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Abstract. We introduce an endofunctor H on the category baℓ of bounded archimedean ℓ-

algebras and show that there is a dual adjunction between the category Alg(H) of algebras for

H and the category Coalg(V) of coalgebras for the Vietoris endofunctor V on the category

of compact Hausdorff spaces. We prove that Gelfand duality lifts to a dual equivalence

between Coalg(V) and the full reflective subcategory Algu(H) of Alg(H). We introduce an

endofunctor Hu on the full reflective subcategory of baℓ consisting of uniformly complete

objects of baℓ and show that Alg(Hu) is isomorphic to Algu(H), thus providing an alternate

view of Algu(H). On the one hand, these results generalize those of [1, 20] for the category

of coalgebras of the Vietoris endofunctor on the category of Stone spaces. On the other

hand, they provide an alternate, more categorical proof of a recent result of [6].

1. Introduction

It is a well-known result in modal logic that the category MA of modal algebras is dually

equivalent to the category DF of descriptive frames. This result has its origins in the work

of Jónsson and Tarski [19], which is why it is often referred to as Jónsson-Tarski duality. In

its present form it was established by Esakia [13] and Goldblatt [14] (but see also Halmos

[15]).

A descriptive frame is a Stone space (compact Hausdorff zero-dimensional space) X

equipped with a binary relation R that is continuous, meaning that the corresponding map

ρR : X → V(X) into the Vietoris space of X, given by

ρR(x) = R[x] = {y | xRy},

is a well-defined continuous map. In fact, DF is isomorphic to the category Coalg(V) of coal-
gebras for the Vietoris endofunctor V on the category Stone of Stone spaces. Abramsky [1]

and Kupke, Kurz, and Venema [20] defined the dual endofunctor H on the category BA of

boolean algebras. They showed that the category Alg(H) of algebras for H is isomorphic to

MA, and proved that Stone duality between BA and Stone lifts to a dual equivalence between

Alg(H) and Coalg(V). This yields an elegant new proof of Jónsson-Tarski duality.

Let KHaus be the category of compact Hausdorff spaces and continuous maps. Then Stone

is a full subcategory of KHaus. There are several generalizations of Stone duality to KHaus.

To outline one such generalization, we point out that in Stone duality we work with the

boolean algebra of clopens, which correspond to continuous characteristic functions. Since
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an arbitrary compact Hausdorff space X does not have enough clopens, it is natural to

work instead with the ring C(X) of all continuous real-valued functions. This gives rise to

the celebrated Gelfand duality between KHaus and the category of bounded archimedean

ℓ-algebras that in addition are uniformly complete (see Section 2.1 for details). Up to

isomorphism, these are exactly the rings C(X) for X ∈ KHaus.

The Vietoris endofunctor V : Stone → Stone is the restriction of the Vietoris endofunctor

V : KHaus → KHaus. We call a relation R on X ∈ KHaus continuous if ρR : X → V(X) is a

well-defined continuous map. The pairs (X,R), whereX ∈ KHaus and R is a continuous rela-

tion on R, generalize descriptive frames. Following [6], we call such pairs compact Hausdorff

frames, and denote the resulting category by KHF. Then DF is a full subcategory of KHF and

the isomorphism between DF and the category of coalgebras for V : Stone → Stone extends

to an isomorphism between KHF and the category of coalgebras for V : KHaus → KHaus.

Our aim is to generalize the endofunctor H : BA → BA that is the algebraic counterpart of

V : Stone → Stone to an endofunctor on the category baℓ of bounded archimedean ℓ-algebras

so that it is the algebraic counterpart of V : KHaus → KHaus. For this we need to overcome

several obstacles. Firstly, the construction of H : BA → BA utilizes the existence of free

boolean algebras. However, as was shown in [7], free algebras on sets do not exist in baℓ.

Instead we need to work with free algebras on weighted sets (see Section 2.2). Secondly,

since KHaus is dually equivalent to the reflective subcategory ubaℓ of baℓ consisting of

uniformly complete objects in baℓ, additional care is needed when transitioning from baℓ

to its subcategory ubaℓ.

We first construct the endofunctor H : baℓ → baℓ. This we do by viewing each A ∈ baℓ

as a weighted set, taking the free object in baℓ on this weighted set, and then modding it

out by the relations that are motivated by the definition of a modal operator on A ∈ baℓ

given in [6]. One of our main results is Theorem 5.8, which establishes that the dual compact

Hausdorff space ofH(A) is homeomorphic to the Vietoris space of the dual compact Hausdorff

space of A. This paves the way to prove a dual adjunction between Alg(H) and Coalg(V).
We show that this dual adjunction restricts to a dual equivalence between Coalg(V) and

the full reflective subcategory Algu(H) of Alg(H), thus lifting Gelfand duality. We also

introduce an endofunctor Hu : ubaℓ → ubaℓ and show that Algu(H) is isomorphic to

Alg(Hu), thus providing an alternate view of the category Algu(H). The obtained results

show that the endofunctor H : baℓ → baℓ is the algebraic countrepart of the Vietoris

endofunctor V : KHaus → KHaus, yielding a generalization of the results of Kupke, Kurz,

and Venema [20] from Stone to KHaus.

The definition in [6] of a modal operator on A ∈ baℓ has resulted in the category mbaℓ of

modal bounded archimedean ℓ-algebras and its reflective subcategory mubaℓ consisting of

uniformly complete objects. The main result of [6] establishes that there is a dual adjunction

between mbaℓ and KHF, which restricts to a dual equivalence between mubaℓ and KHF.

This is a common generalization of both Gelfand duality and Jónsson-Tarski duality. In this

paper we show that Alg(H) is isomorphic tombaℓ and that Algu(H) is isomorphic tomubaℓ.

From this the main result of [6] follows. In fact, our approach provides an alternate, more

categorical proof of the result of [6]. Consequently, we arrive at the following diagram, where
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≃op represents a dual equivalence, ∼= an isomorphism, and ←↪ an embedding of categories.

Alg(H) Algu(H)
∼=←−−→ Alg(Hu) Coalg(V)

mbaℓ mubaℓ KHF

≃op

∼=∼= ∼=

≃op

The paper is organized as follows. Section 2 provides the necessary background for the

paper, including Gelfand duality, the construction of free objects in baℓ, and the definition

of modal operators on objects of baℓ. In Section 3 we introduce the endofunctor H on baℓ,

and in Section 4 we show that the category of algebras for H is isomorphic to mbaℓ. We

relate H to the Vietoris functor V in Section 5 by showing that for A ∈ baℓ, the Yosida

space of H(A) is homeomorphic to the Vietoris space of the Yosida space of A. We prove our

main result in Section 6, establishing a dual adjunction between Alg(H) and Coalg(V). We

then introduce a reflective subcategory Algu(H) of Alg(H) and show that this dual adjunction

restricts to a dual equivalence between Algu(H) and Coalg(V). We also provide an alternate

view of the category Algu(H) as Alg(Hu). In Section 7 we derive the main result of [6],

showing that there is a dual adjunction between mbaℓ and KHF, which restricts to a dual

equivalence between mubaℓ and KHF. In Section 8 we show how the exclusion of the empty

set from the construction of the Vietoris space results in the modification of the H functor

to the functor H∗ such that Alg(H∗) is isomorphic to the full subcategory mbaℓD of those

(A,□) where □ corresponds to a serial relation. Finally, in Section 9 we relate our results

to those of [20].

2. Preliminaries

In this section we provide the necessary background for the rest of the paper. In § 2.1 we

recall Gelfand duality, in § 2.2 free objects in baℓ over weighted sets, and finally in § 2.3

modal operators on algebras in baℓ and a generalization of Gelfand duality to this setting.

2.1. Gelfand duality. For basic facts about lattice-ordered rings and algebras we use

Birkhoff’s book [10, Ch. XIII and onwards] as our main reference. All rings we consider

are assumed to be commutative and unital.

Definition 2.1.

(1) A ring A with a partial order ≤ is a lattice-ordered ring, or an ℓ-ring for short,

provided (A,≤) is a lattice, a ≤ b implies a+c ≤ b+c for each c, and 0 ≤ a, b implies

0 ≤ ab.

(2) An ℓ-ring A is an ℓ-algebra if it is an R-algebra and for each 0 ≤ a ∈ A and 0 ≤ r ∈ R
we have 0 ≤ r · a.

(3) An ℓ-ring A is bounded if for each a ∈ A there is n ∈ N such that a ≤ n · 1 (that is,

1 is a strong order unit).

(4) An ℓ-ring A is archimedean if for each a, b ∈ A, whenever n · a ≤ b for each n ∈ N,
then a ≤ 0.
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(5) An ℓ-algebra morphism α : A → B is both an R-algebra and lattice homomorphism.

It is unital if α(1) = 1.

(6) Let baℓ be the category of bounded archimedean ℓ-algebras and unital ℓ-algebra

morphisms.

Let A ∈ baℓ. For a ∈ A, define the absolute value of a by

|a| = a ∨ (−a).

If we set the positive and negative parts of a to be a+ = a ∨ 0 and a− = (−a)+, then

a = a+ − a− and |a| = a+ + a−.

The norm of a is defined by

||a|| = inf{r ∈ R | |a| ≤ r · 1}.

If X ∈ KHaus, then C(X) ∈ baℓ and the definition of the norm of f ∈ C(X) coincides with

the usual definition

‖f‖ = sup{|f(x)| | x ∈ X}.
If α : A → B is a baℓ-morphism, it is easy to see that ‖α(a)‖ ≤ ‖a‖, α(a+) = α(a)+, and

α(r) = r for all r ∈ R, where we identify r with r · 1.

Definition 2.2. We call A ∈ baℓ uniformly complete if its norm is complete. Let ubaℓ be

the full subcategory of baℓ consisting of uniformly complete objects of baℓ.

Theorem 2.3 (Gelfand duality). There is a dual adjunction between baℓ and KHaus which

restricts to a dual equivalence between ubaℓ and KHaus.

We briefly describe the functors C : KHaus → baℓ and Y : baℓ → KHaus establishing

the dual adjunction of Theorem 2.3; for details see [8, Sec. 3] and the references therein.

For a compact Hausdorff space X let C(X) := C(X) be the ring of (necessarily bounded)

continuous real-valued functions on X. For a continuous map ϕ : X → Y let C(ϕ) : C(Y ) →
C(X) be defined by C(ϕ)(f) = f ◦ ϕ for each f ∈ C(Y ). Then C : KHaus → baℓ is a

well-defined contravariant functor.

For A ∈ baℓ, we recall that an ideal I of A is an ℓ-ideal if |a| ≤ |b| and b ∈ I imply a ∈ I.

If A ∈ baℓ, then we can associate to A a compact Hausdorff space as follows. Let YA be the

space of maximal ℓ-ideals of A, whose closed sets are exactly sets of the form

Zℓ(I) = {M ∈ YA | I ⊆ M},

where I is an ℓ-ideal of A. It follows from the work of Yosida [24] that YA ∈ KHaus. As is

customary, we refer to YA as the Yosida space of A and set Y(A) = YA. For a morphism α

in baℓ we let Y(α) = α−1. Then Y : baℓ → KHaus is a well-defined contravariant functor,

and the functors C and Y yield a dual adjunction between baℓ and KHaus.

For X ∈ KHaus we have that εX : X → YC(X) is a homeomorphism where

εX(x) = {f ∈ C(X) | f(x) = 0}.

For A ∈ baℓ define ζA : A → C(YA) by ζA(a)(M) = r where r is the unique real number

satisfying a + M = r + M . Then ζA is a monomorphism in baℓ separating points of YA.
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Therefore, by the Stone-Weierstrass theorem, ζA : A → C(YA) is the uniform completion

of A. Thus, if A is uniformly complete, then ζA is an isomorphism. Consequently, the

contravariant adjunction restricts to a dual equivalence between ubaℓ and KHaus, yielding

Gelfand duality. Another consequence of these considerations is the following well-known

result.

Proposition 2.4. ubaℓ is a full reflective subcategory of baℓ, and the reflector assigns to

each A ∈ baℓ its uniform completion CY(A) = C(YA) ∈ ubaℓ.

Remark 2.5. Since C and Y form a dual adjunction between baℓ and KHaus, the natural

transformations ζ and ε satisfy Y(ζA) ◦ εYA
= 1YA

and C(εX) ◦ ζC(X) = 1C(X) for each

A ∈ baℓ and X ∈ KHaus by [21, Thm. IV.1.1]. Moreover, since ε is a natural isomorphism,

Y(ζA) = ε−1
YA

and ζC(X) = C(εX)−1.

If A is an ℓ-subalgebra of B ∈ baℓ, we say A is uniformly dense in B if A is dense in B

with respect to the topology induced by the norm on B. In the following lemma we collect

several facts that will be used subsequently.

Lemma 2.6. [8, Lem. 2.9] Let α : A → B be a baℓ-morphism.

(1) Y(α) is onto iff α is 1-1 iff α is a monomorphism.

(2) Y(α) is 1-1 iff α[A] is uniformly dense in B iff α is an epimorphism.

(3) Y(α) is a homeomorphism iff α is a bimorphism.

2.2. Free objects in baℓ. By [7, Thm. 3.2], free objects on nonempty sets do not exist in

baℓ. To see this, observe that each baℓ-morphism α : A → B satisfies ‖α(a)‖ ≤ ‖a‖ for

each a ∈ A. Now suppose that a free object F ∈ baℓ exists on X ∕= ∅. Let f : X → F

be the corresponding map, let x ∈ X, and let r ∈ R satisfy r > ‖f(x)‖. Define g : X → R
by g(y) = r for each y ∈ X. Then there is a baℓ-morphism α : F → R with α ◦ f = g.

Therefore, α(f(x)) = g(x) = r, violating the inequality ‖α(f(x))‖ ≤ ‖f(x)‖. Taking this

into account leads to the following notion.

Definition 2.7. [7, Def. 3.3]

• A weight function on a set X is a function w from X into the nonnegative real

numbers.

• A weighted set is a pair (X,w) where X is a set and w is a weight function on X.

• A weighted set morphism f : (X1, w1) → (X2, w2) is a function f : X1 → X2 satisfying

w2(f(x)) ≤ w1(x) for each x ∈ X.

There is a forgetful functor U from baℓ to the category of weighted sets that associates

to each A ∈ baℓ the weighted set (A, ‖ · ‖). By [7, Thm. 3.9], U has a left adjoint, which is

constructed by associating to each weighted set (X,w) the free unital ℓ-algebra on the set

X and then modding it out by the appropriate relations using the weight function w. Thus,

we arrive at the following theorem.

Theorem 2.8. Free objects in baℓ exist over weighted sets.
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2.3. Modal operators on bounded archimedean ℓ-algebras. In [6] the notion of a

modal operator on A ∈ baℓ was introduced, generalizing that of a modal operator on a

boolean algebra. The motivating example comes from a continuous relation R on a compact

Hausdorff space X (see Definition 2.11). If R is serial (meaning R[x] ∕= ∅ for each x ∈ X),

then there is a natural definition of a modal operator □R on C(X), given by □R(f)(x) =

inf fR[x] for each x ∈ X. It is straightforward to see that □R preserves meet, 0, 1, addition

by a scalar, and multiplication by a nonnegative scalar. If R is not serial, then □R needs to

be redefined since R[x] may be empty. For an arbitrary continuous relation we define □R by

(□Rf)(x) =

!
inf fR[x] if R[x] ∕= ∅

1 if R[x] = ∅.

If R is not serial, then □R0 ∕= 0, and the properties of □R become more complicated. Looking

carefully at those properties, we arrive at the following definition.

Definition 2.9. [6, Def. 3.10]

(1) Let A ∈ baℓ. We say that a unary function □ : A → A is a modal operator on A

provided □ satisfies the following axioms for each a, b ∈ A and r ∈ R:
(M1) □(a ∧ b) = □a ∧□b.

(M2) □r = r + (1− r)□0.

(M3) □(a+) = (□a)+.

(M4) □(a+ r) = □a+□r −□0.

(M5) □(ra) = (□r)(□a) provided r ≥ 0.

(2) If □ is a modal operator on A ∈ baℓ, then we call the pair (A,□) a modal bounded

archimedean ℓ-algebra.

(3) Let mbaℓ be the category of modal bounded archimedean ℓ-algebras and unital

ℓ-algebra homomorphisms preserving □.

(4) Let mubaℓ be the full subcategory of mbaℓ consisting of (A,□) with A ∈ ubaℓ.

Remark 2.10. Let (A,□) ∈ mbaℓ. Axiom (M1) implies that □ is order preserving. From

(M2) we have □1 = 1. Finally (M3) shows that if 0 ≤ a, then □a = (□a)+, so 0 ≤ □a. In

particular, 0 ≤ □0.

Definition 2.11. [5, Sec. 2]

(1) A binary relation R on a compact Hausdorff space X is continuous if:

(a) R[x] is closed for each x ∈ X.

(b) F ⊆ X closed implies R−1[F ] is closed.

(c) U ⊆ X open implies R−1[U ] is open.

(2) If X is compact Hausdorff and R is a continuous relation on X, then we call (X,R)

a compact Hausdorff frame.

(3) A bounded morphism (or p-morphism) between (X,R) and (Y, S) is a map f : X → Y

satisfying f [R[x]] = S[f(x)] for each x ∈ X (equivalently, f−1[S−1[y]] = R−1[f−1[y]]

for each y ∈ Y ).

(4) Let KHF be the category of compact Hausdorff frames and continuous bounded mor-

phisms.
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Theorem 2.12. [6, Thm. 5.3] There is a dual adjunction between mbaℓ and KHF which

restricts to a dual equivalence between mubaℓ and KHF.

The functors establishing the adjunction of Theorem 2.12 extend those of Gelfand duality.

If (A,□) ∈ mbaℓ, define R□ on YA by xR□y if 0 ≤ a ∈ y implies □a ∈ x. Then Y(A,□) :=

(YA, R□) ∈ KHF. Going the other direction, if (X,R) ∈ KHF, define □R on C(X) as above.

Then C(X,R) := (C(X),□R) ∈ mbaℓ.

3. The endofunctor H : baℓ → baℓ

In this section we define the endofunctor H on baℓ. Let A ∈ baℓ. Following [7, Def. 3.7],

we call an ℓ-ideal I of A archimedean if A/I is archimedean (and hence A/I ∈ baℓ).

Archimedean ℓ-ideals were studied by Banaschewski in the category of archimedean f -rings

(see [3, App. 2] and [4]). It is easy to see that the intersection of archimedean ℓ-ideals is

archimedean, and hence for each S ⊆ A there is a least archimedean ℓ-ideal containing S.

As is standard, we call it the archimedean ℓ-ideal generated by S.

As we pointed out in Section 2.2, for each A ∈ baℓ, the norm on A is a weight function

on A. Below we will work with a different weight function on A.

Definition 3.1. Let A ∈ baℓ. Define wA on A by wA(a) = max{‖a‖, 1}.

It is clear that (A,wA) is a weighted set. We use wA in order for a modal operator to be a

weighted set morphism (see Lemma 4.2). The next definition is one of the main definitions

of the paper and is motivated by the axioms defining a modal operator on A ∈ baℓ.

Definition 3.2. Let A ∈ baℓ.

(1) Let F (A) be the free object in baℓ on the weighted set (A,wA), and let fA : A → F (A)

be the associated map. We let IA be the archimedean ℓ-ideal of F (A) generated by

the following elements, where a, b ∈ A and r ∈ R:
(a) fA(a ∧ b)− fA(a) ∧ fA(b);

(b) fA(r)− r − (1− r)fA(0);

(c) fA(a
+)− fA(a)

+;

(d) fA(a+ r)− fA(a)− fA(r) + fA(0);

(e) fA(ra)− fA(r)fA(a) if 0 ≤ r.

(2) Let H(A) = F (A)/IA and hA : A → H(A) be the composition of fA with the quotient

map π : F (A) → H(A).

(3) For a ∈ A let □a = hA(a).

Remark 3.3. The set {□a | a ∈ A} generates H(A) (in baℓ), and these generators satisfy

the following relations:

(F1) □a∧b = □a ∧□b.

(F2) □r = r + (1− r)□0.

(F3) □a+ = (□a)
+.

(F4) □a+r = □a +□r −□0.

(F5) □ra = □r□a if 0 ≤ r.
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Theorem 3.4. H is a covariant endofunctor on baℓ.

Proof. Let α : A → B be a baℓ-morphism. Then α : (A,wA) → (B,wB) is a weighted set

morphism since

wB(α(a)) = max{‖α(a)‖, 1} ≤ max{‖a‖, 1} = wA(a)

for each a ∈ A. Therefore, there is a unique baℓ-morphism τ : F (A) → F (B) making the

following diagram commute.

A F (A)

B F (B)

fA

α τ

fB

We show that τ [IA] ⊆ IB. From this it will follow that there is an induced baℓ-morphism

τ : H(A) → H(B) such that τ ◦ hA = hB ◦α. To see that τ [IA] ⊆ IB, it suffices to show that

the five sets of generators (a)–(e) of IA are sent to IB by τ . Since the arguments are similar,

we only give the argument for the generators of type (a).

Let a, b ∈ A. Then

τ(fA(a ∧ b)− fA(a) ∧ fA(b)) = τfA(a ∧ b)− τfA(a) ∧ τfA(b)

= fBα(a ∧ b)− fBα(a) ∧ fBα(b)

= fB(α(a) ∧ α(b))− fBα(a) ∧ fBα(b)

∈ IB.

Therefore, τ induces a baℓ-morphism τ : H(A) → H(B). We set H(α) = τ . It follows

that H(α) is the unique baℓ-morphism that makes the following diagram commute.

A H(A)

B H(B)

hA

α H(α)

hB

It is clear that H sends identity morphisms to identity morphisms. If α : A → B and

γ : B → C are baℓ-morphisms, then

H(γ ◦ α) ◦ hA = hC ◦ γ ◦ α = H(γ) ◦ hB ◦ α = H(γ) ◦H(α) ◦ hA.

Since hA[A] generates H(A), we see that H(γ ◦ α) = H(γ) ◦ H(α). Thus, H is a covariant

functor. □

Remark 3.5. From the commutativity H(α)◦hA = hB ◦α it follows that H(α)(□a) = □α(a)

for each a ∈ A. This will be used subsequently.

4. Alg(H) and mbaℓ

In this section we show that the category Alg(H) of algebras for the endofunctor H is

isomorphic to mbaℓ. We start by recalling the definition of algebras for an endofunctor

(see, e.g., [2, Def. 5.37]).
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Definition 4.1. Let C be a category and T : C → C an endofunctor on C.

(1) An algebra for T is a pair (A, f) where A is an object of C and f : T(A) → A is a

C-morphism.

(2) Let (A1, f1) and (A2, f2) be two algebras for T. A morphism between (A1, f1) and

(A2, f2) is a C-morphism α : A1 → A2 such that the following square is commutative.

T(A1) T(A2)

A1 A2

f1

T(α)

f2

α

(3) Let Alg(T) be the category whose objects are algebras for T and whose morphisms

are morphisms of algebras.

Lemma 4.2. If (A,□) ∈ mbaℓ, then □ : (A,wA) → (A, ‖ · ‖) is a weighted set morphism.

Proof. Let 0 ≤ r ∈ R. We first show that □r ≤ max{r, 1}. If r ≤ 1, then □r ≤ □1 = 1 by

Remark 2.10. If 1 ≤ r, then □r = r + (1 − r)□0 ≤ r since 0 ≤ □0, again by Remark 2.10.

Therefore, □r ≤ max{r, 1}.
We next show that −□r ≤ □(−r). We have □0 = □(−r + r) = □(−r) + □r − □0, so

0 ≤ 2□0 = □(−r) +□r. Thus, −□r ≤ □(−r).

To finish the proof, let r = ‖a‖. Then −r ≤ a ≤ r, so □(−r) ≤ □a ≤ □r. We have

□r ≤ max{r, 1} and −□r ≤ □(−r). Therefore,

−max{‖a‖, 1} = −max{r, 1} ≤ −□r ≤ □(−r) ≤ □a ≤ □r ≤ max{r, 1}
= max{‖a‖, 1},

which implies that ‖□a‖ ≤ max{‖a‖, 1} = wA(a). Thus, □ : (A,wA) → (A, ‖ · ‖) is a

weighted set morphism. □

Lemma 4.3. There is a covariant functor M : Alg(H) → mbaℓ sending (A, σ) to (A,□σ),

where □σa = σ(□a) for each a ∈ A, and an Alg(H)-morphism α to itself.

Proof. Let (A, σ) ∈ Alg(H) and define □σ on A by □σa = σ(□a). It follows from Defi-

nition 2.9 and Remark 3.3 that (A,□σ) ∈ mbaℓ. If α : (A, σ) → (A′, σ′) is an Alg(H)-

morphism,

H(A) A

H(A′) A′

σ

H(α) α

σ′

then

α(□σa) = ασ(□a) = σ′H(α)(□a) = σ′(□α(a)) = □σ′α(a),

where the second-to-last equality follows from Remark 3.5. Therefore, α is an mbaℓ-

morphism. It is clear that M preserves identity morphisms and compositions. Thus, M
is a covariant functor. □
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Lemma 4.4. There is a covariant functor N : mbaℓ → Alg(H) sending (A,□) to (A, σ□),

where σ□(□a) = □a for each a ∈ A, and an mbaℓ-morphism α to itself.

Proof. Since □ is a weighted set morphism by Lemma 4.2, there is a baℓ-morphism τ :

F (A) → A satisfying τfA(a) = □a by Theorem 2.8. It is clear from Definitions 2.9(1)

and 3.2(1) that IA ⊆ ker(τ), so there is a baℓ-morphism σ□ : H(A) → A satisfying σ□(□a) =

□a. We set N(A,□) = (A, σ□) ∈ Alg(H). If α : (A,□) → (A′,□′) is an mbaℓ-morphism, we

show that α is an Alg(H)-morphism. For this we show that the following diagram commutes.

H(A) A

H(A′) A′

σ□

H(α) α

σ□′

By Remark 3.5, H(α)(□a) = □α(a). Therefore, because α preserves □, we have ασ□(□a) =

α(□a) = □α(a) and σ□′H(α)(□a) = σ□′(□α(a)) = □α(a). As {□a | a ∈ A} generates H(A),

we see that α ◦ σ□ = σ□′ ◦ H(α), so α is an Alg(H)-morphism. It is clear that N preserves

identity morphisms and compositions. Thus, N is a covariant functor. □

Theorem 4.5. The functors M and N yield an isomorphism of categories between Alg(H)

and mbaℓ.

Proof. Let (A, σ) ∈ Alg(H). Then M(A, σ) = (A,□σ). Therefore, NM(A, σ) = (A, σ□σ)

where σ□σ(□a) = □σa = σ(□a). Thus, σ□σ = σ, and so NM = 1Alg(H).

Next, let (A,□) ∈ mbaℓ. Then N(A,□) = (A, σ□). Therefore, MN(A,□) = (A,□σ□).

But □σ□a = σ□(□a) = □a by the definition of σ□, so □σ□ = □. Thus, MN = 1mbaℓ.

Consequently, M and N yield an isomorphism between Alg(H) and mbaℓ. □

5. H and the Vietoris endofunctor

In this section we relate H to the Vietoris endofunctor V : KHaus → KHaus by showing

that the Yosida space YH(A) for A ∈ baℓ is homeomorphic to V(YA).

Let X ∈ KHaus. We recall that the Vietoris space V(X) is the set of closed subsets of X,

topologized as follows. If U is an open subset of X, let

□U = {F ∈ V(X) | F ⊆ U},
♦U = {F ∈ V(X) | F ∩ U ∕= ∅}.

The Vietoris topology on V(X) is the topology with the subbasis

{□U ∩ ♦V | U, V open in X}.

We extend V to a functor as follows. If ϕ : X → Y is a continuous function between compact

Hausdorff spaces, define V(ϕ) : V(X) → V(Y ) by V(ϕ)(F ) = ϕ[F ], the image of F under ϕ.

It is well known that V(ϕ) is a well-defined continuous map.

Remark 5.1. The Vietoris space of X is usually defined as the space of nonempty closed

subsets of X (see, e.g., [12, p. 120]). However, we follow [18, p. 111] in including ∅ in

V(X). This is necessary for our considerations since the continuous relation R on X may
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not be serial, and hence there may be x ∈ X with R[x] = ∅. Therefore, ρR(x) = ∅,

and we need ∅ ∈ V(X) for ρR to be well defined. However, in Section 8 we will consider

V∗(X) = V(X) \ {∅} and relate it to the full subcategory of mbaℓ corresponding to those

(X,R) where R is a serial relation. This subcategory will be characterized by the identity

□0 = 0.

Lemma 5.2. Let A ∈ baℓ. Define gA : A → C(VYA) by

gA(a)(F ) =

!
inf ζA(a)[F ] if F ∕= ∅;

1 if F = ∅.

Then gA : (A,wA) → (C(VYA), ‖ · ‖) is a well-defined weighted set morphism.

Proof. To simplify notation we write g for gA. To see that g is well defined it is sufficient to

show that g(a) is continuous for each a ∈ A. Let r, s ∈ R with r < s. We show that

g(a)−1(r, s) =

!
□ζA(a)−1(r,∞) ∩ ♦ζA(a)−1(−∞,s) if 1 /∈ (r, s)

(□ζA(a)−1(r,∞) ∩ ♦ζA(a)−1(−∞,s)) ∪□∅ if 1 ∈ (r, s).

Suppose that 1 /∈ (r, s). Then g(a)(F ) ∈ (r, s) implies that F ∕= ∅. Therefore, since F is

compact and hence ζA(a) attains its infimum on F , we have

F ∈ g(a)−1(r, s) iff r < inf ζA(a)[F ] < s

iff r < min ζA(a)[F ] < s

iff F ∈ □ζA(a)−1(r,∞) ∩ ♦ζA(a)−1(−∞,s).

On the other hand, if 1 ∈ (r, s), then ∅ ∈ g(a)−1(r, s). Therefore, since □∅ = {∅}, the
calculation above yields the second case. Thus, g(a) is continuous.

It is left to show that g is a weighted set morphism. Let a ∈ A. Then wA(a) = max{‖a‖, 1}.
Suppose that ‖a‖ = r. Then −r ≤ a ≤ r. If F is nonempty, then −r ≤ inf ζA(a)[F ] ≤ r, so

| inf ζA(a)[F ]| ≤ r. Also, g(a)(∅) = 1. Therefore,

‖g(a)‖ = sup{|g(a)(F )| | F ∈ V(YA)} = sup{{| inf ζA(a)[F ]| | F ∕= ∅} ∪ {1}}
= max{sup{| inf ζA(a)[F ]| | F ∕= ∅}, 1} ≤ max{r, 1} = wA(a).

Thus, g : (A,wA) → (C(VYA), ‖ · ‖) is a weighted set morphism. □

Remark 5.3. In the proof of Lemma 5.4 we identify X with YC(X) via the homeomorphism

εX : X → YC(X) given in Section 2.1. We also identify YA with hombaℓ(A,R) as follows.

If M ∈ YA, then it is well known that A/M ∼= R (see, e.g., [16, Cor. 2.7]), so there is a

baℓ-morphism A → R sending a ∈ A to r ∈ R iff a− r ∈ M . Conversely, ρ ∈ hombaℓ(A,R)
goes to ker(ρ) ∈ YA.

Lemma 5.4. There is a (unique) baℓ-morphism τA : F (A) → C(VYA) satisfying τA ◦ fA =

gA, the image of τA is uniformly dense in C(VYA), and ker(τA) contains IA. Therefore, there

is a (unique) baℓ-morphism ηA : H(A) → C(VYA) satisfying ηA ◦ hA = gA and whose image
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is uniformly dense in C(VYA).

F (A)

A H(A)

C(VYA)

π

τA
hA

gA

fA

ηA

Proof. The existence and uniqueness of τA follows from Lemma 5.2 and Theorem 2.8. To

show that the image of τA is uniformly dense, by Lemma 2.6(2) it suffices to show that Y(τA) :
YC(VYA) → YF (A) is 1-1. We may identify YF (A) with hombaℓ(F (A),R) and YC(VYA) with V(YA)

by Remark 5.3. Under these identifications, if F ∈ VYA we let ρF ∈ hombaℓ(F (A),R) be the
corresponding homomorphism. For a ∈ A and r ∈ R we have

ρF (fA(a)) = r iff fA(a)− r ∈ Y(τA)(εVYA
(F ))

iff fA(a)− r ∈ τ−1
A (εVYA

(F ))

iff τAfA(a)− r ∈ εVYA
(F )

iff τAfA(a)(F ) = r

iff gA(a)(F ) = r.

Therefore, ρF satisfies ρF (fA(a)) = inf ζA(a)[F ] if F ∕= ∅, and ρ∅ is the function sending

each fA(a) to 1. To see that Y(τA) is 1-1, suppose that C ∕= D. If one of C,D is empty, say

C = ∅, then ρCfA(0) = 1 and ρDfA(0) = inf ζA(0)[D] = 0 since D is nonempty. Therefore,

ρC ∕= ρD. If C,D ∕= ∅, without loss of generality we may assume that C ∕⊆ D. Then there

is y ∈ YA with y ∈ C and y /∈ D. Since YA is compact Hausdorff, there is b ∈ C(YA) with

0 ≤ b ≤ 1, b[D] = {1} and b(y) = 0. Because ζA[A] is uniformly dense in C(YA), there is

a ∈ A with ‖b − ζA(a)‖ < 1/3. Therefore, inf ζA(a)[D] ≥ 2/3 and inf ζA(a)[C] ≤ 1/3. This

shows that ρCfA(a) ∕= ρDfA(a), so ρC ∕= ρD. Thus, Y(τA) is 1-1, and hence the image of

τA : F (A) → C(VYA) is uniformly dense.

To show that IA ⊆ ker(τA), it is sufficient to show that ker(τA) contains all five classes of

generators of IA. Because the proof is similar to that of [6, Lem. 3.8], we only demonstrate (a).

Let a, b ∈ A. We have

τA(fA(a ∧ b)− fA(a) ∧ fA(b)) = τAfA(a ∧ b)− τAfA(a) ∧ τAfA(b)

= gA(a ∧ b)− gA(a) ∧ gA(b).
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Therefore, we need to prove that gA(a ∧ b) = gA(a)∧gA(b). Both sides send ∅ to 1. Suppose

that F ∈ V(YA) is nonempty. Then

gA(a ∧ b)(F ) = inf(ζA(a) ∧ ζA(b))[F ] = min(ζA(a) ∧ ζA(b))[F ]

= min{(ζA(a) ∧ ζA(b))(x) | x ∈ F}
= min{min{ζA(a)(x), ζA(b)(x)} | x ∈ F}
= min{min ζA(a)[F ],min ζA(b)[F ]}
= (gA(a) ∧ gA(b))(F ).

Thus, gA(a ∧ b) = gA(a) ∧ gA(b). □

We next show that ηA is 1-1. For this we require a technical result, which is an analogue

of [6, Prop. 4.8].

Definition 5.5. Let A ∈ baℓ.

(1) If x ∈ YH(A), set □−1x = {a ∈ A | □a ∈ x}.
(2) If S ⊆ A, set S+ = {s ∈ S | 0 ≤ s}.
(3) Define a binary relation R□ ⊆ YH(A)×YA by setting xR□y if y+ ⊆ □−1x for each x ∈ YH(A)

and y ∈ YA.

Proposition 5.6. Let A ∈ baℓ and x ∈ YH(A). Then (□−1x)+ =
"
{y+ | y ∈ YA, xR

□y}.

Proof. The proof is the same as that of [6, Prop. 4.8] after replacing □a with □a and R□
with R□. □

Lemma 5.7. Let ρ : H(A) → R be a baℓ-morphism.

(1) ρ(□0) ∈ {0, 1}.
(2) If ρ(□0) = 1, then ρ(□a) = 1 for each a ∈ A.

Proof. (1) If we set r = 0 = a in (F5), we get □0□0 = □0, so □0 is an idempotent. Therefore,

ρ(□0) ∈ R is an idempotent, and hence ρ(□0) ∈ {0, 1}.
(2) Suppose that ρ(□0) = 1. By (F5), □0□a = □0 for each a ∈ A. So applying ρ to both

sides yields ρ(□a) = 1. □

Theorem 5.8. For A ∈ baℓ, the Yosida space of H(A) is homeomorphic to V(YA).

Proof. The map ηA : H(A) → C(VYA) induces a continuous map Y(ηA) : YC(VYA) → YH(A).

We identify YC(VYA) with V(YA) and YH(A) with hombaℓ(H(A),R) as in Remark 5.3. As

we saw in the proof of Lemma 5.4, under these identifications Y(ηA)(F ) := ρF satisfies

ρF (□a) = inf ζA(a)[F ] if F is nonempty, and ρF (□a) = 1 if F = ∅. By Lemma 5.4, the

image of ηA is uniformly dense in C(VYA). Therefore, Y(ηA) is 1-1 by Lemma 2.6(2).

To show that Y(ηA) is onto, let ρ : H(A) → R be a baℓ-morphism. If ρ(□0) = 1, then

ρ(□a) = 1 for all a ∈ A by Lemma 5.7(2). Therefore, ρ and ρ∅ agree on each □a. Since these

generate H(A), we see that ρ = ρ∅. By Lemma 5.7(1), we now may assume that ρ(□0) = 0.

By (F2), ρ(□r) = r for each r ∈ R. Let

S = {(a− ρ(□a))
− | a ∈ A}
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and F = {M ∈ YA | S ⊆ M}, a closed subset of YA. We claim that ρ = ρF . Let a ∈ A and

y ∈ F . Then (a − ρ(□a))
− ∈ y. This means 0 ≤ (ζA(a) − ρ(□a))(y) by [9, Rem. 2.11], so

ρ(□a) ≤ ζA(a)(y). Since this is true for all y ∈ F , we see that ρ(□a) ≤ inf ζA(a)[F ]. Thus, it

suffices to prove that for each a ∈ A there is y ∈ F with ζA(a)(y) = ρ(□a). In other words,

we need to show that there is y ∈ F with a− ρ(□a) ∈ y.

Let x = ker(ρ) ∈ YH(A). If a ∈ A, then

ρ(□a−ρ(□a)) = ρ(□a +□−ρ(□a) −□0) = ρ(□a)− ρ(□a) = 0

by (F4) and the fact that ρ(□r) = r. From this and (F3) we see that

ρ(□(a−ρ(□a))+) = ρ(□+
a−ρ(□a)

) = ρ(□a−ρ(□a))
+ = max{ρ(□a−ρ(□a)), 0} = max{0, 0} = 0,

which implies that (a−ρ(□a))
+ ∈ □−1x. By Proposition 5.6, there is y ∈ YA with xR□y and

(a − ρ(□a))
+ ∈ y. We show that these two facts imply that y ∈ F and ρ(□a) = ζA(a)(y).

Let b ∈ A. Since A/y ∼= R, there is r ∈ R with b − r ∈ y. Therefore, (b − r)+ ∈ y, so

□(b−r)+ ∈ x. Because x = ker(ρ),

0 = ρ(□(b−r)+) = ρ(□+
b−r) = ρ(□b−r)

+ = max{ρ(□b−r), 0} = max{ρ(□b)− r, 0},

so ρ(□b) ≤ r. Consequently, b + y = r + y ≥ ρ(□b) + y, and hence b − ρ(□b) + y ≥ 0 + y.

This implies that (b− ρ(□b))
− ∈ y. Since this is true for all b ∈ A, we get S ⊆ y, so y ∈ F .

Moreover, for b = a we have (a−ρ(□a))
+, (a−ρ(□a))

− ∈ y, so a−ρ(□a) ∈ y. By the above,

this shows that ρ = ρF , so Y(ηA) is onto. Thus, Y(ηA) is a homeomorphism. □

Remark 5.9. By Theorem 5.8, YH(A) is homeomorphic to V(YA). Under this homeomor-

phism, R□ ⊆ YH(A) × YA is identified with the relation R ⊆ V(YA) × YA given by FRy iff

y ∈ F . From this it follows that R[F ] = F , and for U ⊆ YA open, we have R−1[U ] = ♦U and

R−1[YA \ U ] = V(YA) \□U . Consequently, R is a continuous relation, and hence so is R□.

6. Alg(H) and Coalg(V)

In this section we use Theorem 5.8 and standard algebra/coalgebra tools to lift the dual

adjunction between baℓ and KHaus to a dual adjunction between Alg(H) and Coalg(V).
We show that this dual adjunction restricts to a dual equivalence between the reflective

subcategory Algu(H) of Alg(H) and Coalg(V). The category Algu(H) consists of those (A,α) ∈
Alg(H) where A ∈ ubaℓ. This dual equivalence lifts Gelfand duality. We conclude the

section by giving an alternate description of Algu(H) as Alg(Hu) where Hu is the endofunctor

CYH : ubaℓ → ubaℓ.

ubaℓ baℓ KHaus ubaℓH Y C

We start by recalling the definition of coalgebras (see, e.g., [23, Def. 9.1]), which is dual

to the definition of algebras for an endofunctor.

Definition 6.1.

(1) A coalgebra for an endofunctor T : C → C is a pair (B, g) where B is an object of C

and g : B → T(B) is a C-morphism.
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(2) A morphism between two coalgebras (B1, g1) and (B2, g2) for T is a C-morphism

α : B1 → B2 such that the following square is commutative.

B1 B2

T(B1) T(B2)

g1

α

g2

T(α)

(3) Let Coalg(T) be the category whose objects are coalgebras for T and whose morphisms

are morphisms of coalgebras.

The next result follows from [17, Thm. 2.5.9] where it is shown that, under certain condi-

tions, an adjunction lifts to an adjunction between categories of algebras. For our purposes

we reformulate it in the language of dual adjunctions.

Lemma 6.2. Let J : C → C, K : D → D be two endofunctors and P : C → D a contravariant

functor.

C D

C D

P

J K

P

A natural transformation α : P ◦ J → K ◦ P induces a lifting of P to a contravariant functor
#P : Alg(J) → Coalg(K).

If α is an isomorphism and Q : D → C is a contravariant functor such that P and Q form

a dual adjunction, then Q lifts to a contravariant functor #Q : Coalg(K) → Alg(J) such that

the dual adjunction between P and Q induces a dual adjunction between #P and #Q.

We will apply Lemma 6.2 to the following diagram.

baℓ KHaus

baℓ KHaus

Y

H V

Y

In order to do so, we need a natural isomorphism α : YH → VY, which is provided by

Theorem 5.8.

Lemma 6.3. Let A ∈ baℓ. If αA = (Y(ηA) ◦ εVYA
)−1 : YH(A) → VYA, then α : YH → VY is

a natural isomorphism.

Proof. The proof of Theorem 5.8 shows that αA is a homeomorphism for each A. For

naturality, let γ : A → A′ be a morphism in baℓ. We need to prove that the outside square
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of the following diagram is commutative.

YH(A) YC(VYA) VYA

YH(A′) YC(VYA′ ) VYA′

Y(ηA)−1

αA

ε−1
VYA

αA′

VY(γ)
Y(ηA′ )−1

YCV(γ)
ε−1
VYA′

YH(γ)

The right square is commutative since ε is a natural isomorphism. It then suffices to show

that the left square is commutative. For this, since Y is a functor, it suffices to show that η

is natural; that is, we need to show that the following diagram is commutative.

H(A) C(VYA)

H(A′) C(VYA′)

ηA

H(γ) CVY(γ)

ηA′

Because {□a | a ∈ A} generates H(A), to prove commutativity it is enough to show, for each

a ∈ A, that ηA′(H(γ)(□a)) = CVY(γ)(ηA(a)). By Remark 3.5 and Lemma 5.4 we have

ηA′(H(γ)(□a)) = ηA′(□γ(a)) = gA′(γ(a)),

and

CVY(γ)(ηA(a)) = CVY(γ)(gA(a)) = gA(a) ◦ VY(γ).
Let F ∈ VYA′ . If F = ∅, then gA′(γ(a))(F ) = 1 and

(gA(a) ◦ VY(γ))(F ) = gA(a)(Y(γ)(∅)) = gA(a)(∅) = 1.

On the other hand, if F ∕= ∅, then gA′(γ(a))(F ) = inf ζA′(γ(a))[F ] and

(gA(a) ◦ VY(γ))(F ) = gA(a)(Y(γ)(F )) = inf ζA(a)[Y(γ)(F )].

To see these are equal notice that

ζA′(γ(a)) = CY(γ)(ζA(a)) = ζA(a) ◦ Y(γ),

where the first equality follows from the naturality of ζ. This completes the proof that

ηA′(H(γ)(□a)) = CVY(γ)(ηA(a)), and so η is natural. Consequently, α is natural, and since

each αA is a homeomorphism, α is a natural isomorphism. □
Lemma 6.3 allows us to utilize Lemma 6.2 to lift the dual adjunction between baℓ and

KHaus to a dual adjunction between Alg(H) and Coalg(V).

Theorem 6.4. The dual adjunction between Y : baℓ → KHaus and C : KHaus → baℓ lifts

to a dual adjunction between #Y : Alg(H) → Coalg(V) and #C : Coalg(V) → Alg(H).

Remark 6.5. By adapting the proof of [17, Thm. 2.5.9], the functors #C and #Y and the units

of the dual adjunction of Theorem 6.4 can be defined as follows:

For (A,α) ∈ Alg(H), we have #Y(A,α) = (YA, #Yα) ∈ Coalg(V), where
#Yα = ε−1

V(YA) ◦ Y(ηA)
−1 ◦ Y(α) : YA → V(YA).
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YA YH(A) YC(VYA) V(YA)
Y(α)

!Yα

Y(ηA)−1 ε−1
V(YA)

If γ : (A,α) → (A′,α′) is an Alg(H)-morphism, then #Y(γ) = Y(γ).
For (X, σ) ∈ Coalg(V), we have #C(X, σ) = (C(X), #Cσ), where

#Cσ = C(σ) ◦ CV(εX) ◦ ηC(X).

HC(X) C(VYC(X)) C(VX) C(X)
ηC(X)

!Cσ

CV(εX) C(σ)

If ϕ : (X, σ) → (X ′, σ′) is a Coalg(V)-morphism, then #C(ϕ) = C(ϕ).
The units #ζ : 1Alg(H) → #C#Y and #ε : 1Coalg(V) → #Y#C are given by

#ζ(A,α) = ζA and #ε(X,σ) = εX .

Moreover, #ε is a natural isomorphism.

We next identify a subcategory of Alg(H) that is dually equivalent to mubaℓ.

Definition 6.6. Let Algu(H) be the full subcategory of Alg(H) consisting of those (A,α)

with A ∈ ubaℓ.

Corollary 6.7.

(1) The functors #Y and #C restrict to a dual equivalence between Algu(H) and Coalg(V).
(2) Algu(H) is a reflective subcategory of Alg(H).

Proof. (1) Let (A,α) ∈ Alg(H). Then #ζ(A,α) = ζA is an isomorphism iff A ∈ ubaℓ iff

(A,α) ∈ Algu(H). Consequently, #ζ : 1Algu(H) → #C#Y is a natural isomorphism by Remark 6.5.

The same remark also yields that #ε is a natural isomorphism. Therefore, #Y and #C restrict

to a dual equivalence between Algu(H) and Coalg(V) by [21, Thm. IV.4.1].

(2) By (1), the functors #Y and #C form a dual equivalence between Algu(H) and Coalg(V).
If (A,α) ∈ Alg(H), then the morphism #ζ(A,α) is a universal arrow from (A,α) to #Y by [21,

Thm. IV.1.1]. Therefore, Algu(H) is a reflective subcatgory of Alg(H) (see [21, p. 89]). □

Proposition 6.8. The functors M,N yield an isomorphism between Algu(H) and mubaℓ.

Proof. If (A, σ) ∈ Algu(H), then A ∈ ubaℓ, so M(A, σ) = (A,□σ) ∈ mubaℓ. If (A,□) ∈
mubaℓ, then A ∈ ubaℓ, so N(A,□) = (A, σ□) ∈ Algu(H). Therefore, the proof of The-

orem 4.5 shows that M and N restrict to Algu(H) and mubaℓ, respectively, to yield an

isomorphism. □

We finish this section by giving an alternate view of the category Algu(H).

Definition 6.9. We let Hu be the endofunctor CYH on ubaℓ. Therefore, if A ∈ ubaℓ, then

Hu(A) = C(YH(A)) and if α : A → A′ is a ubaℓ-morphism, then Hu(α) = CYH(α).
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Recall from Section 2.1 that if γ : A → B is a baℓ-morphism with B ∈ ubaℓ, then there

is a unique baℓ-morphism γu : C(YA) → B with γu ◦ ζA = γ, where γu = ζ−1
B ◦ CY(γ).

A C(YA)

B C(YB)

ζA

γ CY(γ)
γu

ζ−1
B

Proposition 6.10. There is an isomorphism of categories between Algu(H) and Alg(Hu).

Proof. We define A : Algu(H) → Alg(Hu) on objects by sending (A,α) to (A,αu). On

morphisms, if γ is an Alg(H)-morphism, then A(γ) = γ.

H(A) Hu(A) A

H(A′) Hu(A′) A′

ζH(A)

α

H(γ)

αu

Hu(γ) γ

ζH(A′)

α′

(α′)u

To see that γ is an Alg(Hu)-morphism, the left square of the diagram commutes by the

naturality of ζ. We have

(γ ◦ αu) ◦ ζH(A) = γ ◦ α = α′ ◦H(γ) = (α′)u ◦ ζH(A′) ◦H(γ)

= (α′)u ◦Hu(γ) ◦ ζH(A)

so γ ◦ αu = (α′)u ◦Hu(γ) since ζH(A) is epic. This shows that γ is an Alg(Hu)-morphism. It

then follows that A is a covariant functor.

Going in the opposite direction, we define a functor B : Alg(Hu) → Algu(H) on objects by

sending (A,α) to (A,α ◦ ζH(A)). On morphisms we send a Alg(Hu)-morphism γ : A → A′ to

itself. It is clear that B is a covariant functor.

If (A,α) ∈ Algu(H), then A(A,α) = (A,αu), and so BA(A,α) = (A,αu ◦ ζH(A)) = (A,α).

Therefore, BA = 1Algu(H). If (A,α) ∈ Alg(Hu), then (A,α ◦ ζH(A)) ∈ Algu(H), and (α ◦
ζH(A))

u = α. Therefore, AB = 1Alg(Hu). Thus, A,B yield an isomorphism of categories

between Algu(H) and Alg(Hu). □

7. mbaℓ and KHF

In this section we show how to derive from our results the dual adjunction between mbaℓ

and KHF and the dual equivalence between mubaℓ and KHF obtained in [6].

We start by recalling (see, e.g., [5, Thm. 2.16]) that there is an isomorphism of categories

between Coalg(V) and KHF. The isomorphism is determined by the following functors. The

functor S : Coalg(V) → KHF sends (X, σ) to (X,Rσ) ∈ KHF, where xRσy if y ∈ σ(x), and S
sends a Coalg(V) morphism to itself. The functor T : KHF → Coalg(V) sends (X,R) ∈ KHF

to (X, σR), defined by σR(x) = R[x], and sends a KHF-morphism to itself.

As a consequence of this and the results of the previous section, we obtain the main result

of [6].
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Theorem 7.1. [6, Thm. 5.3] There is a dual adjunction between mbaℓ and KHF which

restricts to a dual equivalence between mubaℓ and KHF.

Proof. By Theorem 6.4 the functors #Y and #C form a dual adjunction between Alg(H) and

Coalg(V). By Theorem 4.5, the functors M,N yield an isomorphism of categories between

Alg(H) and mbaℓ. The functors S,T yield an isomorphism of categories between Coalg(V)
and KHF [5, Thm. 2.16]. We thus have the following diagram.

mubaℓ mbaℓ Alg(H) Coalg(V) KHF
N !Y

M

S

!C T

Consequently, S#YN : mbaℓ → KHF and M#CT : KHF → mbaℓ yield a dual adjunction which

restricts to a dual equivalence between mubaℓ and KHF. □

Utilizing the descriptions of the functors #Y and #C given in Remark 6.5, we can show that

we obtain exactly the functors yielding the dual adjuction of [6].

Proposition 7.2. S#YN and M#CT are precisely the functors Y and C yielding the dual

adjunction of [6, Thm. 5.3].

Proof. Let (A,□) ∈ mbaℓ. Then Y(A,□) = (YA, R□), where we recall from Section 2.3

that R□ is defined by xR□y if y+ ⊆ □−1x. We have N(A,□) = (A, σ□), which satisfies

σ□(□a) = □a for all a ∈ A. Then #Y(A, σ□) = (YA, #Yσ□), where we recall (see Remark 6.5)

that #Yσ□ = ε−1
V(YA) ◦ Y(ηA)−1 ◦ Y(σ□). Finally, S sends this to (YA, R!Yσ□

), where xR!Yσ□
y if

y ∈ #Yσ□(x). Let x ∈ YA and F = #Yσ□(x) ∈ V(YA). If M = εV(YA)(F ) ∈ YC(VYA), then

M = {g ∈ C(VYA) | g(F ) = 0} and

Y(ηA)(M) = η−1
A [M ] = σ−1

□ (x) = Y(σ□)(x).

We show that R□ = R!Yσ□
. Suppose that xR□y, so □y+ ⊆ x. To see that xR!Yσ□

y, we need

to show that y ∈ F . If not, then by Urysohn’s lemma and the fact that ζA[A] is uniformly

dense in C(YA), there is a ∈ A with ζA(a)(y) = 0 and ζA(a)[F ] ≥ 1/2. By replacing a by

a+ we may assume that a ≥ 0. Since ζA(a)(y) = 0, we have a ∈ y. Therefore, □a ∈ x.

This means σ□(□a) ∈ x, so □a ∈ σ−1
□ (x) = η−1

A [M ]. Thus, ηA(□a) ∈ M , so gA(a) ∈ M .

Therefore, gA(a)(F ) = 0, which is false by construction of a. This shows y ∈ F .

Conversely, if xR!Yσ□
y, then y ∈ F . Let a ∈ y+. Then gA(a)(F ) = 0 because a ∈ y and

a ≥ 0. Therefore, ηA(□a) ∈ M , so □a ∈ η−1
A (M) = σ−1

□ (x). Thus, □a = σ□(□a) ∈ x.

This shows □y+ ⊆ x, so xR□y. This completes the proof that R!Yσ□
= R□. Therefore,

Y and S#YN agree on the objects of mbaℓ. For morphisms, if α : (A,□) → (A′,□′) is an

mbaℓ-morphism, then S#YN(α) = S#Y(α) = S(Y(α)) = Y(α). Thus, S#YN = Y.
In the opposite direction, if (X,R) ∈ KHF, we show that C(X,R) = M#CT(X,R). First,

C(X,R) = (C(X),□R), where we recall from Section 2.3 that □Rf is given by

(□Rf)(x) =

!
inf fR[x] if R[x] ∕= ∅

1 if R[x] = ∅.
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The functor T sends (X,R) to (X, σR), where σR(x) = R[x]. Then #C sends this to (C(X), #CσR
),

where we recall (see Remark 6.5) that #CσR
= C(σR) ◦CV(εX) ◦ ηC(X). Finally, (C(X), #CσR

)

is sent by M to (C(X),□!CσR
), where □!CσR

f = #CσR
(□f ). We have

#CσR
(□f ) = C(σR)(CV(εX)(ηC(X)(□f )))

= C(σR)(CV(εX)(gC(X)(f)))

= C(σR)(gC(X)(f) ◦ V(εX))
= gC(X)(f) ◦ V(εX) ◦ σR.

Let x ∈ X. Then σR(x) = R[x] and V(εX)(R[x]) = εX [R[x]]. Therefore, since f = ζC(X)(f)◦
εX by Remark 2.5, we have

gC(X)(f)(εXR[x]) =

!
inf ζC(X)(f)[εXR[x]] if R[x] ∕= ∅

1 if R[x] = ∅

=

!
inf fR[x] if R[x] ∕= ∅

1 if R[x] = ∅
= (□Rf)(x).

Thus, C and M#CT agree on objects of KHF. If σ : (X,R) → (X ′, R′) is a KHF-morphism,

then M#CT(σ) = MC(σ) = C(σ). Consequently, M#CT = C. □
We conclude this section with the following diagram showing the relationship between the

various categories we have considered, where the curved vertical arrows are reflections.

mbaℓ Alg(H)

mubaℓ Algu(H) Alg(Hu)

KHF Coalg(V)

N

M

N

Y

A

M
!Y

!YB

B

T

C

S

A!C!C

8. The serial case

We recall that a binary relation R on a set X is serial provided that R[x] ∕= ∅ for

each x ∈ X. If (X,R) ∈ KHF with R serial, then we can replace V(X) with V∗(X) in

our considerations. It was shown in [6, Prop. 7.2] that the binary relation R□ in the dual

compact Hausdorff frame of (A,□) ∈ mbaℓ is serial iff □0 = 0. We thus arrive at the

following definition, the notation of which is motivated by modal logic, where the seriality

axiom is denoted by D (see, e.g., [11]).

Definition 8.1. [6, Sec. 7]

(1) Let mbaℓD be the full subcategory of mbaℓ consisting of those (A,□) ∈ mbaℓ with

□0 = 0.
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(2) Let mubaℓD be the full subcategory of mbaℓD consisting of those (A,□) ∈ mbaℓD

with A ∈ ubaℓ.

(3) Let KHFD be the full subcategory of KHF consisting of those (X,R) for which R is a

serial relation.

As was pointed out in [6, Rem. 3.12], when □0 = 0, the axioms (M2), (M4), and (M5)

simplify to the following axioms:

(M2∗) □r = r.

(M4∗) □(a+ r) = □a+ r.

(M5∗) □(ra) = r(□a) provided r ≥ 0.

Moreover, (M2∗) follows from (M4∗) by setting a = 0.

In [6, Sec. 7] we showed that the functors C and Y restrict to yield a dual adjunction

between mbaℓD and KHFD, which further restricts to a dual equivalence between mubaℓD

and KHFD. In this section we briefly outline how to derive this result from our considerations

by simplifying the definition of H to produce a functor H∗ such that Alg(H∗) is isomorphic

to mbaℓD.

Definition 8.2. Let A ∈ baℓ.

(1) Let I∗A be the archimedean ℓ-ideal of F (A) generated by the following classes of

elements.

(a): fA(a ∧ b)− fA(a) ∧ fA(b);

(c): fA(a
+)− fA(a)

+;

(d∗): fA(a+ r)− fA(a)− r;

(e∗): fA(ra)− rfA(a) if 0 ≤ r.

(2) Let H∗(A) = F (A)/I∗A and h∗
A : A → H∗(A) be the composition of f ∗

A with the

quotient map π : F (A) → H∗(A).

(3) For a ∈ A let □∗
a = h∗

A(a).

(4) Let V∗ be the endofunctor on KHaus that sends X to the subspace V∗(X) = V(X) \
{∅} of V(X).

The table below compares the relations in H∗(A) to those of H(A).

Relations for H∗(A) Relations for H(A)

(1) □∗
a∧b = □∗

a ∧□∗
b

(2) ———

(3) □∗
a+ = (□∗

a)
+

(4) □∗
a+r = □∗

a + r

(5) □∗
ra = r□∗

a if 0 ≤ r

(1) □a∧b = □a ∧□b

(2) □r = r + (1− r)□0

(3) □a+ = (□a)
+

(4) □a+r = □a +□r −□0

(5) □ra = □r□a if 0 ≤ r

Remark 8.3.

(1) If we set r = 0 in (5) we see that □∗
0 = 0. Furthermore, setting a = 0 in (4) yields

□∗
r = r.
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(2) From the relations above it follows that H∗(A) is the quotient of H(A) by the archi-

median ℓ-ideal of H(A) generated by □0. Consequently, if (A,α) ∈ Alg(H) with

α(□0) = 0, then there is an induced object (A,α∗) ∈ Alg(H∗).

Theorem 8.4. There is an isomorphism of categories between Alg(H∗) and mbaℓD.

Proof. The functor Alg(H∗) → mbaℓD is defined essentially the same as in Lemma 4.3.

To define the functor in the other direction, if (A,□) ∈ mbaℓD, then the induced baℓ-

morphism σ□ : H(A) → A satisfies σ□(□0) = 0, so induces an object (A, σ∗
□) ∈ Alg(H∗)

by Remark 8.3(2), which satisfies σ∗
□(□∗

a) = □a for each a ∈ A. This gives the functor

mbaℓD → Alg(H∗). The proof that these functors yield an isomorphism is essentially the

same as that of Theorem 4.5. □

In parallel with Definition 6.6, let Algu(H∗) be the full subcategory of Alg(H∗) consisting

of those (A,α) with A ∈ ubaℓ. The proof of the following result is similar to that of The-

orem 6.4 and Corollary 6.7(1), with small changes similar to those of the previous theorem.

We therefore leave out the details.

Theorem 8.5. There is a dual adjunction between Alg(H∗) and Coalg(V∗) which restricts

to a dual equivalence between Algu(H∗) and Coalg(V∗).

Theorem 8.6. There is a dual adjunction between mbaℓD and KHFD which restricts to a

dual equivalence between mubaℓD and KHFD.

Proof. The proof is similar to that of Theorem 7.1 but uses Theorem 8.5 instead of Theo-

rem 6.4 and Corollary 6.7(1). It also uses the isomorphism between Coalg(V∗) and KHFD,

which is essentially the same as that between Coalg(V) and KHF. To give some detail, if

(X, σ) ∈ Coalg(V∗), then (by abusing notation) S sends it to (X,Rσ). Since the image of

σ is in V∗(X), the relation Rσ is serial, so (X,Rσ) ∈ KHFD. Conversely, if (X,R) ∈ KHFD,

then R is serial, so σR(x) = R[x] ∕= ∅ for each x ∈ X, so σR : X → V∗(X) is continuous,

and hence (again abusing notation) T(X,R) = (X, σR) ∈ Coalg(V∗). □

Remark 8.7. A slight change in the argument of Proposition 6.10 shows that Algu(H∗) is

isomorphic to Alg(H∗u), where H∗u is the composition CYH∗.

9. Connection to modal algebras and descriptive frames

In this final section we connect our results with those of Abramsky [1] and Kupke, Kurz,

and Venema [20]. We start by recalling the definition of those A ∈ baℓ that are clean as

rings (see, e.g., [22] and the references therein).

Definition 9.1. We call A ∈ baℓ clean if each a ∈ A can be written as a = e + v with e

an idempotent and v a unit. Let cubaℓ be the full subcategory of ubaℓ consisting of clean

rings.

Lemma 9.2. If A ∈ cubaℓ, then Hu(A) ∈ cubaℓ.
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Proof. By [8, Prop. 5.20], if A ∈ cubaℓ, then YA is a Stone space. Therefore, V(YA) is a

Stone space, and hence YHu(A) is a Stone space by Theorem 5.8. Thus, Hu(A) ∈ cubaℓ by

[8, Prop. 5.20]. □
To distinguish between V on KHaus and Stone, we denote the Vietoris endofunctor on

Stone by VS. By Lemma 9.2, Hu restricts to an endofunctor on cubaℓ, which we denote by

Hc. The following result is then an immediate consequence of Corollary 6.7(1).

Theorem 9.3. There is a dual equivalence between Algu(Hc) and Coalg(VS).

We let HBA be the functor of [20] that sends B ∈ BA to the free boolean algebra over its

underlying meet-semilattice. It was shown in [20, Prop., 3.12] that Alg(HBA) is isomorphic

to the category MA of modal algebras. In parallel of M : Alg(H) → mbaℓ and N : mbaℓ →
Alg(H), we denote the functors giving the isomorphism by MBA : Alg(HBA) → MA and

NBA : MA → Alg(HBA). By [6, Thm. 6.9], the triangle in the diagram below commutes up to

natural isomorphism, where (−)∗ : DF → MA and (−)∗ : MA → DF are the functors yielding

Jónsson-Tarski duality, and the functor Id sends (A,□) ∈ mbaℓ to (Id(A),□|Id(A)) (see [6,

Lem. 6.5]). Therefore, there is an equivalence of categories between Alg(Hc) and Alg(HBA),

where the functor Alg(Hc) → Alg(HBA) is the composition NBA ◦ Id ◦M.

Alg(Hc) Alg(HBA)

mcubaℓ MA

DF

M

NBA◦Id ◦M

MBAN

Id

Y

NBA

(−)∗C

(−)∗

We conclude by summarizing our main findings. We developed an endofunctor H : baℓ →
baℓ and connected it to the Vietoris endofunctor V : KHaus → KHaus by showing that there

is a dual adjunction between the category Alg(H) of algebras for H and the category Coalg(V)
of coalgebras for V (see Theorem 6.4). We proved that this dual adjunction restricts to a

dual equivalence between Coalg(V) and the reflective subcategory Algu(H) of Alg(H) (see

Corollary 6.7). We also constructed an endofunctor Hu : ubaℓ → ubaℓ and showed that

Algu(H) is isomorphic to Alg(Hu) (see Proposition 6.10). Since Alg(H) is isomorphic to the

category mbaℓ of modal bounded archimedean ℓ-algebras and Coalg(V) to the category KHF

of compact Hausdorff frames, we obtained an alternate proof of the result of [6] that there

is a dual adjunction between mbaℓ and KHF that restricts to a dual equivalence between

KHF and the reflective subcategory mubaℓ of mbaℓ (see Theorem 7.1).

When we exclude ∅ from the Vietoris construction, we obtain the endofunctor V∗ :

KHaus → KHaus. Its algebraic counterpart is the endofunctor H∗ : baℓ → baℓ and we

arrive at a dual adjunction between Alg(H∗) and Coalg(V∗) which restricts to a dual equiv-

alence between Algu(H∗) and Coalg(V∗) (see Theorem 8.5). This yields the duality of [6]

for compact Hausdorff frames whose binary relation is serial (see Theorem 8.6). Finally,

restricting to the clean case yields an algebraic counterpart of the Vietoris endofunctor on

Stone spaces (see Theorem 9.3), which in turn yields Jónsson-Tarski duality.
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