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In this paper, we extend and improve the formal, executable framework for automated multi-issue negotiation between two
autonomous competitive software agents proposed by Cadoli. This model is based on the view of negotiation spaces (or “areas”),
representing the admissible values of the goods involved in the process as convex regions. However, in order to speed up the
negotiation process and guarantee convergence, there was the restriction of potential agreements to vertices included in the
intersection of the two areas. We present and assess experimentally an extension to Cadoli’s approach where, for both participating
agents, interaction is no longer vertex based, or at least not necessarily so. This eliminates the asymmetry among parties and
the limitation to polyhedral negotiation areas. The extension can be usefully integrated to Cadoli’s framework, thus obtaining an
enhanced algorithm that can be effective in many practical cases. We present and discuss a number of experiments, aimed at
assessing how parameters influence the performance of the algorithm and how they relate to each other. We discuss the usefulness
of the approach in relevant application fields, such as, for instance, supply chain management in the fashion industry, which is a
field of growing importance in economy and e-commerce.

1. Introduction

Negotiation is a decision-making process in which multiple
parties jointly make decisions to cope with conflicting inter-
ests. In particular, automated negotiation can be considered
as a kind of interaction (i.e., a dialogue) inwhich some agents,
with a desire to cooperate but with conflicting interests, work
together with the aim of reaching a common goal [1, 2].
Nowadays negotiation, and particularly automated negoti-
ation, deals with complex service features or products and
is becoming increasingly important as a consequence of
the rapid development of web-based transactions and e-
commerce.There is no doubt that negotiation is an important
process in many industrial processes and supply chains, and,
as widely recognized in the literature (see the following),
solutions based on autonomous intelligent software agents are
gaining credit.

Negotiation can also be defined as “a distributed search in
a space of potential agreements” [3]. Each participant involves

her/his individual area of interest (called the negotiation space
or area), and intends to reach agreements (or “contracts”)
in there. Negotiation spaces can be represented by a set of
constraints, and finding an agreement can be modeled as a
constraint satisfaction problem (CSP).

The particular mechanism of negotiation considered in
this work is proposal-based negotiation. In this case, the
process involves a number of agents which usually have a lim-
ited common knowledge about the other agents’ constraints,
that is, about the others’ negotiation spaces (or “areas”). In
proposal-based negotiation, information exchanged between
the parties is in form of offers or proposals, that is, in the
form of potential agreements that each agent proposes to the
others (rather than in form of constraints, preferences, or
argumentation). Proposals can be accepted or rejected and
are possibly followed by counteroffers. Proposals are assumed
to be internal points of the proponent agent’s negotiation
space; that is, each agent is “honest” and thus proposes only
potential agreements that it is actually able/willing to accept.
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Each agent is supposed to be able to compute the points of its
own individual area and to use them as proposals which are
communicated to the other parties. Preferences/priorities or
other constraints in choosing these points are not considered
(at least explicitly, though presumably they will have a role in
selecting an offer), and the only possible actions are making,
refusing, or accepting a proposal.

The research reported in this paper presents the extension
(preliminary introduced in [4]) to a previous work by Cadoli
in [5] and discusses a set of experiments. The approach by
Cadoli, called Reasoning by Means of Projections (for short
RMP), concerns proposal-based negotiation, from the point
of viewofminimizing the number of the interactions between
the automated agents involved in the negotiation process.The
point is to reduce the computational complexity and thus
speed up the search of an agreement. In fact, this approach
tries to accelerate the localization of agreements, where
potential agreements are all commonpoints of the agents’ fea-
sibility regions (i.e., points of the intersection area). Nego-
tiation spaces are considered as convex: thus, all points
between two potential agreements are acceptable as well. The
admissible offers are in principle all the internal points of
the negotiation areas, and those will be the only information
exchanged between the agents. However, in order to speed
up the negotiation process and guarantee convergence, there
was the assumption/limitation that, for one (and only one)
of the two agents, only vertices of its individual negotiation
area are proposed as offers to the opponent. Therefore, only
those vertices included in the intersection of the two areas
constitute actual potential agreements. The key aspect of
Cadoli’s proposal is that agents are supposed to be able to
reason in terms of geometric projections of their (convex)
negotiation areas, as illustrated in the following. This kind
of reasoning can help them to compute subsequent offers: in
fact, as discussed later, agents are thus able to exclude certain
points of the individual negotiation areas, so that the overall
process is in the average case very efficient in terms of the
number of steps required for the negotiation to converge, that
is, for the parties to find an agreement.

The method developed in [5] is in contrast to existing
approaches to negotiation that rely on a “mediator” agent, that
is, on a third party authority who accepts and sorts out offers
and proposes bids. The first one is probably the well-known
“Contract Net Protocol” [6]. However, adopting such a solu-
tion forces the participating agents to disclose their policies
and preferences. When privacy is important, such solutions
cannot easily be adopted. There are also approaches that
adopt a nonbiased mediator in the negotiation (see, e.g., [7]).
Once they accept the mediator intervention, the negotiation
agents do not have any right to make or accept offers based
on their own negotiation strategies. This of course limits the
application of these solutions.

In this paper, we present and assess experimentally an
extension to Cadoli’s approach (that we call ERMP for
“Extended RMP”) where interaction is no longer vertex-
based, or at least not necessarily so. That is, we allow both
agents to potentially make offers that are an internal point of
its negotiation space and then try to approach the opponent’s
counterproposal “step by step.” The extension presented here

overcomes some problems of the original one, such as the
asymmetry among the parties (only one agent is allowed to
use RMP otherwise problematic situations occur), the “flat”
nature of RMP, where no agents’ preferences and utilities are
considered (this aspect is also considered in [8]), and the
limitation to polyhedral negotiation areas. Our extension can
be usefully integrated intoCadoli’s framework, thus obtaining
a new algorithm that may be effective in many practical cases
by introducing local search, for instance, around, the “best-
preferred” vertices.

ERMP has a potential practical applicability in many
areas related to e-commerce or supply chain management
(SCM), where there is a growing interest in autonomous
interacting software agents and their potential application
to support actual negotiation and contract making. For
instance, negotiationwithin strict time-to-market constraints
is a crucial component of the supply chain in the fashion
industry, a field which has a growing importance in economy
in general and in e-commerce in particular. Agent-based
or agent-supported negotiation can help overworked human
managers, where intelligent agents can be equipped with
their own strategies and objectives. Decision makers being
represented by agents can help to make better decisions in
a shorter time, as argued, for example, in [9] and, specifically
for fashion business, in [10].

This paper is structured as follows. Section 2 gives an
overview of the theoretical background and discusses the
motivations of this work. In Section 3 we present the pro-
posed extension and the algorithm that we have adopted for
the implementation. We also provide necessary conditions
for convergence and propose an integration with the original
approach. Section 4 briefly reports about the implementation
and shows a snapshot of the code. The next section is thus
dedicated to the experiments that we have performed and
to explain the results of the testing phase. Our experimental
assessment, which has involved a large number of instances,
seeks to determine which parameters influence the perfor-
mance of the algorithm, and in which way, and how the
different parameters are related to each other. We have also
tried to assess whether the algorithm is reliable, in the sense
that it does not show unwanted or unexpected behavior. In
Section 4.1 we compare our strategy to the original one from
the point of view of performance/scalability. A discussion,
with comparison to the current literature and some insights
of potential applications (especially in the fashion business
field), concludes this paper.

2. Reasoning by Means of Projections (RMP)

In this section we first present the approach by Cadoli [5]
(called RMP, for short) and then discuss why some extensions
are needed and useful. In RMP, negotiation is modeled as a
distributed constraint satisfaction problemwhose features are
illustrated in the following. In his work, Cadoli made several
assumptions about the form of negotiation; let us discuss
them now.

(i) Negotiation involves two or more parties that ex-
change proposals until either an agreement is found,
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that is, the last proposal is acceptable by all the parties
involved, or there is an evidence of the fact that no
agreement is possible. Without loss of generality it is
going to be assumed that negotiation involves only
two parties, that later on will be called “agents.”

(ii) Negotiation involves variables (also called negotiation
issues). A proposal (or “offer”) consists in commu-
nicating to the other party a possible assignment of
values to the involved variables (each one is called a
“variable assignment”).

(iii) Negotiation is restricted without loss of generality
to involve only two variables. The approach however
could be easily generalized.

(iv) The negotiation space (also called negotiation region
or feasibility region) associated with each party coin-
cides with the set of variable assignments that are
considered to be acceptable, that is, where the value
assigned to each variable is within the range that
the party considers to be acceptable. Variables are
considered to denote real numbers.

(v) As only two variables are involved, negotiation spaces
are restricted to be regions in the Cartesian plane.

(vi) A possible proposal is, in principle, any point of the
negotiation space.

(vii) Negotiation spaces are restricted to be convex regions;
that is, all points (pairs of real numbers) included
within the boundaries of each individual region
belong to the region itself and thus are equally accept-
able as potential agreements. Therefore, each negoti-
ation space can be described by a set of constraints
which describe the region perimeter by describing the
acceptable range of values for each variable.

(viii) Negotiation spaces are considered to be polyhedral.
Thus, negotiation spaces admit a finite number of
vertices.

(ix) Possible proposals are asymmetrical for the two
agents. One of them is supposed to have the objective
of minimizing the number of iterations, and in this
perspective it offers only the vertices of negotiation
spaces. The other one can instead offer any point of
the negotiation space. The reasons of this asymmetry
will be discussed in the following.

Of course, there are other assumptions that determine the
negotiation scenario. For instance, it is assumed (again with-
out loss of generality) that the two parties have agreed in
advance on the issues which are involved. Also, parties asso-
ciate a meaning to the variables, that in their view may repre-
sent prices, time, number of items, and so forth.

A negotiation starts when one of the two agents makes a
proposal.The other one will respond with a counterproposal,
and the process will go on in subsequent steps (where each
agent responds to the other one’s last proposal). The other
party is also called the “opponent.” As mentioned, the negoti-
ation process will end either because an agreement has been
found or if there is an evidence that no agreement is possible.

Since negotiation spaces are considered as convex regions, a
necessary condition for an agreement to be reached is that the
intersection of the feasibility regions is not empty.

As offers are restricted for one of the two agents to be ver-
tices of a polyhedral region, in the RMP approach the process
will necessarily end whenever this agent has nomore vertices
to offer. This means that each negotiation process always
converges to an end in a finite number of steps. However, the
number of vertices can be, in the worst case, exponential in
the number of variables.Thus, the process has an exponential
worst-case complexity in the number of negotiation steps.
Therefore, the approach defines a negotiation protocol aimed
at obtaining on average large savings in terms of number
of proposed vertices. The underlying assumptions about the
participating agents are the following.

(i) Agents are perfect rational reasoners.
(ii) Agents communicate only by exchanging proposals.

There is no other form of shared knowledge. When a
proposal has been issued, it becomes common knowl-
edge for all involved parties.

(iii) Agents are partially cooperative, in the sense that they
are aware of the negotiation protocol that they apply
faithfully, that is:

(a) they do not make offers that they are not really
willing to accept;

(b) they do not cheat; that is, they do not make pro-
posals that are not implied by the protocol at
that step.

(iv) Agents are able to reason by means of projections.

Let us now discuss the nature of reasoning by means of
projections that RMP exploits. Regardless of its standard
mathematical definition, projection can be defined intuitively
as the image of a geometric figure on a line, plane, or surface.
The projections of line segments over each other are then
reasoned about. The projection of a vector 𝑏 in the direction
of a vector 𝑎 is given by proj𝑎𝑏 = (𝑎 ⋅ 𝑏/|𝑎|2)𝑎.

So, the projection of 𝑏 in direction 𝑎 is a scalar multiple of
it. The length of the projected vector is called the component
of 𝑏 in direction 𝑎: comp𝑎𝑏 = 𝑎𝑏/|𝑎|. This is designed so that
the projection of 𝑏 in direction 𝑎 forms a right triangle with
vector 𝑏, with the right angle at the end of the projected vector.
This concept is recalled by means of an example, in Figure 1.

In the example, there are considered the four points 𝐴1,𝐴2, 𝐵1, and 𝐵2. The figure highlights two projections:

(1) the projection of the segment 𝐴1𝐴2 over 𝐵1𝐵2
(denoted with Π(𝐵1𝐵2, 𝐴1𝐴2) and delimited by
𝑟2𝐵1𝐵2𝑟1),

(2) the projection of 𝐵1𝐵2 over 𝐴1𝐴2 (denoted with
Π(𝐴1𝐴2, 𝐵1𝐵2) and delimited by 𝑠1𝐴1𝐴2𝑠2).

Suppose, for instance, referring to Figure 1, that points𝐴1 and𝐴2 are offers made by agent 𝐴, while 𝐵1 and 𝐵2 are offers
made by agent 𝐵. Assume that 𝐴 is the party who, in order to
minimize the number of iterations, is bound to offer vertices
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Figure 1: Line segments’ projections.

of its negotiation area, while instead 𝐵 is allowed to offer any
point.

To exemplify it, assume the following exchange: agent 𝐴
offers 𝐴1, agent 𝐵 counteroffers 𝐵1, and agent 𝐴 replies with
𝐴2 and agent 𝐵 with 𝐵2. At such point, agent 𝐴 (being a
perfect, logical reasoner and being aware of convexity and
projections and being aware that the other agent has the same
potential) is able to perform the following reasoning.

From proposals 𝐴1 and 𝐴2 and from the convexity
hypothesis, agent 𝐵 knows that the whole segment 𝐴1𝐴2
belongs to𝐴’s negotiation area.Then, as𝐵 aims atminimizing
the number of steps, if 𝐵 had a point of its region on that
segment, it would have offered it. As 𝐵 instead has offered 𝐵2,
agent 𝐴 is allowed to conclude that the intersection between
𝐵’s region and segment 𝐴1𝐴2 is empty.

Also, 𝐴 can consider that if 𝐵 had any vertex on either
the line 𝑠1 that goes beyond segment 𝐵2𝐴1 in the direction
of 𝐴1 or on the line 𝑠2 that goes beyond segment 𝐵1𝐴2 in
the direction of 𝐴2 then, again by convexity, the segment
𝐴1𝐴2 would necessarily belong to 𝐵’s region: in fact, any
polyhedral region including as vertices 𝐵1 and 𝐵2 and these
two hypothetical points would also include segment 𝐴1𝐴2,
which is a contradiction. Therefore, 𝐴 is able to exclude the
whole projection area delimited by segment 𝐴1𝐴2 and by
the two above-mentioned lines. In fact, no point in there
can be possibly acceptable for 𝐵, and thus 𝐴 will choose no
such point as an offer. This area can be obtained, as observed
before, by making the projection of segment 𝐵1𝐵2 over𝐴1𝐴2.

Excluding portions of the interaction area leads to exclud-
ing many potential offers and thus reducing the number of
steps. In fact, agent 𝐵 can perform a similar reasoning if
𝐴 responds to offer 𝐵2 with a counteroffer that does not
constitute an agreement. The reasoning can then be repeated
by both agents after subsequent offers.

Notice that this example shows that the asymmetry in
the nature of the offers from the two parties is an essential
part of the approach. In fact, agent 𝐵 is able to offer a point
on segment 𝐴1𝐴2 because it is able to offer any point of the

negotiation area. If instead 𝐵 could offer only vertices, then it
would be able to offer a point on segment𝐴1𝐴2 only if it had
a vertex there.

If both parties are aimed at minimizing the number of
steps and thus use the same protocol and offer only vertices,
possible agreements might be excluded. The agreements
might fail to be reached also for other reasons. This is one
of the reasons leading to the extension of this approach. In
summary, the interactions among negotiating agents involve
the following factors.

(i) Variables: it is assumed that, before starting a nego-
tiation, the agents agree on the number and on the
nature of the variables considered during the process.
Variables represent issues that the agents wish to take
into account and are numeric (or Boolean as special
cases of integers). In the considered examples all
variables denote real numbers.

(ii) Constraints: the negotiation areas of each agent can
be represented as a set of constraints. A proposal can
be accepted only if it is included on the individual
negotiation area (thatmeans that the set of constraints
is satisfied). Note that the individual negotiation area
(i.e., the set of all the admissible offers) is private
knowledge of each agent. Also the projection areas
computed by the agents are represented by sets of
constraints. The constraints are private knowledge of
each agent.

(iii) Information exchanged: it is assumed that the negotia-
tion adopts a proposal-based mechanism. This means
that the only information exchanged among agents
consists of offers and counteroffers. At least one agent
is bound to select as offers only the area vertices.Thus,
this approach is applicable only in case of polyhedral
negotiation areas. All other information items, such
as constraints or preferences, will be considered as
private. The agent’s response to each offer can be
either acceptance, that concludes the process, or
rejection, that induces a counteroffer (if existing).

(iv) Protocols and agents’ cooperation level: the protocols
can be considered as the rules that each party involved
in the process of negotiation has to respect. In this
context, the agents are bound to communicate only
the offers included in their individual areas and that
they are really willing to accept. Moreover, agents are
logically omniscient, which implies that each of them
is able to draw conclusions from what other agents
are assumed to know. In this sense, the agents are
considered to be partially cooperative.

(v) Strategy: this approach adopts the strategy of con-
cluding the process in the minimum possible number
of interactions. This means that the approach tries
to find an offer included in the common part of the
negotiation areas by performing the least possible
number of steps.

(vi) Objective function: each agent is self-interested, which
means that it ignores the other agents’ preferences.
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Figure 2: An example of negotiation.

Notice that, in this setting, finding an agreement corresponds
to solving a distributed constraint satisfaction problem (DCSP)
where initially only the negotiation areas are considered and
subsequently extended by the projection areas.

Let us now consider a more complex (and complete)
example. Consider agents Seller and Buyer, who are involved
in the negotiation process that is represented by the respective
negotiation areas in Figure 2. Moreover, assume that agent
Buyer must offer vertices while the other agent simply prefers
to offer vertices and thus resorts to internal points only when
an agreement would not be otherwise possible.

In this example, the negotiation area (indicated as 𝑅𝐴) of
agent Seller can be described by the set of constraints

𝐶𝐴 = {𝑋 ≥ 4,𝑋 ≤ 20, 𝑌 ≥ 13, 𝑌 ≤ 40,

𝑋 ≥ −3𝑌 + 49,𝑋 ≤ 𝑌 + 4,

𝑋 ≥ 32𝑌 − 50,𝑋 ≤ −
3
4𝑌 + 47} .

(1)

The negotiation area (denoted as 𝑅𝐵) of the agent Buyer has
been described by the set

𝐶𝐵 = {𝑋 ≥ 15,𝑋 ≤ 40, 𝑌 ≥ 10, 𝑌 ≤ 25} . (2)

Now, let

𝑉𝐴 = {𝐴1 = (10, 13) , 𝐴2 = (17, 40) ,
𝐴3 = (4, 15) , 𝐴4 = (17, 13) ,
𝐴5 = (20, 16) , 𝐴6 = (20, 36) ,
𝐴7 = (4, 36) , 𝐴8 = (10, 40)}

(3)

be the sets of possible proposals (set of vertices of the negotia-
tion space, obtained by resolving the Seller’s set of constraints)
of agent Seller, and let 𝑉𝐵 = {𝐵1 = (15, 10), 𝐵2 = (40, 25),𝐵3 = (40, 10), 𝐵4 = (15, 25)} be the possible proposals of
agent Buyer. The intersection area 𝐼 = 𝑅𝐴 ∩ 𝑅𝐵 is clearly not
empty, and therefore there is a potential agreement between
the two agents.

Assume that the negotiation process startswith a proposal
from the agent Buyer and that the sequence of proposals is

as follows: 𝐵1, 𝐴1, 𝐵2, 𝐴2. Each interaction has the side
effect of updating the knowledge base of the agents by
storing all proposals (either made and received) and possible
new constraints. The subsequent steps of the negotiation are
determined as follows.

(i) Agent Seller refuses the offer 𝐵1 and continues the
negotiation dialogue by proposing its vertex 𝐴1.

(ii) Since agent Buyer has received as counteroffer point
𝐴1, not included in its negotiation area, it rejects the
proposal and offers its vertex 𝐵2.

(iii) Also this new proposal is not accepted from the agent
Seller which responds with its vertex 𝐴2.

(iv) After two interactions, the agents have exchanged
four proposals, namely, 𝐵1, 𝐴1, 𝐵2, and 𝐴2, and
none of them has been accepted. At this point, agent
Buyer computes a projection area by connecting the
couples of points (𝐵1, 𝐴2), (𝐵2, 𝐴1), and (𝐵1, 𝐵2) and
by adding to its knowledge base the new linear
constraints that represent the new lines 𝑠1 and 𝑠2.
Agent Buyer thus concludes that the negotiation area
of agent Seller has no common point with the infinite
area (called the projection area) delimited by lines 𝑠1
and 𝑠2 and by the segment 𝐵1𝐵2. The proof of this
conclusion is as follows.

(1) The two proposals 𝐵1 and 𝐵2 imply (from the
convexity hypothesis) that agent Seller knows
that 𝑅𝐵 ⊇ 𝐵1𝐵2.

(2) Since agent Seller has proposed its vertex 𝐴2,
agent Buyer knows that 𝑅𝐴 ∩ 𝐵1𝐵2 = 0.

(3) Agent Buyer is now able to conclude that its
projection area has no commonpointwith agent
Seller’s negotiation area. This is because if there
were such a point, then the entire triangle𝐵1𝑃𝐵2
would have to be included—from the convexity
hypothesis—in the 𝑅𝐴 area. As this triangle has
at least one point in common with segment
𝐵1𝐵2, a contradiction arises.

Agent Buyer will exploit the updated knowledge so as
to select the next offer to make, excluding its vertex
𝐵3 that cannot be accepted by the counterpart. Thus
it proceeds to offer vertex 𝐵4.

(v) Finally, this last offer belongs to the negotiation area
of the agent Seller, and therefore this proposal will be
accepted. In this case, the negotiation process termi-
nated successfully.

Notice that the generalization of the approach to 𝑛 variables
is, from amathematical point of view, straightforward.We do
not comment on this aspect here for the sake of conciseness,
because the explanation would necessarily be lengthy. We
may notice, after [5], that the number of vertices of negotia-
tion areas grows exponentially with the number of variables,
so the advantage of the method is even greater. For instance,
in fact, an area defined by the set of 2𝑛 constraints 0 ≤ 𝑥𝑖;
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Figure 3: A first problematic interaction.

𝑥𝑖 ≤ 1 (1 ≤ 𝑖 ≤ 𝑛) on the 𝑛 variables 𝑥1, . . . , 𝑥𝑖 describes a
hypercube with 2𝑛 vertices. Reasoning by projection allows to
obtain large savings in terms of number of proposed vertices,
thus making multi-issue negotiation more effective.

There are however other ways to cope with a larger
number of variables while staying within the two-issue case
discussed before. One of the two issues might be the most
relevant variable (e.g., price or time of delivery), and the other
issue might represent a combination of the other variables,
possibly according to some utility function (the reader may
refer, e.g., to [11] for an interesting discussion of utility
functions). Another solution is sequential negotiation, that is,
when two agents negotiate issue by issue sequentially, estab-
lishing initially the order to negotiate each issue. A completely
different way of coping with multi-issue negotiation and
utility functions is based on exchanging (as offers) constraints
instead of variable values (see, e.g., [12]). Other solutions are
widely discussed in [13].

2.1. Limits of the Approach. Some proposed extensions to the
basic RMP approach are motivated by the following observa-
tions.

(i) Limiting the possible proposals to vertices is efficient
but has some limits. One of them is that only one
agent can adopt this strategy, that in fact works only
if the other agent is instead capable of offering any
point of the feasibility region. Actually, RMP makes
the implicit assumption that the parties have agreed
in advance of the respective strategies. If both agents
instead offer only vertices, in some cases this induces
problematic trade-offs: in particular, whenever the
intersection area is not empty but includes no vertices.
For example, in Figure 3 there are two agents, Seller
and Buyer, whose individual negotiation areas are
expressed through convex regions.

In this situation, there is clearly a potential agreement
amongst the agents since the intersection area is
nonempty. However in this case, after six interactions
(namely, the sequence of proposals is 𝐵1, 𝐴1, 𝐵2,𝐴2, 𝐵3, 𝐴3) the seller agent understands that there is
no other vertex to propose: in fact, it has previously
excluded vertex 𝐴4. Thus, it concludes the process
of negotiation with a proof that there is no possible
agreement. This problem is due to the fact that the
intersection area, though not empty, does not contain
any vertex.

(ii) The flat nature of proposals (where all vertices are
equally considered) may lead, in real applications, to
other problematic situations. In particular, as agents
may have their (private) preferences and objectives,
it may frequently happen that one or more issues
have for an agent greater priority than others. That
is, the agent prefers to maximize/minimize this issue
rather than others.This accounts to assuming that the
agents try to reach an optimal point with respect to
a private objective function. This objective function
can be chosen according to the particular context.
In Figure 4, for instance, there are considered two
agents, Business and Client. Another assumption is
that Business wishes to maximize the issue 𝑌 and that
the sequence of interactions starts with a proposal
(from Client) of point 𝐵1. The interaction proceeds
with 𝐴1, 𝐵2, and 𝐴2. In this case, the approach of
reasoning by means of projections does not allow us
to obtain savings in terms of number of proposed
vertices.

(iii) Asmentioned in [5], another problemof the approach
of reasoning by means of projections is that, since
the agents have to remember all proposals made
and received, it is hard to find algorithms and data
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Figure 4: A second problematic interaction.

structures which allow agents to store the entire
sequence of proposals in polynomial space.

(iv) In [5], yet another problem is mentioned: the one of
the worst case in which the negotiation spaces are
convex (and finite) regions represented by circles. In
this case, agents are unable to select their offers since
there are no vertices to be selected.

Mancini [8] proposes an implementation and some relevant
improvements to the approach: on the one hand, heuristics
are introduced for offering the best vertices in terms of the
efficiency of the overall process; on the other hand, negoti-
ating agents are allowed to have their own (private) utility
function to maximize, though defined so as to still guarantee
convergence. In particular, in [8] agents can to some extent
lie, by rejecting acceptable offers, hoping to increase their
utility. The main limit of the RMP approach, that is, that only
one agent can adopt the vertex-based strategy, is however not
tackled.

The aim of the present work is that of coping with
some of the problematic aspects and extending the basic
approachunder an important respect. In particular, proposals
are assumed to be not only vertices but also internal points
of the convex regions. However, since an infinite number
of possible offers exists those points cannot be randomly
selected. Rather, a protocol that carefully chooses the offers
and keeps the advantages of reasoning by means of projec-
tions is proposed. Then, the introduced algorithm is more
flexible: in fact, both agents are allowed to follow the same
protocol, thus relaxing the main limitation of RMP. However,
as we will demonstrate by means of extensive experiments, it
is still reasonably efficient. We also intend to cope with the
fact that the interest of agents in a contract usually declines
gradually with distance from their ideal contract. Thus, we
will introduce a form of “local search” starting from preferred
vertices.

In the new algorithm, the next offer selection is based on
recent proposals by the same agent, which will be increased
(or decreased) by a 𝛿 margin. This margin can be chosen in
various ways and will be in general application dependent.
Criteria for such a choice are discussed, for example, (refer-
ring to an analogous setting) in [14]. Within the margin, the

next offer is selected so as to try to approach the opponent’s
last offer.

3. A New Approach: ERMP

This section is dedicated to the introduction of a formal
and executable extended approach to automated multi-issue
negotiation between two partially cooperative agents. The
proposed extension to the original Cadoli’s approach tries
to respect its spirit, that is, that of improving average-case
complexity by means of heuristics, and to keep the strong
points, in particular by exploiting the reasoning by means
of projections. Our aim is that of overcoming (at least some
of) the problems identified in the original formulation and
mentioned in the previous section. As it will be described in
detail later, the new approach, called ERMP for “Extended
RMP,” can be integrated to RMP thus obtaining a hybrid
approach that can be useful in many practical cases.

Firstly, the set of agents involved in the process is defined
as AS = {𝐴, 𝐵, dots}. Similar to the basic approach, for the
sake of simplicity and without loss of generality the extension
is illustrated by considering only two agents, called 𝐴 and
𝐵. Then, the assumption that the agents have already agreed
on the number and on the nature of the variables on which
they negotiate persists. Let us suppose for instance, that the
two parties have agreed upon using two variables denoting
real numbers. In this way, the two negotiation areas can be
represented in the Cartesian plane. The individual areas will
be denoted as 𝑅𝐴 and 𝑅𝐵. In general, as discussed previously
the two bidding agents can reach an agreement only in the
case where 𝑅𝐴 ∩ 𝑅𝐵 ̸= 𝑂.

The extension to [5] is based on a change of the nature of
the proposals, which are allowed to be internal points of the
feasibility areas rather than just vertices. The new algorithm
still takes advantage of reasoning by means of projection. As
before, at each stage of the process the bidding agents will
nevermake proposals that are included in the projection areas
identified so far, since those particular points will never be
accepted by the antagonist. Similar to the basic approach,
computing projection areas will lead to a great saving in
terms of offers as parts of the individual negotiation areas are
excluded.

In the extended algorithm the number of offers in the
worst case (no agreement possible) is infinite. Nevertheless,
the large number of experiments performed leads to the
confidence about the fact that the proposed strategy speeds
up the negotiation process whenever an agreement exists.

3.1. Identifying Proposals in the ERMP Approach. The ap-
proach proposed is based upon relaxing the limitation of
offers to be vertices. Thus, it can be applied to any kind of
convex negotiation areas, without restriction to polyhedral
ones. But, considering that each negotiation area contains a
huge (infinite) number of possible proposals, in which way
and under which criteria are those points to be selected?

Here an example is proposed in order to explain the
crucial point of the algorithm, that is, the choice-of-proposals
phase. Assume that there are two agents (𝐴 and 𝐵) involved
in the negotiation process. All possible offers of each agent
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Figure 5: The trade-off strategy in multi-variable regions.

are represented in the Cartesian space as convex feasibility
regions. The negotiation areas—𝑅𝐴 for agent 𝐴 and 𝑅𝐵 for
agent 𝐵—as well as the necessary computation aimed at
identifying the next proposal of both agents are reported in
Figure 5. All remaining factors involved in the process are
assumed to be identical to those considered in the original
approach and fixed in advance. Let us assume that the
negotiation process initiates with a proposal, for example, by
agent 𝐴.

(i) First proposal: choose a random point of the individ-
ual convex region of the agent. In Figure 5 the first two
proposals are denoted as 𝐴1 for agent 𝐴 and 𝐵1 for
agent 𝐵.

(ii) Second proposal: the agent computes the circumfer-
ence centered on the point corresponding to its own
first proposal (𝐴1 for agent 𝐴); the radius is set to
𝑅 = 𝛿, where the choice of the margin 𝛿 will depend
either on each specific application context or on the
individual negotiation space. 𝛿 is set before starting
the negotiation and is not modified at runtime. The
next proposal will be selected as a random point
of the semicircumference “closer” to the opponent’s
proposal.

To do so, agent𝐴 acts as follows. To find the points𝐶1
and 𝐶2 (Figure 5) delimiting the semicircumference

(1) it computes the vector 𝐶1𝐶2 orthogonal to the
vector 𝐴1𝐵1 (denoted by 𝐶1𝐶2 ⊥ 𝐴1𝐵1), by
setting their inner product to 0 (⟨𝐶1𝐶2, 𝐴1𝐵1⟩ =0),

(2) it models and resolves the system (set) of equa-
tions composed of one of the inner products (4)
and the equation of the circle centered in 𝐴1 =(𝐴𝑥
1

, 𝐴𝑦
1

) and radius 𝛿 (5). This means that, in
the example, the system of equations will be the
following. With 𝐶𝑖 = (𝐶𝑥𝑖, 𝐶𝑦𝑖) and 𝑖 = 1, 2,

(5) can be generalized to (𝐶𝑥𝑖 − 𝐴𝑥1)2 + (𝐶𝑦𝑖 −
𝐴𝑦1)2 = 𝛿2:

⟨𝐶1𝐶2, 𝐴1𝐵1⟩ = 0, (4)

(𝐶1 − 𝐴1)2 + (𝐶2 − 𝐴1)2 = 𝛿2. (5)

(3) Finally, by merging (4) and (5) it obtains two
points of the circumference, namely, 𝐶1 and 𝐶2.
Now, agent 𝐴 is able to split the circumference
into two parts and choose the one that mini-
mizes the distance (the “closer” one) to point
𝐵1 (i.e., the first proposal of agent 𝐵). 𝐴’s next
proposal will be, in fact, selected as a random
point of this semicircumference (e.g., point 𝐴2
in Figure 5). Clearly, this point is required to be
included in the individual feasibility region.

In this way, each agent tries to approach the counter-
part’s offer by proposing a point that is more likely to
be accepted and by adapting the individual profile to
the one that can be assumed for the opponent. To do
this, the agent has to add new constraints to its knowl-
edge base. If no such point is found, that is, in the case
where the entire semicircumference is not included in
the negotiation area, then the next proposal will be a
new random point of the feasibility region.
After that, each agent exploits the reasoning on pro-
jection in the same way as in [5]. The projection area
will be stored in the agentmemory, by adding the new
constraints that represent this area to its knowledge
base. In such a way, the agent will be able to exclude
all those points that will never be accepted by the
opponent.

(iii) Subsequent proposals: All subsequent proposals will
be selected in the following way. Each agent computes
the segment that connects the last two offers made by
the opponent. Since the negotiation areas are convex,
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the entire segment will be included in the opponent’s
region. Therefore, if the agent’s area includes a point
that belongs to this segment, then it corresponds to an
agreement and thus will be the next offer to make.
Otherwise, subsequent proposals will be selected in
the same way as the second one (where the center of
new circumference will be the agent’s last proposal)
by adding, however, one further condition: the new
proposals must not be included in the areas of the
projections made so far. The projection areas may be
described in terms of a set of linear equations. In this
way, the agent will find the new variable values to offer
by working out a new, or extended, DCSP.

An advantage of the proposed algorithm is that the agent does
not have to store all past proposals. Rather, the only infor-
mation that the agent needs in order to construct the new
projections consists of the two most recent proposals made
by each party. If an agreement has not been found yet, the
agent continues with the next proposal and so on.

3.2. How to Guarantee Convergence. Since there is a huge
(infinite, in principle) number of points included in an agent
feasibility region, convergence of the extended algorithm is
not guaranteed. To overcome this problem, two solutions are
prima facie available.

A first simple empirical solution can be to introduce an
upper bound to the number of allowed interactions. The
upper bound is strictly needed in case there is no possible
agreement: here in fact, subsequent attemptswould otherwise
go on indefinitely.

A second possible solution relies on an assumption about
the size of the margin 𝛿 with resprct to the size of the
intersection area of the agents feasibility regions, whenever
it is nonempty. In particular, it is assumed that the margin
𝛿 is smaller than half of the size of the intersection area for
each of its dimensions: that is, in the Cartesian plane, 𝛿 is
assumed to be less than a half of both the maximum width
and the maximum height of the intersection area. If so, in
order to guarantee convergence an agent can impose a grid on
its feasibility region: on the Cartesian plane, this grid would
consist of a set of parallel horizontal lines and a set of parallel
vertical lines where the distance between two parallel lines is
exactly 𝛿 (these lines can defined bymeans of constraints that
must be added to the others). The intersections among the
lines define a finite set of points, called the nodes of the grid
and which are uniformly distributed in the feasibility area.
Under the given assumption on the size of 𝛿, the intersection
area contains some nodes. The algorithm should then be
modified so as to always offer nodes.That is, when the agents,
to select the next proposal, take a random point of the
semicircumference “closer” to the opponent’s proposal, it
should then offer the node which is closest to this point. This
guarantees that an agreement (if any) is always reached, and
in any case the process terminates when there are no more
nodes to offer.

3.3. Integration with the RMP Approach. ERMP can be
usefully integrated with the original RMP approach. Assume

in fact that an agent has private preferences and objectives.
This may often result in the fact that some vertices of the
feasibility region are preferred to the others and that the part
of the region nearby these vertices is preferred to the rest, in
the sense that the agent would prefer to reach an agreement
there.

An integration between the two approaches might allow
the agent to still try to minimize the number of iterations,
while also trying to fulfill its objective of reaching a “pre-
ferred” agreement. A possible integration is, for example, the
following:

(1) the agent might initially offer the preferred vertices;
(2) if no agreement has been found, it might start ERMP

not from a random point, but from a preferred vertex;
(3) If step 2 has been repeated for all preferred vertices

with no agreement, the remaining (nonpreferred)
vertex will be offered;

(4) if there are no more vertices to offer, the agent may
optionally (as a last chance) start ERMP from a ran-
dom point.

In this case, it looks reasonable to stop EMRT after a prede-
fined number of steps. This integration captures the impor-
tant aspect (emphasized, e.g., in [15]) that agents utilities for a
contract usually decline gradually, rather than stepwise, with
distance from their ideal contract.

This integration can be considered to be a “Local Search
variant” of RMP. In fact, local search techniques are a family of
general-purpose techniques for the solution of optimization
problems [16]. Consider an optimization problem, and let
𝑆 be a possible search space for it. A function 𝑁, which
depends on the structure of the specific problem, assigns to
each feasible solution 𝑠 ∈ 𝑆 its neighborhood 𝑁(𝑠) ⊆ 𝑆.
Each solution 𝑠1 ∈ 𝑁(𝑠) is called a “neighbor” of 𝑠. A local
search technique, starting from an initial solution 𝑠0 (which
can be obtained with some other technique or generated at
random), enters in a loop that navigates part of the search
space, stepping iteratively from one solution to one of its
neighbors. The modification that transforms a solution into
one of its neighbors is called a move. The selection of the
move to be performed at each step of the search is based
on the cost function 𝑓, which assesses the quality of the
solution. In our case, 𝑆 is the feasibility region, 𝑠0 is chosen
randomly, the function𝑁 consists in the construction of the
circumference with radius 𝛿, and𝑓 selects a random point on
this circumference.

4. DALI Implementation and
Experimental Evaluation

This section describes our pilot implementation of ERMP by
mapping it into the DALI language for multiagent systems
(MAS) modeling and implementation. DALI [17–21] is an
Active Logic Programming language designed in the line of
[22] for executable specification of logical agents. DALI is
a Prolog-like logic programming language with a Prolog-
like declarative and procedural semantics [23]. The proposed
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approach is decided to be implemented in the DALI language
for the following reasons. DALI is a logic programming
language and thus guarantees fast prototyping and a read-
able code and is suitable for modeling reasoning processes.
DALI is agent-oriented and provides advanced capabilities
of autonomy, reactivity, proactivity, and social abilities. This
has allowed us to easily and directly model the main steps of
the algorithm: in fact, the interaction requires social ability;
initiating a negotiation is a proactive initiative of one of
the parties; responding to a proposal involves reactivity and
reasoning to come up with a counterproposal.

To support this claim, a snapshot of the code is presented,
namely, the part that exploits the reactive capability of DALI
agents. In order to improve elaboration tolerance of the
implementation, the private knowledge of each agent partici-
pating in a negotiation (such as the constraints and the size of
the 𝛿 parameter) is stored in the agent’s profile and is loaded at
runtime.The reactive rule used for the exchange of proposals
has this form:

Offer𝐸(𝑋, 𝑌, 𝐴) :> once(reconsider(𝑋, 𝑌, 𝐴)).
The connective :> indicates that this is a reactive rule, which
performs “forward” reasoning. In fact, atom offer𝐸(𝑋, 𝑌, 𝐴)
is an external event, as syntactically indicated with postfix 𝐸.
This particular external event represents a proposal, where
(𝑋, 𝑌) is the proposed point and 𝐴 the proposer agent.
Whenever such an event is received by the agent, the reactive
clause “fires” and the body is executed, thus taking into
consideration the proposal itself.

If the received proposal is included in the negotiation
area of the agent (i.e., in area(𝑋, 𝑌) holds), then it has to
be accepted. This is encoded by the following rule, which in
fact sends to 𝐴 a message of acceptance:

reconsider(𝑋, 𝑌, 𝐴): − in \ area(𝑋, 𝑌), !
message𝐴(clientnew, send message
(accept pr(𝑋, 𝑌, 𝐴), 𝐴)).

If instead the received proposal is not included in the
negotiation area, then it is not accepted. Abstracting away
from the details of the code, with the following rule the
agent computes a counterproposal according to the above-
illustrated algorithm, sends this counterproposal to the oppo-
nent, and updates its constraint knowledge base:

reconsider(𝑋, 𝑌, 𝐴): − out of area(𝑋, 𝑌),
(𝐴𝑧 > 𝑋, 𝐵𝑧 > 𝑌, out( , , , , 𝑋, 𝑌)),
call random semicycle(𝑋1, 𝑌1,𝑋, 𝑌),
message𝐴(clientnew, send message
(new offer(𝑋1, 𝑌1, 𝐴), 𝐴)),
update offer1(offer1( , ), 𝐴𝑐, 𝐵𝑐),
update offer2(offer2( , ), 𝑋, 𝑌),
update proposal1(proposal1( , ), 𝐴𝑧, 𝐵𝑧),
update proposta2(proposta2( , ), 𝑋1, 𝑌1),
clause (offers(𝐿), ),
append([𝑌], 𝐿, 𝐿1), append([𝑋], 𝐿1, 𝐿2), assert
(offers(𝐿2)),

retractall(offers(𝐿)),clause (proposals
(Lp), ),append ([𝑌1], Lp, 𝐿3),
append([𝑋1], 𝐿3, 𝐿4), assert(proposals(𝐿4)),
retractall(proposals(Lp)).

More precisely, call random semicycle(𝑋1, 𝑌1,𝑋, 𝑌) is
the procedure that implements the search of a random point
in the semicircumference closer to the last offer proposed
by the opponent, that is, the 𝑋, 𝑌 variables contained in the
external event offer𝐸(𝑋, 𝑌). After that, the agent performs
the action

message𝐴clientnewsend message
(new offer(𝑋1, 𝑌1, 𝐴), 𝐴))

that sends a message containing the new point (𝑋1, 𝑌1).
We have performed a number of experiments in order

to analyze and validate the behavior of ERMP. In the exper-
iments, that have involved a great number of instances, it
is tried to be established which parameters influence the
performance of the algorithm and in which way. It is also
intended to establish different parameters that are related to
each other.

Experiments have been performed on a real-world case
study involving variables with a clear intuitive meaning. The
case study is in the context of the fruit market. In this
experiment, two agents, Seller and Buyer, involved in a fruit
market are considered.Thenegotiating agents agree on taking
the price of the product (let us say, apples) and the quantity
(in pounds) as the negotiation parameters.

Assume that agent Seller is interested to sell the product
for a minimum price of 1.2$ and for a maximum price of
4$ per pound. The minimum quantity it is willing to sell
is 1 pound and the maximum is 100. Then, agent Seller
negotiation area is a triangle delimited by the lines connecting
the points (1.2, 1), (4, 1), and (1.2, 100); after each failed
interaction, it will vary the offer by a 𝛿parameter fixed to 0.03.
Agent Buyer is interested to buy the product for a minimum
price of 1$ and a maximum of 3$ per pound, while the
quantity of the product it is willing to buy goes for aminimum
of 1 pound to a maximum of 90. Then, its negotiation area is
a rectangle represented by the constraints 𝑋 ≥ 30, 90 ≥ 𝑋,
𝑌 ≥ 1, 3 ≥ 𝑌; in want of an agreement, it will vary the
proposal by a parameter 𝛿 = 0.02. The intersection of the
feasibility regions is not empty, and thus an agreement will
be finally reached.

At this experiment 500 instances of such case are intro-
duced, and the results obtained are as follows:

(i) the average number of interactions necessary to con-
clude the process is 6.5;

(ii) the minimum number of interactions observed dur-
ing the experiments is 1, with a frequency of 56% (i.e.,
56 negotiation processes out of 100 ended in just 1 step
with an agreement);

(iii) the maximum number of interactions observed is 15,
with a frequency of 3%.

We have then tried to understand which parameters of the
process can influence, and if so in which way, the number of
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interactions needed to conclude the process. The significant
parameters are at least (i) the size of the intersection area,
(ii) the distance between the first proposals of the two agents,
(iii) the size of the negotiation area, and (iv) the choice of the
circumference radius.

In all experiments, there are considered 500 instances per
each subcase

Case i: The Size of the Intersection Area. One may notice that
the number of iterations increases with the decrease of the
size of the intersection area: in fact, the average number of
iterations tends to be inversely proportional with respect to
the size of the parameter.

Case ii: Distance between First Proposals. The performance
is likely to be influenced by the distance between the first
proposals of the two agents. To verify this hypothesis it is
assumed that the agent’s 𝐴 negotiation area is represented by
the set 𝐶𝐴 = {𝑋 ≥ 3,𝑋 ≤ 33, 𝑌 ≥ 370, 𝑌 ≤ 740} (and
therefore the negotiation area of agent 𝐴 is 30 by 370), and
the 𝛿 parameter has been set to 12. Agent 𝐵 instead has an
area of 15 by 130, and the 𝛿 parameter is set to 10.

First, proposals are considered to be random points of the
negotiation areas, and they are forced to be at the maximum
possible distance. Then, the size of the intersection area is
varied in order to make a point on the algorithms behavior.

First Proposals as Random Points.The initial intersection area
is 𝐼𝑥 ∗ 𝐼𝑦 = 1 ∗ 1.
First Proposals at Maximum-Distance Points. The situation is
similar to the previous one (i.e., negotiation area, parameter
𝛿, and initial intersection area are the same) with one
variation: this time agents are forced to choose, as first offer,
the point which is more distant from the intersection area. In
this way, the first two proposals are considered to be at the
maximum possible distance.

By comparing the average, the maximum, and the min-
imum numbers of interaction where first proposals are
random points of the negotiation areas or instead where first
proposals are considered to bemore distant, itmay be noticed
that the distance between the first proposals actually affects
the algorithm performance.

In the former case, where the first proposals are random
points, the average number of iterations roughly decreases
with the increase of the size of the intersection area, as the
random factor prevents amore decided correlation.However,
the statistics table shows that most instances succeed within
a low-medium number of iterations.

In the latter case, where there is the maximum possible
distance between the first proposals, the average number of
iterations clearly decreases with the increase of the size of the
intersection area. However, most instances succeed within a
medium-high number of step, except when the intersection
area becomes really wide.

Case iii: The Size of the Negotiation Area. With this third
experimentwe assessed the role that the variation of the nego-
tiation areas can play. To this aim, we have considered two

agents represented by their (polyhedral) feasibility regions;
during this test, regions are going to vary.The 𝛿parameter has
been set to 5 (for both agents), and the intersection area has
been set to 5 by 5.That is, the feasibility regions are large while
the intersection area is comparatively small and 𝛿 is rather
small.

The average number of steps increases with the size of the
negotiation areas, which however is what onemay reasonably
expect. So, as a rule of thumb we propose to cope with large
areas by increasing the 𝛿margin so as to proceed towards the
opponent with longer steps.

Case iv: The Choice of 𝛿. Noticeably, the increase of the
number of iterations can be represented as a curve, where
the number of iterations will be high in cases where 𝛿 takes
extreme values (i.e., either very small or very high values
compared to the size of the feasibility regions). The likely
interpretation is that with very small 𝛿’s each agent has to
go a long way to approach the opposer’s proposal; thus many
stepswill be needed. If instead 𝛿 is too big, say, bigger than the
intersection area, then some steps can jump the intersection
and force to randomly walk around the intersection. For the
given feasibility regions which are rectangles, the best value
for 𝛿 appears to be a bit less than the smaller edge. In fact,
even starting from a random point there is a good chance to
meet the intersection quickly.

4.1. Comparison with the Original RMP Approach. The last
experiment mentioned previously is useful for a comparison
between the extended algorithm ERMP and the original
RMP. It should be noticed that the extended algorithm is
able to cope with the first problematic situation discussed
in Section 2, and, in general, it produces a more accurate
solution. In fact, as both agents are allowed to adopt ERMP,
they choose subsequent proposals by considering the oppo-
nent’s previous ones. Then, they proceed “one towards the
other” thus possibly reaching an agreement even when they
have no vertices to offer. Moreover, if starting from preferred
vertices the potential agreement will more probably fulfill
their private utilities.

With respect to the basic approach, the performance
of the extended algorithm is worse in case of negotiation
spaces with a limited number of vertices, but works better, in
average, in the opposite case (high number of vertices). This
feature addresses one of the main challenges in developing
effective negotiation protocols, that is, scalability; often in
fact a protocol (including RMP) can produce excessively high
failure rates, when there are many possible offers, due to
computational intractability.

5. Related Work

The interesting survey about automated negotiation by Beam
and Segev [24] mentions a famous negotiation process that
occurred in the past: in 1899, Leo Baekeland sold the rights of
his invention, Velox photographic printing paper, to Eastman
Kodak for a $1 million. Since then, negotiation procedures
and strategies have certainly evolved, and since recently
the exchange of proposals among humans is being at least
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partly replaced by automated processes involving networked
computers.

The first negotiation support systems (NSSs) [25] date
back to 1980 and were aimed at assisting the users to take
better decisions and to negotiate more productively. In the
same period, important aspects of the negotiation have been
explored. Raiffa [26] investigates decision-theoretic issues,
Fisher andUry [27] concentrate theirwork onwin-win strate-
gies, and Mastenbroek [28] considers the emotional aspects
of negotiation processes.

While NSS was aimed at supporting the users during
their negotiation processes, in the last years the first fully
automated systems were proposed: in these systems, nego-
tiation involves intelligent agents, that is, entities capable of
a certain autonomy. Sycara and Zeng [29] in 1996 outline a
metaframework for coordinating and structuring a collection
of intelligent agents. In the same year, Chavez and Maes [30]
created Kasbah, a marketplace for negotiating the purchase
and sale of goods using intelligent software agents. What
makes Kasbah fundamentally interesting is the autonomy of
the agents and the interaction and competition between them
in the marketplace.

After Kasbah, a variety of architectures are proposed,
among them are [31–35]. These architectures can be seen as
divided into argumentation-based, heuristic-based, game-the-
oretic, and proposal-based.

Game-theoretic techniques are based on strategies which
have been extensively studied in game theory. The heuristics
are mainly based on empirical testing and evaluation. In
argumentation-based approaches, the negotiating parties can
exchange any kind of feedback rather than just proposals and
counterproposals. Among themwemention [36–39]. In [39],
negotiation is defined as a single-issue process. The speed of
negotiation is tackled in [38], but in this case variables are
Boolean while in our approach they are real numbers.

We may notice that ERMP can be adopted either as a
stand-alone strategy of negotiation or as a constraint-based
technique to be used in the context of more general archi-
tectures like, for instance, the one in [37]. There is however
a basic difference between our approach and other related
research such as the one in [37]: they support both one-to-one
and one-to-many negotiation, without however considering
complexity issues. Instead, our approach is mainly aimed at
obtaining a reasonable performance in terms of number of
interactions steps.

Faratin et al. in [36] have presented a strategy, called
tradeoff. This work deals with a multi-issue negotiation pro-
cess and considers efficiency in terms of the total time used by
the algorithm to conclude the process.Themain difference of
this approach with respect to the one presented here is that in
[36] proposals are chosen according to their “similarity” with
the last counteroffer. To do so, they use an algorithm (invoked
repeatedly at each step) that selects the most similar tradeoff
(to make) by moving down at various isocurve levels. Thus,
they try to speed-up the process of negotiation byminimizing
the number of interactions.

A recent research work that proposes intelligent agents
for negotiation in the fashion business field is that of
[10]. It considers an agent-based solution to a make-to-order

fashion supply chain negotiation scenario, mostly related to
two issues: due date and pricing. They make the realistic
assumption that downstreammanufacturer and the upstream
supplier are cooperative on due-date and competitive on
price. In their view, the advantage of adopting agents is on
the one hand saving time and on the other hand avoiding
human negotiators’ subjective biases. They propose a two-
phase negotiation strategy, respectively, on competitive pric-
ing and cooperative due-date bargaining, with the aim of
reaching Pareto efficiency of the overall process. In particular,
their approach combines linear programmingmodeling with
intelligent algorithms. The intelligent part of the method
achieves Pareto efficiency by compensating the possible loss
of one party on one issue by concessions of the other one,
where a sensitivity analysis copes with the impact of probable
variation of parameters and inputs.

6. Application to Fashion and
Textile Supply Chains

This section briefly discusses our RM framework in the light
of the specific needs of the fashion and textile (FT) supply
chain management. As discussed, for example, in [11, 40,
41], and others (see especially Sycara’s survey [13] and the
references therein), negotiation has been studied in both
scientific and social sciences communities, by investigating
different aspects of negotiation with different goals: social
scientists try to understand the factors and reasoning pro-
cesses that underlie human negotiation behavior. Computer
scientists try to formulate mathematical models that capture
elements of negotiation. Mathematical models can either
be analytic (as in economics and operational research) or
computational. The aim of the analytic models is to provide
managerial guidance to optimize negotiation activity. The
computational models (like, e.g., those discussed in this
paper) aim to achieve computational tractability through
approximation algorithms and heuristics. Computational
models are nowadays most often implemented by means of
autonomous agents and MAS solutions.

As argued in [13] computational models, though relying
on approximate algorithms and heuristics, have still the
flexibility to include cognitive considerations and features of
human reasoning. Presently, and in perspective, such models
could be used for decision support of humandecisionmakers,
and in the long run, such models (implemented by agents)
can even substitute human mediators or negotiators.

The specific issues of this supply chain scenario are
both promising and potentially problematic, we believe,
for all agent-based approaches to management. First of all,
the online nature of the problem, with its almost-real-time
reaction requirements, is against analytic models which, by
being high-level, pay a price (if implemented) in terms of raw
performance. On the other hand, the changeable nature of
the supply chain and the fact that bidders may enter or leave
a call for tender at any time call exactly for computational
models where the compositionality property, that is, the
formalization is fully parametric with respect to the bids, is
guaranteed.
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One feature that is rather specific to the fashion and textile
supply chain is the fact that negotiation is in general not
needed in all circumstances and on all issues. For example,
the buyer (e.g., a fashion retailer) may especially predesign
the terms, products specification, fabric, production quantity,
and so forth and ask for the quotation from a panel of selected
sellers (i.e., the manufacturers). Usually, the one who quotes
the lowest price upfront will be the final sellers.

However, following the analysis of Bruce and Daly [42,
43], there are still possible scenarios for negotiation in the
fashion and textile supply chain, among which, for instance,
the following:

(i) the retailer requires a specific technology to produce
an innovative fashionable product, and the number of
this kind of sellers is limited in the market;

(ii) the availability of rawmaterial (e.g., cotton) and price
fluctuate significantly.

As emphasized in [10] (see also the references therein),
in a supply chain context, negotiation is a complex issue
because not only a lot of factors have to be considered, but also
incomplete information and changing circumstances should
be taken into account. Thus, in perspective intelligent nego-
tiation algorithms will have to cope with the complexity and
uncertainty in real-world negotiation and with its impact on
the negotiators’ motivations. In general, in fact, negotiating
agents have motivations. Social sciences have adopted the
distinction between selfish and prosocial motivations. Selfish
motivation is characterized by competitive and individual-
istic goals, while prosocial motivation is characterized by
cooperative and altruistic goals. In many realistic settings, a
negotiator has mixed motives rather than behaving purely
selfishly or purely prosocially. These issues can be identified
in the FT supply chain. In fact, seeking optimal decisions
in terms of production scheduling, product quality control,
and final shipping and distribution can be seen as prosocial
motivations, at least within a company or a coordinated
supply chain.

Market requirements on fast fashion and short lead time
call instead for efficient computational models such as the
ones discussed in this paper. In these models, an agents’
motivation is usually to maximize its own utility in terms of
utility function or preferences structure while staying within
almost-real-time time bounds. We believe that, at present,
efficient computational models (such as ERMP and the one
of [10]) can greatly ease the work of human managers (both
sellers and buyers) who, to respect the time-to-market aspect,
have to negotiate every day with multiple counterparts on
multiple issues. There has been in fact consistent evidence
that using intelligent agents to negotiate instead of or with
humans achieves better outcomes than negotiation between
two human beings (see, e.g., Lin et al. [9] and the references
therein).

In perspective, however, an integration with analytic
methods might better contribute to a full (or almost full)
automation of a whole supply chain framework. A promising
direction is that proposed by Sycara and Dai [13] to use
persuasive argumentation to influence the other sides’ belief

structure.The purpose is to influence the other parties’ utility
function, including goals, importance attached to different
goals, and relations between goals. Ultimately, argumentation
can either change the opponents’ utility value of one objective
or change the relative importance he assigns to that objective.

7. Conclusions and Future Work

The ERMP model proposed in this paper is based upon a
heuristic algorithm that considers not only the vertices as
possible offers but also internal points of the feasibility re-
gions. We have shown that the extended approach can be
usefully combined with the original one, thus obtaining a
local search variant that is able to cope with, for example,
preferences, while still aiming at minimizing the number of
steps.

By comparing the proposed algorithm with the Cadoli’s
original RMP [5], we showed how our work overcomes some
problems of the basic approach. Unfortunately, in our case
the number of interactions is no longer proportional to the
number of vertices. However, experiments show that the
proposed algorithm has a reasonable performance in the
average case. Moreover, in some cases—notably when many
vertices are involved in the negotiation—it can be even more
efficient than the original one. Though convergence is not
in general guaranteed, we have defined sufficient conditions
for convergence with no additional computational cost. As
discussed before, one can either impose an upper bound to
the allowed number of steps or consider only a finite number
of points of the feasibility region. In the experiments we have
adopted an upper bound, which however has never been
reached in experiments where there is a possible agreement.

The additional complexity, according to the experiments,
appears to be a reasonable price to pay for the extra features
and for the possibility of other extensions. In fact, the ap-
proach can be further extended, for example, by adding new
protocols and objective and utility functions.We in fact envis-
age an integration with [8]. We also intend to consider peer-
to-peer negotiation where the parts involved in the process
use more than two issues, involving in such way a multidi-
mensional space. We have been studying the possibility of
considering as negotiation spaces not only convex areas but
also nonconvex ones. This result can be obtained by convert-
ing a nonconvex region into a convex one and by excluding all
points that are not part of the original negotiation area [44].
The proposed approach has been fully implemented in the
agent-oriented programming language DALI.

Applications of such an efficient and effective compu-
tational model of negotiation can be found in many fields
where there is a large number of negotiation rounds, almost
impossible to be optimally coped with by humans. These
fields include contexts where, as it is the case with the fashion
supply chain negotiation scenario, the time-to-market aspect
is crucial.
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