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Abstract

Introduction: Islet transplantation can treat the most severe cases of type 1 diabetes (T1D) but it 

currently requires deceased donor pancreata as an islet source and chronic immunosuppression to 

prevent rejection and recurrence of autoimmunity. Stem cell-derived insulin-producing cells may 

address the shortage of organ donors while cell encapsulation may reduce or eliminate the 

requirement for immunosuppression, minimizing the risks associated with the islet transplantation 

procedure, and potentially prolonging graft survival.

Areas covered: This review focuses on the design principles for immunoisolation devices and 

on stem cell differentiation into insulin-producing cell products. The reader will gain 

understanding of the different types of immunoisolation devices and the key parameters that affect 

the outcome of the encapsulated graft. Progresses in stem cell differentiation towards mature 

endocrine islet cells, including the most recent clinical trials and the challenges associated with the 

application of immunoisolation devices designed for primary islets to stem-cell products are also 

discussed.

Expert opinion: Recent advancements in the field of stem cell-derived islet cell products and 

immunoisolation strategies hold great promise for T1D. However, a combination product 

including both cells and an immunoisolation strategy still needs to be optimized and tested for 

safety and efficacy.
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1. Introduction

Three hundred eighty-seven million people are estimated to have diabetes, with 4.9 million 

deaths attributed to the disease conditions in 2014. In 2013, more than 79,000 children 

developed type-1 diabetes (T1D)1. T1D is an autoimmune disease in which beta cells within 

pancreatic islets are selectively destroyed by autoimmune responses against beta cell 

autoantigens2. The pathophysiology of beta cell destruction in T1D has been previously 

reviewed3–6. Beta cells are responsible for secreting insulin, which regulates glucose 

metabolism and homeostasis. Currently, patients with T1D depend on exogenous insulin 

injections but insulin injections do not prevent acute and chronic complications of T1D, 

which can be life-threatening4. Further, severe hypoglycemia (hypo) is commonly 

experienced by patients as a consequence of exogenous insulin injections. Hypo 

unawareness accounts for 6 to 10% of all deaths in T1D. Despite the widespread use of 

novel insulin analogues, pump therapy, and glucose sensors, hypo unawareness persists7. 

Restoring normoglycemia without increasing the risk of severe hypo would have substantial 

implications for the well being of individuals with T1D. Sensor-augmented pump therapy 

with automated insulin suspension reduced the combined rate of severe and moderate hypo 

in patients with T1D8. A wearable, automated, bi-hormonal, bionic pancreas improved mean 

glycemic levels, with less frequent hypo episodes, among both adults and adolescents with 

T1D, as compared with an insulin pump9. However, such devices do not represent a cure for 

T1D and they are susceptible to wearing out and to breakage.

Replacement of β cell function through transplantation of whole pancreas represents a 

possible biological cure. The endocrine component of the pancreas constitutes only ~1% of 

the pancreas. Therefore, in order to restore euglycemia, transplanting just the endocrine 

cells, rather than the whole pancreas may represent a simpler but equally efficacious 

procedure and it may decrease the complications arising from whole pancreas 

transplantation. Since Ricordi et al. first described an automated method that allowed 

isolation of human pancreatic islets with high yield, purity and with preserved response to 

glucose stimulation10, 11, clinical trials on transplantation of human islets initiated12.

Currently, adult islets are isolated from the pancreas of deceased donors and infused into the 

liver following percutaneous transhepatic catheterization of the portal vein of recipients with 

T1D. The minimally invasive procedure is generally performed under local anesthesia by 

interventional radiology. Currently, chronic immunosuppression of the recipients is required 

to prevent allograft rejection and recurrence of autoimmunity. Further, availability of organ 

donors is far inferior to the number of patients than may benefit from islet transplantation in 

the future13. The results of clinical islet transplantation have improved considerably in the 

past two decades11, 14–16. Annual reports of the CITR (collaborative islet transplant registry) 

concluded that islet transplantation resulted in improved long-term insulin independence and 
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associated benefits, including normal or near normal HbA1C levels, sustained decrease in 

severe hypoglycemic episodes and the return of hypoglycemia awareness17.

Despite progresses in the islet isolation, transplantation and immunosuppression regimes, 

islet engraftment and long-term function is far from being ideal11. Additionally, side effects 

associated with chronic immunosuppression include the increased susceptibility to infection, 

renal dysfunction, hyperlipidemia, anemia, mouth ulcers, and increased risk of cancer. Due 

to the risks associated with the procedure and the chronic immunosuppression, islet 

transplantation is currently indicated only for a small percentage of T1D patients and only 

for adults. The main challenges that remain to be addressed in order to make islet 

transplantation available for a larger number of subjects with T1D are:

1. Avoidance of chronic immunosuppression, either by tolerance induction or by 

immunoisolation strategies

2. Identification of an unlimited source of insulin producing cells

3. Identification of a suitable transplantation site that optimizes islet engraftment 

and long-term function

This review will focus mainly on islet immunoisolation through encapsulation as a strategy 

to decrease and potentially eliminate immunosuppression, on stem cells as a potentially 

unlimited source of insulin-producing cells, and on the selection and engineering of most 

appropriate site.

2. Cell immunoisolation through encapsulation

Currently, islet graft survival is limited by several factors, including autoimmune and 

allogeneic responses that are not completely prevented by immunosuppression. Furthermore, 

immunosuppression is the main cause of adverse events in islet transplantation18. 

Eliminating chronic immunosuppression in islet transplantation may increase the safety of 

the islet transplantation procedure and make it a therapeutic option for a larger number of 

T1D patients.

Immunoisolation of pancreatic islets through encapsulation may allow transplantation 

without immunosuppression19. However, this concept has yet to be translated into reality 

despite three decades of research20. In encapsulation devices, immunoisolation is achieved 

by enclosing pancreatic islets within biocompatible and permeable capsules. The 

permeability of such capsules should allow exchange of nutrients, electrolytes, oxygen, 

waste products, bio-therapeutic agents, and smaller molecules like insulin through the 

capsules, while blocking the passage of high-molecular weight substances, such as large 

complement complexes and cytotoxic cells of the immune response21. Immunoisolation 

devices can be classified into macrodevices and microcapsules depending on whether 

multiple islets or single islets, respectively, are enclosed within the same capsule and on the 

size of the device, millimeters vs. microns, respectively.
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2.1 Macrodevices

Macroencapsulation consists in entrapping multiple pancreatic islets (up to the full dose) 

within a device that has macroscopic sizes (larger than 1 mm). In macrodevices, the 

immunoisolation membrane encapsulates the entire islet graft, rather than single islets22. To 

reverse diabetes, adequate numbers of islets need to be implanted within the device. Because 

of the device immunoisolation feature, the host vasculature, which carries oxygen and 

nutrients and allows insulin secretion in response to hyperglycemia, is allowed to grow up to 

the immunoisolation membrane. As a result, the distance between the islet core and the 

closest blood vessel equals d/2 (d=device thickness). Because solute transport through 

macrodevices relies mainly on diffusion, in order to maximize the transport, d needs to be 

minimized. Additionally, because islets inside the device consume oxygen and nutrients at a 

rate that is proportional to the islet density, there is an inverse correlation between the islet 

loading density and d. To accommodate curative numbers of islets without exceeding the 

recommended islet loading density, while minimizing d, the surface area of the device 

exceeds what is reasonable for implantation in a patient. To address such size limitations, 

several modification have been implemented to improve transport of critical molecules like 

oxygen to the islets entrapped in the device23.

One approach to address the limitations associated with oxygen transport, is to supply the 

device with oxygen. In the work by Barkai et al., the device was supplied with exogenous 

oxygen at such a pressure that guarantees optimal (oxygen supply equals oxygen 

consumption by islets) oxygen partial pressure in the islet space24. The macrodevice was a 

disk-shaped polyether ether ketone (PEEK) with 31.3 mm diameter × 7 mm height 

dimensions. Inside the device, a 11.5 mm diameter islet module containing 2000IEQ islets 

was fabricated by suspending the islets within ultrapure, high guluronic acid (68%) alginate, 

UP-MVG hydrogels. Next to the islet module, the oxygen gas module was placed. A 

custom-fabricated 25-μm-thick Silon interpenetrating network of an oxygen-permeable 

polydimethylsiloxane and polyetherfluoroethylene membrane was placed to separate the gas 

module from the islet module. A hydrophylized PTFE membrane with a pore size of 0.2 μm 

was used as immunoisolation membrane and it was placed between the device and the host. 

To provide mechanical support to the composite device, a metal grid was placed on each side 

of the islet module. Based on successfully studies in preclinical models, a pilot trial was 

performed in one patient by Ludwig et al.25, showing c-peptide response to glucose 

challenges up to 6-months and decrease in HbA1c, despite insulin independency was not 

achieved. Building on these promising results, a phase I safety/efficacy study has been 

started In October 2014 by BetaO2 Technologies to evaluate the safety and efficacy of 

implanting the ßAir macro-encapsulation with human islets.

Another macrodevice, the Theracyte device was designed with an outer membrane that 

facilitates neovascularization and an inner immunoprotective membrane that provided 

protection against alloimmunity, even in allosensitized recipients in rodent preclinical 

models of islet transplantation. However, the curative dose of transplanted 

macroencapsulated islets to reverse diabetes in preclinical models was 10 times higher than 

the curative dose of non-encapsulated islets, mainly due to the lack of sufficient 

vascularization of the freshly implanted device and to transport limitations26. In addition to 
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transport limitations, macrodevices like the Theracyte device generally induced heavy 

fibrotic responses at the device-host interface27, 28. To minimize host responses, the 

Theracyte device has been modified by Viacyte into the Encaptra® Drug Delivery System. 

The Encaptra device was designed and manufactured to guarantee long-term 

biocompatibility and biostability in the subcutaneous (SC) space while providing 100% 

encapsulation of βeta cell progenitor cells (to prevent cell escape and teratoma formation), 

protecting against alloimmunity and autoimmunity. The SC site was chosen as transplant site 

for the Encaptra device because it can be easily accessed for graft monitoring and for 

retrieval. The EN250 device, which contains an approximate volume of 250μl and has a size 

of 3×8 cm, is currently being tested in a Phase I/II trial only in conjunction with islet 

progenitor cells (as discussed in section 4).

2.2 Microcapsules

In microencapsulation, each islet or cell cluster is individually encapsulated, offering several 

advantages over macroencapsulation. The concept of immunoisolation through 

microencapsulation and the key capsule design parameters are illustrated in Fig. 1. Unlike 

macrodevices, microcapsules (because of their spherical geometry) allow maximizing the 

surface area/volume ratio, maximizing the transport of critical solutes like oxygen and 

nutrients through the capsule29. Additionally, because sharp surfaces (corners) on 

biomaterials worsen the host inflammatory reactions30, the spherical geometry of the 

microcapsules minimizes foreign body reactions. Since Chang first described the concept in 

196431, microencapsulation has been used with a variety of cell types, including PC12 cells 

for the treatment of Parkinson’s disease32, hepatocytes for the treatment of liver diseases33, 

cells genetically modified to secrete factor IX for the treatment of haemophilia B34 and to 

secrete growth hormones for the treatment of dwarfism35. Lim and Sun in 1980 first 

microencapsulated pancreatic islets in alginate beads for the treatment of T1D36. Since then, 

alginate microencapsulation has been evaluated in several pre-clinical trials in rodents, dogs, 

pigs, non-human primates, and in few human pilot trials20. Despite three decades of 

research, encapsulation systems haven’t been clinically successful and the reasons for failure 

are unknown20, 42, 43.

Capsule composition, geometry and transplantation site are three of the main parameters for 

capsule design. It is likely that these design parameters are critical determinants of the in 
vitro and in vivo performance of encapsulated islets and non-optimal combinations of these 

key capsule parameters may have contributed to failure of encapsulated grafts19, 44–48. A 

better understanding of the influence of capsule composition, geometry, and transplantation 

site on capsule performance and underlying mechanisms may help identify the parameters 

that lead to successful outcomes of the encapsulated graft. Capsule design parameters are 

reviewed below.

2.3 Capsule design criteria

2.3.1 Influence of Capsule Composition on biocompatibility, permselectivity 
and stability—Due to their high water content and three-dimensional structure, hydrogels 

formed by crosslinking natural or synthetic monomers are commonly used for 

microencapsulation. The hydrophilic nature of hydrogels prevents damage to surrounding 
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tissues after implantation. Additionally, transparency of hydrogels allows easy visualization 

of the encapsulated cells49. A variety of hydrogel monomers have been investigated during 

the past thirty years22, including polyethylene glycol (PEG), polyurethane, polyacrylates, 

chitosan, cellulose, xanthan gum, and alginate (ALG).

Polyacrylates such as hydroxyethyl methacrylate (HEMA) and methyl methacrylate (MMA) 

form stable capsules, but diffusion of water-soluble nutrients and long-term viability of 

enclosed cells is limited50.

Alginate (ALG) is a natural anionic polysaccharide, isolated from algae22. ALG is 

constituted by linear copolymers of (1–4)-linked β-D-mannuronate (M) and C-5 epimer α-

L-guluronate (G) residues, covalently linked together in different blocks. The ratio and 

sequence of the uronic acid groups depends on the source of the ALG51 and affects the 

properties of the ALG hydrogels52. During gelation, the G-blocks of one polymeric chain 

form junctions with the G-blocks of the adjacent polymer chain (egg-box model of 

crosslinking). Ion binding and affinity is selective and it depends on the ALG composition 

(Ba2+ ions bind to G-G and M-M blocks, whereas Ca2+ binds to G-G and M-G blocks, and 

Sr2+ binds only to G-G blocks). Higher affinity of cations for the ALG residues is associated 

with stronger gels. ALG is by far the most common hydrogel for encapsulation because it is 

thermo-stable and can form hydrogels rapidly and under physiological conditions54. 

Moreover, no ALG-degrading enzymes have been reported in humans so far, supporting 

long-term implantation. Long-term survival of allogeneic60–64 and xenogeneic65–67 islets 

encapsulated in ALG devices without immunosuppression has been achieved in preclinical 

models. The first human trial with ALG microcapsules and immunosuppression 

demonstrated that encapsulated islets could provide a glycemic control similar to non-

encapsulated islets transplanted in the portal vein in a T1D patient68. Almost 12 years later, 

Calafiore carried out a phase I trial using human islets encapsulated in ALG-PLO and 

transplanted in the peritoneal cavity (IP) without immunosuppression69. Although this study 

proved that allografting of encapsulated islets is safe, only a minor clinical benefit was 

observed. In another phase I trial with human islets encapsulated within Ba2+ ALG 

microcapsules and transplanted IP without immunosuppression, neither insulin requirement 

nor glycemic control was improved. A biopsy confirmed that the loss of graft function was 

due to a combination of islet central necrosis and inflammation70. The large discrepancies in 

preclinical studies with ALG-encapsulated islets from different groups prevents investigators 

from understanding the reasons for clinical failure of ALG encapsulation. The lack of 

consistency in alginate encapsulation may be attributed to (i) the absence of standardization 

between laboratories71, (ii) the intrinsic variability in pancreatic islets, (iii) the variability in 

the ALG composition37, (iv) the lack of extensive capsule characterization (composition, 

molecular weight, purity, permselectivity, mechanical stability, surface properties, 

biocompatibility), and (v) the variability in the transplantation site.

PEG is a polyether composed of repeating units of ethylene glycol. PEG has been used for 

the encapsulation of a broad range of cell types, including pancreatic islets72–75, 

chondrocytes76, osteoblasts77, and mesenchymal stem cells78. For islet encapsulation, PEG 

hydrogels have been used in the layer-by-layer, pegylation, and conformal coating 

technologies, with promising preclinical results79–82. PEG have some advantages over other 
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synthetic molecules that also form hydrogels because PEG molecules can be easily coupled 

to functional peptides to mimic the extracellular matrix and to improve survival and function 

of encapsulated cells83 and to provide local immunomodulation. Another major advantage of 

PEG hydrogels is the low protein adsorption on PEG surfaces84. Addition of PEG to the 

encapsulation material can increase the durability and the mechanical properties, and 

decrease the permeability of the capsules85, 86. Finally, pilot clinical studies showed that 

PEG capsules are safe20.

Capsule biocompatibility depends on the capsule chemical composition, surface charge, 

porosity, surface roughness, implant site and shape, among all87. Porosity of hydrogels (like 

ALG and PEG) is determined by the microarchitecture of the hydrogel network that 

represents physical impediments to transport of solutes. Poor biocompatibility results in a 

host reaction to the biomaterials leading to formation of a fibrotic capsule. The inflammatory 

response towards a poorly biocompatible material starts with the adsorption of cell adhesion 

proteins, immunoglobulins, complement components, and growth factors on the surface of 

the capsules. Macrophages recognizes adsorbed proteins, adhere to the capsule surface of 

the biomaterials and secrete inflammatory cytokines, such as interleukin-1β (IL-1β), tumor 

necrosis factor (TNF−α) and transforming growth factor (TGF-β), further activating 

macrophages and fibroblasts88. The activation of macrophages and fibroblasts leads to the 

cellular overgrowth on the capsule89. Such fibrotic deposition decreases transport through 

the capsule and interferes with adequate nutrition of the encapsulated cells, leading to 

necrosis of the enclosed cells. Further, the fibroblasts accumulating on the capsule surface 

compete with islets for oxygen and nutrient supplies. Finally, the complement system may 

also be activated by the chemical characteristics of the capsule surface, and by inadequate 

permselectivity, further activating immune cells87.

Biocompatibility of capsule compositions should be evaluated in parallel to safety and 

efficacy studies in preclinical models. In vivo methods to evaluate biocompatibility include 

the implantation of up to five times the curative dose of biomaterials in the same site where 

capsules are placed in efficacy studies. Experienced pathologists should score the 

biocompatibility of each composition by histological evaluation of explanted cell-free grafts 

at early time points, to evaluate acute reactions and after long-term implantation, to evaluate 

chronic reactions. Alternative in vitro assays are being evaluated and include quantifying 

macrophage adhesion and activation92, fibrinogen adsorption, fibroblast adhesion and 

proliferation, and granulocyte activation after exposure to cell-free biomaterials93.

Capsule permselectivity should maintain cell viability and function while protecting against 

the host cytotoxic cells. While immune cells can be excluded from the capsule, cytokines 

secreted by activated immune cells, which are deleterious to islets, have a low molecular 

weight (comparable to critical nutrients) and they can diffuse through the capsules and reach 

the islets48. The permselectivity of the capsules depends on the balance between the mass 

transport and the molecular weight cutoff (MWCO) of the immunoisolation membrane94. It 

was suggested for the ideal MWCO to be in the 50–150kDa range49. Permeability of ALG 

capsules is determined by a combination of type and concentration of ALG and the type of 

cations53. It is known that ALG is permeable to Immunoglobulin G (IgG, 150 kDa) and to 

complement molecules. To reduce ALG permeability controlling its permselectivity, 
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polyanion-polycation membranes have been integrated within ALG capsules. As ALG are 

negatively charged, ALG polymers form strong complexes with polycations such as 

polysaccharides (e.g. chitosan55), polypeptides (e.g. poly-L-lysine, PLL56 and poly-L-

ornithine, PLO57) or synthetic polymers (e.g. polymethylene-co-guanidine58 and 

polyethylene-imine59). As these complexes are stable in the presence of non-gelling cations 

or calcium chelators, unlike ALG, they have been extensively used to reduce the 

permselectivity of ALG gels. However, the composite capsules made of polyanion-

polycation membranes resulted in worse biocompatibility96. While to prevent allorejection 

microcapsules do not need to prevent diffusion of antibodies and cytokines97, higher 

permselectivity may be required to prevent xenorejection62. Because capsule 

permselectivity, and in particular the permeability to immunological products are the main 

determinants of capsule immunoisolation, immunoisolation membranes should be 

thoroughly characterized and permselectivity should be tailored to achieve the desired 

amount of immunoprotection. Unlike ALG, synthetic materials like PEG-based hydrogels 

offer better control of permselectivity because they can be modified to match the desired 

permselectivity values79.

For long-term implantation capsules need to display optimal mechanical stability98. For 

ALG capsules, stability depends on the type of ALG (relative content of G-blocks), its 

concentration, and the type and concentration of gelling cations99. Failure of conventional 

ALG microcapsules after transplantation has been associated with their poor stability. ALG 

capsules swell during long-term exposure to physiological conditions. The swelling is 

caused by chelation of the gel network by phosphate, citrate and lactate, or non-gelling 

cations, such as sodium and magnesium. While capsule swelling leads to increased porosity 

(Fig. 2C.1)101, capsule disruption results in exposure of the transplanted cells to the host 

immune cells (Fig. 2C.2)102. Additionally, shear forces associated with the implantation 

procedure and the mechanical environment of the transplant site may further damage the 

microcapsules103.

Capsule stability properties have been determined through bulk measurements, which do not 

reflect the properties of single capsules45. Experimental and computational tools for 

measuring mechanical properties of single capsules at the microscopic level (i.e. the atomic 

force microscopy and computational models) are available and they can be exploited to 

compare capsules of different composition and geometries.

2.3.2 Influence of capsule geometry on molecular transport—Capsule geometry 

refers to the combination of shape (irregular vs. spherical), thickness, overall size, distance 

of enclosed cells from the capsule surface and the volume of cell-free space within the 

capsule. Traditional microcapsules are made of fixed-diameter spheres of hydrogel 

materials. Since islets have variable sizes (50 to 400μm in diameter) and microcapsules need 

to be large enough to include even the largest islets, traditional microcapsules range in size 

from 600 to 1000 μm; most of the volume is actually islet-free and biologically non-

functional material44. Transport of oxygen, nutrients and waste products from and to the 

tissue surrounding the capsules is critical for the function and survival of encapsulated islets. 

Since transport through the capsule is mainly regulated by passive diffusion, such large 

amounts of islet-free bulk capsule material are a barrier for diffusion of critical solutes, 
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leading to core hypoxia and necrosis (Fig. 2A)104, 105. More importantly, large diffusion 

barriers will hamper the transport of glucose and insulin, leading to a delay in glucose 

sensing and insulin responsiveness of the encapsulated islets106. Large diffusion barriers 

resulting from the large size of traditional capsules may help explain why traditional islet 

encapsulation has failed in maintaining glucose homeostasis in patients transplanted with 

microencapsulated islets69, 107–109.

2.3.3 Influence of capsule geometry on choice of transplant site—The large 

size of traditional capsules increases the volume of transplantation materials up to 100 times 

over the volume of naked islets (Fig. 2B)75. To reverse diabetes in patients, up to one million 

islets need to be ideally transplanted, which would amount to volumes in the hundreds of 

milliliters20. Such large volumes can be transplanted only IP. The peritoneal cavity is not an 

islet-friendly environment110. After IP transplant, capsules fall by gravity and aggregate in 

the lower abdomen. Additionally, foreign body reactions to poorly biocompatible capsule 

materials cause the formation of a thick layer of fibrotic tissue. Both packing of the capsules 

and the fibrosis further impair transport of critical molecules111. Consequently, higher 

numbers of islets are required to reverse diabetes when islets are transplanted IP versus other 

sites, such as the intrahepatic site in patients and the kidney capsule in mice and rats. 

Currently, islets for transplantation are isolated from cadaveric pancreata. Since organ 

availability is limited, minimizing the islet dose per patient would make islet transplantation 

available to a larger number of patients105. However, this is not possible with large 

traditional capsules implanted in the IP site.

3. Choice of Islet Transplantation site

Currently, islets are transplanted intraportally. Hepatic embolization of islets exposes them 

to a relatively hypoxic environment because the liver has a parenchymal oxygen tension that 

is inferior to that of the pancreas53. More importantly, due to the ‘instant blood-mediated 

inflammatory reaction’ (IBMIR) 50–75% of the transplanted islet mass is lost right after 

transplantation because of the suboptimal environment provided by the liver transplant site9. 

Among the influences that can cause early graft loss is the poor re-vascularization (that 

causes lack of glucose homeostasis and islet hypoxia) and the higher concentration of 

immunosuppressive toxic drugs in the portal vein, which can impair angiogenesis and islet 

proliferation113.

Alternative transplant sites have been long sought to improve islet engraftment and long-

term function. Design criteria for alternative sites are aimed at minimizing early 

inflammatory reactions, promoting a well-vascularized microenvironment (to guarantee 

exchange of oxygen and nutrients, pH homeostasis and cell waste removal), gaining easy-

access to the transplant site (for minimally invasive surgery and follow-up) and protecting 

the islet graft from immune responses (inflammation and immune rejection)113. Among the 

sites that have been explored are the skin, the pancreas, the submandibular gland, the 

muscle, the omentum, the bone marrow, the gastric submucosa, the genitourinary tract, the 

kidney capsule, the anterior eye chamber, the testis, the spleen, the brain, and the thymus13.
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Among those alternative sites, the SC site is easily accessible and it minimizes the 

invasiveness of both the transplant and the follow-up monitoring procedures. Additionally, 

the SC site offers an extensive surface area for transplantation. However, results in the SC 

site have been disappointing, for reasons that may include poor oxygen tension and slow re-

vascularization13.

Another alternative site, the omental pouch (OP) site is well vascularized and provides portal 

drainage, which is desirable for physiological effects of insulin on the liver, and it can 

accommodate large graft volumes114. The omentum is a thin and highly vascularized 

membrane. Islets can be placed on top of the omentum in close contact with blood vessels. 

Also, the omentum can be wrapped after placing the islets, forming a pouch, which provides 

mechanical protection to the islets. At the Diabetes Research Institute we are currently 

exploring the omentum as an alternative islet transplantation site to the liver in a phase I/II 

trial of allogeneic islet transplantation with systemic immunosuppression. In such trial, a 

biodegradable scaffold is generated by adding recombinant human thrombin to islets that 

have been previously resuspended in autologous plasma, forming a plasma clot. The 

biodegradable scaffold is utilized to immobilize the islets to the omentum, in close contact 

with host vascular beds, and to prevent aggregation. Our preclinical data in a surrogate 

pouch in mice, the epididymal fat pad, support the beneficial effect of immobilizing islets to 

vascularized membrane and confining the graft in a pouch115.

The gastric submucosal space (GSMS) has also been explored because it allows localized 

implantation, portal venous drainage and it can be easily accessed for monitoring, allowing 

localized imaging and graft biopsy116. In a preclinical trial in pigs, minimal immediate loss 

of islets following transplantation in the GSMS vs. the portal vein and significant reductions 

in mean blood glucose and mean exogenous insulin requirement were observed.

Poor islet revascularization after transplantation is one of the major impediments to islet 

engraftment and long-term function117. Native islets in the pancreas are highly vascularized 

by the fenestrated endothelium that is found throughout the islet core and that receives 15–

20% of the total pancreatic blood supply while comprising only 1–2% of the total pancreatic 

mass118. The high degree of native islet vascularization is rarely recapitulated in isolated and 

re-transplanted islets23. To augment islet vascularization several approaches have been 

undertaken. Pro-angiogenic gene transduction or protein delivery has shown benefits in 

preclinical models119, but cannot be easily translated because of many of the poor efficacy 

of protein delivery and the safety concerns associated with exogenous gene expression. Co-

delivery of progenitor or endothelial cells has shown promises in augmenting islet 

vascularization120.

Devices and scaffolds have been designed to provide mechanical support and promote 

angiogenesis in the transplantation site. Engineering the islet transplant microenvironment 

has improved islet engraftment and long-term function in extrahepatic sites121, 122. However, 

biocompatible non-degradable biomaterials can generate foreign body responses and fibrotic 

capsules that reduce diffusion of oxygen and nutrients, impairing glucose homeostasis. 

Further, synthetic devices can activate the innate and adaptive immune response and trigger 

graft rejection. Alternatively, fibrin matrices are natural scaffolds and completely degrade 
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days after implantation through cell-mediated degradation and they are gradually replaced 

by autologous tissues. In addition, fibrin matrices have been shown to be beneficial for islet 

culture123.

Encapsulated islets cannot get fully revascularized after transplantation because of the 

immunoisolation membrane between the islets and the host. The lack of direct vascular 

access of encapsulated islets limits the exchange of glucose / insulin and the exchange of 

nutrients / metabolic waste to passive diffusion through the immunoisolation membrane. 

Such diffusion limitations are worsened when encapsulated islets are transplanted in sites 

that do not get revascularized after transplantation. Therefore, especially for transplantation 

of encapsulated islets, the choice of transplantation site is a critical determinant of the 

outcome of the encapsulated graft.

4. Stem cells as sources of insulin-producing cells

Pancreatic islets isolated from cadaveric donor pancreata are the current source for islet 

transplantation. Donors shortage requires seeking alternative and inexhaustible sources of 

insulin-producing cells. Xenotransplantation of islets from pigs is a valuable alternative 

source of primary islets. However, xenorejection will require a combination of 

immunoisolation devices and chronic immunosuppression.

Human islet-like cell clusters have been generated from

1. stem cells isolated from the cord blood, the amniotic fluid, the adipose tissue, the 

endometrial and menstrual blood

2. embryonic pancreatic precursors

3. fetal and neonatal progenitor cells;

4. differentiated stromal tissue, either by 4.1 transdifferentiation and tissue 

reprogramming, or by 4.2 epigenetic conversion124.

The challenges associated with differentiation of stem cells into fully mature beta cells125 

and of regenerating beta cells126 have been previously reviewed.

Embryonic stem (ES) cells are self-renewing and pluripotent cells that can differentiate into 

any cell type. Differentiation of ES cells into beta cells has been poorly successful, due to 

the intrinsic nature of beta cells and the natural resistance of ES cells to differentiate into 

beta cells.

In 2006, Novocell (currently Viacyte, San Diego, CA, USA) first proved that differentiation 

of human ES cells into beta cells is feasible, but only 5–7% of the total cell population could 

be fully transformed and, despite displaying beta cell phenotype, the islet-like clusters 

derived with their protocol did not secrete insulin in response to glucose stimulation (no 

GSIR) and did not reverse hyperglycemia after transplantation in diabetic mice127. Viacyte 

protocol was based on sequential differentiation of human ES cells into mesoderm, definite 

endoderm, primitive gut, posterior foregut, pancreatic endoderm, followed by final 

differentiation into endocrine precursors and β cells (polyhormonal, PH, Fig. 3). On the 
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other hand, a different strategy that aimed at transplanting only partially differentiated 

human ES cells, at the pancreatic endoderm stage, rather than fully matured into beta cells, 

efficiently generated glucose-responsive (GSIR) endocrine cells 3 to 4 months after 

implantation into diabetic mice. ES cells differentiated into pancreatic endoderm (PE, Fig. 3) 

and transplanted into mice protected against streptozotocin (STZ)-induced hyperglycemia 

and showed serum C-peptide that was comparable to 3000 IEQ human islets128. At graft 

retrieval, ES-derived beta cells demonstrated expression of critical beta cell transcription 

factors and presence of pro-insulin and mature endocrine secretory granules. These 

important studies suggest that functional beta cells that reverse hyperglycemia and maintain 

glucose homeostasis can be efficiently generated by a 1st differentiation phase in vitro and a 

2nd final maturation phase in vivo where the in vivo microenvironment is critical for 

promoting full maturation of beta cells. The question remains on whether the human 

microenvironment is as conductive to beta cells maturation as the murine microenvironment. 

Viacyte has performed extensive preclinical testing on this particular cell product based on 

differentiation of human ES cells in the pancreatic endoderm to assure reliable production of 

a safe and effective product. Following successful results of the preclinical testing, in August 

2014 ViaCyte received approval from the U.S. Food and Drug Administration (FDA) to 

begin evaluation in a Phase I/II trial of their stem cell-derived cells in combination with the 

Encaptra macroencapsulation device.

Following the first generation of ES cell-derived beta cells that require 3–4 months 

maturation in vivo to express functional characteristics of bona fide β cells and maintain 

glucose homeostasis in vivo, several groups have attempted to optimize in vitro maturation 

of stem cell-derived beta cells to higher degrees of maturation. The overall goal of these 

strategies was to generate a stem cell-based product that could reverse hyperglycemia right 

after transplantation in diabetic recipients. Additional goal was to generate a cell product 

that could be fully characterized before implantation, addressing safety and efficacy 

concerns of what happens to the cells after implantation. Almost at the same time the 

Melton’s group at Harvard129 and the Kieffer’s group at the University of British Columbia 

in partnership with BetaLogics Venture (Janssen R&D LLC)130 succeeded in developing 

protocols to differentiate stem cells into functional beta cells with higher maturity than the 

ES-derived cells from Viacyte.

The Melton group used a scalable suspension-based culture system that can generate up to 

108 human pluripotent stem cells and that can be differentiated into hundreds of millions of 

glucose-responsive beta cells in vitro (SC-β, Fig. 3). SC-β are able to secrete quantities of 

insulin comparable to adult β cells (GSIR). Furthermore, SC-β prevented the development of 

hyperglycemia when they were transplanted in pre-diabetic and immunodeficient Akita 

mice, which develop progressive hyperglycemia as a result of a defective insulin gene.

The Kieffer’s group described a seven-stage protocol that efficiently converts human ES 

cells into insulin-producing cells. Differentiated cells expressed key markers of mature 

pancreatic β cells, including MafA, and displayed GSIR similar to that of human islets 

during static incubations in vitro. Despite single-cell imaging and dynamic glucose 

stimulation assays revealed some differences with primary human β cells, converted cells 

reversed diabetes in mice four times faster than pancreatic progenitors (PP, Fig. 3).
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5. Expert opinion

Encapsulation may eliminate immunosuppression in allogeneic cell transplantation, 

increasing the safety and the efficacy of the procedure. Clinical failure of cell encapsulation 

in the past three decades may be attributed to the limited understanding of the mechanisms 

of graft failure. A summary of current clinical trials has been presented by Scharp D. et al.20 

and more recently by Yang H.K. et al.41 We suggest that a different approach to islet 

encapsulation needs to be undertaken with the aim to identify more successful encapsulation 

strategies. Our recent data suggest that the choice of capsule composition, geometry, and 

transplantation sites are the main key factors in determining the performance of encapsulated 

islets75. An integrated evaluation of the specific contributions of these three capsule 

parameters defining success vs. failure of encapsulated pancreatic islets needs to be 

performed to provide insight into the mechanisms of graft failure that may occur for specific 

combinations of capsule composition, geometry and transplantation site and to identify the 

specific role of these three key capsule parameters independently analyzed. More 

importantly, such a study will help identify the most promising combinations of capsule 

parameters to reduce graft failure rates and increase the likelihood of success of future 

clinical studies with primary islets and with stem cell-derived insulin-secreting cell products.

The optimal combination of cell source and immunoisolation device needs to be carefully 

selected based on safety concerns and the metabolic requirements of the selected cell 

product, which may vary after implantation. Islet cell precursors with the potential to 

proliferate, evading the immune surveillance and possibly forming tumors, should be 

transplanted in a device and in a site that can guarantee stable and complete confinement of 

the transplanted cells. Additionally, non-invasive monitoring of the graft is desirable to 

monitor graft size and prevent possible breakages of the device in case of undesired growth. 

Because immature islet-precursors are expected to mature in vivo, an increased metabolic 

activity is expected to develop over time, paralleling an increased requirement for oxygen 

and nutrients by the progressively differentiating transplanted cells. The current clinical 

trials will be of assistance to define the relevance of these challenges, which are difficult to 

be fully evaluated in preclinical model systems. Ideally, instead of transplanting beta cell 

precursors, whose fate is unknown, we should aim at transplanting mature beta cells to the 

end of increasing safety of the procedure and enhancing efficacy.

A multi-functional platform may be necessary to support encapsulated cell-based products. 

Such platform should comprise:

1. A three-dimensional scaffold that provides mechanical support to the cells and 

prevents cell clumping. Such scaffold should allow blood vessels to grow around 

immunoisolated cells, minimizing the distance between the core of islet-like cell 

clusters and the blood supply. Such scaffolds could be either resorbable (e.g. 

plasma clot) or permanent (e.g., silicone-based)

2. In situ oxygen generation to support the transplanted cells before re-

vascularization occurs. Additionally, in case of a macrodevice, a permanent 

oxygen supply (like the Beta-O2 design) could be necessary for cells that are 

farther away from the blood supply. Ideally, such platform should allow for 
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modulation of oxygen delivery proportionally to the increasing metabolic 

requirements of the transplanted cell products (i.e., undifferentiated vs. 

differentiated cells)

3. Local delivery of anti-inflammatory and immunomodulatory agents, to dampen 

any acute foreign body response to biomaterials and prevent formation of a 

fibrotic capsule around the device. Additionally, local immunomodulation may 

be desirable to minimize indirect pathways of immune activation, following 

antigen shedding which cannot be blocked by immunoisolation strategies and 

that could lead to allosensitization131. A promising approach may be targeting 

PDL-1, as prviously shown by Guleria132. Alternatively, helper cells, like 

mesenchymal stem cells (MSC)133 or cord blood-derived134 or hematopoietic135 

stem cells could be co-transplanted to provide local immunomodulation and pro-

angiogenic effects

4. A suitable transplantation site, that would allow for physiological delivery of 

insulin (intraportal) and for retrievability of the implanted cell products, in case 

of adverse events. Additionally, the capsule can be functionalized with islet 

extracellular matrix-mimetic additives to provide further protection against 

autoimmunity136 and for recapitulating signaling interactions between islet cells 

and extracellular matrix, which are known regulators of islet survival, 

proliferation, and insulin secretion.

We have developed a conformal coating technology that allows for modulation of capsule 

composition, geometry and transplant site through microfluidics75. Unlike traditional ALG 

microencapsulation based on generation of fixed-size capsules with the electrostatic droplet 

generator, this method allows to control capsule size by adjusting microfluidic parameters, 

including minimizing the capsule size to a few tens of microns (vs. hundreds of microns of 

traditional capsules, Fig. 3). Further, the conformal coating method can be adapted for most 

coating hydrogels, including ALG, to obtain capsules with different physical and biological 

properties, determined by the specific hydrogels utilized for coating. Compared to other 

conformal coating technologies, including layer by layer81 and pegylation-based 

encapsulation80, the conformal coating technology does not require direct binding of the 

capsule to the islet surface that may compromise the integrity of the islet membrane, which 

is critical for promoting proper function of the islet and for protecting against 

autoimmunity136. Since conformal capsules are not covalently bound to the cells, the 

conformal coating technology does not impair critical cellular functions and survival. We 

believe that the conformal coating technology is a valuable platform for designing 

immunoisolation of different sources of insulin-secreting cells.

The necessary steps that need to be undertaken to evaluate safety and efficacy of an 

encapsulated stem cell product for beta cell replacement in type-1 diabetes are summarized 

in the flow chart depicted in Fig. 4. As we learnt from preclinical development of primary 

islet encapsulation products, in step 1 the composition of acellular capsules should be 

defined and its non-toxicity and its stability should be confirmed. In step 2 viability and 

functionality of encapsulated insulin-secreting cell products should be confirmed and 

mechanisms of poor viability (central hypoxia?) and poor functionality (poor transport of 
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glucose/insulin?), if any, should be investigated and properly addressed by modifying the 

combination of capsule composition and geometry. In step 3 the efficacy of the selected 

combination of capsule composition and geometry should be evaluated in syngeneic and 

allogeneic cell transplantation models in chemically induced diabetic mice; mechanism of 

syngeneic graft failure, if any, should be investigated by histological comparison 

(inflammation? vascularization?) of functioning and non-functioning grafts and confirmed 

by studies in transgenic mice (or with compounds that target the specific pathways); 

mechanism of allogeneic graft failure should be investigated by histological comparison 

(immunoisolation?) of functioning and non-functioning grafts and confirmed by ex vivo 
studies that quantify antigen shedding through the capsules and capsule mechanical stability 

before and after implantation. In step 4 the safety and efficacy of the selected capsule 

combinations should be evaluated in the allo and autoimmune NOD mouse model of T1D 

(to confirm capsule protection from recurrence of autoimmunity) and in the alloimmune 

model in non-human primates (NHPs) before performing clinical trials in humans. 

Alternative strategies to the ones discussed in this review include genetic engineering of 

human pluripotent stem cells to match the human leukocyte antigen genes and prevent 

allorejection138, so that capsule role would focus just on preventing recurrence of 

autoimmunity after transplantation.
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Highlight box:

• Islet transplantation may restore beta cell function in type-1 diabetic patients 

but islet sourcing and safety concerns about chronic immunosuppression are 

currently limiting the procedure to the most severe cases of type-1 diabetes

• Immunoisolation of insulin-secreting cells can reduce and ideally eliminate 

chronic immunosuppression but additional studies are required to identify the 

reasons of previous failures of the encapsulated islet grafts in clinical trials 

and to design more effective immunoisolation devices for future clinical trials

• We suggest that understanding the specific effects of the composition, 

geometry and transplantation site for the immunoisolation devices on the 

outcome of the encapsulated islet graft will allow designing more effective 

immunoisolation devices

• Recent advances in generating mature insulin-secreting cell products from 

stem cells that rapidly reverse diabetes after transplantation in preclinical 

models represent a great leap forward in the field of beta cell sourcing

• Combining immunoisolation devices for primary islets with stem cell-derived 

insulin secreting cell products will require tailoring the properties of such 

devices (composition, geometry, transplantation site) to the new cell source to 

guarantee safety, in addition to efficacy of the final combination product.
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Fig. 1. 
Schematic of cell immunoisolation through microencapsulation for transplantation without 

immunosuppression. Before transplantation isolated islets are completely enclosed by a 

capsule. The capsule material allows transport of oxygen, nutrients, cytokines, glucose, 

insulin and waste products through the capsule. The capsule prevents contact between the 

enclosed cells and the host immune cells (immunoisolation), in turn preventing 

immunorejection. Key parameters that directly affect capsule performances are indicated.
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Fig. 2. 
Schematic of limitations associated with traditional alginate (ALG) microencapsulation. A. 

Diffusion limitations imposed by large capsule size (600–1000μm) that results in core 

hypoxia, central necrosis and delayed insulin secretion in response to glucose; B. Large 

volumes of encapsulated cells that do not allow implantation in sites that might be more 

favorable to islet cell engraftment but that can accommodate only small volumes. 3. 

Instability of capsules that causes change in permselectivity and breakage after implantation, 

leading to rejection of enclosed cells.

Tomei et al. Page 26

Expert Opin Biol Ther. Author manuscript; available in PMC 2019 January 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
Schematic summarizing the most recent efforts in differentiating stem cells into beta cells. 

SC: stem cell; DE: definitive endoderm; PP: pancreatic progenitors; PH: polyhormonal; SC-

b: stem cell-derived functional beta cells; GSIR: glucose-stimulated insulin release; T1D: 

type-1 diabetes
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Fig. 4. 
Phase contrast microscope images of rat islets encapsulated with conformal capsules vs. 

microcapsules vs. non-encapsulated.
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Fig. 5. 
Flowchart illustrating the step-wise strategy that we suggest should be undertaken for 

evaluating safety and efficacy of a new encapsulated stem cell product for T1D. TX: 

transplantation; NOD: non-obese diabetic mice; NHP: non-human primates.
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