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Simple Summary: The scientific community has recently turned its interest to wildlife, including
birds, as a potential marker of environmental antimicrobial resistance. The aim of this work was
to investigate the antimicrobial susceptibility of 100 commensal Escherichia coli strains isolated
from wild birds admitted to the Veterinary Teaching Hospital of Perugia (Central Italy) and the
possible presence of extended-spectrum beta-lactamase (ESBL)-producing E. coli and Salmonella spp.
Antimicrobials have been selected on the basis of their relevance for public health. The majority
of the birds investigated were nocturnal and diurnal raptors and came from “WildUmbria”, a
wildlife rescue centre in Central Italy. The initial clinical assessment revealed injuries mainly due
to traumatic events. The E. coli isolates displayed significant resistance (p < 0.001) to ampicillin
(85%) and amoxicillin/clavulanic acid (47%), which are widely used in veterinary and human
medicine. Resistance to ciprofloxacin, cefotaxime, and ceftazidime showed values of 18%, 17% and
15%, respectively. Eight out of the hundred E. coli isolates (8%) were ESBL and seven displayed
a multidrug resistance profile. Salmonella spp. was not isolated. Resistance to beta-lactams in all
multidrug-resistant E. coli, including the presence of third-generation cephalosporins, highlights the
need to increase wildlife monitoring studies to assess the potential risk to public health.

Abstract: The role of wildlife, including birds, in antimicrobial resistance is nowadays a speculative
topic for the scientific community as they could be spreaders/sources of antimicrobial resistance
genes. In this respect, we aimed to investigate the antimicrobial susceptibility of 100 commensal
Escherichia coli strains, isolated from wild birds from an Umbrian rescue centre and admitted to the
Veterinary Teaching Hospital of Perugia (Central Italy) mainly for traumatic injuries. The possible
presence of Salmonella spp. and ESBL-producing E. coli was also estimated. The highest prevalence
of resistance was observed for ampicillin (85%) and amoxicillin/clavulanic acid (47%), probably
due to their extensive use in human and veterinary medicine. Seventeen out of the one hundred
E. coli isolates (17%) displayed a multidrug-resistance profile, including the beta-lactam category,
with the most common resistance patterns to three or four classes of antibiotics. Resistance to
ciprofloxacin, cefotaxime and ceftazidime exhibited values of 18%, 17% and 15%, respectively. Eight
out of the hundred E. coli isolates (8%) were ESBL and seven showed multidrug resistance profiles.
Salmonella spp. was not isolated. Resistance to third-generation cephalosporins, also detected in
long-distance migratory birds, suggests the need for monitoring studies to define the role of wild
birds in antimicrobial resistance circuits.

Keywords: wild birds; wildlife rescue centre; Central Italy; Escherichia coli; antimicrobial resistance;
ESBL; beta-lactams
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1. Introduction

Nowadays, antimicrobial resistance (AR) is considered a global threat that requires
a One Health approach, involving animals, humans and the environment. The scientific
community has recently turned its interest to wildlife, including birds, as potential markers
of the level of environmental contamination by antimicrobial resistance genes (ARGs) [1].
Numerous reports have documented AR in wild birds, such as cormorants, birds of prey,
gulls, doves and passerine birds [2–4].

Wild animals are not usually treated with antimicrobials, although they can acquire
resistant microorganisms from different ecological niches. Soil represents a biodiverse
habitat for several bacteria hosting ARGs, so it becomes an important link between humans
and animals [5]. Manure and sewage, widely used as fertilizers in agriculture, can be
affected by the use of antibiotics in farms and can, in turn, be a source of resistance for other
animals, including wildlife, which feed on them [6]. Nelson et al. [7] demonstrated that
gulls have been found to spread the same strains of Escherichia coli isolated from rubbish
and waste-water treatment plants. Moreover, the sea can also be a source of antimicrobial
resistance because of the high antimicrobial use in fish and seawater farming, which is often
poorly regulated in some countries [8]. Furthermore, several species of fish, contaminated
by AR bacteria/genes from humans, agricultural sewage and the aquaculture industry, can
travel long distances and enter the human food chain [8,9].

The geographic location also plays an important role in influencing the prevalence
of AR in wildlife, depending on the livestock and human populations and the degree of
isolation of the area [10].

Other ARGs are thought to be ancient elements that evolved before the use of antibi-
otics [11], and intrinsic ARGs are present in most organisms [12–14]. Laborda et al. [15]
also suggested that some mobile ARGs of clinical relevance could be present in wildlife as
a result of selective pressure prior to the antibiotic era. In this scenario, migratory birds
can spread resistant organisms across different geographical areas, given their ability to
cover long distances in a short time along their travel routes [5]. The presence of AR
plasmids has been reported in birds living in the Arctic region, which is considered an
environment with low or absent antibiotic contamination [16] as a result of human pollu-
tion, although the possible spread by bird migration cannot be excluded [16,17]. In this
scenario, E. coli and Salmonella spp. are considered to be microorganisms in which the
selection of resistance genes has occurred rapidly over the years, due to the widespread use
of antimicrobials in farming [18]. Thus, they may be able to play a consistent role in ARG
co-circulation between the environment, animals and humans. Moreover, the progressive
appearance of extended-spectrum beta-lactamase (ESBL)-producing E. coli and Salmonella
spp. poses a threat to public health with regard to their therapeutic treatment possibilities
in humans [19]. Food-producing animals, especially poultry, are considered the main
source of ESBL-producing bacteria for humans via direct contact and/or consumption of
contaminated meat products [19]. ESBL-producing E. coli was first isolated in wild birds
in 2006 in Europe [20]. Since then, there have been several reports on their presence in
numerous species of wild birds in European countries [21–23]. The main goal of this work
was to investigate the susceptibility of commensal E. coli isolates to the antimicrobials
of clinical relevance for Public Health in wild birds admitted to the Veterinary Teaching
Hospital of Perugia (Central Italy). The possible presence of ESBL-producing E. coli and
the Salmonella spp. was also evaluated.

2. Materials and Methods
2.1. Sampling

A total of 100 cloacal swabs were collected from different wild bird species on arrival
at the Veterinary Teaching Hospital (Department of Veterinary Medicine, Perugia, Central
Italy) in order to take samples before any possible antimicrobial therapies. Cloacal swabs
were collected, preserved in a transport medium, a buffer solution with carbohydrates
and peptones (Microbiotech, Maglie, Lecce), and then sent to the laboratory at 4 ◦C for
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bacteriological examination. The majority of the investigated birds were raptors (Table 1)
and came from “WildUmbria”, a wild animal rescue centre in Central Italy. The initial
clinical assessment revealed injuries mainly due to traumatic events (hunting wounds, road
traffic, predation by dogs and cats or by other animals, etc.).

Table 1. Order, family, species and number of investigated birds.

Order Nr Family Nr Species Nr

Falconiformes 14 Falconidae 14
Eurasian hobby (Falco subbuteo Linnaeus, 1758)

Eurasian kestrel (Falco tinnunculus Linnaeus, 1758)
Peregrine falcon (Falco peregrinus Tunstall, 1771)

1
10
3

Accipitriformes 19 Accipitridae 19 Eurasian sparrowhawk (Accipiter nisus Linnaeus, 1758)
Eurasian common buzzard (Buteo buteo Linnaeus, 1758)

4
15

Strigiformes 26

Tytonidae 6 Barn owl (Tyto alba Scopoli, 1769) 6

Strigidae 20
Eurasian scops owl (Otus scops Linnaeus, 1758)

Little Owl (Athene noctua Scopoli, 1769)
Tawny owl (Strix aluco Linnaeus, 1758)

7
8
5

Passeriformes 12

Sturnidae 1 European starling (Sturnus vulgaris Linnaeus, 1758) 1

Turdidae 7 Blackbird (Turdus merula Linnaeus, 1758) 7

Corvidae 4 Western jackdaw (Corvus monedula Linnaeus, 1758)
Hooded crow (Corvus cornix Linnaeus, 1758)

3
1

Apodiformes 7 Apodidae 7 Common swift (Apus apus Linnaeus, 1758) 7

Columbiformes 11 Columbidae 11 Common pigeon (Columba livia Gmelin, 1789)
Collared dove (Streptotelia decaocto Frivaldszky, 1838)

4
7

Bucerotiformes 1 Upupidae 1 Eurasian hoopoe (Upupa epops Linnaeus, 1758) 1

Piciformes 2 Picidae 2 Green woodpecker (Picus viridis Linnaeus, 1758) 2

Galliformes 3 Phasianidae 3 Common quail (Coturnix coturnix Linnaeus, 1758)
Pheasant (Phasianus colchicus Linnaeus, 1758)

2
1

Caprimulgiformes 2 Caprimulgidae 2 European nightjar (Caprimulgus europaeus Linnaeus, 1758) 2

Pelecaniformes 3 Ardeidae 3 Western cattle egret (Bubulcus ibis Linnaeus, 1758) 3

Total 100 100 100

2.2. Microbiological Analysis
2.2.1. Isolation and Identification of E. coli

In order to isolate E. coli, samples were placed in buffered peptone water (BPW)
(Thermo Fisher Scientific, Rodano, Milan, Italy), which is a pre-enrichment medium at
a ratio of 1:10, and then incubated for 18–24 h at 37 ◦C under aerobic conditions. A
0.1 mL of solution was taken from each sample diluted in this way, seeded on MacConkey
agar (Thermo Fisher Scientific, Rodano, Milan, Italy), and incubated at 37 ◦C for 18–24 h
under aerobic conditions. All the colonies with typical E. coli morphology were selected
and identified using a MALDI-TOF MS instrument (Microflex LT Smart Biotyper with
FlexControl Biotyper 3.4 software, Bruker Daltonics, Bremen, Germany). The isolates were
identified as belonging to the E. coli species when they were lactose-fermenting and the
score value for identification after MALDI-TOF analysis was above 2.

2.2.2. Isolation and Identification of Salmonella spp.

One ml of the sample from the transport medium was inoculated in 9 mL of BPW
and incubated at 37 ◦C for 18–24 h under aerobic conditions. Then, 0.1 mL of the pre-
enriched inoculum was transferred to 10 mL of Rappaport-Vassiliadis Broth (Thermo Fisher
Scientific, Rodano, Milan, Italy) for selective enrichment and incubated at 42 ◦C for 24 h
under aerobic conditions. Subsequently, a loopful (10 µL) of inoculum was streaked on
chromogen plates for Salmonella spp. (Liofilchem s.r.l, Roseto degli Abruzzi, Teramo, Italy)
and incubated at 37 ◦C for 18–24 h under aerobic conditions (ISO-6579) [24].
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2.3. Antibiotic Susceptibility Testing and ESBL-Producing E. coli Detection

To assess antimicrobial susceptibility, all the E. coli isolates were analysed using Kirby-
Bauer disk diffusion method performed according to the CLSI document VET01 [25] for
the following antibiotics: imipenem (IMP) (10 µg), cefoxitin (FOX) (30 µg), cefepime (FEP)
(30 µg), cefotaxime (CTX) (30 µg), ceftazidime (CAZ) (30 µg), ampicillin (AMP) (10 µg),
amoxicillin/clavulanic acid (AMC) (30 µg), chloramphenicol (CHL) (30 µg), azithromycin
(AZM) (15 µg), nalidixic acid (NA) (30 µg), ciprofloxacin (CIP) (5 µg), tetracycline (TE)
(30 µg), sulfamethoxazole/trimethoprim (SMX) (25 µg) and gentamicin (CN) (10 µg).
The colistin susceptibility assessment was performed in triplicate using Euvsec FRCOL
microtitre plates (Thermo Fisher Scientific, Milan, Italy) with concentrations of colistin
ranging from 0.12 to 128 mg/L (cut-off > 2 mg/L). E. coli ATCC 25,922 and ZTA14/0097EC
were used as quality and positive control strains, respectively.

The plates were incubated at 37 ◦C for 24 h under aerobic conditions after inoculation.
The results were evaluated according to the breakpoints established by the European
Committee on Antimicrobial Susceptibility Testing (EUCAST) [26], with the exception of
sulfamethoxazole, tetracycline, azithromycin and nalidixic acid, for which the breakpoints
published by the Clinical and Laboratory Standard Institute (CLSI) were used [27]. ESBL
production was performed by the combined disk test with cefotaxime and ceftazidime
alone, in combination with clavulanic acid, and confirmed by the microdilution method
using Sensititre™ extended spectrum β-lactamase plates (Thermo Fisher Scientific, Milan,
Italy), according to the CLSI guidelines [27].

2.4. Statistical Analysis

JASP version 14.1 was used to conduct a statistical analysis. Isolates were defined
as multidrug resistance (MDR) having resistance to at least three different antimicrobial
classes [28]. A descriptive analysis of individual isolates and the overall prevalence of the
resistant strain was carried out. A Chi-square test was used to compare the number of
susceptible and resistant isolates for each antibiotic. The value of statistical significance
was set at p ≤ 0.05.

3. Results

A total of 100 E. coli isolates, one from each bird, were selected on the basis of MALDI-
TOF analysis and the phenotypic profile of antimicrobial resistance according to the bird
species, as shown in Table 2. Eighty-five and forty-seven E. coli isolates showed a signifi-
cantly high prevalence of resistance (p < 0.001) to ampicillin and amoxicillin/clavulanic
acid, respectively. Resistance to ciprofloxacin, cefotaxime and ceftazidime presented values
of 18%, 17% and 15%, respectively. E. coli isolates were found to be highly susceptible to
chloramphenicol (94%) and azithromycin (97%). All isolates were susceptible to colistin
and imipenem. Seventeen out of the hundred isolates showed a multidrug resistance
profile, including the beta-lactam category, and the pattern of resistance to three or four
antibiotic classes was the most common (Table 3). Eight out of the hundred isolates were
ESBL-producing E. coli and seven showed multidrug-resistance profiles (Table 3). Salmonella
spp. was not isolated.
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Table 2. Phenotypic profile of antimicrobial resistance of the 100 E. coli isolates according to the
species of investigated birds.

Species Nr IMP FOX FEP CTX CAZ AMP AMC CHL AZM NA CIP TET SXT CN COL ESBL

Hobby (Falco subbuteo) 1 0 0 0 0 0 1 0 0 0 1 1 1 1 0 0 0

Kestrel (Falco tinnunculus) 10 0 1 2 2 1 10 4 0 0 0 1 1 1 1 0 1

Peregrine Falcon (Falco peregrinus) 3 0 0 0 1 0 3 3 2 1 2 2 2 1 0 0 1

Sparrowhawk (Accipiter nisus) 4 0 1 1 2 2 2 2 0 0 0 1 0 1 1 0 1

Buzzard (Buteo Buteo) 15 0 0 2 1 1 11 3 1 0 1 2 1 2 1 0 1

Barn owl (Tyto alba) 6 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0

Scops owl (Otus scops) 7 0 0 0 1 1 6 5 0 0 0 2 0 0 4 0 0

Little owl (Athene noctua) 8 0 0 0 0 0 7 4 0 0 0 1 0 0 0 0 0

Tawny owl (Strix aluco) 5 0 0 1 3 3 4 4 0 0 0 0 0 0 1 0 1

Starling (Sturnus vulgaris) 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Blackbird (Turdus merula) 7 0 0 0 0 0 7 4 1 0 2 1 1 1 0 0 0

Jackdaw (Corvus monedula) 3 0 3 3 3 3 3 3 3 0 3 3 3 3 1 0 2

Hooded crow (Corvus cornix) 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0

Swift (Apus apus) 7 0 1 0 2 4 7 6 0 1 1 1 0 0 1 0 1

Pigeon (Columba livia) 4 0 0 0 0 0 4 3 0 0 0 1 0 3 0 0 0

Collared dove (Streptopelia decaopto) 7 0 0 0 1 0 7 1 0 0 0 1 1 0 0 0 0

Hoopoe (Upupa epops) 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0

Green woodpeker (Picus viridis) 2 0 0 0 1 0 2 1 0 0 0 0 0 0 0 0 0

Quail (Coturnix coturnix) 2 0 0 0 0 0 2 0 0 0 0 0 2 1 0 0 0

Pheasant (Phasianus colchicus) 1 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0

Nightjar (Caprimulgus europeaeus) 2 0 2 0 0 0 2 1 0 1 0 0 0 0 0 0 0

Cattle egret (Bubulcus ibis) 3 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0

Total 100 0 8 9 17 15 85 47 7 3 10 18 13 14 10 0 8

IMP: Imipenem; FOX: Cefoxitin; FEP: Cefepime; CTX: Cefotaxime; CAZ: Ceftazidime; AMP: Ampicillin; AMC:
Amoxicillin/clavulanic acid; CHL: Chloramphenicol; AZM: Azithromycin; NA: Nalidixic acid; CIP: Ciprofloxacin;
SXT: Sulfamethoxazole; CN: Gentamicin; TET: Tetracycline; COL: Colistin.

Table 3. Multidrug resistance patterns in Escherichia coli, including ESBL-producing strains.

Antimicrobial Classes Antibiotics ESBL TOT E. coli

3

BETA/QUIN/AMIN AMP; AMC/CIP/CN Neg 2

BETA/QUIN/TET AMP/CIP/TET Neg 1

BETA/MACR/QUIN AMP; AMC/AZM/CIP Neg 1

BETA/TET/SXT AMP/TET/SXT Neg 1

4
BETA/QUIN/TET/SXT

AMP/NA; CIP/TET/SXT
FEP; CTX; AMP; AMC/CIP/TET/SXT

AMP; AMC/NA; CIP/TET/SXT

Neg
Pos (2)

Neg
4

BETA/QUIN/SXT/AMIN FEP; CTX; CAZ; AMP; AMC/CIP/SXT/CN
FEP; CTX; CAZ; AMP/CIP/SXT/CN

Pos
Pos 2

5
BETA/PHEN/QUIN/TET/SXT

AMP; AMC/CHL/NA; CIP/TET/SXT
AMP; AMC/CHL/NA; CIP/TET/SXT

FOX; FEP; CXT; CAZ; AMP; AMC/CHL/NA; CIP/TET/SXT

Neg
Pos
Pos

3

BETA/PHEN/MACR/QUIN/TET CTX; AMP; AMC/CHL/AZM/NA; CIP/TET Neg 1

6 BETA/PHEN/QUIN/TET/SXT/AMIN FOX; FEP; CXT; CAZ; AMP; AMC/CHL/NA;
CIP/TET/SXT/CN Pos (2) 2

BETA: Beta-Lactams; IMP: Imipenem; FOX: Cefoxitin; FEP: Cefepime; CTX: Cefotaxime; CAZ: Ceftazidime; AMP:
Ampicillin; AMC: Amoxicillin/clavulanate; QUIN: Quinolones; NA: Nalidixic acid; CIP: Ciprofloxacin; AMIN:
Aminoglycosides; CN: Gentamicin; TET:Tetracyclines; MACR: Macrolides; AZM: Azithromycin; STX: Sul-
fonamides; SXT: Sulfamethoxazole; PHEN: Phenicols; CHL: Chloramphenicol. In bold—Beta-lactams; italic—
Quinolones. Neg: Negative; Pos: Positive. We indicate with the bold and the italic, antimicrobials belong to
the same class. Bold are shown all the antimicrobial belonging to Beta-lactams and in italic are reported all
the Quinolones.
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4. Discussion

The scientific community has recently become interested in wild birds due to their
role either as possible spreaders of antimicrobial resistance (AR) genes or as sentinels of AR
environmental contamination, especially in urban and suburban areas [29]. In this context,
studies concerning wild animals as carriers of resistance genes in the ecosystem have been
carried out [30].

In our investigation, the most commonly monitored birds were raptors belonging to
different orders, all coming from “WildUmbria” rescue centre involved in the recovery of
wildlife across Umbria region territory, prevalently composed of rural and forested areas.
They usually presented traumatic lesions due to road accidents, hunting, predation and,
more rarely, signs of poisoning, similar to reports from other rescue centres [31,32], and
no antimicrobial treatment was performed in the centre or before sampling. A significant
number of the isolated E. coli displayed resistance to ampicillin, followed by resistance
to amoxicillin associated with clavulanic acid, regardless of the bird species investigated.
These molecules are commonly used in humans [33] and veterinary medicine, both in
mammals [34] and poultry, especially for enteric diseases caused by Clostridium perfrin-
gens [35]. We may assume that our results, which concur with those previously observed
by Giacopello et al. [36] and Vidal. et al. [37], could be a consequence of wastewater con-
tamination by zootechnical and urban centres (hospital and municipal sewage), converging
in the environment as well as dietary habits of some species of wild birds, such as raptors.
Furthermore, it poses a serious risk to public health, especially to the staff in the rescue
centres, as a result of not only their close contact with wildlife but also in view of the
precautionary measures to be taken.

The presence of E. coli strains resistant to cefotaxime and ceftazidime, which are
third-generation cephalosporins, is noteworthy. This is probably due to environmental
contamination, mainly caused by an anthropogenic source [38,39], even though a poten-
tial role played by cat [40] and dog faeces [41] causing pollution in urban areas (streets,
meadows, etc.) should not be disregarded. Although the use of cephalosporins is not
allowed in poultry, resistance to these molecules has also been reported in industrially
and organically raised chickens [42,43] and hens [44]. This could be a consequence of
the vertical transmission of resistance genes by breeders due to the typical pyramidal
production structure of the poultry sector [45,46]. Moreover, antimicrobial resistance to
cephalosporins has also been associated with the unauthorised use of cephalosporins in
the hatcheries of some countries [44,47,48]. Thus, possible contamination of environmental
soil from farm wastewater cannot be excluded as a possible source of resistance genes
for wildlife and vegetation. In contrast to Giacopello et al. [36] and Russo et al. [49], all
E. coli isolates were proven to be susceptible to imipenem, considered nowadays with
third-generation cephalosporins as the first choice for the treatment of serious infections in
human medicine [50].

The E. coli strains, as expected, were mainly susceptible to azithromycin, a macrolide
commonly used in humans [51,52], but not in livestock. The azithromycin-resistant E. coli
strains were isolated not only from the peregrine falcon, known as a partially migratory
bird, but also from the nightjar and the swift, both migratory species and, therefore, able to
carry ARG over long distances.

Resistance to other macrolides, such as tylosin and erythromycin, is more frequent
since these molecules are largely administered to food-producing animals as they react to
different bacterial agents [53–55]. It should be emphasized that the use of tylosin in animals
can select for resistance to other macrolides [56], posing a serious threat to public health
due to its use in human campylobacteriosis [57].

Seven E. coli strains, isolated from diurnal raptors (peregrine falcon and buzzards)
and passerine birds, were resistant to chloramphenicol, which, although banned in food-
producing animals [58], is sometimes used especially in pet animal therapy, where the
occurrence of resistance can be observed [59].
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All E. coli strains were susceptible to colistin, which belongs to the polymyxin group,
commonly active against Gram-negative bacteria, including E. coli [60]. In contrast,
Tolosi et al. [61] recently detected consistent levels of plasmid-mediated colistin resistance
genes (mcr1–mcr5) in environmental samples.

However, though differences exist as regards the “off label” use in the majority of EU
community countries, the prevalence of colistin resistance displayed by E. coli tends to be
low. This could be due to plans based on the “One Health” approach, applied in the EU to
control the alarming diffusion of antimicrobial resistance in the animal food chain [62]. On
the contrary, a study by Ahmed et al. [63] conducted in Egypt revealed highly prevalent
colistin resistance in wild bird E. coli isolates, harbouring the mcr gene complex, which is
known as one of the most responsible for colistin resistance [64]. In this respect, it should
be taken into account that Egypt has no regulations to control the use of antimicrobials in
animals as growth promoters or to prevent infectious diseases [65].

The phenotypic profile of multidrug resistance to three or four classes of antibiotics
was the most common, and beta-lactams were found to be present in all resistance patterns.
Eight out of the hundred E. coli were ESBL-producing strains, and seven were multidrug-
resistant, with the prevalent involvement of raptors, two jackdaws and one swift. These
birds are potentially able to contaminate different areas shared with humans, livestock, pets
and crops, regardless of their migratory or sedentary habits. The ESBL-producing E. coli
are known to be responsible for serious infectious diseases in humans and animals [66].

E. coli plasmids expressing the ESBL genes are also estimated to produce resistance to
other antimicrobial classes, such as aminoglycosides, diaminopyrimidines (trimethoprim)
and fluoroquinolones, reducing therapeutic choices in humans [66].

Salmonella spp. was not isolated in this study, unlike other studies [67–70], even though
raptors, known to frequently carry this microorganism due to their feeding habits [71,72],
were the most investigated species in our study. However, Russo et al. [49] recently reported
a low prevalence of Salmonella spp. (1.22%) in Southern Italy. Their study supports the
hypothesis that the prevalence of Salmonella spp. in wild birds depends not only on the
bird species but also on the geographical area. Thus, it can be influenced by eating habits
and by the level of environmental contamination [49].

5. Conclusions

Our results highlight the high presence of commensal E. coli strains resistant to ampi-
cillin and amoxicillin associated with clavulanic acid in wild birds, regardless of the species,
probably due to environmental contamination. Beta-lactam presence in all multidrug-
resistant E. coli, including third-generation cephalosporins in some strains, mainly due to
sources of environmental contamination of human origin, could be a source of growing
concern for public health. The biodiversity of the birds investigated and the difficulties
in performing homogeneous sampling do not provide definitive results. However, these
outcomes highlight the need to increase monitoring studies in order to better define the role
of wild animals in the antibiotic resistance circuit, to determine the potential hazard they
have for humans as a source of resistance genes, and to extend samplings to other areas of
Italy where anthropization and the presence of livestock settlements could be different.
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