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Abstract
In the field of conservation of cultural heritage, one must always consider the environmental conditions in which the works of 
art are located and the level of atmospheric pollution to which they are exposed, especially in the case of monuments stored 
outdoors. The present study is focused on the detection and the quantification of polycyclic aromatic hydrocarbons (PAHs) 
in black crust samples from the Monumental Cemetery of Milan (Italy), and the assessment of their sources through the 
analysis of the distributions of the different compounds in the samples, together with the use of diagnostic ratios. Six black 
crust samples taken from funerary monuments were analyzed. Fourteen polycyclic aromatic hydrocarbons were identified 
(naphthalene, acenaphthylene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, chrysene, benzo[a]
anthracene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, indeno[1,2,3-cd]pyrene) by high-performance 
liquid chromatography with a diode-array detector (HPLC–DAD), with a total concentration from 0.72 to 3.81 μg/g (mean 
of 1.87 μg/g). The known carcinogenic benzo[a]pyrene accounted for 5–10% of the total polycyclic aromatic hydrocarbons 
in the samples analyzed, with concentrations up to 0.20 μg/g. Moreover, the study of the distribution and diagnostic ratios 
allowed us to confirm that anthropogenic sources such as traffic and the proximity of the train station are the major causes 
of the degradation of the monuments contained in this Cemetery.
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Introduction

Air pollution is considered one of the main issues for the 
preservation of cultural heritage, especially when consider-
ing buildings and monuments located in very large outdoor 
areas and in cities highly exposed to anthropogenic pollu-
tion (Di Turo et al. 2016; Bergomi et al. 2023; Pironti et al. 
2023). There are several air pollutants, especially acids such 
as  CO2, NOx, and SOx, that can cause degradation of cul-
tural heritage itself, one of the most dangerous being sul-
fur dioxide  (SO2) (Pironti et al. 2020, 2021; Ricciardi et al. 
2022b, 2024b; Faggiano et al. 2023). One of the principal 
building material deteriorations is the formation of soluble 
salts within porous materials as a consequence of dissolu-
tion–crystallization and hydration–dehydration cycles (Flatt 
2002). NOx can react with water contained in the porous 
building materials to form acids and/or nitrite/nitrate ions 
that can act as agents of corrosion and degradation of materi-
als, and in addition, NOx enhances the adsorption of  SO2 in 
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stones. Indeed, following several chemical reactions occur-
ring in the atmosphere,  SO2, is oxidized to  H2SO4 which, 
due to its acidic character, can attack the surfaces of histori-
cal monuments and buildings by chemically interacting with 
the material of which they are made (generally a carbon-
ate matrix,  CaCO3). These reactions occur in the presence 
of other atmospheric pollutants such as particulate matter, 
which contain heavy metals that seem to be involved as 
catalysts in the sulphation process, ultimately leading to the 
formation of gypsum  (CaSO4•2H2O). Sulfation process con-
sists of the formation of sulfuric acid from wet atmospheric 
sulfur dioxide and its interaction with calcium carbonate (the 
stone substrate of the monument) to form gypsum. Each step 
of this process can be favored by several factors, including 
the presence of various heavy metals adsorbed on carbona-
ceous particles, the role of which is still unclear (Comite 
et al. 2023). During the process, black carbon is incorporated 
on the surface of the material itself and is responsible for 
the blackening of the degraded substrate. The result is the 
formation of the so-called black crusts (BC) (Wang et al. 
2022) (Fig. 1), which not only damage the aesthetics of the 
cultural heritage in question, but also affect the physical and 
mechanical properties of the material of which it is made 
and its durability over time (Pozo-Antonio et al. 2017; Ric-
ciardi et al. 2022a).

In fact, the formation of BCs leads to a detachment of 
the degraded layer since the formed materials have different 
texture and porosity respect to the substrate, consequently 
the adhesion between the BC layer and the substrate is 
compromised, and so the building material lose its original 
mechanical properties (La Russa and Ruffolo 2021).

Analyses on the surface of BCs and their main ele-
ments are widely reported in the literature (Marinoni et al. 
2003; Bonazza et al. 2005; Belfiore et al. 2013; Comite 
et al. 2017, 2020b, c, 2021; Farkas et al. 2018; Fermo 
et al. 2018), but there are few studies concerning the pres-
ence and origin of organic pollutants such as polycyclic 
aromatic hydrocarbons (PAHs) on BCs (Gianguzza et al. 
2004; Martínez-Arkarazo et al. 2007; Orecchio 2010; Pri-
eto-Taboada et al. 2013; Lamhasni et al. 2019; Islam et al. 

2024). BCs, in fact, can be regarded as passive samplers of 
atmospheric pollutants (metals, PAHs, etc.) in atmospheric 
particulate matter that are typical of the area in which it is 
formed (Comite et al. 2017; Fermo et al. 2018; Ricciardi 
et al. 2022a). Their analysis is therefore very interesting 
because they can derive from periods of accumulation of 
pollutants which can also be very long (over 100 years).

PAHs are a class of chemical compounds that consist of 
at least two annelated aromatic rings and originate from 
the incomplete combustion of fuels (fossil fuels, coal, and 
biomasses) and/or emitted during natural processes (e.g., 
forest fires and volcanic eruptions) (Galmiche et al. 2021; 
Soursou et al. 2023). They can be divided into subgroups 
based on the number of aromatic rings and have showed 
the ability to accumulate in diverse environmental matri-
ces, posing a threat to humans and biota (Soursou et al. 
2023). Although more than 100 different PAHs have been 
identified in the environment, only 16 PAHs have been 
included in the list of priority contaminants by the United 
States Environmental Protection Agency due to their toxic-
ity (Mallah et al. 2022). Given their widespread presence 
in the environment and the problems associated with them, 
there are several studies in the literature on their quan-
tification in different environmental matrices (air, water, 
soil, microorganisms, microplastics, etc.) (Kim et al. 2013; 
Mojiri et al. 2019; Reizer et al. 2022; Chen et al. 2022; 
Pacín et al. 2023; Sanli et al. 2023). Consequently, con-
siderable analytical efforts have been carried out in order 
to correctly quantify this class of compounds, as can be 
seen from the reviews recently reported in the literature 
(Galmiche et al. 2021; Soursou et al. 2023). Furthermore, 
another fundamental aspect concerns the identification of 
the sources of PAHs in the environment, which can be 
carried out through the analysis of the distribution of the 
different PAHs, the use of diagnostic ratios, and other sta-
tistical analyses (Tobiszewski and Namieśnik 2012).

The aim of this study is the detection and the quantifica-
tion of PAHs in BC samples from the Monumental Cem-
etery of Milan (Italy), together with the assessment of their 
sources through the analysis of their distributions in the 
samples and the use of diagnostic ratios.

Materials and methods

Materials

All the chemicals used for the measurements (PAH calibra-
tion mix TraceCERT, certified reference material, 10 μg/mL 
each component in acetonitrile, dichloromethane, pentane, 
acetonitrile LC/MS grade, water LC/MS grade) were pur-
chased from Sigma-Aldrich (St. Louis, MO, USA).

Fig. 1  Schematic description of the reactions involved in the black 
crust formation



59157Environmental Science and Pollution Research (2024) 31:59155–59165 

Sampling points

The Monumental Cemetery of Milan (Fig. 2 a and b) is one 
of the most important and best-known Italian cemeteries 
and a prominent cultural site in Italy and Europe (Selvafolta 
2007a). From the central building, along the east–west axis 
of the façade, there are symmetrical porticos called Gallery, 
which connect the building orthogonally to the so-called 
Edicole (Selvafolta 2007b). In this study, six fragments 
fallen from some of the monuments in the Western Gallery 
(Fig. 1c) were sampled between 2019 (GS, AF, GRP, EP) 
and 2020 (RP, GC) (Comite et al. 2020a; Ricciardi et al. 
2024a). These samples are representative of the different 
types of black crusts present on sculptures in a very exposed 
area of this cemetery since it is a semi-confined environ-
ment. The sculptures under study are works of art dedicated 
to the memory of deceased members of wealthy Milanese 
families, so they do not have proper names, but are identified 
with an abbreviation containing only the initials of the name 
and surname of the deceased. The sculptures are located in 
one of the galleries of the Monumental Cemetery, which 
are outdoor areas with an arcade structure, mostly protected 
from rainwater. There are currently no plans to restore these 
galleries. Two sculptures (AF and GC) are located in a more 
sheltered area of the Western Gallery, while the other four 
(GS, GRP, RP, and EP) are in more open parts of the West-
ern Gallery. Most of the sample are taken from marble sculp-
tures, only EP sample comes from a calcarenite sculpture.

About 1 g of each sample (BC with the carbonate matrix) 
was placed in a plastic bag, and stored refrigerated (4 °C), 
avoiding the exposure to light, until the analysis was per-
formed. Based on the year of sampling and the year of 
construction of each grave monument, it is possible to esti-
mate the years of pollutants’ accumulation in the samples 
(Table 1). However, although there are no historical-artistic 
indications of previous falls of crusts from the surface of 
these monuments, these events cannot be ruled out entirely. 
Therefore, the pollutant accumulation time calculated in this 
way is to be considered only an estimate, there may be a 
time bias.

Fig. 2  a Location of the Monumental Cemetery (red circle) into the Milan city center; b Famedio of the Monumental Cemetery with indication 
of the location of the Western Gallery (red circle); c Location of the sampling points inside the Western Gallery

Table 1  Description of BC samples in terms of year of pollutants’ 
accumulation

*Difference between year of sample collection and year of monument 
construction

Sample Year of monument construc-
tion

Year of pollut-
ants’ accumula-
tion*

GS 1870 149
AF 1875 144
GRP 1900 119
RP 1884 136
GC 1906 114
EP 1922 98
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High‑performance liquid chromatography (HPLC) 
measurements

Before the analysis, BC samples were finely pulverized in a 
mortar. A Soxhlet extraction was carried out on a weighted 
amount of sample (in the range 0.2–0.5 g) using a mixture of 
dichloromethane/pentane:1/1 v/v for 12 h, following a litera-
ture procedure (Orecchio 2010). After slow evaporation of the 
extracting mixture (rotary evaporator with the thermostatic 
bath at T = 35 ± 0.5 °C until a volume of 3 mL, and dried under 
a weak nitrogen flow), the obtained extracts were diluted with 
acetonitrile and passed through a 0.45-μm filter prior to the 
high-performance liquid chromatography (HPLC) analysis. 
HPLC measurements were performed using an Ultimate 3000 
Thermo Scientific system equipped with a Diode-Array detec-
tor (DAD), binary pump, C18 reversed-phase column (Luna 5 
μ, 150 mm × 4.6 mm i.d., pore size of 5μm, Phenomenex) and 
automatic sample injector (loop of 100 μm). A mobile phase 
made of acetonitrile/water: 70/30 v/v, a flow rate of 1.2 mL/
min were used for the chromatographic runs. Chromatograms 
were recorded at 220, 254, 265, and 280 nm, while all PAHs 
were quantified using the signal at 280 nm, a wavelength that 
allows better quantification of those PAHs with lower concen-
trations in the BC samples by eliminating signal interference. 
Calibration curves (a total of 5 calibration standards) for PAHs 
were prepared by diluting a PAH calibration mix (10 μg/mL) 
with acetonitrile to the range 0.01–1 μg/mL. The identification 
of PAHs in the sample extracts was performed on the basis 
of previously determined retention times and confirmed by 
the analysis of the UV spectra. NP: y = 0.52833x − 0.00256, 
R2 = 0.99995; ACY: y = 0.187459x − 0.000318, 
R2 = 0.99987; ACE: y = 0.186524x − 0.000216, 
R 2 =  0 .999986 ;  FL :  y  =  0 .63474x  −  0 .00190 , 
R2 = 0.99995;  PHE: y = 0.623985x − 0.001319, 
R2 = 0 .999995;  ANT: y  = 0 .99773x − 0.00539, 
R2 = 0.99995;  FLA: y = 1.441605x − 0.000037, 
R 2 = 0 .999986;  PYR:  y  = 0 .38893x − 0 .00096, 
R 2 =  0 .99990 ;  CHR:  y  =  0 .98534x  − 0 .00690 , 
R2 = 0.99998;  BaA: y = 4.308451x − 0.027636, 
R 2 = 0 .999988;  BbF:  y  = 1 .61069x − 0 .01651, 
R2 = 0.99984; BkF: y = 1.29670x − 0.01719, R2 = 0.99978; 
BaP: y = 2.18449x − 0.02135, R2 = 0.99991; IcdP: 
y = 2.71077x − 0.02839, R2 = 0.99991.

Limit of detection (LOD) and limit of quantification 
(LOQ) were calculated based on the standard deviation of the 
response and the slope, using the following equations:

(1)LOD =
3.3 ∗ �

S

(2)LOQ =
10 ∗ �

S

where σ is the standard deviation of the calibration curve and 
S is the slope of the calibration curve.

LOD and LOQ in solution (μg/mL) were converted into 
the corresponding limits as μg/g by considering the weight 
of BC samples and the volume of acetonitrile used (Table 2).

Results and discussion

Concentration and distribution of the different PAHs 
on the BC samples

The BC samples from the monumental Cemetery of Milan 
have been already characterized in terms of their main 
components, as reported in (Comite et al. 2020a). Briefly, 
scanning electron microscopy/energy-dispersive X-ray spec-
troscopy and Fourier-transform infrared spectroscopy with 
attenuated total reflection analyses showed that all the BC 
samples are made of gypsum, with a small amount of car-
bonate deriving from the matrix. Obviously signals due to 
PAH presence cannot be highlighted from FT-IR spectra 
because of the very low concentration.

The concentrations of PAHs, as μg of compound per g of 
dry weights, for the different sample are shown in Table 3. 
Results are given as mean value of triplicate analyses of each 
sample. A total of 14 PAHs were identified (NP, ACY, ACE, 
FL, PHE, ANT, FLA, PYR, CHR, BaA, BbF, BkF, BaP, and 
Icd). Benzo[g,h,i]perylene and dibenz[a,h]anthracene were 
not detected (concentration < LOD ~ 0.07 ug/g). The total 
PAHs concentration varied from 0.72 μg/g (GC) to 3.81 μg/g 

Table 2  List of PAHs detected in the black crust samples, with their 
abbreviation, and limit of detection (LOD) and limit of quantification 
(LOQ), expressed as μg of compound per g of dry weights

PAH Abbreviation Limit of 
detection 
(μg/g)

Limit of 
quantification 
(μg/g)

Naphthalene NP 0.042 0.12
Acenaphthylene ACY 0.026 0.078
Acenaphthene ACE 0.027 0.081
Fluorene FL 0.020 0.060
Phenanthrene PHE 0.015 0.046
Anthracene ANT 0.025 0.075
Fluoranthene FLA 0.016 0.048
Pyrene PYR 0.071 0.022
Chrysene CHR 0.017 0.051
Benzo[a]anthracene BaA 0.012 0.037
Benzo[b]fluoranthene BbF 0.060 0.18
Benzo[k]fluoranthene BkF 0.059 0.18
Benzo[a]pyrene BaP 0.033 0.10
Indeno[1,2,3-cd]

pyrene
IcdP 0.034 0.10
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(GS), with a mean of 1.87 μg/g. As expected, the lower con-
centrations were observed for the BC samples with lower 
years of pollutants’ accumulation, i.e., GC and EP (Table 3).

It is worth to note that total PAH concentrations in this 
study were higher than the concentrations reported in the 
Valley of the Temples of Agrigento (range 0.018–0.084 μg/g) 
(Orecchio 2010), while similar to those observed on Palermo 
stone monuments (range 0.077–9.8 μg/g) (Gianguzza et al. 
2004) and lower than those detected on an historical building 
in Bilbao (up to 20 μg/g) (Martínez-Arkarazo et al. 2007) 
and Getxo (0.4–19 μg/g) (Prieto-Taboada et al. 2013). This 
is indicative of the fact that the Monumental Cemetery of 
Milan is placed in the city center and is surrounded by high-
traffic road arteries, and traffic is one of the main sources 
of PAHs.

Among PAHs, NP and FL were detected in all BC 
samples (Fig. 3), with concentration ranging from 0.12 to 
0.22 μg/g and from 0.06 to 0.52 μg/g, respectively. Con-
cerning the others, ANT and BaA were present in five sam-
ples (GS, AF, GRP, RP, and GC), ACY, ACE, PHE, FLA, 
CHR, BaA, and BaP were observed in four samples, PYR, 
BbF, and IcdP were found in three samples, while BkF was 
detected in only two samples.

Ultimately, only for the BC samples with the highest year 
of pollutants’ accumulation (GS and AF), all the PAHs con-
sidered were detected. Moreover, the number of PAHs found 
in the BCs decreased to three in the sample with the lowest 
years of pollutants’ accumulation (EP), with a prevalence 
of low molecular weight PAHs. PYR is the most abundant 
PAHs in three out of six samples (GS, AF, GRP), whereas 
FL is the prevalent PAHs in one sample (RP), and PHE in 
the remaining two samples (GC and EP) at concentration 

up to 0.62, 0.52, and 0.51 μg/g, respectively. Among known 
carcinogenic PAHs, BaP accounts for 5–10% of total PAHs 
in BC samples, with concentration up to 0.20 μg/g.

Sources of PAHs: diagnostic ratios

As reported in the literature, it is possible to establish the 
processes that generate PAHs by studying their distribution 
in the samples (Tobiszewski and Namieśnik 2012; Wu et al. 
2021). Low molecular weight PAHs are generally emit-
ted from low temperature processes (e.g., wood burning), 
while high molecular weight PAH are mainly formed dur-
ing high temperature processes, such as the combustion of 
fuels (Mostert et al. 2010). Moreover, at high temperatures, 
organic compounds are cracked to reactive radicals, forming 
stable PAHs (pyrogenic), that are less alkylated and contain 
more aromatic rings respect to petrogenic PAHs (Hwang 

Table 3  Concentration of each 
detected PAHs expressed as 
μg of compound per g of dry 
weights, with standard error

N.D. not detected, N.Q. not quantified

PAH (μg/g) Sample

GS AF GRP RP GC EP Range

NP 0.22 ± 0.01 0.20 ± 0.01 0.26 ± 0.01 0.16 ± 0.01 0.12 ± 0.01 0.19 ± 0.01 0.12–0.22
ACY 0.20 ± 0.01 0.17 ± 0.01 0.08 ± 0.01 0.11 ± 0.01 N.Q N.Q 0.08–0.20
ACE 0.16 ± 0.01 0.14 ± 0.01 0.10 ± 0.01 0.09 ± 0.01 N.Q N.Q 0.09–0.16
FL 0.52 ± 0.01 0.28 ± 0.01 0.31 ± 0.01 0.33 ± 0.01 0.09 ± 0.01 0.06 ± 0.01 0.06–0.52
PHE 0.13 ± 0.01 0.11 ± 0.01 N.D N.D 0.22 ± 0.01 0.51 ± 0.01 0.11–0.51
ANT 0.39 ± 0.01 0.19 ± 0.01 0.19 ± 0.01 0.16 ± 0.01 0.08 ± 0.01 N.D 0.08–0.39
FLA 0.34 ± 0.03 0.18 ± 0.01 0.06 ± 0.01 0.05 ± 0.01 N.Q N.Q 0.05–0.34
PYR 0.62 ± 0.01 0.57 ± 0.01 0.34 ± 0.01 N.D N.Q N.Q 0.34–0.62
CHR 0.24 ± 0.01 0.17 ± 0.01 0.11 ± 0.01 0.12 ± 0.01 0.05 ± 0.01 N.D 0.05–0.24
BaA 0.14 ± 0.01 0.12 ± 0.01 0.10 ± 0.01 0.08 ± 0.01 0.04 ± 0.01 N.D 0.04–0.14
BbF 0.30 ± 0.01 0.24 ± 0.01 0.17 ± 0.01 N.D N.D N.D 0.17–0.30
BkF 0.21 ± 0.01 0.19 ± 0.01 N.D N.D N.D N.D 0.19–0.21
BaP 0.20 ± 0.01 0.15 ± 0.01 0.14 ± 0.01 0.12 ± 0.01 N.Q N.Q 0.12–0.20
IcdP 0.15 ± 0.01 0.14 ± 0.01 N.D N.D 0.11 ± 0.01 N.D 0.11–0.15
Total 3.81 ± 0.05 2.86 ± 0.05 1.85 ± 0.04 1.22 ± 0.04 0.72 ± 0.02 0.76 ± 0.03 0.72–3.81

Fig. 3  Distribution of the different PAHs on the black crust samples 
analyzed
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et al. 2003). First of all, we can calculate the percentage 
of PAHs with between 3 and 4 aromatic rings compared to 
PAHs with more than 4 aromatic rings (Table 4). For all the 
BC samples under study, most of the PAHs identified fall 
into the 3–4 aromatic ring category (Fig. 4), with a percent-
age of 67.5–77.3%. This finding suggests that PAHs in these 
BC samples mainly derive from high-temperature sources, 
e.g. combustion of fossil fuels (Orecchio 2010).

To investigate in more detail the sources of PAHs in envi-
ronmental samples, the so-called diagnostic ratios, i.e. ratios 
of concentrations of specific PAHs, are extensively used in 
the literature (Ravindra et al. 2008; Katsoyiannis et al. 2011; 
Tobiszewski and Namieśnik 2012; Wu et al. 2021). Their 
application is based on the thermodynamic stability of the 
compounds considered, in order to draw conclusions on the 
processes that originated them. Despite their widespread 
use, their accuracy and reliability in identifying the sources 
of PAHs has been debated (Katsoyiannis and Breivik 2014; 
Wu et al. 2021). Indeed, several authors have pointed out 
criticisms in the use of diagnostic ratios related to differ-
ences in gas-particle partitioning behavior and atmospheric 
persistence of PAHs (Galarneau 2008; Kong et al. 2010; 
Wu et al. 2021). Consequently, caution must be exercised 
when using diagnostic reports to derive useful information 
on sources and patterns of PAHs in the atmosphere. The 
authors chose to apply the approach reported by (Tobisze-
wski and Namieśnik 2012) for the BC samples investigated, 
as it is the most accredited and accepted in the literature.

In the present study, the following six diagnostic ratios 
were calculated: ANT/(ANT + PHE), BaA/(BaA + CHR), 
FLA/(FLA + PYR), BaP/(BaP + CHR), FL/(FL + PYR), and 
PYR/(PYR + BaP). ANT/(ANT + PHE), BaA/(BaA + CHR), 
and FLA/(FLA + PYR), are used to distinguish between 
petrogenic (e.g., release of fossil fuels) and pyrogenic 
(combustion of biomass and fossil-fuels) sources of PAHs 
(Tobiszewski and Namieśnik 2012). Moreover, in the case 
of pyrogenic origin, some of them may give further infor-
mation on which combustion process is prevalent (biomass, 
petroleum fuels, or coal) (Ravindra et al. 2008). Specifi-
cally, ANT/(ANT + PHE) ratio > 0.10 is taken as an indica-
tion of high temperature processes (combustion), whereas 
a ratio < 0.10 indicates low-temperature processes; FLA/

(FLA + PYR) ratio < 0.4 and > 0.5 suggests petroleum input 
and grass, wood, or coal combustion respectively, while ratio 
between 0.4 and 0.5 indicates liquid fossil fuel combustion; 
BaA/(BaA + CHR) ratio < 0.2 was indicative of petroleum 
origin, ratio > 0.35 of vehicular emission. Finally, with the 
diagnostic ratios BaP/(BaP + CHR), FL/(FL + PYR), and 
PYR/(PYR + BaP), it is possible to estimate the contribution 
of diesel or gasoline engines on PAH emissions (Cerqueira 
and Matos 2019): FL/(FL + PYR) ratio < 0.5 indicates gaso-
line emission, while PYR/(PYR + BaP) ratio > 0.7 suggests 
diesel emission.

The calculated diagnostic ratios for BC samples under 
study are reported in Table 5. Certain values could not be 
calculated because concentrations below the limit of quan-
tification were observed for at least one of the PAHs under 
consideration (for EP none of the diagnostic reports could 
be calculated).

The ratio ANT/(ANT + PHE) observed for all the sam-
ples is > 0.10 for all the samples, indicating a prevalence of 
combustion processes. In the case of the BaA/(BaA + CHR) 
ratio, values in the range 0.37–0.46 were obtained, giving 
more detail on the type of pyrogenic source as vehicular 
emission (ratio > 0.35). On the contrary, the calculated FLA/
(FLA + PYR) ratio would seem to indicate a petrogenic 

Table 4  Results of total PAHs 
(μg/g), PAHs > 4 ring (μg/g) and 
PAHs 3–4 ring (μg/g and %) 
with their standard errors, for all 
black crust samples analyzed

Sample PAHs total (μg/g) PAHs > 4 ring (μg/g) PAHs 3–4 ring (μg/g) PAHs 3–4 ring (%)

GS 3.81 ± 0.05 0.85 ± 0.02 2.74 ± 0.03 71.8 ± 0.1
AF 2.86 ± 0.05 0.71 ± 0.02 1.93 ± 0.03 67.5 ± 0.1
GRP 1.85 ± 0.04 0.40 ± 0.02 1.28 ± 0.02 69.2 ± 0.2
RP 1.22 ± 0.04 0.20 ± 0.02 0.94 ± 0.02 77.3 ± 0.3
GC 0.72 ± 0.02 0.04 ± 0.01 0.49 ± 0.02 68.7 ± 0.4
EP 0.76 ± 0.03 - 0.57 ± 0.01 74.5 ± 0.3
Mean (Range) 1.87 (0.72–3.81) 0.44 (0.04–0.85) 1.32 (0.49–2.74) 71.5 (67.5–77.3)

Fig. 4  Total PAHs and 3–4 ring PAHs on BC samples
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origin (ratio < 0.4). Concerning the last three ratios, it is 
not possible to identify a clear preponderance between die-
sel and gasoline emissions. In fact, the BaP/(BaP + CHR) 
ratio gives values around the discriminatory threshold of 
0.5, while FL/(FL + PYR) would indicate gasoline emission 
(ratio < 0.5) and PYR/(PYR + BaP), on the contrary, diesel 
emission (ratio > 0.7). This result can be easily explained if 
we consider the long accumulation times of pollutants for 
the samples under examination and the use of both types of 
fuels in engines in Italy.

Correlation of total PAHs with elemental carbon 
and year of pollutants’ accumulation

The literature also reports possible correlations between 
PAH concentrations and those of other types of pollutants, 
both organic (organic carbon, elemental carbon) (Crimmins 
et al. 2004; Arnott et al. 2005; Li et al. 2009) and inorganic 
(Orecchio 2010; Bernalte et al. 2012), found in particulate 
matter and/or soil (Rajput et al. 2013). Close correlations 
between the concentrations of PAHs and elemental carbon 
(EC) have been ascribed to co-emission, co-transport, and 
sorption of them (Han et al. 2015). Significant correlations 
were found both when EC and PAHs originated mainly from 
fossil fuel (Crimmins et al. 2004; Arnott et al. 2005) and bio-
mass combustion (Li et al. 2009). Furthermore, an associa-
tion between the concentration of PAHs and organic carbon 
(OC) is considered to dominate in remote areas, where there 
is greater transport of these pollutants, while the correlation 
with EC is prevalent in areas closer to the emission sources 
(Nam et al. 2008).

In Table 6, the concentration (wt%) of OC and EC and 
the ratios EC/OC and EC/TC (total carbon, referred as the 
sum of EC and OC) for EP, GRP, AF, and GS are reported. 
These values were previously measured on these samples by 
an innovative analytical method based on thermal analysis 
(thermogravimetric and differential scanning calorimetry 
analyses) in a range between 30 and 800 °C, increasing the 
temperature at 20 °C/min both in inert and oxidizing atmos-
phere (Comite et al. 2020a).

No significant correlations (at the 0.05 level) were observed 
between total PAHs concentration (ug/g) and absolute values 
of EC and OC, with R2 of 0.64 and 0.40 respectively. On the 
contrary, significant positive correlation coefficients (at the 
0.05 level) are found between total PAHs (ug/g) and EC/OC 
ratio (Pearson’s r of 0.995 and R2 of 0.990), and between total 
PAHs (ug/g) and EC/TC ratio (Pearson’s r of 0.980, R2 of 
0.961), as can be viewed in Fig. 5a. A preponderance of ele-
mental carbon over organic carbon occurs with accumulation 
time of pollutants, probably due to the less stability of the 
organic carbon fraction. Since the EC/OC ratio increases as 
the years of pollutants’ accumulation in the BCs increase, the 
same occurs for total PAHs. In fact, a significant strong cor-
relation was obtained between total PAH concentration and 
the age of the BCs (Pearson’s r of 0.977 and R2 of 0.955, see 
Fig. 5b).

Although based on a small number of samples, these results 
further confirm that the predominant origin of the PAHs in 
the BC samples under study is the combustion of fossil fuels. 
Indeed, high EC/OC ratios are often associated with primary 
particulate matter, which is emitted by combustion processes 
and traffic.

Ultimately, the analysis of the BC samples from the Monu-
mental Cemetery of Milan showed that over a time span of 
100–150 years there was a non-negligible accumulation of 
PAHs on the monuments considered. This is an important 
aspect to consider since a recently published study shows that 
black crusts deposited on historical monuments can pose a 
health risk due to air pollution of the surrounding environment, 
especially if appropriate precautions are not taken (Islam et al. 
2024). Moreover, the study of the distribution and diagnostic 
ratios, together with other data already reported in the litera-
ture (EC and OC), allowed us to confirm that the presence of 
anthropogenic sources such as traffic and the proximity of the 
train station is the major cause of the degradation of the monu-
ments contained in this Cemetery.

Table 5  Main diagnostic ratios for all black crust samples analyzed

NC not calculated

Diagnostic ratio Sample

GS AF GRP RP GC

ANT/(ANT + PHE) 0.75 0.63 NC NC 0.27
BaA/(BaA + CHR) 0.37 0.43 0.46 0.42 0.46
FLA/(FLA + PYR) 0.35 0.24 0.14 NC NC
BaP/(BaP + CHR) 0.46 0.48 0.54 0.50 NC
FL/(FL + PYR) 0.46 0.33 0.48 NC NC
PYR/(PYR + BaP) 0.75 0.79 0.71 NC NC

Table 6  OC (wt%), EC (wt%), ratios EC/OC, and EC/TC of some BC 
samples

Data from (Comite et al. 2020a)

Sample OC (wt%) EC (wt%) EC/OC EC/TC

EP 1.38 ± 0.02 0.44 ± 0.01 0.32 ± 0.03 0.24 ± 0.02
GRP 0.38 ± 0.01 0.35 ± 0.02 0.92 ± 0.05 0.48 ± 0.04
AF 0.30 ± 0.01 0.54 ± 0.03 1.78 ± 0.07 0.64 ± 0.06
GS 0.63 ± 0.01 1.36 ± 0.05 2.17 ± 0.08 0.68 ± 0.06
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Conclusions

In this study, PAHs were detected and quantified in six BC 
samples from the Monumental Cemetery of Milan (Italy): 
14 PAHs were identified (NP, ACY, ACE, FL, PHE, ANT, 
FLA, PYR, CHR, BaA, BbF, BkF, BaP, and IcdP). The total 
PAH concentration varied from 0.72 μg/g (GC) to 3.81 μg/g 
(GS), with a mean of 1.87 μg/g. Since these BC samples 
come from sculptures located in the same part of the Monu-
mental Cemetery (Western Gallery), exposed to almost the 
same degree of pollution, the observed differences in PAH 
abundance can be ascribed to the different accumulation 
times of the pollutants. In fact, the lower concentrations were 
observed for the BC samples with lower years of pollutants’ 
accumulation. PYR is the most abundant PAHs in three out 
of six samples (GS, AF, GRP), whereas FL is the prevalent 
PAHs in one sample (RP), and PHE in the remaining two 
samples (GC and EP) at concentration up to 0.62, 0.52, and 
0.51 μg/g, respectively. Among known carcinogenic PAHs, 
BaP account for 5–10% of total PAHs in BC samples, with 
concentration up to 0.20 μg/g.

For all the BC samples under study, most of the 
PAHs identified fall into the 3–4 aromatic ring category 
(67.5–77.3%). This result suggests that PAHs mainly derive 
from high temperature sources (e.g., combustion of fossil 
fuels). The diagnostic ratios ANT/(ANT + PHE) and BaA/
(BaA + CHR) indicate a prevalent origin from combustion 
processes, such as vehicular emission. Moreover, it is not 
possible to identify a clear preponderance between diesel 
and gasoline emissions since the diagnostic ratios BaP/
(BaP + CHR), FL/(FL + PYR), and PYR/(PYR + BaP) give 
mixed results. This can be easily explained if we consider 
the long accumulation times of pollutants (100–150 years) 

for these BCs and the use of both types of fuels in engines 
in Italy.

Finally, the analysis of the BC samples from the Monu-
mental Cemetery of Milan showed that over a time span 
of 100–150 years there was a non-negligible accumulation 
of PAHs on the monuments considered. Furthermore, the 
analysis of the distribution of the different PAHs and the 
diagnostic ratios, together with correlation with EC/TC, 
allowed us to confirm that anthropogenic sources such as 
traffic are the major cause of the degradation of the monu-
ments contained in this cemetery.
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