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Abstract—Machine learning is becoming ubiquitous. From fi-
nance to medicine, machine learning models are boosting decision-
making processes and even outperforming humans in some tasks.
This huge progress in terms of prediction quality does not however
find a counterpart in the security of such models and corresponding
predictions, where perturbations of fractions of the training set
(poisoning) can seriously undermine the model accuracy. Research
on poisoning attacks and defenses received increasing attention
in the last decade, leading to several promising solutions aiming
to increase the robustness of machine learning. Among them,
ensemble-based defenses, where different models are trained on
portions of the training set and their predictions are then ag-
gregated, provide strong theoretical guarantees at the price of a
linear overhead. Surprisingly, ensemble-based defenses, which do
not pose any restrictions on the base model, have not been applied
to increase the robustness of random forest. The work in this
paper aims to fill in this gap by designing and implementing a
novel hash-based ensemble approach that protects random forest
against untargeted, random poisoning attacks. An extensive ex-
perimental evaluation measures the performance of our approach
against a variety of attacks, as well as its sustainability in terms
of resource consumption and performance, and compares it with
a traditional monolithic model based on random forest. A final
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discussion presents our main findings and compares our approach
with existing poisoning defenses targeting random forests.

Index Terms—Ensemble, machine learning, poisoning, random
forest, sustainability.

I. INTRODUCTION

W ITH the introduction of deep neural networks in the
last decade, machine learning (ML) is now leaving

academia and powering an increasing number of applications,
from finance [1] to smart grid [2], weather forecast [3], signal
processing [4], and medicine [5], [6]. Machine learning models
are reportedly performing better than humans in some specific
tasks [7], with an increasing adoption even in safety-critical
application scenarios.

In this context, it is of paramount importance to properly eval-
uate and protect the security of ML models. As such, one of the
most relevant threat vectors are data, being ML models trained
on (very) large datasets. In particular, poisoning attacks include
attacks carried out at training time by maliciously altering the
training set, with the aim of decreasing the overall classification
accuracy, or misclassifying some specific inputs when the model
is deployed. Poisoning attacks have been reported in several
application scenarios, from malware detection [8] to biomet-
rics [9], healthcare [10], and source code completion [11] and
against several types of machine learning models, from support
vector machines [12] to decision trees [10], random forests [8],
and neural networks [13], to name but a few. Solutions coun-
teracting poisoning are vary, and range from improving the
poisoned dataset by removing or repairing (suspicious) data
points [14], [15], [16], [17], [18], [19] to strengthening the ML
model itself, to make it more resistant to poisoning [20], [21],
[22]. Among the model strengthening solutions, ensemble is
mostly studied in deep learning and image recognition [20],
[21], [22], [23]. It consists of training several ML models on
different (possibly partially overlapped) partitions of the training
set, and then aggregating their predictions in a single one. This
solution stands out for its ability to provide a theoretical bound
on the correctness of the prediction according to the extent
of poisoning. Although simple in design and implementation,
it often builds on a large number (hundreds or thousands)
of base models (e.g., [21]), leaving open questions on their
sustainability.
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Surprisingly, although random forests are one of the most
adopted models on tabular datasets [24] and have been deeply
studied from several perspectives, such as explainability [25],
fairness [26], and sustainability [27], their robustness has been
barely analyzed. Existing works focused on robustness against
traditional poisoning attacks [13], [28], [29], [30], [31], [32]
and defenses that aim to repair poisoned datasets [33], [34] in
limited settings. No model strengthening solutions, including
ensemble-based defenses, have been proposed.

Our paper aims to fill in these research gaps in a novel scenario
that targets a sustainable and scalable robustness approach for
random forest, assuming poisoning attacks that can be imple-
mented by attackers with little to none knowledge and resources
(Section IV). In particular, we propose a novel hash-based
ensemble approach and empirically evaluate its robustness and
sustainability against untargeted, random data poisoning attacks
to the accuracy of random forest. Our hash-based ensemble
is based on hash functions to route data points in the original
training set in different partitions used to train different models
in the ensemble. Our implementation extends the well-studied
ensemble in [21], [23] as follows: i) each model in the ensemble
is trained on a disjoint partition of the training set to which data
points are assigned according to hashing, and ii) the final predic-
tion is retrieved according to majority voting. Contrary to state of
the art, our paper evaluates ensembles of small to moderate size
(i.e., up to 21 random forests), targeting sustainability of defense.
Throughout fine-grained experiments, we show that even the
simplest label flipping attack carried out with no knowledge
or strategy can significantly undermine plain random forests’
performance, while consistently with results in literature [13],
random forests are almost insensitive to other perturbations. In
addition, we show that the usage of even the smallest ensemble
does protect from label flipping, while providing a sustainable
approach in terms of required resources (CPU and RAM) and
performance (execution time).

Our contribution is twofold. We first design and develop a
sustainable hash-based ensemble approach extending [21], [23]
to increase the robustness of random forest against untargeted,
random poisoning attacks; according to our knowledge, this is
the first defense based on model strengthening that is applied
on random forest. We then evaluate the robustness in terms of
accuracy variation according to several untargeted poisoning
perturbations, and corresponding sustainability comparing the
performance and resource demands of our approach and a plain
random forest.

The remainder of this paper is organized as follows. Section II
discusses the background and state of the art in the context of
poisoning attacks and defenses. Section III presents an overview
of our approach based on an ensemble of random forests, whose
robustness and sustainability is evaluated according to the threat
model in Section IV. Section V describes the evaluation process
and target datasets, while Section VI details the results of such a
process. Section VII discusses the sustainability of our approach.
Section VIII discusses our main findings, while Section IX
presents a comparison with approaches in literature. Section X
draws our concluding remarks.

II. BACKGROUND AND RELATED WORK

The research community has worked hard to strengthen the
security of machine learning (ML) models [35], [36], [37],
[38] against different categories of attacks that can be classified
according to the stage where they occur. On one side, adversarial
attacks occur at inference time and consist of specially-crafted
data points that are routed to the ML model to cause a faulty
or wrong inference. Their goal is the misclassification of such
data points. On the other side, poisoning attacks, the focus of this
paper, occur at training time and inject poisoned data points in the
dataset. They aim to reduce the accuracy of the model or cause
the misclassification of specific data points at inference time.

Poisoning attacks alter the dataset with malicious data points.
They are created by perturbing existing data points in terms of
i) samples or values of the features [39]; ii) labels, having the
advantage of not creating anomalous, or at least suspicious, data
points [12], [40], [41]. Perturbations can be crafted according to a
specific goal such as i) misclassification of positive data points,
for instance in spam detection (targeted poisoning), requiring
sophisticated perturbations such as feature collision [42]; or ii)
accuracy reduction (untargeted poisoning).

The latter often corresponds to random perturbations [12] and
is the focus of this paper.

Defenses against poisoning attacks can be performed in two
main ways: dataset strengthening or model strengthening; for
other approaches, we refer the reader to [38]. Dataset strength-
ening aims to increase the quality of the dataset by removing or
sanitizing poisoned data points, detected with some heuristics.
The latter are based on outlier identification [14], [18], [19], [41],
[43] and the evaluation of the impact of data points on the ML
model [15], [44], [45], to name but a few. Sanitization include
randomized smoothing and differential privacy. In randomized
smoothing, each data point is smoothed (i.e., its label is replaced)
according to its neighbor data points. Smoothing has been ini-
tially proposed to counteract inference-time attacks [46], and
then adapted to poisoning [17]. Similarly, in differential privacy,
noise is added during training such that predictions done by a
model trained on the original dataset are indistinguishable from
those of a model trained on the corresponding poisoned dataset,
up to a certain ε [16], [47].

Model strengthening aims to increase the robustness of the
ML model by altering the model itself, such that the effect of
poisoning is reduced. Among them, we focus on simple yet
effective ensemble approaches, where the monolithic ML model
is replaced by a (large) ensemble of the same model [20],
[21], [22], [23]. This technique, evaluated mostly on neural
network-based models, splits the training set in different par-
titions according to some strategies, and each partition is used
as the training set of a model of the ensemble. Intuitively, this
reduces the influence of poisoned data points, since each model
is trained on a smaller fraction of poisoned data points.

Some of the above techniques, including ensemble [20],
[21], [22], [23], randomized smoothing [17], and differential
privacy [16], can provide a certifiable guarantee such that the
model prediction is correct up to a certain amount of poisoning
on the dataset.
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Fig. 1. Overview of our hash-based ensemble approach.

Poisoning defenses often add a not-negligible resources
overhead over training and inference, two procedures that by
themselves are significantly resource-intensive. For instance,
dataset strengthening techniques require training of additional
(un)supervised models [14] or nearest neighbor search [18],
while model strengthening techniques require very large en-
sembles of base models [20], [21], [22], [23], often without
a performance analysis.

Poisoning attacks and defenses on random forest, the target
of this paper, have been only partially investigated. In terms of
attacks, existing work focuses on poisoning attacks that alters ei-
ther labels [13], [28], [32], [33], [34], [48] or features [29], [30],
[31]. The most relevant finding is that random forests are more
resilient to poisoning than other types of ML models [28], [32].
In terms of defenses, there exist only two papers studying dataset
strengthening solutions [33], [34], while no papers presented
solutions based on model strengthening, including ensembles.
The approach in this paper departs from traditional solutions
where the attacker and the defender can perform sophisticated
and resource-intensive attacks and defenses (e.g., [18], [21]);
it rather aims to provide a robust, while sustainable, model
strengthening defense for random forest against untargeted
training-time poisoning of labels and features. To the best of our
knowledge, this is the first model strengthening defense applied
on random forest; a more detailed comparison with the state of
the art can be found in Section IX.

III. OUR APPROACH

Fig. 1 shows an overview of our hash-based ensemble ap-
proach that aims to increase the robustness of random forest
against poisoning attacks. It first splits the tabular dataset in
two parts forming the training set (Training Set in Fig. 1) and
the test set (Test Set in Fig. 1). The training set is then poisoned
according to our threat model in Section IV (Poisoning in Fig. 1).
Based on the work in [21], [23], the training set is split in N
disjoint partitions using a hash function (Hash-Based Ensemble
in Fig. 1), with N being the number of random forest in the
ensemble, according to the following steps: i) the hash value of
each data point of the training set is retrieved according to a given

hash function; ii) the modulo operator (modulo N ) is applied on
the corresponding hash value (hash % N in Fig. 1); iii) each
data point is routed to a partition of the training set according to
the modulo operator on the corresponding hash value (e.g., data
points whose hash value modulo N is 0 are assigned to partition
1); and iv) the i-th training set of each random forest RFi is
created by evenly taking data points from each partition, such
that the training sets are disjoint, have the same cardinality, and
balance the contribution from the different partitions in term of
data points.

Each random RFi is then independently trained on the corre-
sponding i-th training set.

At testing and inference time, data points in the test set are
fed to each model RF1, RF2, ..., RFn and the final prediction
is retrieved according to majority voting.

Beyond being applied on random forest, our ensemble ap-
proach and its evaluation departs from existing works in the
literature (Section II) according to the following characteristics.
� Additional round-robin training set creation: most hash-

based ensemble in literature (e.g., [21], [23]) considers
one hash function plus a modulo operator only, except few
special cases [22]. We instead propose an additional phase,
where data point assignment follows hash and modulo
operations to increase diversity and ensure equally-sized
training sets.

� Small number of base models: existing ensemble-based
defenses in neural networks require a large number of
partitions and base models (e.g., [21]). We instead consider
smaller numbers (up to 21) to increase sustainability, while
maintaining a good degree of protection.

� Tabular datasets for binary classification: most of attacks
and defenses are mostly evaluated in image-based sce-
narios where image datasets are given as input to the
models [21]. We instead consider tabular datasets for binary
classification, which are still a significant portion of ML.

� Untargeted poisoning: most of defenses are evaluated
against targeted poisoning (e.g., [18]), where few specially-
crafted data points are injected in the training set. We in-
stead consider a threat model where an attacker with limited
knowledge and resources randomly alters the dataset to
reduce the accuracy of the resulting model (see Section IV).

We note that our approach has been designed and developed
to be sustainable, requiring a low amount of resources, since: i)
it is based on a limited number of base models in the ensemble;
ii) it does not involve any additional resource-intensive com-
putations, such as the training of additional models other than
the random forests in the ensemble; iii) it uses a hash-based data
point assignment, with hash functions being notoriously fast and
lightweight; and iv) it trains N random forests independently on
disjoint partitions, that is, the cardinality of the dataset is not
increased, while training can be parallelized to reduce training
time.

IV. THREAT MODEL

Our threat model considers a novel scenario where attackers
need to cope with limited knowledge and resources. The attacker
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departs from targeted attacks and executes untargeted poisoning
to reduce the accuracy of the ML model. To this aim, she
randomly alters the dataset up to a predefined budget in terms of
the amount of manipulated features and labels. Specifically, the
attacker implements different perturbations acting on features
(zeroing, noising, out-of-ranging) and labels (label flipping),
each implementing a specific poisoning attack that is tested
independently. Each perturbation takes as input a training set,
(denoted asD), the percentage of data points and features to alter
(denoted as εp and εf, respectively), according to the specific
perturbation, and returns as output the poisoned training set,
(denoted as ˜D). The poisoned training set is then partitioned
in disjoint training sets, each used to train a model of the
ensemble, according to the evaluation process in Section V-A.
We note that each perturbation randomly selects the data points
and the corresponding features to poison according to εp and
εf. In particular, the selected features are the same for every
perturbation, to ensure proper comparison.

Let us consider as an example a binary classification task
(classes 0 and 1), and a 5-feature data point p with value
〈0, 10, 15, 0, 1〉0, where the subscript indicates the label class
and the second feature (10) is the target of poisoning.

Perturbation zeroing produces a poisoned training set ˜D,
where the selected data points are perturbed by changing the
values of the selected features to 0. For instance, the poisoned
data point of p has value 〈0,0, 15, 0, 1〉0.

Perturbation noising produces a poisoned training set ˜D,
where the selected data points are perturbed by replacing the
values of the selected features with a value within the distribution
of the same feature in the opposite class. For instance, let us
consider the second feature of data point p. It takes value in
[0, 10] for class 0, and [20, 40] for class 1. For instance, the
poisoned data point of p has value 〈0,37, 15, 0, 1〉0.

Perturbation out-of-ranging produces a poisoned training set
˜D, where the selected data points are perturbed by changing the
value of the selected features with values outside their valid
range. For instance, the poisoned data point of p has value
〈0,−1, 15, 0, 1〉0.

Perturbation label flipping produces a poisoned training set
˜D, where the selected data points are perturbed by flipping
their labels. For instance, the poisoned data point of p has value
〈0, 10, 15, 0, 1〉1.

We note that the effectiveness of these perturbations strongly
depends on the data points actually perturbed. For instance, let
us consider perturbation zeroing. Assuming that the first feature
of data point p (with value 0) is selected for poisoning, the
corresponding poisoned data point is not altered. We also note
that the threat model in this paper follows the general trend
of cybersecurity attacks, where the danger mostly comes from
unsophisticated yet impactful attacks [49].

V. EVALUATION PROCESS

We present the evaluation process and the target datasets at
the basis of the experimental results on accuracy degradation in
Section VI.

A. Evaluation Process in a Nutshell

The evaluation process in Fig. 2 validates the robustness of
our ensemble approach in Section III against poisoning attacks
in Section IV. For each attack, we calculate the accuracy loss be-
tween the plain (monolithic) model and our ensemble approach
trained on both original and poisoned dataset. Fig. 2 shows 4
different paths: i) poisoned hash-based ensemble, considering
base models in the ensemble trained on partitions of the poisoned
dataset, ii) non-poisoned hash-based ensemble, considering base
models in the ensemble trained on partitions of the original
dataset, iii) monolithic model RF trained on the entire poisoned
dataset, iii) the monolithic model RF trained on the entire
original dataset.

Our process takes as input: i) the original dataset; ii) the
number of random forests N composing the ensemble; iii) the
perturbation type; iv) the percentage of data points εp; and v)
features εf to poison.

The evaluation process consists of two activities, namely,
training, and testing and evaluation. Activity training is com-
posed of 4 steps as follows.

Step 1. Preparation: It splits the dataset into training set
(denoted as D) and test set, that is, held out. Test set is left
untouched for the rest of process.

Step 2. Poisoning: It applies the selected perturbation to the
training set D producing a poisoned training set ˜D, according
to the percentages of poisoning received as input.

Step 3. Creation of training sets: It builds the training sets for
the monolithic and ensemble models. It first creates N empty
sets (partitions). Second, given a (original or poisoned) training
set, each data point is converted to a string by concatenating
the value of each feature. For instance, data point p with value
〈0, 10, 15, 0, 1〉0 becomes 0101501. Third, the hash of such
string is retrieved according to a specific hash algorithm. For
instance, the hash value of 0101501 according to MD5 is
adf5c364bc3a61133eb2360f7dd0b8f2 (in hexadeci-
mal). Fourth, the modulo operator (modulo N ) is applied to
the hash value converted back to a number. The result of this
operation indicates to which partition the data point belongs,
that is, the result n of modulo corresponds to the n+ 1 partition.
Then, this step produces N training sets (subsets of the original
training set) by selecting the data points assigned to each parti-
tion in a round-robin fashion, such that each training set contains
roughly the same amount of data points from each partition.
This additional assignment distinguishes our ensemble approach
from existing hash-based ensemble approaches (e.g., [21], [22],
[23]) and guarantees that each training set has approximately the
same size and diversity. The ith training set is then used to train
random forest RFi in the ensemble. We note that the training set
of the monolithic model is the entire input training set. We also
note that this step is repeated both on the original and poisoned
datasets.

Step 4. Training: It trains both the ensemble and monolithic
models separately on the original and poisoned training sets
created at Step 3. We note that random forests in the ensemble
are trained independently one to another.
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Fig. 2. Evaluation process based on the ensemble approach in Fig. 1.

TABLE I
DATASETS DETAILS

Activity testing and evaluation is composed of 2 steps as
follows.

Step 5. Testing: It evaluates the accuracy of both the ensemble
and monolithic models on the test set isolated at at Step 1.

Step 6. Evaluation: It compares poisoned and original models
using evaluation metric delta, denoted as Δ, as follows.

Δ = ACC( ˜D)− ACC(D), (1)

where ACC(D) is the accuracy retrieved on the original training
set and ACC( ˜D) is the accuracy retrieved on the poisoned
training set.

We note that Δ measures the accuracy variation in a model
trained on a poisoned training set with regards to the same
model trained on the original training set. A negative value of Δ
indicates that the model trained on a poisoned dataset decreases
in accuracy, a positive value indicates that the model trained on
a poisoned dataset increases in accuracy, a value equals to 0
indicates the same accuracy.

B. Target Datasets

We experimentally evaluated the approach in this paper using
the datasets in Table I, which significantly differ in cardinality
(N◦ of data points (N◦ per class)), number of features (N◦ of
features), and sparsity (Sparsity (%)). Table I also describes the
details of the datasets after a class balancing preprocessing in
terms of cardinality (N◦ of data points (Preproc.)), number of
data points randomly selected in the training set and number
of data points per class (Training set size (N◦ per class)), and
the number of data points randomly selected in the test set
and the number of data points per class (Test set size (N◦ per
class)).1 We note that sparsity is retrieved from the dataset after
preprocessing, and columns describing the cardinality of each
class report the cardinality of the positive class first.

Musk2 (M2) is an open dataset for the identification of musk
molecules [50], divided in two classes musk and non-musk.

1Datasets are publicly available at https://github.com/SESARLab/ensemble-
random-forest-robustness-against-poisoning

https://github.com/SESARLab/ensemble-random-forest-robustness-against-poisoning
https://github.com/SESARLab/ensemble-random-forest-robustness-against-poisoning
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The dataset is collected by including different conformations
(shapes) of musk and non-musk molecules. In particular, all the
low-energy conformations of 141 initial molecules have been
generated and manually annotated.

The dataset consists of 6,598 data points (1,017 musk and
5,581 non musk), organized in 166 features. We built a balanced
dataset of 2,034 points by randomly subsampling data points in
class non musk. After preprocessing, the dataset exhibits a low
sparsity ≈0.28%. We finally split the dataset in a training set of
1,628 data points (810 musks and 818 non musks) and in a test
set of 406 data points (207 musks and 199 non musks).

Android malware (AM) is a proprietary dataset for the detec-
tion of malware on Android devices. The dataset is collected
on Android devices with benign and malign apps installed, by
capturing the system calls performed by the apps. Any sequence
of three consecutive system calls is a feature, whose value is the
number of times such sequence has been called.

The dataset consists of 18,733 data points (7,254 malware
and 11,479 non malware), organized in 25,802 features. We
then built a balanced dataset of 14,508 points, by randomly
subsampling data points in class non malware. We further split
the dataset in a training set of 11,607 data points (5,831 malware
and 5,776 non malware) and in a test set of 2,901 data points
(1,423 malware and 1,478 non malware). Finally, being a dataset
with high dimensionality and more features than data points, to
avoid overfitting, we reduced the number of features according to
InfoGain [51], a feature ranking method selecting those features
that reduce the entropy in the dataset (i.e., the most informative
features with regards to the dataset). With this method, we
reduced the number of features to 1,000. After preprocessing,
the dataset exhibits a high sparsity (≈92.37%).

Spambase (SB) is an open and well-know dataset for spam
detection in email body messages [52], [53], [54]. It contains
features counting the occurrence of particular words and the
length of sequences of consecutive capital letters.

The dataset consists of 4,061 data points (2,788 spam and
1,813 non spam), organized in 57 features. We built a balanced
dataset of 3,626 points, by randomly subsampling data points in
class spam. After preprocessing, the dataset exhibits a medium-
high sparsity but lower than AM (≈77.44%). We finally split
the dataset in a training set of 2,901 data points (1,458 spam and
1,433 non spam) and in a test set of 725 instances (355 spam
and 370 non spam).

Diabetic Retinopaty Debrecen (DR) is an open dataset for the
detection of symptoms of diabetic retinopathy [55]. It contains
features extracted from the Messidor image set [56]. All features
are numeric and represent either a detected lesion, a descriptive
feature of a anatomical part, or an image-level descriptor. The
label indicates if an image contains signs of diabetic retinopathy
or not.

The dataset consists of 1,151 data points (611 signs of disease
and 540 no signs of disease), organized in 19 features. We built
a balanced dataset of 1,080 points, by randomly subsampling
data points in class signs of disease. After preprocessing, the
dataset exhibits a low sparsity but higher than M2 (≈10.41%).
We finally split the dataset in a training set of 864 data points
(431 signs of disease and 433 no signs of disease) and in a test

set of 216 data points (109 signs of disease and 107 no signs of
disease).

VI. EXPERIMENTAL RESULTS

We present the accuracy degradation retrieved by our ensem-
ble approach against label flipping (Section VI-B), and zeroing,
noising, and out-of-ranging (Section VI-C) for datasets M2, AM,
SB, and DR in Section V-B. Label flipping is in fact the most
effective perturbation substantially affecting the behavior of
monolithic model, while zeroing, noising, out-of-ranging do not
produce substantial accuracy degradation on it. For readability,
we omit the percentage symbol (%) when presenting values of
Δ, accuracy, as well as percentage of data points εp and features
εf to be poisoned.

A. Experimental Settings

Our experiments have been built on the ML library Weka [57]
version 3.8 running on Java version 8. We executed our process
in Section V-A on a VM equipped with 16 vCPUs Intel Core
Processor (Broadwell, no TSX) 2.00 GHz and 48 GBs of RAM.
The entire process has been executed 5 times averaging accuracy
and Δ.

The settings of our experiments varied i) the number of
random forestsN in the ensemble in{3,5, 7, 9, 11, 13, 15, 17, 19,
21}; ii) the perturbations in zeroing, noising, out-of-ranging and
label flipping (Section IV); iii) the percentage of poisoned data
points εp in [10, 35], step 5; and iv) the percentage of poisoned
features εf on each data point in [10, 35], step 5. We note that εf

is not applicable to perturbation label flipping.
Each combination of these parameters represented an instance

of the evaluation process in Section V-A. In addition, we put
ourselves in a worst-case scenario using the outdated hash
function MD5 to assign data points to partitions, to determine
whether our ensemble approach can still provide some protec-
tion against poisoning attacks. Finally, we configured random
forests according to the well-known practices in the state of the
art.2

B. Label Flipping

Tables II(a)–(d) show the results retrieved by executing per-
turbation label flipping against datasets M2 (Table II(a)), AM
(Table II(b)), SB (Table II(c)), and DR (Table II(d)), varying
the percentage of poisoned data points εp and the number N
of random forests in the ensemble. The column with N = 1
indicates the monolithic model, while the row with εp = 0
(rows with gray background in Tables II(a)–(d)) indicates the
accuracy ACC(D) retrieved from the model trained on the
original dataset, that is, the dataset with no poisoned data points.
Each cell is divided in two parts. The top-most part reports theΔ
in (1), retrieved according to the accuracy of the model trained on
the poisoned training set and the one on the original training set.
The bottom-most part reports the accuracy ACC( ˜D) retrieved
by the model trained on the poisoned training set.

2https://weka.sourceforge.io/doc.dev/weka/classifiers/trees/RandomForest.
html

https://weka.sourceforge.io/doc.dev/weka/classifiers/trees/RandomForest.html
https://weka.sourceforge.io/doc.dev/weka/classifiers/trees/RandomForest.html
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TABLE II
RESULTS OF LABEL FLIPPING VARYING NUMBER OF RANDOM FORESTS N AND PERCENTAGE OF POISONED DATA POINTS εP
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Fig. 3. Results for label flipping with monolithic (N = 1) and the smallest
(N = 3) and largest (N = 21) ensemble models for datasets M2, AM, SB, and
DR.

Our results first show that the accuracy retrieved using the 4
datasets varies significantly. In particular, the monolithic model
shows ACC(D) of 91.872 for M2, 98.828 for AM, 94.897 for
SB, and 69.908 for DR. These variations in accuracy depends
on the diversity of the selected dataset and can be observed in
all configurations, reaching the peak with εp = 35.

Our results additionally show two clear trends. First, as the
percentage of poisoned data points increases, the corresponding
Δ decreases, that is, the more label flips, the higher the accuracy
decrease. This trend can be observed downward column by
column. For instance, considering the smallest ensembleN = 3.
Δ decreases from−1.560with εp = 10 to−15.435with εp = 35
for M2, from −0.402 to −14.536 for AM, from −0.322 to
−9.609 for SP, and from −0.309 to −10.185 for DR. Second,
as the number of random forests in the ensemble increases,
the corresponding Δ increases, that is, the larger the ensemble,
the lesser the accuracy decrease. This trend can be observed
rightward row by row. For instance, considering the worst
perturbation (εp = 35), we can see that Δ improves of ≈70%
for M2 (increasing from −22.414 with N = 1 to −6.814 with
N = 21), ≈96% for AM (increasing from −22.578 to −0.942),
100% for SB (increasing from −17.380 to 0.046), and ≈53%
on DR (increasing from −17.593 to −9.260). It is important
to note that these two trend are less pronounced in dataset
DR, due to the limited amount of data points in the training
set and to the low classification performance of the random
forest.

Fig. 3 shows Δ for the monolithic model (N = 1) and the
smallest (N = 3) and largest (N = 21) ensembles varying the
datasets and the percentage of poisoned data points εp. As
expected, the monolithic model always experience the largest
accuracy decrease. The decrease ranges from −3.448 (with εp

= 10) to −22.414 (with εp = 35) with minimum accuracy
of 69.458 for M2; from −2.344 to −22.578 with minimum
accuracy 76.520 for AM; from −3.173 to −17.380 with min-
imum accuracy 77.517 for SB; from −1.852 to −17.593 with
minimum accuracy 52.315 for DR. Instead, our ensemble ap-
proach shows higher robustness and keeps the accuracy drop

Fig. 4. Results for other attacks averaged over εp with perturbations zeroing,
noising, and out-of-ranging abbreviated as zero, noise, and OoR, respectively.

under control. This can be noticed even with the smallest ensem-
ble N = 3, where Δ = −9.225 with N = 1 and Δ = −4.740
with N = 3 on average on the 4 datasets. More in detail, when
considering dataset M2, Δ increases from −3.448 to −1.560
with εp = 10, and from −22.414 to −15.435 with εp = 35
(−6.158 on average with N = 3). When considering dataset
AM,Δ increases from−2.344 to−0.402with εp = 10 and from
−22.578 to −14.535 with εp = 35 (−4.868 on average with N
= 3). When considering dataset SB, Δ increases from −3.173
to −0.322 with εp = 10 and from −17.380 to −9.609 with εp =
35 (−3.563 on average with N = 3). When considering dataset
DR, Δ increases from −1.852 to −0.309 with εp = 10 and from
−17.593 to −10.185 with εp = 35 (−5.401 on average with N
= 3). We can therefore observe that, when the number of random
forests N increases, Δ increases too, as Fig. 3 shows.

Finally, when the number of random forests N is greater than
9, Δ improves significantly on all the datasets. This is clear with
datasets AM and SB, where Δ are higher than −1 in almost
all configurations. A similar trend can be observed in dataset
M2 for N=9, though the impact of poisoning (εp) on the model
accuracy is higher: Δ = −3.202 in the worst case with εp≤20,
Δ = −11.330 with εp>20.

Overall, our results show that plain random forests are
sensitive to label flipping, but its effect can be easily
counteracted using our ensemble approach. In particular,
ACC( ˜D)≤ACC(D)±1.438 on average with our ensemble ap-
proach, ACC( ˜D)≤ACC(D)±9.225 with the monolithic model.

C. Other Attacks

Fig. 4 shows the accuracy degradation for perturbations ze-
roing, noising, and out-of-ranging in Section IV varying the
datasets. Δ does not show any major trends and is not presented
in Fig. 4, being −0.503 on average (with σ ≈ 0.925).

Our results show two clear trends opposed to the trends
retrieved with label flipping. First, zeroing, noising, and out-
of-ranging marginally affect the monolithic model, with Δ=
−0.401 on average (Δ= −0.158 for zeroing, Δ= −0.507 for
noising, andΔ= −0.539 for out-of-ranging). As a consequence,
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Fig. 5. Execution time for model training varying N and datasets M2, AM,
SB, and DR.

there are no major improvements in Δ when using our ensem-
ble approach, with Δ= −0.514 on average (Δ= −0.219 for
zeroing, Δ= −0.562 for noising, and Δ= −0.761 for out-of-
ranging).

Second, as depicted in Fig. 4, the accuracy decreases as the
number of random forests N increases, but with a relatively
small average difference of 2.755 between N = 3 and N =
21. This decrease is higher for M2 in all perturbations with a
decrease of 3.818 (from 90.941 with N = 3 to 87.123 with N =
21, on average), followed by DR with a decrease of 2.898 (from
68.038 withN = 3 to 65.140 withN = 21, on average), SB with
a decrease of 2.802 (from 92.631 with N = 3 to 89.829 with
N = 21, on average), and finally AM with a decrease of 1.501
(from 98.469 with N = 3 to 96.968 with N = 21, on average).

Overall, our results show that monolithic models are sig-
nificantly less sensitive to perturbations zeroing, noising, and
out-of-ranging than label flipping, with Δ always larger than
−0.492. In particular, ACC( ˜D)≤ACC(D)±0.503 on average.

VII. SUSTAINABILITY OF OUR APPROACH

We evaluated the sustainability of our ensemble approach
measuring the execution time (Section VII-B) and resource
consumption (Section VII-C).

A. Settings

We recall that our experiments have been executed on a VM
equipped with 16 vCPUs Intel Core Processor (Broadwell, no
TSX) 2.00 GHz and 48 GBs of RAM. Our experiments varied the
number of models in the ensemble in N∈ {1, 3, 5, 7, 9, 11, 13,
15, 17, 19, 21}, the percentage of used data points (i.e., dataset
cardinality) in |D|∈ {10, 25, 50, 75, 100}, and the percentage
of features in |f |∈ {10, 25, 50, 75, 100}.

We note that, as shown in Fig. 5, the execution time for model
training (step 4 in Section V-A) is negligible (less than 0.2 s)
when datasets M2, SB, and DR are used, while it is over 2 s in
the worst case when dataset AM is used. The execution time of
training sets creation (step 3 in Section V-A) is constant for each

dataset and does not depend on the number of models N (e.g.,
2.46 s, with σ = ±10ms, in the worst case for dataset AM). For
these reasons, we evaluated the sustainability of our approach
using dataset AM in Table I (worst case scenario). Execution
time was evaluated considering only step 4 in Section V-A, while
resource consumption considered steps 3 and 4 in Section V-A.

The experiments have been repeated 5 times and the reported
results correspond to the average over repetitions.

B. Execution Time

We measured the impact of the training process (step 4 in
Section V-A) on the execution time of our approach by varying
the number of models N in the ensemble, the dataset cardinality
(|D|), and the feature cardinality (|f |).

Execution Time Varying N : Fig. 5 shows the training execu-
tion time according to the number of models N of the ensemble.
The execution time is affected by two main dimensions: i) the
size of the datasets, ii) the parallelization approach used to create
the training sets and train the ensemble. We recall that N=1
refers to the monolithic model, while 3≤N≤21 to our ensemble
approach.

Fig. 5 shows that our approach is sustainable regardless the
value of N , and its execution time is 2.29 s in the worst case for
N = 3 and dataset AM. Such dataset shows a decreasing trend,
where the training time is inversely proportional to the number
of modelsN . As such, the monolithic model requires the highest
training time (3.18 s). These results are due to: i) the capability
of our implementation to train the base models in the ensemble
in parallel, thus exploiting all cores (16) of the VMs used for the
experiments; ii) the cardinality of each single training set, which
decreases (|D|/N ) as the number of models N in the ensemble
increases. The decreasing trend is more evident for N<9 in
Fig. 5, reaching a time-stability with N = 9. With N≥17, the
trend slightly grows because all 16 cores are used, and the thread
scheduling affects the performance.

Fig. 5 also shows that the trend followed by datasets M2,
SB, and DR is significantly different from the one followed by
dataset AM. This is mostly due to the cardinality of the datasets,
which is particularly low for dataset M2 (2,034 data points),
SB (3,626) and DR (1,080). As a consequence, training cannot
fully benefit from parallelism, and training time increases as the
number of models N increases, being 0.187 s in the worst case
for N = 21 on dataset SB.

Execution Time Varying |D|: Fig. 6 shows the training exe-
cution time varying the cardinality of dataset Android malware.
Specifically, we randomly subsampled the dataset to achieve a
percentage of data points in {10, 25, 50, 75, 100} with respect
to the original dataset, and measured the execution time with
N∈ {1, 3, 11, 21}. Our results show a sustainable trend that
linearly increases for all N with a worst case of 3.246 s obtained
with the monolithic model. We note that, up to 25% of the
dataset, the training time is almost similar for all N . For higher
percentages, the execution time for N = 1 and N = 3 starts
raising more steeply. Comparing N = 1 and N = 3, we can
already appreciate a good gain when our ensemble approach is
used, becoming more evident with larger values of N .
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Fig. 6. Execution time varying dataset cardinality.

Fig. 7. Execution time varying number of features.

Execution Time Varying |f |: Fig. 7 shows the training ex-
ecution time varying the number of features in dataset AM.
Specifically, we randomly subsampled the dataset to achieve a
percentage of features in {10, 25, 50, 75, 100}with respect to the
original dataset, and measured the execution time with N∈ {1,
3, 11, 21}. Our results show a sustainable trend that increases for
all N following the equation of a parabola with a worst case of
2.937 s obtained, also in this case, with the monolithic model. As
expected, the execution time grows proportionally to the number
of features regardless N , while the slope of the corresponding
curves are gradually lower as N increases.

C. Resource Consumption

We measured the resource consumption in terms of CPU
and RAM usage during activity training (i.e., steps 3–4 in
Section V-A), by wrapping the execution of each individual
experimental setting in Section VII-A with Linux tool time.3

We measured the CPU user time and the maximum amount of

3https://www.man7.org/linux/man-pages/man1/time.1.html

allocated memory; we executed each individual setting 5 times
averaging its results. We note that the resource consumption for
activity testing and evaluation (i.e., steps 5–6 in Section V-A),
including the execution of our approach on a single data point
in the test set and the calculation of Δ, is negligible.

CPU Usage: Fig. 8(a), (c), and (e) show the CPU user time.
We note that CPU user time is the sum of the time each CPU core
spent within the process in the user space. Having implemented
a parallel approach, CPU user time is higher than real execution
time in Section VII-B. CPU user time is affected mostly by the
dimensions (data points and features) of the dataset, growing
at worst linearly as the percentage of data points and features
increases, varying between ≈9 s and ≈71 s. Fig. 8(e) shows that
our ensemble approach increases the CPU user time with respect
to the monolithic model, from ≈25 s to ≈45 s in the worst case
with N = 3. CPU user time remains however stable when N
increases, showing that the size of the ensemble and therefore
its protection does not substantially affect its sustainability.

Memory Usage: Fig. 8(b), (d), and (f) show the maximum
amount of allocated memory for the process. They exhibit
similar patterns to the ones of CPU user time, being affected
mostly by the dimensions of the dataset and growing at worst
linearly with them. It varies between ≈204 MB and ≈4.2 GB.
The same is true also for memory consumption varying N , with
a significant increase from monolithic model to our ensemble
approach, from ≈1 GB to ≈3.75 GB in the worst case. Memory
consumption remains however stable when N increases.

In summary, consumed resources are well below the available
resources. Despite our ensemble approach introduces an addi-
tional overhead with respect to the monolithic model, it can be
easily optimized thanks to its vertical and horizontal scalability.

VIII. DISCUSSION

Our main research question focused on investigating the be-
havior of random forests against poisoning attacks in a scenario
where resources are limited on both sides. We evaluated the
monolithic model (i.e., ensemble of decision trees) and our
ensemble approach (i.e., ensemble of random forests) varying
the type (i.e., perturbations) and impact (i.e., εp and εf) of
poisoning. Our main findings are as follows.

F1 Monolithic model is highly sensitive to label flipping only:
Finding F1 can be observed in Fig. 3, where the mono-
lithic models (N = 1) are significantly worse than our
ensemble approach. We also note thatΔ of the monolithic
models is −9.225 on average under flipping, while it is
−0.503 on average under zeroing, noising and out-of-
ranging, with a difference of 94.56%. In addition, the
accuracy decrease caused by label flipping is proportional
with the percentage εp of poisoned data points. This can
be noted by comparing ACC( ˜D) and Δ on the datasets
in Table II(a)–(d), where ACC( ˜D) and Δ progressively
worsen as εp increases.

F2 The effectiveness of perturbations depends also on the
characteristics of the dataset and of the ensemble: Finding
F2 can be observed for label flipping by comparing down-
ward the right-hand side of Table II(a)–(d). Being M2 and

https://www.man7.org/linux/man-pages/man1/time.1.html
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Fig. 8. CPU user time and maximum memory on dataset AM, with 14,508 data points and 1,1000 features, varying the number of models (N ), percentage of
data points (|D|), and percentage of features (|f |).

DR smaller than AM and SB in terms of cardinality and
sparsity, Δ worsens more rapidly as the percentage of
poisoned data points increases. In addition, Δ also has
a smaller improvement on M2 and DR as N increases,
because the cardinality of the individual partitions and

training sets is increasingly reduced. Finding F2 can be
observed for other perturbations by comparing the trends
in Fig. 4. In this case, accuracy worsens at a higher rate
in M2 and SB (smaller than AM) as N increases, with
out-of-ranging being the most effective perturbation. This
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worsening trend can be observed also in DR despite its
ACC(D) being significantly lower.

F3 Ensemble of random forests is an adequate protection
from untargeted label flipping: Finding F3 can be ob-
served by comparing the increase of Δ of our ensem-
ble approach with regards to the monolithic model in
Table II(a)–(d). For instance, considering dataset AM,
accuracy becomes >96 with at least N = 9 random
forests in our approach for εp ≤30 of poisoned data points,
and keeps increasing slightly with N . Instead, for εp >30
of poisoned data points, our approach starts suffering of
not-negligible accuracy decreases, being <96 in virtually
all cases. We note that, for N > 15, this decrease can be
still considered negligible, being accuracy ≥95. In gen-
eral, the improvement provided by our ensemble approach
is significant, as summarized in Fig. 3, where the highest
lines corresponding to the monolithic model are always
significantly worse than those of our ensemble approach.

F4 Ensemble of decision trees is an adequate protection
from untargeted perturbations zeroing, noising, out-of-
ranging: Finding F4 is a direct consequence of F1 and
can be observed by comparing the accuracy of monolithic
and ensemble models in Fig. 4. Perturbations zeroing,
noising, and out-of-ranging introduce a minor accuracy
decrease, which largely fails to make the monolithic
model unusable in practice. Accuracy variation of the
poisoned monolithic model with regards to the original
accuracy is in fact always less than 4.784. This implies
that our ensemble approach is redundant in this scenario,
and explains the accuracy decrease we observed as N
increases. In practice, our approach only reduces the
cardinality of the training set of each base model from
|D| to |D|/N , hence affecting classification accuracy.
This tradeoff is advantageous in label flipping, when
the accuracy decrease caused by the smaller training set
is balanced by containing the accuracy decrease caused
by poisoning. It is detrimental for other perturbations
where the accuracy decrease caused by poisoning is
negligible.

F5 Our ensemble approach is sustainable. Finding F5 can
be observed by analyzing the growth of resources con-
sumption when N increases. Consumed resources (CPU
and RAM) stay mostly stable and are affected by the
dimensions (number of data points and features) of the
dataset. In addition, our ensemble largely benefits from
parallelism. This is noticeable by comparing CPU user
time in Fig. 8(a), (c), and (e) with real execution time
in Figs. 5, 6, and 7: high CPU user time still corre-
sponds to low execution time. This means that size and
therefore robustness of our ensemble approach can be
tuned according to the scenario, incurring in a constant
overhead.

From the above findings, we can conclude that random forest
(a native ensemble algorithm) provides an empirically-strong
robustness against zeroing, noising, out-of-ranging attacks.
When label flipping is considered, an ensemble of random
forests is needed to ensure robustness. The size of the ensemble

TABLE III
COMPARISON WITH RELATED WORK ON DATA POISONING ATTACKS AND

DEFENSES AGAINST RANDOM FOREST

must however be carefully balanced to avoid accuracy decrease
due to an oversized ensemble approach. In short, even untar-
geted poisoning attacks requiring little to none knowledge and
resources on the attacker side can be dangerous and untractable
with dataset strengthening defenses [58]; these attacks can be
rather counteracted with a sustainable model strengthening de-
fense.

Finally, we note that the results in this paper, although novel,
are in line with other work on ML robustness, for instance [13],
[20], claiming that i) if the amount of poisoning is reasonable,
an ensemble strategy can reduce the influence of poisoned data
points to the resulting model, and ii) random forests are, in some
cases, more robust than other models (e.g., naive bayes, neural
networks) [13], [28], [32].

IX. COMPARISON WITH THE STATE OF THE ART

Random forest, being one of the most popular algorithms
for tabular datasets, has been studied from different angles
including: i) explainability [25], [59], [60], [61], [62], [63]; ii)
fairness [26], [64], [65], [66]; iii) sustainability [27], [67], [68],
[69], [70]; and iv) robustness [13], [28], [29], [30], [31], [32],
[33], [34], [48].

In terms of robustness, different solutions have been defined
on random forest, though none of them can be easily experi-
mentally compared against the ensemble approach in this paper.
Table III shows how these solutions compares with our approach
in terms of Poisoning type, the portion of the data points (features
or label) affected by poisoning; Defense type, the type of defense,
either dataset or model strengthening; threat model, the model
of the attacker capabilities. The latter is composed of three main
dimensions: i) the threat model type (untargeted ¬T or targeted
T), denoted as Type; ii) the strategy used to select the data points
to be poisoned (random¬S or with a specific strategy S), denoted
as Select.; and iii) the strategy used to poison the selected data
points (random¬S or with a specific strategy S), denoted as Pert.

Most of the surveyed approaches have considered poison-
ing attacks (no defenses) against standard random forests in
a single domain [13], [28], [29], [30], [31], [48], with few
papers evaluating different datasets from different domains [32].
In addition, most evaluations consider attacks affecting labels
only [13], [28], [32], [33], [34], [48]. Few defenses have been
proposed and evaluated, whose threat model implements label
flipping attack against data points selected according to a specific
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strategy. Taheri et al. [33] presented two dataset strengthening
defenses in the domain of Android malware detection, based on
healing suspicious data points according to label propagation
and clustering. Shahid et al. [34] proposed a dataset strengthen-
ing defense in the domain of human activity recognition from
sensors data. The latter is based on the approach by Paudice et
al. [41], where a clustering model trained on a trusted dataset is
used to heal suspicious data points. We also note that there exist
some approaches where random forest is part of the defense such
as in [33], [71].

The ensemble defense in this paper (last row in Table III)
departed from assumptions and configurations in the state of
the art, making a comparative experimental evaluation mean-
ingless. First, our threat model considers untargeted attacks,
where data points are selected according to a random strategy
and poisoning affects both labels and features. Second, our
approach strengthens the ML model rather than the training set.
Third, our approach focused on significantly different domains
and datasets, rather than on a single domain with one [34] or
more [33] datasets.

X. CONCLUSIONS

Machine learning models play an increasingly vital role in
the digital services we interact with. As a consequence, the
need for properly securing such models from attacks is a key
issue being investigated by the research community. This paper
aimed to shed new light on the usage of ensembles as a means
of protecting random forests against poisoning attacks. While
ensembles have been already proposed in the context of certified
protection in the domain of image recognition, little has been
done in the context of random forests. Throughout fine-grained
experiments, we show that label flipping, even if performed
with no strategy, is a very dangerous type of perturbation,
significantly degrading the performance of plain random forests.
A simple yet effective and sustainable countermeasure consists
in training models on disjoint training sets, then aggregating
their predictions with majority voting. Other perturbations are
less effective, and random forest is already an effective coun-
termeasure. The paper leaves space for future work. First, we
plan to enrich our set of perturbations with targeted attacks,
including backdoor poisoning. Second, we plan to fine-tune
the hyperparameters of random forest to find relevant trends
with respect to the considered threat model and datasets. Third,
we plan to develop a complete benchmark considering the new
perturbations and different hash function.
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