an observed BCG.

Since the Outer Rim simulation does not include bary-

onic information, we cannot determine the BCG position

directly from it. We therefore turn to studies that inves-

tigate the BCG offset from the dark matter center. Har-

vey et al. (2019) explores the radial offset between the

BCG and the dark matter (DM) center as an observable

test of self-interacting dark matter (SIDM) models with

different dark matter cross-sections. They find that the

BCG-DM offset follows a log-normal distribution, with

the offsets in the cold dark matter (CDM) case being the

smallest (µ = 3.8±0.7 kpc) and increases with increasing

dark matter cross section. We use the distribution of the

SIDM model with a DM cross-section of 0.3 cm2/g. This

value represent a reasonable/conservative upper bound-

ary according to recent analysis (Pardo et al. 2019; Sa-
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Figure 4. Distribution of the Einstein radii from the fits to
the identified tangential arcs utilizing the fixed center (blue),
fixed center with BCG offset (orange) and free center (green).

gunski et al. 2020). Following this rationale, we fix the

center of the circle to a point offset from the center of

the dark matter halo, with a radial offset drawn from

a log-normal distribution with µ = 6.1 ± 0.7 kpc, in a

random direction.

For the fitting procedure, we use an ensemble sam-

pler Markov chain Monte Carlo (MCMC) implemented

for python using the libraries emcee1 (Foreman-Mackey

et al. 2013) and lmfit2 (Newville et al. 2014) method to

fit a circle to the tangential arcs. The fitting method

minimizes the distance between the 2-D position of the

arcs (visually identified morphological features that can

be matched between the multiple images) and the near-

est point to it on the circle. We use a uniform prior in

the radius fitting parameter of 2.′′25 < θE < 45.′′0 for

all three of our fitting methods. We note that the cases

where only a single arc is identified, the distance be-
tween the fixed center and the arc is used to determine

the radius of the circle and no scatter is measured.

The distribution of the measured θE is shown in Fig-

ure 4 and the distribution of the standard deviation,

σ(θE), computed from the covariance matrix of the fit

is shown in Figure 5. Since the free center fitting pro-

cedure is significantly more flexible, the standard devi-

ation on the fitted θE for the free center is about 20

times higher compared to that of the fixed center and

fix center with BCG offset fit.

4.2. Inferred Mass

1 Python emcee https://emcee.readthedocs.io/en/stable/
2 Python lmfit https://lmfit.github.io/lmfit-py/index.html

https://emcee.readthedocs.io/en/stable/
https://lmfit.github.io/lmfit-py/index.html
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Figure 5. Distribution of the standard deviation of the measured Einstein radii (σ(θE)) in units of percentage utilizing the
fixed center (left), fixed center with BCG offset (middle), and free center (right). We find that the standard deviation of the
free center method is about 20 times higher than that of the fixed center and fixed center with BCG offset methods.

Taking the Einstein radius from §4.1 and the corre-

sponding lens and source redshifts (§3.2), we compute

the enclosed projected mass, M(< θE), via Equation 8.

For our comparison, we use the projected mass distri-

bution from the simulation to measure the true mass

enclosed within the same aperture. We refer to this as

the “true” mass, Msim(< θE). An example of this pro-

cedure is shown in Figure 6.

4.3. Statistical approach to Correctly Represent the

Universe

Our simulated sample consists of a total of 1024 ray

tracing realizations through 74 strong lensing galaxy

clusters, resulting with 5-24 ray-tracing realizations for

each cluster. Each ray-traced simulated realization in-

cludes one of the 74 cluster halos and a single back-

ground source at a unique redshift. In addition, in some

of the realizations multiple distinct structures (clumps)

were identified and used to measure more than one Ein-

stein Radius for that particular realization. For this rea-

son the ray-trace realizations and Einstein Radius for a

specific galaxy cluster are not independent from each

other.

To establish a robust analysis that represents the

universe, includes the statistical uncertainty of the fit-

ted Einstein radius, and allows for the application to

observational data, we weight each galaxy cluster to

equal one. The ray-traced realizations are then evenly

weighted by a factor of one over the total number of

realizations for the specific cluster, and similarly the

Einstein radii were weighted per ray-traced image. For

each galaxy cluster, we select, at random, one ray-traced

image from that cluster and one Einstein radius mea-

surement for that realization. We then sample the se-

lected Einstein radius using a normal distribution with

the mean as the best fit Einstein radius and standard

deviation equal to the uncertainty of the fitted Einstein

radius. We repeat this process 1, 000 times per cluster

and use this sample with 74, 000 points for our statistical

analysis.

5. ANALYSIS OF RESULTS

In this section, we compare the mass inferred from the

Einstein radius (M(< θE)) to the true mass (Msim(<

θE)), measured from the surface density maps within

the same aperture (Figure 6); measure the scatter of

this mass estimate; and explore any dependence on the

galaxy cluster properties, as well as observational infor-

mation available from the ray-traced images.

In Figure 7, we show a direct comparison between

M(< θE) and Msim(< θE) for the fixed center (left

panel), fixed center with BCG offset (middle panel), and

free center (right panel) cases. We find that M(< θE)

overestimates Msim(< θE) in all cases, especially at

large masses.

We measure an overall scatter of 13.9% and bias of

8.8% for the fixed center, scatter of 14.8% and bias of

10.2% for the fixed center with BCG offset, and scat-

ter of 27.4% and bias of 20.2% for the free center. The

scatter is defined as half the difference between the 84th

percentile and the 16th percentile of the distribution and

the bias is determined using the median of the distribu-

tion. We note that previous estimates of the uncertainty

associated with this measurements state ∼ 30% (Bartel-

mann & Steinmetz 1996; Schneider 2006), however, it is

unclear how the uncertainty is defined.
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Figure 6. Example of the Simulated Images to Illustrate our Methodology. Left : ray-traced image; the identified
lensed images are indicated with magenta symbols, with circles on tangential arcs and squares with a slash through on radial arcs.
We fixed the center to the highest surface density point from the projected mass distribution and fit a circle to the tangential arcs
of radius of θE = 15.′′2, shown in green. The mass inferred from the Einstein radius is M(< θE) = 3.38 x 1013 M�h−1. Right :
projected mass density distribution of the simulated galaxy cluster where the green circle is the same aperture from the lensed
image. The color-bar is in units of M� Mpc−2 h. The “true” projected mass enclosed is Msim(< θE) = 3.00 x 1013 M�h−1.
We perform our analysis utilizing these two masses, the inferred (M(< θE)) and the “true” (Msim(< θE)).

Comparing the results of the three methods, we find

that the free center method is the least reliable in

recovering the true mass. Its measured θE statisti-

cal uncertainty is 20 times higher than those of the

fixed center (Figure 5), and the scatter and bias in

M(< θE) / Msim(< θE) are significantly higher (Fig-

ure 7). In addition, the free center method is limited to

cases where 3 or more tangential arcs are identified. For

these reasons, we do not recommend that the free cen-

ter method be utilized to measure the Einstein radius

and the mass enclosed by the Einstein radius. The fixed

center with BCG offset shows that the additional scat-

ter due to the offset between the BCG and dark matter

center is small, justifying the use of the observed BCG

as the fixed center of the Einstein radius. For the rest of

the paper we are only going to consider the fixed center

and the fixed center with BCG offset.

To explore the dependence of this mass estimate on

lens properties, we consider the ratio of inferred to true

mass, M(< θE)/Msim(< θE), and group the measure-

ments into bins of equal number of points. We plot

M(< θE)/Msim(< θE) with respect to the Einstein ra-

dius in Figure 8. This figure shows clearly that the

M(< θE) mass estimate is not randomly scattered about

the true mass, and that it overestimates the true mass

at all radii. In §7, we describe an empirical correction

to de-bias the measurement of the mass enclosed by the

Einstein radius.

In the following sections, we explore possible causes,

and identify observable indicators of the scatter and bias

of M(< θE).

5.1. Possible causes and indicators of the scatter in the

M(< θE) mass estimate

We explore possible dependence of the scatter and bias

on M(< θE) with respect to galaxy cluster properties,

background source, and lensing geometry. The galaxy

cluster properties used in our analysis include: galaxy

cluster redshift (zL), total mass (M200), concentration

(c200), dynamical state, and the shape of the tangential

critical curve. The total mass, concentration, and dy-

namical state information for the simulated cluster sam-

ple are adopted from Child et al. (2018). From the back-

ground source, we have the redshift information (zS) and

from the lensing geometry, we measure how much of the
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Figure 7. Mass Comparison Between the M(< θE) and Msim(< θE). The mass comparison for the fixed center (left), fixed
center with BCG offset (middle), and free center (right) are shown. Msim(< θE) and M(< θE) are given in units of M�h

−1 and
the solid black line is where Msim(< θE) = M(< θE). The bottom plots show the ratio of the masses, M(< θE) / Msim(< θE).
The total number of counts is the 74, 000 sampled data points (§4.3) used in the analysis of the scatter and bias of the M(< θE)
compared to Msim(< θE). We find that M(< θE) overestimates Msim(< θE) in all cases, especially at large masses, and the
scatter is smallest for the fixed center method and highest for the free center method.

Einstein circle is covered by the arcs (φ), as we explain

below.

Lens and Source Redshifts—The redshifts of the lens and

the source determine the lensing geometry of the system

through the angular diameter distances (Equation 1).

Redshifts can be determined observationlly, when spec-

troscopic or extensive photometric information is avail-

able. The redshift distribution of the simulated clusters

(zL) from the Outer Rim and background source redshift

(zS) are shown in Figure 1 and Figure 2, respectively.

Total Mass and Concentration—M200 and c200 are

adopted from Child et al. (2018). The distribution

of the simulated galaxy cluster total mass and concen-

tration are shown in the left panels of Figure 1. We note

that M200 and c200 are not directly available from the

imaging data at the core of the cluster where the strong

lensing evidence is present. However, since our aim is to

use the core mass to inform the mass-concentration rela-

tion, it is important to test whether this mass estimator

introduces correlated bias.

Cluster Deviation from Spherical Symmetry—Since galaxy

clusters do not have a circular projected mass distri-

bution, we expect differences between Msim(< θE) and

M(< θE) due to deviations from the assumed circu-

lar symmetry. To assess the deviation of the lens from

spherical symmetry, we use the tangential critical curves

derived from the simulation as a proxy for the shape of

the projected mass distribution at the core of the clus-

ter. We sample the tangential critical curves with a few

hundred to thousands of points by using the python li-

brary matplotlib.contour 3 setting a contour level at 0

for the inverse magnification due to the tangential crit-

ical curve. Using the technique described in Fitzgib-

bon et al. (1996), we fit an ellipse to each tangential

3 Python matplotlib.contour https://matplotlib.org/3.1.0/api/
contour api.html

https://matplotlib.org/3.1.0/api/contour_api.html
https://matplotlib.org/3.1.0/api/contour_api.html
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θE)/Msim(< θE), with respect to θE . The fixed center
(blue square) and fixed center with BCG offset center (or-
ange diamond), are shown. The symbol marks the median of
the distribution of the mass ratio, the horizontal error bars
indicate the bin size, and the vertical error bars represent
the 16th and 84th percentile. We find a positive bias in all
of the bins and that both fixed center and fixed center with
BCG offset yield a similar θE .

critical curve corresponding to every background source

redshift. We then use the resultant ellipticity, defined

as ε = (a2 − b2)/(a2 + b2), where a is the semi-major

axis and b is the semi-minor axis. In Figure 9, we show

three examples of the ellipse fits to the tangential crit-

ical curve, over-plotted on the projected mass density

distribution. We plot the distribution of ellipticity of

the tangential critical curve in Figure 10. This charac-

terization of the projected shape of the galaxy cluster is

not accessible directly from the observational data prior

to a detailed SL model which this method aims to avoid.

Galaxy Cluster Relaxation State—We tested whether the

relaxation state of the galaxy clusters (see §3.2 for the

simulated sample dynamical state description) can be

used as a proxy for the deviation from spherical symme-

try. Observationally, this can be determined from X-ray

imaging (e.g., Mantz et al. 2015). In Figure 10, we plot

ε separated by the relaxation state of the galaxy cluster.

We perform a two sample Kolmogorov-Smirnov test to

quantify the difference between the two samples with

a confidence level of 99.7%. The KS-statistic is 0.0896

with a p-value of 0.0402. With this test, we cannot re-

ject the null hypothesis that the two samples are drawn

from the same continuous distribution. From our KS

test and Figure 10, we find no correlation between the

dynamical state and ε.

The fraction of the Einstein circle covered by arcs of an

individual lensed source— φ represents the fraction of the

Einstein circle that is covered by arcs of a given source.

This property is easily accessible from the imaging data.

In Figure 11, we show three examples of lensed images

plotted with their corresponding Einstein circles fitted

using the identified tangential arcs for both the fixed

center (blue) and an example of one of the realizations

of a fixed center with BCG offset (orange). We plot in

Figure 12 the distribution of φ for both the fixed center

(blue) and fixed center with BCG offset (orange).

5.2. Results of the Analysis of Systematics

We split the measurements of M(< θE) into equal

bins of M200, c200, ε, zL, zS, and φ and check whether

the bias and scatter in the M(< θE) mass estimate

depend on these properties. We find that the scatter

and bias of M(< θE)/Msim(< θE) do not depend on

four of these properties: the total mass, concentration,

cluster redshift, and source redshift, showing flat and

uniform progression in panels A–D of Figure 13. We

also note, we find no difference in the bias and scatter

of M(< θE)/Msim(< θE) between the relaxed and un-

relaxed clusters nor a correlation between the relaxation

state and the bias and scatter of M(< θE)/Msim(< θE).

Conversely, there are strong correlations between the

scatter and bias with respect to the ellipticity of the

tangential critical curve (ε) and the fraction of the cir-

cle covered by arcs (φ). As can be seen in panel E of

Figure 13, as ε increases both the scatter and bias in-

crease. The dependence on the ellipticity is expected,

since one of the main assumptions in the M(< θE) for-

malism is circular symmetry (ε = 0.0). Unfortunately,

the measurement of the ellipticity of the tangential crit-

ical curve cannot be determined until after a lens model

has been computed.

The scatter and bias of M(< θE) decrease with in-

creasing φ (Figure 13, panel F). This trend matches

our expectation; lenses with φ closer to 1.0 are typi-

cally more circular. Unlike the ellipticity, the fraction

of the fitted circle covered by arcs is readily available

from the same data used for analysis of observed clus-

ters. It is therefore a useful estimator of lens-dependent

uncertainty. For convenience, we tabulate the informa-

tion displayed in Panel F of Figure 13, in Table 2 in the

Appendix.

6. THE EFFECT OF BACKGROUND SOURCE

REDSHIFT

The redshifts are a piece of information that ide-

ally would be available to the lensing analysis, coming

from spectroscopic follow-up (e.g., Sharon et al. 2020)
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Figure 9. Examples of the ellipticity (ε) of the tangential critical curve (TCC) as a proxy for the cluster
deviation from spherical symmetry. We show as example three simulated clusters with different projected ellipticities.
The red line is the tangential critical curve for a particular background source redshift zS. The dashed black line indicates the
ellipse fitted to the tangential critical line, from which we compute the ellipticity, ε. The lines are plotted over the projected
mass distribution of the corresponding simulated galaxy clusters. The x- and y- axes are in units of arcseconds. The color bar
indicates the surface density value in units of M�h/Mpc2.
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Figure 10. Dynamical State and Deviation from Cir-
cular Symmetry. Distribution of the tangential critical
curve (TCC) ellipticity, ε. The overall distribution is indi-
cated by the black line and the contributions from the dy-
namical (relaxed or un-relaxed) state of the simulated galaxy
clusters (from Child et al. (2018)) is indicated by the shaded
bars. We observe that the dynamical state information is
not an indicator of deviations from spherical symmetry of
the simulated galaxy cluster.

or using photometric redshifts (e.g., Molino et al. 2017;

Cerny et al. 2018) from extensive multi-band photome-

try. However, this may not always be the case, especially

considering future large surveys where follow-up may

be incomplete. We therefore investigate the additional

scatter in the mass estimate due to an unknown source

redshift. In this analysis, we assume that we know the

underlying distribution of the background source red-

shifts (Bayliss et al. 2011).

To evaluate this case, we use the Einstein radius from

§4.1 and the lens redshift from §3.2, but instead of us-

ing the actual source redshifts, we draw 10, 000 source

redshifts from a normal distribution with µ = 2.00 and

σ = 0.2.

We repeat the analysis in §5 with this set of drawn
background source redshifts. In Figure 14, we plot the

ratio of the inferred to “true” mass in bins of Einstein

radius (left panels) and true background source redshift

(right panels). We plot the results for both the fixed

center (top panels) and the fixed center with BCG offset

(bottom panels). For comparison, we over-plot the re-

sults from § 5.2. We compute a scatter of 13.8% (18.2%)

and bias of 9.0% (8.5%) for the fixed center (fixed center

with BCG offset).

As can be seen in the left panel of Figure 14 and the

scatter and bias of the fixed center, not knowing the

exact background redshift and assuming a normal dis-

tribution with µ = 2.00 and σ = 0.2 for typical gi-

ant arcs introduces a negligible uncertainty, particularly

when compared to the magnitude of the systematics pre-

sented in §5. Split by bins of background source redshift,
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Figure 11. The fraction of circle covered by the arcs (φ) for three examples cases. The Einstein radius fitted to
the identified tangential arcs for both the fixed center (blue) and one example of the fixed center with BCG offset (orange) are
plotted; the corresponding centers of the circles are indicated by the crosses. The BCG offset was determined by drawing a
radial offset between the BCG and dark matter halo from a log-normal distribution with µ = 6.1± 0.7 kpc (Harvey et al. 2019)
and an angle from a uniform distribution form 0 to 359 degrees. The fraction of the circle covered by the arcs for the fixed
center and fixed center with BCG offset is shown in the legend. The x- and y-axis are in units of arcseconds.
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Figure 12. Distribution of the fraction of the circle
covered by arcs (φ) for a given source.

the scatter remains the same, however, the inferred mass

is higher if zS > 2 and lower if zS < 2.

It is important to note that precise source redshifts are

critical for most applications of strong lensing (e.g., mag-

nification, time delay, and detailed mass maps). They

become negligible in this case because the total enclosed

mass is a particularly robust measurement, and the goal

is determining the mass of a statistical sample. For mass

estimates of individual systems, since the dependence on

redshift is straight forward (see Equation 8) the uncer-

tainties can be easily determined.

7. EMPIRICAL CORRECTIONS

As can be seen in Figures 8 and 14, the scatter and

bias of this estimator shows dependence on θE . We ex-

plore the use of an empirical correction to un-bias the

mass estimate and reduce the scatter obtained from the

Einstein radius method.

We bin the 74, 000 data points into 25 bins with equal

number of data points per bin, using the Doane’s for-

mula (Doane 1976) to determine the number of bins for

a non-normal distribution. We fit a linear, quadratic,

and cubic models to the median of the mass ratio

(M(< θE)/Msim(< θE)) in each bin and the center

of the bin, using the Levenberg-Marquardt algorithm

(Levenberg 1944; Marquardt 1963). We compute the

Bayesian Information Criterion (BIC) for each model

(Schwarz 1978; Liddle 2007). The results of the fits can

be found in Table 1 including the scatter and bias of

the resulting empirically corrected data. The BIC re-

sults for the fixed center (fixed center with BCG offset)

are −125.7 (−126.5) for the linear, −152.1 (−157.2) for

the quadratic, and −150.7 (−156.9) for the cubic model.

Based on this criterion, the quadratic fit, which has the

lowest BIC, is clearly preferred over linear and slightly

over cubic fits. We therefore use the quadratic fit to

determine an empirical correction:

M(< θE)

Msim(< θE)
= Bθ2

E + CθE + D ≡ f(θE), (9)

where B, C, and D are the fit parameters.
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Figure 13. Ratio of Inferred to “True” Mass (M(< θE)/Msim(< θE)) Binned by Galaxy Cluster Properties,
Background Source, and Lensing Geometry. Mass ratio binned by total mass (M200, panel A), concentration (c200, panel
B), cluster redshift (zL, panel C), background source redshift (zS, panel D), tangential critical curve ellipticity (ε, panel E), and
fraction of circle covered by arcs (φ, panel F). We show results for both the fixed center (blue square) and the fixed center with a
BCG offset (orange diamond). The symbol marks the median of the distribution, the horizontal and vertical error bars indicate
the bin size and scatter (the 16th and 84th percentile of the distribution), respectively. We find that there is a positive bias in
all of the bins. We observe a clear trend with ε, where both the scatter and bias increase with increasing ε, and φ, where both
the scatter and bias decrease as φ increases.
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Figure 14. The Effect of Source Redshift Uncertainty on the Results. The blue square symbols and orange diamonds
represent the fixed center and fixed center with BCG offset, and are the same as Figure 8 and Figure 13, Panel D, respectively.
The ratio of the inferred to “true” mass for the unknown source redshift are indicated with up-pointing, green, triangles and
down-pointing, magenta, triangles. We find that the uncertainty in source redshift has small effects on the results. As expected,
when binned by source redshift (right), we find that the inferred mass is low at zS < 2.0 and high at zS > 2.0.

Table 1. Empirical Correction Models.

Model A[arcsec−3] B[arcsec−2] C[arcsec−1] D BIC Scatter Bias

Fixed Center

Cubic −4.34× 10−5 ± 3.36× 10−5 3.71× 10−3 ± 1.73× 10−3 −0.06± 0.03 1.29± 0.13 −150.7 10.0% −0.2%

Quadratic — 1.49× 10−3 ± 2.11× 10−4 −0.02± 7.05× 10−3 1.14± 0.05 −152.1 10.1% −0.4%

Linear — — 0.02± 2.92× 10−3 0.79± 0.04 −125.7 11.4% −0.5%

Fixed Center w/ BCG Offset

Cubic −4.52× 10−5 ± 2.84× 10−5 3.81× 10−3 ± 1.48× 10−3 −0.06± 0.02 1.31± 0.11 −156.9 10.8% −0.2%

Quadratic — 1.47× 10−3 ± 1.84× 10−4 −0.02± 6.25× 10−3 1.15± 0.05 −157.2 10.9% −0.3%

Linear — — 0.02± 2.84× 10−3 0.81± 0.04 −126.5 12.1% −0.4%

Model fit results of an empirical correction to un-bias and decrease the scatter of the mass enclosed by the Einstein radius. The last two
columns are the scatter and bias of the empirically corrected data. The “fixed center with BCG offset” analysis accounts for the uncertainty
added by using the BCG as a proxy for cluster center.
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Figure 15. Empirically Corrected Mass Ratio M(<
θE)/Msim(< θE) Binned by θE. The blue and orange
are from the analysis in Figure 8, while the green and ma-
genta represent the empirically corrected values, using Equa-
tion 10. The symbols and error bars are the same as Fig-
ure 8. We find that using the empirical correction un-biases
and reduces the scatter of M(< θE).

We choose not to include φ in our empirical correction

because the parameter is dependent on the resolution of

the telescope, depth of the observations, and observing

conditions. The value of φ varies from observation to

observation and therefore having a coarser estimate us-

ing the binned value in Table 2 is more appropriate. We

correct the measured M(< θE) by dividing it by the cor-

responding value computed from the parabolic equation

evaluated at θE :

Corrected M(< θE) = Measured M(< θE)/f(θE).

(10)

We plot in Figure 15 the empirically corrected val-
ues of M(< θE) and show the results from Figure 8

for reference. With the mass enclosed by the Einstein

radius corrected using the empirical correction, the over-

all scatter (half of the difference between the 84th and

the 16th percentile of the distribution) reduces to 10.1%

(10.9%) and the bias to −0.4% (−0.3%) for the fixed

center (fixed center with BCG offset).

We then perform similar analyses as those in §5. We

explore the systematics in the mass enclosed by the Ein-

stein radius when the empirical correction is applied,

and plot the results in Figure 16. The blue and orange

are the same from Figure 13 and are plotted for refer-

ence, while the green and red indicate the empirically

corrected values.

We observe in Figure 16 that overall the measurement

of the mass enclosed by the Einstein radius becomes un-

biased. The scatter of M(< θE) is reduced in all the

bins when compared to the analysis without empirical

correction for the total mass, concentration, lens red-

shift, and background redshift. Using the empirical cor-

rection reduces the scatter in the highest-scatter bins,

i.e., at high and low Einstein radius, small arc fraction,

and large ellipticity of the tangential critical curve.

8. CONCLUSIONS

With current and future large surveys discovering tens

of thousands of clusters and groups, with thousands

expected to show strong lensing features, an efficient

method to estimate the masses at the cores of these sys-

tems is necessary. The mass enclosed by the Einstein

radius is a quick zeroth-order estimate. Studies that use

this method quote an uncertainty of ∼ 30% (e.g., Bartel-

mann & Steinmetz 1996; Schneider 2006), although this

uncertainty has not been thoroughly quantified. In this

work, we conduct a detailed analysis of the efficacy of

the mass enclosed by the Einstein radius as core mass

estimator, using the Outer Rim cosmological simulation.

When measuring the Einstein radius, we explore three

centering assumptions: fixed center, free center, and a

observationally-motivated centering that mimics fixing

the center to the BCG. We measure the scatter and bias

of M(< θE), identify sources of systematic errors, and

explore possible indicators available from imaging data

at the cores of galaxy clusters. The results of our work

are summarized below:

• In the fixed center approach, the center of the cir-

cle is fixed to the highest surface density point and

a circle is fitted to the tangential arcs. The statis-

tical uncertainty in the measured Einstein radius

is small (see Figure 5). We measure an overall

scatter of 13.9% with a bias of 8.8% in the mass

enclosed by the Einstein radius with no correction

applied.

• In the free center approach, the center of the circle

is a free parameter in the fit. The statistical uncer-

tainty of the Einstein radii fitted with the method

is 20 times higher than that of fixed center and the

fixed center with BCG offset (see Figure 5). With

this method, the overall scatter is 27.4% with a

bias of 20.2% in the mass enclosed by the Einstein

radius with no correction applied. We do not rec-

ommend the use of the free center method to mea-

sure the mass enclosed by the Einstein radius due

to the large scatter in the mass measurement, high

uncertainty in the Einstein radius, and restriction

of a minimum of 3 or more identified tangential

arcs.
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Figure 16. Empirically-Corrected Inferred Mass Binned by Galaxy Cluster Properties, Background Source,
and Lensing Geometry. Same as Figure 13, but using Equation 10 to empirically correct the mass estimates. The blue and
orange points are from the analysis in Figure 13, while the green and purple represent the empirically corrected values. We find
overall that using the empirical correction un-biases the results and reduces the scatter of M(< θE). The empirical correction
does not introduce significant correlation with total cluster mass, concentration, or redshifts. It does not eliminate the trend
due to deviation from circular symmetry, as can be seen in Panel E.
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• With the intention to apply this to observational

data, we investigate the effect of using the BCG

as the fixed center. We move the fixed center from

the point of highest density by a random offset,

following the log-normal distribution (µ = 6.1±0.7

kpc) of BCG offsets found by Harvey et al. (2019).

This offset increases the scatter to 14.8%, and the

bias to 10.2% in the mass enclosed by the Einstein

radius when compared to the fixed center method.

• We find that the scatter and bias of M(< θE) with

respect to Msim(< θE) does not depend on the

total cluster mass, concentration, lens redshift, or

source redshift (Figure 13).

• We explore how the deviation from circular sym-

metry affects the measurement of M(< θE). The

tangential critical curve ellipticity (ε) stems from

the deviation from spherical symmetry of the pro-

jected mass distribution at the core of the cluster.

We find that the bias and scatter correlate with

ε (Figure 13), where larger deviations from circu-

lar symmetry lead to a larger bias and scatter of

M(< θE) when compared to Msim(< θE).

• The fraction of the circle covered by arcs of a

single lensed source (φ), can be directly accessed

from the imaging data. This observable correlates

strongly with the scatter and bias, with both scat-

ter and bias decreasing with an increasing frac-

tional coverage by the arcs (Figure 13). φ can

be used as an observational indicator to estimate

the field-specific scatter and bias of M(< θE) (Ta-

ble 2).

• Other possible sources of systematic errors exits.

While the Outer Rim simulation has a large vol-

ume and high mass resolution needed for this work,

we are limited by the lack of baryonic information

in the simulation and missing the structure along

the line-of-sight in the simulated ray-traced im-

ages. For example, the structure along the line-of-

sight, particularly in the case of low mass systems,

will have an effect on this measurement (Bayliss

et al. 2014; Li et al. 2019). We leave this investi-

gation for future work.

• We evaluated the case when the background source

redshift measurement is not available, using in-

stead the distribution of the background source

redshifts. While an accurate source redshift is crit-

ical for several lensing applications (e.g., magni-

fications, time delays, mass distribution) for the

relatively well-constrained enclosed core mass, the

scatter introduced by the uncertainty in the back-

ground source redshift is negligible compared to

that of other systematics (Figure 14), if the un-

derlying source redshifts distribution can be ac-

curately estimated. In addition the dependence

on the zS is predictable and matches our expecta-

tions, §6 and Figure 14.

• We derive an empirical correction to un-bias and

reduce the scatter of the measurement of M(< θE)

using a quadratic equation fitted to the mass ra-

tio (M(< θE)/Msim(< θE)) with respect to the

Einstein radius. The scatter of the empirically

corrected masses enclosed by the Einstein radius

reduces to 10.1% and 10.9% respectively for fixed

center and fixed center with a BCG offset. The

empirical correction does not introduce correla-

tion between the inferred mass and other cluster

or background source properties, which is impor-

tant for application of this method in measuring

cluster properties such as the concentration-mass

relation as a function of redshift.

8.1. Application

In this section we provide a recipe for applying the re-

sults of this work to observational data, to statistically

correct the bias in M(< θE) and estimate its uncer-

tainty.

We note that a more accurate estimate of the field-

specific uncertainty can be achieved by using the frac-

tion of the Einstein circle covered by arcs as an indi-

cator of deviation from circular symmetry. We provide

instructions for both choices.

1) Starting with a cluster lens field in which lensing

evidence has been detected, identify all the secure mul-

tiple images (arcs) of the lensed source. Each lensed

image should be classified as either tangential or radial.

Only the tangential arcs are used to estimate M(< θE).

2) Measure the exact coordinates of a morphological

feature (e.g., a bright emission clump) that repeats in

each of the arcs.

3) Fit a circle to the list of coordinates. If the cluster

has a distinct BCG, we recommend fixing the center of

the fitted circle to the position of the BCG. The radius

of the fitted circle defines θE .

4) Measure φ, the fraction of the circle covered by the

arcs of a single lensed source, by summing the angles

subtended by the extent of the arcs that overlap with

the Einstein circle, and dividing the sum by 360◦. An

example of three cases of different φ values is shown in

Figure 11.

5) Calculate M(< θE), the projected mass density

enclosed in θE , by evaluating Equation 6 and Equation 8
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for the cluster and source redshifts, and the measured

θE .

If the spectroscopic redshift of the source is unknown,

it can be approximated from photometric redshifts or a

probability distribution function of source redshifts. we

find that for the purpose of a statistical measurement of

the enclosed mass, the increase in uncertainty due to a

small error in the source redshift is negligible compared

to other sources of uncertainty.

6) Evaluate whether an empirical correction is benefi-

cial: If φ & 0.5 (i.e., the arcs of an individual lensed

source cover at least half of the Einstein circle), the

measured M(< θE) is fairly unbiased and an empiri-

cal correction is not necessary. In all other cases, or if

the choice is to not use φ as an indicator, proceed to

apply the empirical correction as follows.

7) Calculate f(θE), the empirical correction factor, by

evaluating Equation 9 for θE (see Table 1 for coefficient

values). We recommend using the fixed circle with BCG

offset method. For Einstein radii in the range of θE <

30.′′0, we recommend using the quadratic fit. Apply the

correction to the measured M(< θE) using Equation 10.

8)Determine the uncertainty. The field-specific un-

certainty decreases as the fraction of the Einstein circle

covered by arcs (φ) increases. The numerical values

of the scatter as well as the 16th and 84th percentiles

(lower and upper limit) for five φ bins are tabulated in

Table 2 in Appendix A. If the φ estimator is not used,

one can assume an overall uncertainty in the corrected

M(< θE) of 10.1% (10.9%) for the fixed center (fixed

center with BCG offset).

With the characterization of the mass enclosed by the

Einstein radius presented in this work — including the

application of indicators of the scatter and bias — mea-

suring the mass at the cores of strong lensing galaxy

clusters can be performed in large samples in a very ef-

ficient manner. The estimation of the mass at the core

can be used to determine the mass distribution profile of

the galaxy cluster, the concentration parameter (when

combined with a mass estimate at larger radius), and

provide information about the baryonic and dark mat-

ter properties at the core of galaxy clusters.
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APPENDIX

A. UNCERTAINTY DEPENDENCE ON THE FRACTION OF CIRCLE COVERED BY ARCS

In this appendix we give numerical values of the field-specific uncertainty, which depends on the deviation from

circular symmetry, as indicated by the fraction of the circle covered by arcs (φ). For the statistics used in our analysis

see §4.3. The scatter is defined as half the difference between the 84th percentile (upper) and the 16th percentile

(lower) of the distribution and we compute the bias using the median of the distribution. For convenience, we tabulate

the numerical values that are plotted in Figure 16 in Table 2.

Table 2. Bias and uncertainty in M(< θE) as a function of φ

M(< θE)/Msim(< θE)

φ bin Measured Corrected

median [min — max] median [lower — upper] median [lower — upper]

Fixed Center 0.06 [0.00 — 0.12] 1.17 [0.99 — 1.56] 1.00 [0.89 — 1.19]

0.19 [0.12 — 0.23] 1.13 [0.99 — 1.30] 1.01 [0.90 — 1.12]

0.28 [0.23 — 0.33] 1.13 [0.99 — 1.26] 1.01 [0.91 — 1.13]

0.39 [0.33 — 0.49] 1.10 [0.98 — 1.16] 1.01 [0.90 — 1.09]

0.66 [0.49 — 1.00] 1.02 [0.99 — 1.09] 0.96 [0.92 — 1.04]

Fixed Center 0.06 [0.00 — 0.11] 1.17 [1.00 — 1.59] 1.00 [0.89 — 1.18]

w/ BCG Offset 0.17 [0.11 — 0.22] 1.15 [1.00 — 1.37] 1.02 [0.89 — 1.15]

0.26 [0.22 — 0.31] 1.15 [1.00 — 1.29] 1.01 [0.90 — 1.13]

0.37 [0.31 — 0.46] 1.10 [0.99 — 1.19] 1.00 [0.90 — 1.09]

0.61 [0.46 — 1.00] 1.03 [0.99 — 1.12] 0.96 [0.91 — 1.05]

A quantitative form of the information displayed in Panel F of Figure 13 and Figure 16. The median and boundaries of the
bins of φ are tabulated in the first column; the next columns tabulate the median, lower 16th percentile, and the upper 84th
percentile of M(< θE)/Msim(< θE), for the measured results (Figure 13) and corrected results (Figure 16).
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