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Abstract: Dry granulation by roller compaction (RC) is a continuous manufacturing technology increasingly used in 9 

the pharmaceutical industry for improving bulk density and flowability of powder mixtures or for preventing segre- 10 

gation issues of highly potent drugs prior to tableting. Dry granulation is ideally applied to moisture and heat sensitive 11 

drugs with added benefits also in terms of costs and lower equipment footprint. Mannitol is a polyol widely used in 12 

pharmaceutical formulations: particularly in orally dispersible tablets and powders and chewable tablets, where its 13 

high solubility and pleasant organoleptic properties make it an excipient of choice. Mannitol is available in several 14 

grades with different technological characteristics for adapting to various applications. In view of the use of mannitol 15 

for the formulation of active ingredients with poor flowability and compaction, the present work was aimed at ana- 16 

lyzing the properties of the different commercial types of mannitol when used for dry granulation by roller compres- 17 

sion to obtain tablets. Mannitol raw materials and granules prepared by roller compaction at different pressure were 18 

characterized for particle size distribution, bulk density, flow properties, specific surface area and ability to tableting. 19 

Granules with proper size (500-1500 µm), increased bulk density and adequate flow properties could be obtained. 20 

Increased specific surface area of the granules suggested a fragmentation of the particles during roller compaction 21 

even at relatively low processing pressure confirming the brittleness of the materials. For all materials tested, satis- 22 

factory properties for enabling tableting process were shown. 23 

Keywords: roll compaction; dry granulation; mannitol; brittle material; compaction ability; work-hardening 24 
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1. Introduction 26 

Dry granulation is a rather established manufacturing technology, traditionally used in the pharmaceutical 27 

industry for improving bulk density and flowability of powder mixtures or for preventing segregation issues 28 

of highly potent drugs prior to tableting [1–5]. The choice of excipients for the granulation process is es- 29 

sential to allow the powder agglomeration process, and it can contribute to the success of further processing 30 

steps, as in the case of the tableting process. In this context, the use of hydrophilic diluents, or the introduc- 31 

tion of wetting agents, can easily compensate for solubility characteristics and improve the dissolution rate 32 

of poorly soluble active ingredients [6–8]. Compared to wet granulation, dry granulation avoids the use of 33 

any liquid binder, so it is ideal for use with moisture and heat sensitive drugs with added benefits also in 34 

terms of costs and lower equipment footprint. In addition, relying on the approach that exploits high-density 35 

systems for potentially extending gastric and urinary bladder residence times, dry granulation offers a rel- 36 

atively simple method for increasing the overall apparent density of the final dosage forms [9–12]. Moreo- 37 

ver, roller compactor for dry granulation can be inserted in a continuous manufacturing process with easy 38 

in-line process control [13–15]. 39 

In dry granulation by roller compaction (RC), powder mixture is fed by a controlled device between two 40 

counter-rotating rolls to form ribbons, which subsequently are milled into granules for further processing. 41 

Friction between the powder blend and the roller surface drags the powder towards the narrow space sepa- 42 

rating the rotating rolls (roll gap) where materials are subjected to high pressure causing compaction. The 43 

feeding regularity of the roller compactor has a great influence on the final results of the granulation process 44 

[16]. The space between the two rolls needs to be continuously and uniformly filled to yield homogeneous 45 

compact materials [17]. Fine powders, typically exhibiting poor flowability due to cohesive properties, are 46 

usually fed by controlled loading devices equipped with rotating screws, while gravity hoppers tend to work 47 

best with non-cohesive and highly flowable powders. 48 

Besides the parameters of the roller compaction process, the subsequent milling step has a critical effect on 49 

the granule properties [18]. Choosing the proper mill settings and screen size is fundamental in order to 50 

minimize the amount of fine particles generated during the crushing of the ribbons [19–24]. The selection 51 

of the type of milling system should consider the characteristics of the granules, but also the properties of 52 

the ribbons to be milled. These should be strong enough to be fractured in the form of granules and not to 53 

generate fines.  54 

Among fillers used for roller compaction, the most widely studied and used are cellulose microcrystalline, 55 

lactose and calcium hydrogen phosphate [25–28] Each material is available on the market with various 56 

grades, differing in terms of particle size, bulk density and flowability. In particular, lactose is the water- 57 

soluble filler of choice for achieving balanced tableting properties of the powder blend, when high drug 58 

loading of a drug substance presenting plastic characteristics is concerned [29]. However, lactose can lead 59 

to instability issues due to the Maillard reaction, which occurs in the presence of primary and/or secondary 60 

amine compounds. Instability issues have been reported when lactose-based formulations were used for 61 

gelatin capsule filling: pellicle formation was observed due to the crosslinking of capsule shells, which 62 

caused slowed dissolution profiles [30,31]. In addition, lactose is also known for causing physiological 63 

intolerances in sensitive individuals. Mannitol is a polyol widely used in pharmaceutical formulations and 64 

particularly in orally dispersible and chewable tablets, where its high solubility and pleasant organoleptic 65 

properties, such as taste and mouth feel, make it the filler of choice [32]. It can also be used as a cryopro- 66 

tector in freeze-drying and drug carrier in nasal and pulmonary delivery systems [33–35]. Mannitol is avail- 67 

able in several grades with different technological characteristics for adapting to these various applications 68 

and, compared to other roller compaction fillers, it excels regarding its chemical inertness towards the drug 69 

ingredient, physiological tolerability, low hygroscopicity, and, for certain types, good flowability and abil- 70 

ity to produce mechanically resistant tablets by direct compression. However, it should be noted that com- 71 

pared to conventional excipients for the formulation of powder blends intended for dry granulation, such 72 
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as lactose, microcrystalline cellulose and calcium hydrogen phosphate, mannitol has a relatively higher 73 

price [36,37]. 74 

With respect to unprocessed starting materials, roller compacted granules generally show a significant loss 75 

of ability to generate tablets with high mechanical resistance that is mostly exhibited by a reduction in 76 

tensile strength [38–41]. For materials having predominant plastic behavior this may be attributed to parti- 77 

cle size enlargement or material hardening [2,42–45]. When brittle materials are concerned, such sensitivity 78 

of compaction properties to particle size and granules hardening is less evident, supporting the common 79 

practice of including brittle excipients as preferred fillers when granulating drug mixtures by roller com- 80 

paction for tableting [46]. 81 

Based on these premises, the aim of the work was to evaluate different grades of mannitol in dry granulation 82 

by roller compaction in view of their use to formulate active ingredients with poor flow and compaction 83 

properties. Indeed, dry granulation was expected to allow for identification, among different grades of man- 84 

nitol, the one which may best adapt to the characteristics of the specific drug substance to be formulated 85 

[47]. Therefore, among mannitol types available on the market, granular and spray-dried grades, typically 86 

proposed as fillers for capsule formulation, diluents in direct compression or drug carriers in inhalable 87 

formulations, have been considered along with unprocessed powder mannitol, which is the reference type 88 

for application in roller compaction. As this work was part of a broader screening study aimed at searching 89 

for different grades of mannitol characterized by a good roller compaction performance, it seemed useful 90 

to also include products specially indicated for direct compression or already available in granular form. 91 

As a matter of fact, in roller compaction a complete change in the morphology and density of the particles 92 

could be expected, which are known to highly impact the ability of the powder blend to generate high 93 

density ribbons and granules, and also to affect tableting properties. In this respect, characterization results 94 

of different types of mannitol as raw materials and roller compacted granules are reported in terms of in- 95 

herent technological properties and characteristics of tablets prepared. 96 

2. Materials and Methods 97 

2.1. Materials 98 

Mannitol powder (Mannogem Powder, PO, lot. 121808764), spray dried (Mannogem EZ lot. 121809019, 99 

and Mannogem XL lot. 121808686) and granular (Mannogem 2080 Granular, GR lot. 121707891) mannitol 100 

as well as sodium stearyl fumarate (Lubripharm, lot. 121708159) were kindly donated by SPI, USA. Prior 101 

to use, all materials were stored at 25 °C, 45% relative humidity. 102 

2.2. Methods 103 

2.2.1. Dry granulation process 104 

Various mannitols were processed in a roller compactor (TFC220, Freund Vector, IA, USA) equipped with 105 

screw feeder rotating at 20 rpm, knurled rolls 200 mm diameter and 31 mm width operating at 2 rpm under 106 

3 different roller compression forces (FRC, 15, 30 and 45 kN), using gap values in the 3.38-3.78 mm range. 107 

Ribbons were milled using an oscillating mill (Oscillowit, Frewitt, CH) with screen size 1.0 mm, squared 108 

cross-section wire, operating at 150 rpm. Batch size was 1000 g for each processing condition. 109 

2.2.2. Specific surface area analysis 110 

Specific surface area (SSA) was measured by means of SA3100 Surface Area Analyzer (Beckman Coulter, 111 

UK) according to the BET method using N2 as adsorbate gas (USP 32 Physical Test. Specific Surface Area. 112 

Volumetric Method). Prior to analysis, the samples (approximately 2 g) were degassed at 90 °C under 113 

vacuum (0.4 Pa) for 1 h. The measurements were carried out in triplicate. 114 

2.2.3. Particle size analysis 115 
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The particle size distribution (PSD) of starting materials and granules was determined by dynamic image 116 

analysis method (Qicpic, Sympatec, DE) in the size range from 5 to 1705 μm. Approximately 5 g of mate- 117 

rials was tested for each sample. Size was expressed as d10, d50 and d90 (diameter of particles at 10, 50, and 118 

90% of cumulative volume-based curve, respectively) and Span. 119 

 120 

Span= (d10-d90)/d50  (1) 121 

 122 

2.2.4. Scanning Electron Microscope analysis 123 

Morphology of powders and granules was analyzed by a scanning electron microscope (SEM; Sigma, Carl 124 

Zeiss, Germany). Samples were gold-sputtered using a plasma evaporator under vacuum, and photomicro- 125 

graphs were acquired at an accelerated voltage of 10 kV at differing magnifications. 126 

2.2.5. Porosity of ribbons 127 

Digital pictures of accurately weighed ribbons (n=20) were analyzed using IMAGE J software (version 128 

1.53o, NIH, USA) to calculate the area. The thickness of the ribbons was measured using a digital caliper 129 

in different positions (Mod. CD -15CP, Mitutoyo, England). The volume was calculated by multiplying the 130 

area by the thickness of the ribbons. Starting from the mass of the ribbon, subsequently, the density was 131 

determined. The percent porosity was obtained as the ratio between the experimental density and the true 132 

density of mannitol (1.514 g/mL) [48]. 133 

2.2.6. Differential scanning calorimetry  134 

Thermal behavior of mannitol starting materials and after dry granulation was assessed using differential 135 

scanning calorimeter (DSC 1 STARe System, Mettler Toledo, USA). Samples of approximately 5 mg were 136 

accurately weighed and sealed in aluminum pans. The samples were analyzed under a nitrogen atmosphere 137 

at a heating rate of 10 K/min over the temperature range from 20 to 200 °C. 138 

2.2.7. Flowability testing 139 

Compressibility index (CI) was calculated according to Ph.Eur. 10.7 by testing approximately 100 g of 140 

powders or granules using a jolting volumeter (STAV 2003, J. Engelsmann A., DE; 1250 taps) with 250 141 

mL volumetric cylinder [49]. Values reported are the mean of 3 determinations. Flowability properties were 142 

classified according to the Ph.Eur. 10.7 ranking [50]. 143 

 144 

CI = 100·(ρtapped – ρbulk)/ ρtapped  (2) 145 

 146 

2.2.8. Compaction ability evaluation 147 

Compaction ability (CA) of raw materials and granules was calculated by the slope of the regression line 148 

from the tensile strength (TS) vs pressure profiles (95% i.c., multiplied by factor 105) acquired from tablets 149 

prepared by a rotary tablet press (AMS8, Officine Meccaniche Ronchi, IT) equipped with a force detection 150 

system (FIT2008 software, B&D Italia, IT). A flat punch with a diameter of 11.28 mm was used and the 151 

die was filled manually. The tablets were produced rotating the turret at 20 rpm applying a force (Fa, force 152 

recorded by upper punch) in a range from 50-300 MPa. At least 5 replicates were tested for each setting. 153 

Prior to tableting powders and granules were mixed with 0.5% sodium stearyl fumarate in Turbula® (Willy 154 

A. Bachofen, CH) at 24 rpm for 5 min to prevent high ejection forces. Tablets with crushing strength below 155 

20 N were considered unacceptable. Calculation of standard deviation of CA and statistics were performed 156 

according to Sonnergaard  [51]. Tensile strength was calculated according to Fell and Newton [52]. 157 
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 158 

Tensile strength=(2∙Fc)/(π∙D∙h)  (3) 159 

 160 

where Fc is the crushing force measured by a diametric strength tester (TBH30, Erweka, DE) and D and h 161 

are the diameter and height of the cylindrical tablet measured by digital caliper (n=3). 162 

3. Results 163 

3.1. Technological characterization of raw materials  164 

The different grades of mannitol showed remarkable differences in terms of morphology, bulk density, flow 165 

properties, PSD and SSA. In detail, SEM analysis showed powders with fine and plate-shaped particles for 166 

mannitol PO, spherical-shaped particles with clear hollow and porous structure for mannitol EZ and XL, 167 

while mannitol GR exhibited coarse, irregular and dense agglomerated particles (Fig. 1). To a closer look, 168 

EZ and XL particles showed the presence of inner small crystals, with needle shape morphology, sur- 169 

rounded by a thin layer of materials on the surface, while mannitol PO and GR, regardless of the great 170 

difference in particle size, when analyzed at high magnifications presented small crystals with similar mor- 171 

phology. 172 

DSC analysis showed endothermic peak at 166 °C for all the types of mannitol, which consistently indicates 173 

the presence of polymorph β form (Fig. 2) [53,54]. 174 

Particle size of mannitol PO was found to be smaller than that of EZ and XL, and GR grades, this latter 175 

having the largest dimensions (d50> 500 μm). According to Ph.Eur. classification, mannitol EZ, XL and GR 176 

exhibited good flow properties, while mannitol PO presented passable flowability characteristics. SSA 177 

analysis confirmed that materials having porous structure and lower tapped density, such as mannitol EZ 178 

and XL, developed the highest surface area, while mannitol GR grade presented the smallest SSA and 179 

highest density (Table 1). 180 

  181 
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Table 1. Results of technological characterization tests of powders and corresponding ribbons and granules 182 

obtained at different FRC. 183 

 184 

 185 

 186 
 187 
 188 
 189 
 190 
 191 
 192 
 193 
 194 
 195 
 196 
 197 
 198 
 199 
 200 
 201 
 202 
 203 
 204 
 205 
 206 
 207 
 208 

[*] classification according to the scale of flowability by Ph.Eur. 10.7  209 

  210 

Material 

code 

FRC (kN) 

ρbulk 

(g/mL) 

ρtapped 

(g/mL) 

CI 

(% ± sd) [*] 

d₁₀ 

(μm) 

d₅₀ 

(µm) 

d₉₀ 

(µm) 

Span 

SSA 

(m2/g ± sd) 

Ribbon porosity 

(% ± sd) 

PO - 0.55± 0.10 0.73± 0.21 25 ± 2 [passable] 94 160 231 0.85 0.766 ± 0.098 - 

PO/RC15 15 0.68 ± 0.00 0.85 ± 0.01 20 ± 1 [fair] 659 983 1316 0.67 1.170 ± 0.190 24.39 ± 2.94 

PO/RC30 30 0.70 ± 0.00 0.86 ± 0.01 19 ± 0 [fair] 731 1018 1323 0.58 1.274 ± 0.193 18.00 ± 4.34 

PO/RC45 45 0.72 ± 0.00 0.87 ± 0.01 17 ± 0 [fair] 697 1039 1327 0.61 1.182 ± 0.233 19.48 ± 6.11 

GR - 0.63± 0.00 0.72± 0.00 12 ± 0 [good] 378 566 691 0.55 0.429 ± 0.028 - 

GR/RC15 15 0.65 ± 0.00 0.81± 0.01 20 ± 0 [fair] 563 813 962 0.49 0.993 ± 0.173 29.31 ± 3.51 

GR/RC30 30 0.66 ± 0.00 0.85 ± 0.01 22 ± 1 [passable] 715 1016 1323 0.60 1.023 ± 0.245 21.28 ± 4.03 

GR/RC45 45 0.67 ± 0.00 0.84 ± 0.01 21 ± 0 [passable] 710 977 1314 0.62 0.957 ± 0.203 22.57 ± 2.64 

EZ - 0.46± 0.01 0.54± 0.02 15 ±1 [good] 131 202 331 0.99 0.903 ± 0.015 - 

EZ/RC15 15 0.55 ± 0.00 0.69 ± 0.01 20 ± 1 [fair] 658 946 1303 0.68 1.585 ± 0.141 28.80 ± 7.04 

EZ/RC30 30 0.63 ± 0.00 0.77 ± 0.00 18 ± 0 [fair] 727 1067 1333 0.57 2.129 ± 0.447 21.19 ± 4.95 

EZ/RC45 45 0.65 ± 0.00 0.77 ± 0.01 15 ± 1 [good] 721 1031 1326. 0.59 2.093 ± 0.540 22.67 ± 4.33 

XL - 0.46± 0.02 0.53± 0.02 13 ± 1 [good] 135 213 319 0.86 0.830 ± 0.011 - 

XL/RC15 15 0.60 ± 0.01 0.74 ± 0.02 18 ± 1 [fair] 651 907 1276 0.69 1.900 ± 0.233 30.81 ± 3.52 

XL/RC30 30 0.63 ± 0.02 0.77 ± 0.02 19 ± 1 [fair] 626 908 1281 0.72 1.986 ± 0.482 24.88 ± 0.94 

XL/RC45 45 0.63 ± 0.02 0.80 ± 0.02 21 ± 0 [passable] 724 995 1318 0.60 1.771 ± 0.228 28.14 ± 1.99 
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Fig. 1. SEM photomicrographs of mannitol raw materials PO (A), GR (B), EZ (C) and XL (D). 212 
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 213 

Fig. 2. DSC profiles of mannitol raw materials. 214 

3.2. Dry granulation process 215 

The four different types of mannitol were processed by a roller compactor using a pilot scale equipment 216 

operating at different compaction force (FRC) by setting the hydraulic pressure of the floating roll. Com- 217 

pression force was fixed at 15, 30 and 45 kN, aiming at evaluating the behavior of materials at mild, inter- 218 

mediate and strong processing conditions. In preliminary trials 15 kN was found to be the minimum force 219 

for obtaining ribbons of sufficient consistency to be handled, while 45 kN was the maximum force that 220 

could be applied by the roller compactor. Rolls rotation speed and feeding screw rotation were maintained 221 

at fixed values (2 and 20 rpm respectively) with the aim of fixing the time for which the materials were 222 

subjected to the compaction force of the rolls. All the mannitols investigated could be successfully dry 223 

processed. Even the poor flowability of mannitol PO did not preclude consistent feeding of the rolls.  224 

Ribbons with regular shape could be obtained from all the mannitol grades, porosity being included in 225 

the 18-31% range. In all cases, the lowest porosity was observed at 30 kN of FRC (Table 1). With mannitol 226 

XL, porosity seemed to even increase at this FRC value possibly due to lamination phenomena. The ribbons 227 

and by-pass powders collected under the rotating rolls were transferred into an oscillating mill granulator 228 

for grinding. Conditions of milling, such as squared cross-section wire screen with 1.0 mm opening and 229 

oscillating mode at 150 rpm, were set after preliminary trials, which provided satisfactory results in terms 230 

of material discharge rate, size of the granules and amount of fines generated. The mill was fed manually 231 

by loading the ribbons at approximately 200 g/min.  232 

In Fig. 3, SEM photomicrographs of granules prepared at the highest roller compaction force are pre- 233 

sented. Particle morphology, except for GR was modified compared to the starting materials, as expected. 234 

Particularly, the spherical geometry and porous network of spray-dried mannitols EZ and XL were lost. On 235 

the other hand, more regular particle agglomerates were generated from mannitol PO. In all cases, several 236 

very fine powder particles are visible at the surface of the granules, resulting from extensive fragmentation.  237 

 238 

 239 

 240 

  241 

Jo
urn

al 
Pre-

pro
of



 

 242 
A) 

 
B) 

 
C) 

 
D) 

 

Fig. 3. SEM photomicrographs of granules obtained by roll compaction at FRC 45 kN from mannitol PO (A), GR (B), 243 
EZ (C) e XL (D). 244 
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DSC studies performed on granules obtained at the highest FRC (45 kN) showed the endothermic melt- 245 

ing peak of mannitol at 166 °C for all tested materials, confirming that dry granulation did not affect the 246 

solid state of mannitol (Fig. 4).  247 

 248 

Fig. 4. DSC profiles of granules obtained at FRC 45 kN from different mannitol grades. 249 

 250 

Following dry granulation, an increase in particle size was pointed out by the shift to the right of the 251 

cumulative undersize curves (Fig. 5). For all types of mannitol, irrespective of their original size, dry gran- 252 

ulation gave rise to particle size distributions with 80% of granules approximately ranging from 600 to 253 

1300 µm (Table 1). While for mannitol PO, EZ and XL all the roller compaction forces yielded granules 254 

with roughly similar dimensions, in the case of GR, compaction at 15 kN resulted in slightly smaller gran- 255 

ules as compared to higher forces, thus indicating lower compaction capacity of this mannitol type probably 256 

associated with larger size of the original particles. 257 

 258 
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A)  B) 

  
C) D) 

  

Fig. 5. Cumulative undersize distribution of different mannitol grades starting materials and granules obtained by roll 260 
compaction at increasing FRC: PO (A), GR (B), EZ (C), XL (D). 261 

Compared to the corresponding starting powders, granules showed higher specific surface area (SSA), 262 

thus indicating that particle fragmentation occurred under roller compaction, which is typical of brittle ma- 263 

terials (Fig 6). In particular, SSA increased remarkably for granules obtained from granular and spray-dried 264 

grades of mannitol. Especially in the case of Mannitol EZ and XL a relatively high variability of SSA was 265 

observed, which may be due to inconsistent fragmentation of highly porous spray-dried products. Fragmen- 266 

tation was confirmed by SEM images, where very small particles were evident in the sectioned units and 267 

adhered to the surface of the granules. In particular, for mannitol EZ, a higher increase in SSA values was 268 

observed only when roller compaction pressures higher than 30 kN were applied.  269 

 270 
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 271 

Fig. 6. Specific surface area of different mannitol grades and corresponding granules obtained at increasing FRC. Ver- 272 
tical bars represent standard deviation (n=3). 273 

Considering bulk density, with the exception of mannitol EZ at FRC 15 kN, all granules presented 274 

values above 0.6 g/mL with a clear tendency to denser products when higher roller compaction force was 275 

applied. The bulk density of mannitol PO showed an increasing trend with respect to the other mannitol 276 

grades. Particularly, the highest bulk density value (0.72 g/mL) was achieved with this product at the max- 277 

imum roller compaction force. 278 

Flowability properties evaluated by compressibility index showed that granules obtained by mannitol 279 

GR, EZ and XL tended to be slightly less flowable: the starting products could be classified by Ph.Eur. as 280 

materials having good flowability that were worsened after granulation (Fig. 7). Only for mannitol EZ, 281 

granules processed at highest FRC maintained the original flow characteristics. The flow characteristics of 282 

mannitol PO were remarkably improved by the dry granulation process at increasing force, as expected due 283 

to its powder form. 284 
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 285 

Fig. 7. Compressibility index of different mannitol grades and corresponding granules obtained at increasing FRC. 286 
Vertical bars represent standard deviation (n=3). Scale of flowability according to Ph.Eur.10.7 [50]. 287 

The ability of raw materials and dry granules to be compacted was comparatively evaluated by pre- 288 

paring tablets at increasing compaction force using flat punches with 11.28 mm diameter. A lubricant was 289 

added prior to tableting to reduce ejection force and limit wearing of tooling. Both raw materials and the 290 

corresponding granules displayed overall good compaction properties. A linear relationship of tablet tensile 291 

strength versus tableting compaction pressure was found in all the cases (Fig. 8). Tablets mechanically 292 

strong enough to withstand further handling (tensile strength > 1.7 MPa) were obtained at tableting pressure 293 

> 200 MPa, even for dry granules of the mannitol grade showing the worst compaction properties (GR) 294 

[55]. The relationship between compaction ability of the granules and roller compaction force along with 295 

the values of starting materials is shown in Fig. 9. XL and EZ mannitol grades proved to be more sensitive 296 

than PO and GR in loosing ability to compaction after dry granulation. For these types of mannitol, which 297 

outperformed PO and GR grades in compaction, the higher the roller compaction force experienced in dry 298 

granulation, the lower was the compaction ability of the resulting granules. This drop-off could relate to 299 

the presence of amorphous material generated by spray drying process, which could increase sensitivity to 300 

compaction procedures prior to tableting as previously reported with respect to spray-dried [56–58]. This 301 

behavior can also be ascribed to the breakdown of porous structure during RC associated with particles 302 

enlargement and work-hardening phenomena, as extensively described in the literature [3,42,59]. On the 303 

other hand, PO and GR grades showed lesser compaction ability, which however seemed to be poorly 304 

affected by dry granulation. Although all types of mannitol considered were turned into granules of good 305 

quality, the findings of this study would suggest mannitol XL should be preferred in view of a possible 306 

application to active ingredients requiring high FRC to prepare granules of high density [60].  307 
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 308 

 309 

Fig. 8. Tensile strength vs pressure graphs of different mannitol grades and corresponding granules obtained at in- 310 
creasing FRC. Lines represent linear regression. 311 

 312 

  313 
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 314 

Fig. 9. Compaction ability of mannitol grades and corresponding granules as a function of FRC applied for their pro- 315 
duction. Vertical bars represent standard deviation. 316 

 317 

4. Conclusions 318 

Various mannitol grades were evaluated for dry granulation by roller compaction in view of their use 319 

as main fillers to formulate active ingredients with poor flow and compaction properties. Although some 320 

of the products considered are mainly proposed for direct compression, the possibility of exploiting the 321 

excellent flow and compaction properties of processed mannitol to improve the ability to constantly feed 322 

the rolls and generate more resistant-to-crushing tablets was considered attractive when formulating active 323 

ingredients with problematic properties. All the tested materials proved able to yield granules with good 324 

technological properties in terms of flowability and bulk density, as well as satisfactory aptitude to tablet- 325 

ing. However, the compaction ability of granules obtained from mannitol PO and GR was less affected by 326 

roller compaction force compared to that of mannitol XL and EZ grades. Overall, mannitol XL showed 327 

superior ability to compact even when processed at the highest roll compaction force. It should also be 328 

noted that processed materials may have higher purchase costs compared to powder/unprocessed mannitol, 329 

opening the evaluation of their use to economic considerations in addition to technological ones. 330 

Therefore, all the considered mannitol grades can be proposed for the preparation of granules, allowing 331 

to select the most appropriate one depending on the specific characteristics of the drug to be formulated. In 332 

this regard, tableting properties of mannitol observed after dry granulation might help to compensate for 333 

possible loss of compaction ability of the drug under roller compaction, and eventually improve the drug 334 

loading capacity in the final tablet composition. In any case, to avoid mixing and segregation issues during 335 

the feeding of the rolls, the evaluation of particle size and bulk density of the drug will be useful to select 336 

the mannitol type with possibly matching characteristics. 337 
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