
Autosymmetric and D-reducible Functions:

Theory and Application to Security

Anna Bernasconi1, Valentina Ciriani2, and Licia Monfrini2

No Institute Given

Summary. In this paper we study Boolean functions that exhibit two di�erent
XOR-based regularities (i.e., autosymmetry and D-reducibility) at the same time.
XOR-based regularities can be exploited for the e�cient computation of multi-
plicative complexity of a Boolean function f (i.e., the minimum number of AND
gates that are necessary and su�cient to represent f over the basis {AND, XOR,
NOT}). The multiplicative complexity is crucial in cryptography protocols such as
zero-knowledge protocols and secure two-party computation, where processing AND
gates is more expensive than processing XOR gates.

1 Introduction

The multiplicative complexity of a Boolean function f is de�ned as the min-
imum number of AND gates that are necessary and su�cient to represent f
with a circuit, using the 2-input Boolean operators AND and XOR, and the
negation (NOT). The basis {AND, XOR, NOT} is widely used to represent
Boolean functions in cryptographic applications [7, 8, 14, 15, 16], where the
multiplicative complexity plays a crucial role. In particular, the minimization
of the number of AND gates is important for high-level cryptography pro-
tocols such as zero-knowledge protocols and secure two-party computation,
where processing AND gates is more expensive than processing XOR gates [1].
Moreover, the multiplicative complexity is an indicator of the degree of vul-
nerability of the circuits, as a small number of AND gates in an {AND, XOR,
NOT} circuit indicates a high vulnerability to algebraic attacks [8, 10, 16].
However, determining the multiplicative complexity of a Boolean function f is
a computationally intractable problem [8]. Therefore, the minimization of the
number of AND gates, in circuits composed by the gates {AND, XOR, NOT},
is important in order to estimate the multiplicative complexity of the function.
For this purpose, Boolean functions can be represented exploiting Xor-And-
Inverter Graphs (XAGs) [11, 14, 15], and the multiplicative complexity of an
XAG implementation of a Boolean function can be used to provide an upper
bound for its real multiplicative complexity.

2 Anna Bernasconi, Valentina Ciriani, and Licia Monfrini

The �regularities� of Boolean functions are often exploited for deriving, in
shorter synthesis time, more compact circuits. In the literature, some struc-
tural regularities of Boolean functions have been studied, i.e., autosymme-
try [5, 6, 13] and D-reducibility [4]. These regularities are based on the no-
tion of a�ne spaces and are easily expressed using XOR gates. Thus, both
these structural regularities can be exploited for decreasing the multiplicative
complexity of an XAG, and to better estimate the multiplicative complexity
of the function. In the literature [3] a study of the multiplicative complex-
ity of autosymmetric functions and a study of the multiplicative complexity
of D-reducible functions are proposed. Moreover, experimental results show
that about the 9% of these regular functions are both autosymmetric and
D-reducible.

In this paper, we further investigate on regular functions that are both au-
tosymmetric and D-reducible. In particular, we give a formal characterization
of completely speci�ed autosymmetric and D-reducible functions. Moreover,
we study the case of non-completely speci�ed functions. Finally, we discuss
the multiplicative complexity of functions that are both autosymmetric and
D-reducible. The experimental results show that, for functions that are both
autosymmetric and D-reducible, we get a better estimate of the multiplicative
complexity in about 27% of the cases with respect to exploiting autosymmetry
or D-reducibility only, with an average reduction of the number of ANDs of
about 27%.

2 Preliminaries

In this section, we review the de�nitions and properties of autosymmetric and
D-reducible functions and we introduce our running example. Finally, at the
end of the section, we give a very brief introduction to multiplicative com-
plexity and XOR-AND Graphs (XAG). Hereafter, we will consider Boolean
functions over n variables (i.e., described in the Boolean space {0, 1}n).

2.1 Autosymmetric Functions

In this section, we introduce a particular regularity, i.e., autosymmetry [5, 6,
13], based on a�ne spaces.

Intuitively, a Boolean function f over n variables is k-autosymmetric if
it can be projected onto a smaller function fk that depends on n − k vari-
ables. The regularity of a Boolean function f is then measured computing
its autosymmetry degree k, with 0 ≤ k ≤ n, where k = 0 means no regu-
larity. For k ≥ 1 the Boolean function f is said to be autosymmetric, and
a new function fk depending on n − k variables only, called the restriction
of f , is identi�ed. Moreover, an expression for f can be simply built from
fk: f(x1, x2, . . . , xn) = fk(y1, y2, . . . , yn−k), where fk is a Boolean function on
n−k variables y1 = ⊕(X1), y2 = ⊕(X2), . . . , yn−k = ⊕(Xn−k) and each ⊕(Xi)

Title Suppressed Due to Excessive Length 3

x4x5
x2x3

00 01 11 10

00

01

11

10

1

1 1

1

1 1

0 00

0 0

0 0

0 00

x4x5
x2x3

00 01 11 10

00

01

11

10

1 1

1

1 1

1

0 0

0 00

0 00

0 0

x1 = 0 x1 = 1

Fig. 1. Karnaugh map for the running example (function f), the colors highlight
the autosymmetry regularity.

is a XOR whose input is a set of variables Xi with Xi ⊆ {x1, x2, . . . , xn}. Note
that ⊕(Xi) can be a single variable, i.e., Xi = {xj} and ⊕(Xi) = xj . The au-
tosymmetry test consists of �nding the value of k, the restriction fk, and
each single XOR with its input variables Xi (reduction equations). Note that
a degenerate function, i.e., a function that does not depend on all the vari-
ables, is autosymmetric. The computational time of the autosymmetry test is
polynomial in the size of the ROBDD representation of f [5].

The restriction fk is �equivalent� to, but smaller than f , and has |S(f)|/2k
minterms only, where S(f) denotes the support of f , and thus |S(f)| is the
number of minterms of f . Each point of fk in {0, 1}n−k corresponds to a set
of 2k points in {0, 1}n where f assumes the same value. The function f can
be synthesized through the synthesis of its restriction fk. As the new n − k
variables are XOR combinations of some of the original ones, the reconstruc-
tion of f from fk can be obtained with an additional logic level of XOR gates,
whose inputs are the original variables, and the outputs are the new n − k
variables given as inputs to a circuit for fk. In general, the restricted function
fk can be synthesized in any framework of logic minimization. In this paper
we derive an XAG representation of it.

We now recall some properties of autosymmetric functions and of their
restrictions, that will be useful for the analysis of their multiplicative com-
plexity. As shown in [5, 6], any k-autosymmetric function f is associated to
a k-dimensional vector space Lf , de�ned as the set of all minterms α s.t.
f(x) = f(x ⊕ α) for all x ∈ {0, 1}n. Let Lf be sorted in increasing binary
order, with the vectors indexed from 0 to 2k−1. The set of vectors of Lf with
indices 20, 21, . . . , 2k−1 is called the canonical basis BL of Lf . The k variables
that are truly independent onto Lf are called canonical variables, while the
other variables are called non-canonical. Informally, the canonical variables
are the ones that assume all the possible combinations of {0, 1} values in the
vectors of the vector space Lf , meanwhile the non-canonical variables are the
variables that, on Lf , have a constant value or are a linear combination of the
canonical ones.

4 Anna Bernasconi, Valentina Ciriani, and Licia Monfrini

y2y3
y1

00 01 11 10

0

1

1

1 1

0 00

0 0

Fig. 2. Karnaugh map for the reduced function f2 of the 2-autosymmetric function
shown in Figure 1.

The canonical variables can be easily computed from the canonical basis
v1, . . . , vk, in the following way: for each vi, let x be the variable corresponding
to the �rst 1-component from left of vi. The variable x is a canonical variable.

Finally, the restriction fk corresponds to the projection of f onto the
subspace {0, 1}n−k where all the canonical variables assume value 0, while
the reduction equations correspond to the linear combinations that de�ne
each non-canonical variable in terms of the canonical ones (see [5, 6] for more
details).

Example 1. Given an arbitrary function f , the vector space Lf provides the
essential information to compute the autosymmetry degree, the restriction
fk, and the reduction equations of f . Consider, for instance, the completely
speci�ed Boolean function f(x1, . . . , x5) described by its minterms as fol-
lows: f = {00001, 00100, 00110, 01000, 01010, 01101, 10001, 10011, 10100,
11000, 11101, 11111}. The function f can be represented by the Karnaugh
map depicted in Figure 1. The �regularity� of the function is highlighted
by the colors in the �gure. The computation of the vector space Lf and
of the reduction equations is not straightforward, we refer the reader to [5]
for the complete algorithm. The vector space Lf associated to f is Lf =
{00000, 01100, 10101, 11001}. In fact, for any element α ∈ Lf we have that
f(x) = f(x ⊕ α) for all x ∈ {0, 1}n. We have that k = log2 |Lf | = 2,
thus f is 2-autosymmetric. The canonical basis is BV = {01100, 10101}.
The canonical variables are x1 and x2 (i.e., the variables that correspond
to the �rst ones from left in the two vectors of the canonical base). The
remaining variables x3, x4, and x5 are non-canonical. The restriction f2, de-
picted in Figure 2, can be computed starting from the subset of minterms
{00001, 00100, 00110} of f , where all the canonical variables are equal to 0.
In fact, if we project these points in the space {0, 1}3, corresponding to the
non-canonical variables x3, x4, and x5, we get f2(y1, y2, y3) = {001, 100, 110}.
Finally, the reduction equations for reconstructing the original function f
are [5]: y1 = x1 ⊕ x2 ⊕ x3; y2 = x4; y3 = x1 ⊕ x5.

Autosymmetric functions are just a subset of all Boolean functions. In-
deed, while the number of the Boolean functions of n variables is 22

n

, the
number of autosymmetric ones is (2n − 1)22

n−1

[6]. Therefore, the set of au-

Title Suppressed Due to Excessive Length 5

tosymmetric functions is much smaller than the one containing all the Boolean
functions. Nevertheless, a considerable amount of standard Boolean functions
of practical interest falls in this class. Indeed, about 24% of the functions in
the classical Espresso benchmark suite [17] have at least one truly (i.e., non
degenerate) autosymmetric output [5, 6]. Thus, the interest on autosymmetric
functions is motivated by 1) their compact (in term of number of AND gates)
representation, which consists of an XOR layer that is the input to an XAG
for the restriction; 2) the frequency of autosymmetric functions in the set of
benchmark functions.

2.2 D-Reducible Functions

In this section, we summarize the de�nitions and the major properties of
Dimension Reducible Boolean functions, i.e., D-reducible functions. We recall
that the Boolean space {0, 1}n is a vector space with respect to the exclusive
sum ⊕ and the multiplication with the scalars 0 and 1. Moreover, an a�ne
space is a vector space or a translation of a vector space [4], more precisely:
let V be vector subspace of the Boolean vector space ({0, 1}n,⊕) and w be
a point in {0, 1}n, then the set A = w ⊕ V = {w ⊕ v | v ∈ V } is an a�ne
space over V with translation point w. The space V is called the vector space
associated to A. Finally, a Boolean function f : {0, 1}n → {0, 1} is D-reducible
if f ⊆ A, where A ⊂ {0, 1}n is an a�ne space of dimension strictly smaller
than n.

The minimal a�ne space A containing a D-reducible function f is unique
and it is called the associated a�ne space of f . The function f can be repre-
sented as f = χA ·fA, where fA ⊆ {0, 1}dimA is the projection of f onto A and
χA is the characteristic function of A. Observe that the smallest a�ne space
contains the whole on-set of a function f . Thus, this regularity is di�erent
from autosymmetry, since the numbers of minterms of the original function f
and of the projected function fA are equal to each other. Moreover, as shown
in [9], an a�ne space can be represented by a simple expression, consisting of
an AND of XORs or literals. In particular, an a�ne space of dimension dimA
can be represented by an expression containing (n− dimA) XOR factors.

The D-reducibility of a function f can be exploited in the minimization
process. The projection fA is minimized instead of f . This approach requires
two steps: �rst, deriving the a�ne space A and the projection fA, and then
minimizing fA in any logic framework (e.g., XAG). The D-reducibility test [4],
which establishes whether a function f is D-reducible, and the computation
of A can be performed e�ciently exploiting the Gauss-Jordan elimination
procedure [12], which is used to �nd the on-set minterms of f that are linearly
independent.

Example 2. Let us consider the running example, analyzed for autosymmetry,
i.e., the function f shown in Figure 3. The minimal a�ne space A containing
all the minterms the function f is highlighted by the color cyan in the �gure.

6 Anna Bernasconi, Valentina Ciriani, and Licia Monfrini

x4x5
x2x3

00 01 11 10

00

01

11

10

1

1 1

1

1 1

0 00

0 0

0 0

0 00

x4x5
x2x3

00 01 11 10

00

01

11

10

1 1

1

1 1

1

0 0

0 00

0 00

0 0

x1 = 0 x1 = 1

Fig. 3. Karnaugh map for the D-reducible function f . The space A of f is high-
lighted.

Thus, A is a 4-dimension a�ne space. The canonical basis of the vector space
V associated to A is {00010, 00101, 01001, 10000}, its canonical variables are:
x1, x2, x3, and x4, while x5 is non-canonical. The representation, as an AND
of XORs, of A is: x2 ⊕ x3 ⊕ x5. Moreover, the projection of f onto the a�ne
space A is fA = {0000, 0010, 0011, 0100, 0101, 0110, 1000, 1001, 1010, 1100,
1110, 1111}. The projection fA is represented in the Karnaugh map in Fig-
ure 4.

2.3 Multiplicative Complexity and XOR-AND Graphs

The multiplicative complexity M(f) of a Boolean function f is a complex-
ity measure de�ned as the number of AND gates, with fan-in 2, that are
necessary and su�cient to implement f with a circuit over the basis {AND,
XOR, NOT}. Moreover, the multiplicative complexity MC(f) of a circuit C
implementing a Boolean function f over the basis {AND, XOR, NOT} is the
actual number of AND gates in C. Therefore, the multiplicative complexity
of a circuit for f only provides an upper bound for the multiplicative com-
plexity of f , i.e.,M(f) ≤MC(f). In this work, we consider Boolean functions
represented in XOR-AND graphs (XAGs) form [11, 14, 15], which are logic
networks that contain only binary XOR nodes, binary AND nodes, and invert-
ers. In particular, we refer to the XAG model described in [14], where regular
and complemented edges are used to connect the gates. Complemented edges
indicate the inversion of the signals and replace inverters in the network.

3 Completely Speci�ed Autosymmetric and D-reducible

Functions

A Boolean function f , which is D-reducible and autosymmetric at the same
time, can be decomposed in two di�erent ways. The �rst possibility is to apply
the D-reducibility decomposition, and represent f as f = χAfA, and then to

Title Suppressed Due to Excessive Length 7

x3x4

x1x2
00 01 11 10

00

01

11

10

1 11

1 1 1

1 1 1

1 11

0

0

0

0

Fig. 4. Karnaugh map for the projection fA of the D-reducible function f shown
in Figure 3.

apply the autosymmetry reduction to fA. The second possibility consists in
decomposing the function f applying the autosymmetry test and deriving the
restriction fk, and then applying the D-reducibility decomposition to fk. In
this section, we prove that if f is a completely speci�ed function, these two
strategies provide the same �nal representation of the function f .

We �rst recall from [3] a theoretical result contained in the proof of a
theorem, used to prove our results. For this reason, we report it as a lemma,
and we recall here its proof.

Lemma 1. [3] . Let f be an autosymmetric function with associated linear
space Lf . Let f also be a D-reducible function contained in the a�ne space
A. Then, Lf ⊆ V , where V is the vector space associated to A.

Proof. First of all, we observe that the vector space Lf is a subspace of the
vector space V associated to A. Let α ∈ Lf , and let x be any on-set minterm
of f . Then, f(x⊕α) = f(x) = 1, and therefore both x and x⊕α ∈ A. This in
turns implies that α ∈ (x⊕A), i.e., α ∈ V , since x⊕A = V for any x ∈ A (we
refer the reader to [9] for more details on a�ne spaces and their properties).

�

Example 3. Let us consider the function f described in Figures 1 and 3. In
the previous examples we have shown that f is both autosymmetric and D-
reducible. Example 1 shows that Lf = {00000, 01100, 10101, 11001}, and from
the Figure 3 of Example 2 we have that A = {00001, 00011, 00100, 00110,
01000, 01010, 01101, 01111, 10001, 10011, 10100, 10110, 11000, 11010, 11101,
11111}. The corresponding vector space is computed as V = v ⊕ A where v
is any vector contained in A. Thus, if we pick v = 00001 and computing V =
00001⊕A we obtain: V = {00000, 00010, 00101, 00111, 01001, 01011, 01100,
01110, 10000, 10010, 10101, 10111, 11001, 11011, 11100, 11110}. (Notice that
we can use any v in A and we would obtain the same associated vector V .)
We can easily verify that Lf ⊆ V .

8 Anna Bernasconi, Valentina Ciriani, and Licia Monfrini

Let k denote the dimension of Lf and a be the dimension of the vector
space V associated to A. The dimension of an a�ne space A is de�ned as the
dimension of the corresponding vector space V .

Proposition 1. The dimension of Lf is less or equal to the dimension of A,
and the canonical variables of V include all the canonical variables of Lf .

Proof. The �rst part of the proposition immediately follows from Lemma 1.
For the second part, observe that, since Lf ∈ V , we can construct a basis

for V extending a basis for Lf . Each vector in a basis for Lf corresponds to a
canonical variable of Lf , and consequently to a canonical variable of V . The
remaining a − k canonical variables of V can be derived from the remaining
a− k linearly independent vectors in the basis of V .

�

As a consequence, we have the following corollary.

Corollary 1. The n−k non-canonical variables of Lf include the n−a non-
canonical variables of V .

Example 4. Let us consider the running example. Example 1 shows that the
canonical variables of Lf are x1 and x2, and Example 2 shows that the canon-
ical variables of the vector space V associated to A are x1, x2, x3, and x4.
In this running example we have that the function is k-autosymmetric with
k = 2, and that a = 4. Moreover, the non-canonical variables of Lf are x3,
x4, and x5. The non-canonical variable of the vector space V associated to A
is x5. We can verify that the n− k = 5− 2 = 3 non-canonical variables of Lf

contains the n− a = 5− 4 = 1 non-canonical variable of V .

For completeness, we recall from [3] a theorem stating that if we �rst apply
the D-reducibility decomposition, we do not loose the autosymmetry property
of the function.

Theorem 1. [3] Let f be a completely speci�ed k-autosymmetric Boolean
function depending on n binary variables. If f is D-reducible with associate
a�ne space A, then the projection fA of f onto A is k-autosymmetric.

In order to prove that the two decomposition strategies provide the same
�nal representation of f , we need to prove that the restriction fk of an au-
tosymmetric function preserves the D-reducibility property, as shown in the
following theorem.

Theorem 2. Let f be a D-reducible completely speci�ed Boolean function de-
pending on n binary variables, and with associate a�ne space A. If f is k-
autosymmetric, then the restriction fk of f is D-reducible with respect to the
same a�ne space A.

Title Suppressed Due to Excessive Length 9

Proof. First of all, we notice that the reduction fk is the result of a projection
of f onto a (n − k)-dimensional space, where each point of fk in {0, 1}n−k
corresponds to a set of 2k points in {0, 1}n where f assumes the same value
(as reviewed in Section 2.1).

We now show that fk is D-reducible in {0, 1}n−k, where it is described
by the variables yi corresponding to the non-canonical variables of Lf , and
de�ned by the reduction equations. Observe that the on-set minterms of fk,
and the corresponding minterms in the original space {0, 1}n, are obviously
covered by A. Moreover, recall that fk is derived by f assigning value 0 to all
the canonical variables of Lf , and renaming the non-canonical variables with
y1, . . . , yn−k. If we now assign value 0 to the occurrences of the k canonical
variables of Lf in χA, and we rename the non-canonical variables of Lf as
y1, . . . , yn−k, we obtain the characteristic function of an a − k dimensional
subspace A′ of A that covers fk in {0, 1}n−k. Therefore, fk is D-reducible and
can be studied in a subspace of dimension a− k represented by a product of
(n− k)− (a− k) = n− a EXOR factors, i.e.,

fk = χA′fkA′ ,

where fkA′ depends on a− k variables.
Replacing the variables y1, . . . , yn−k in both χA′ and fkA′ with the corre-

sponding reduction equations, we derive a representation of f as

f = χA fkA .

Observe that the a�ne space associated to f and fk is the same.
�

In summary, we have shown how to decompose the function f with two
di�erent strategies. If we �rst apply the D-reducibility decomposition, and
then exploit the autosymmetry property on fA, we obtain f = χAfAk. If,
vice-versa, we �rst exploit the autosymmetry of f , and then we decompose
the restriction fk using the D-reducibility property, we get f = χAfkA. Ob-
serve that both functions fAk and fkA depend on the same a − k variables.
Finally, we have the following theorem, which immediately follows from The-
orems 1 and 2, and from the fact that f = χAfAk = χAfkA.

Theorem 3. The two decompositions are equivalent, i.e., fAk = fkA.

The following examples show the two possible strategies implemented on the
running example.

Example 5 (Autosymmetry - D-reducibility). Let us consider the running ex-
ample. Now, we �rst apply autosymmetry and then D-reducibility to the given
function f . Let us consider the function f described in Figure 1. Example 1
shows that f is 2-autosymmetric and it computes the restriction f2 as the set
of minterms f2(y1, y2, y3) = {001, 100, 110} in {0, 1}3. We now compute the

10 Anna Bernasconi, Valentina Ciriani, and Licia Monfrini

y2y3
y1

00 01 11 10

0

1

1

1 1

0 00

0 0

y2
y1

0 1

0

1

1

1 1

0

Fig. 5. Left side: Karnaugh map for f2(y1, y2, y3). The space A of f is highlighted
in cyan. Right side: Karnaugh map for f2A(y1, y2).

D-reducibility decomposition of f2. The Karnaugh map for f2 is shown on
the left side of Figure 5 where the a�ne space A, which entirely contains f2,
is highlighted in cyan. The function f2 can be projected in A obtaining the
Boolean function f2A(y1, y2) = {00, 01, 11} depicted in the Karnaugh map on
the right side of Figure 5. The characteristic function of A is (y1 ⊕ y3). In
order to simply describe our example, we represent the function f2A in SOP
form (i.e., f2A = (y2 + y1)). Recall, that f2A can be represented in any form,
and that we will use the XAG representation in the experimental section. In
summary, we have that f2(y1, y2, y3) = χA · f2A = (y1⊕ y3)(y2 + y1). In order
to reconstruct the original function f we replace the variables y1, y2, and y3
with the corresponding reduction equations computed in Example 1. We have
f(x1, . . . , x5) = [(x1 ⊕ x2 ⊕ x3)⊕ (x1 ⊕ x5)] · [x4 + (x1 ⊕ x2 ⊕ x3)], which can
be simpli�ed. We �nally obtain:
f(x1, . . . , x5) = χA · f2A = (x2 ⊕ x3 ⊕ x5) · [x4 + (x1 ⊕ x2 ⊕ x3)] .

Example 6 (D-reducibility-Autosymmetry). Let us consider again the running
example. In this case, we �rst apply D-reducibility and then autosymmetry to
the given function f . Let us consider the function f described in Figure 3. Ex-
ample 2 shows that f is D-reducible, and the projection fA(x2, x3, x4, x5) is
shown in Figure 4: fA = {0000, 0010, 0011, 0100, 0101, 0110, 1000, 1001,
1010, 1100, 1110, 1111}. We now compute the autosymmetry decomposi-
tion of fA. The Karnaugh map for fA is depicted on the left side of Fig-
ure 6. The projection fA is autosymmetric, and its associated vector space is
LfA = {0000, 0110, 1010, 1100}. This space has dimension k = log2 |LfA | = 2,
thus fA in Figure 6 is 2-autosymmetric. The canonical basis is {0110, 1010}
and the canonical variables are: x1 and x2. Thus, the non-canonical variables
are x3 and x4. We can now compute the restriction fA2 using the subset
{0000, 0010, 0011} of the minterms of fA that have the canonical variables
set to 0. If we project such minterms into the Boolean space {0, 1}2 of the
variable x3 and x4, we obtain the function fA2(y1, y2) = {00, 10, 11} depicted
in the Karnaugh map on the right-hand side of Figure 6. The corresponding
reduction equations are: y1 = x1 ⊕ x2 ⊕ x3; y2 = x4. A SOP form for the
function fA2 is: SOP (fA2) = y2 + y1. Applying the reduction equations, we
have that y2 + y1 = x4 + (x1 ⊕ x2 ⊕ x3). Recalling that the characteristic

Title Suppressed Due to Excessive Length 11

x3x4

x1x2
00 01 11 10

00

01

11

10

1 11

1 1 1

1 1 1

1 11

0

0

0

0

y2
y1

0 1

0

1

1

1 1

0

Fig. 6. Left side: Karnaugh map for the function fA(x2, x3, x4, x5). Right side:
Karnaugh map for fA2(y1, y2).

function of A is χA = (x2 ⊕ x3 ⊕ x5), we have:

f(x1, . . . , x5) = χA · fA2 = (x2 ⊕ x3 ⊕ x5) · [x4 + (x1 ⊕ x2 ⊕ x3)] .

We �nally notice that this decomposition is identical to the one obtained with
the other strategy in the previous example.

4 Incompletely Speci�ed Autosymmetric and

D-reducible Functions

In this section, we discuss the case where an incompletely speci�ed Boolean
function f is D-reducible and autosymmetric at the same time.

The autosymmetry test of an incompletely speci�ed Boolean function spec-
i�es the don't cares to a 0 or a 1, in order to obtain a completely speci�ed
function, whose degree of autosymmetry is maximum [2]. Therefore, after the
autosymmetry test, the reduced function fk is completely speci�ed.

Meanwhile, the D-reducibility reduction of an incompletely speci�ed Boolean
function f has the objective to �nd the smallest a�ne space A that contains
the minterms of f , the points of A that are not minterms of f can be 0 or
don't cares. Thus, the projected function fA remains an incompletely speci-
�ed Boolean function. In any case, if we consider a function f that is both
D-reducible and autosymmetric, the resulting decomposed functions fkA and
fAk are completely speci�ed, because of the autosymmetry test.

When the initial function is incompletely speci�ed, the properties proved
in Section 3 do not hold. In this case, we have that the completely speci�ed
functions fkA and fAk can be di�erent. We show this through an example
from the Espresso benchmark suite [17].

Example 7. Consider the function f that is the �rst output of the bench bench-
mark de�ned as follows: fon = {010001, 011010, 011110, 101001, 101110},
foff = {000110, 001000, 001001, 001010, 001110, 001111, 100010, 100101,

12 Anna Bernasconi, Valentina Ciriani, and Licia Monfrini

x3x4
x0x2

00 01 11 10

00

01

11

10

1

1 1

1 1

- --

- -

-

- -

0 0 0

y2y3
y1

00 01 11 10

0

1

1

1 1 1

0 00

0

Fig. 7. Left-hand side: Karnaugh of the projection fA for bench_0. Right-hand
side: Karnaugh map of the restriction fA1 for bench_0

y3
y1y2

0 1

00

01

11

10 1 1

1

0 0

0 0

0

y3
y2

0 1

0

1

1 1

10

Fig. 8. Left-hand side: Karnaugh map of the restriction f3 for bench_0. Right-hand
side: Karnaugh map of the projection f3A for bench_0

100110}, all the other points are in fdc. If we �rst apply D-reducibility and
then autosymmetry, we obtain the Karnaugh maps shown in Figure 7. On the
left side of the �gure, we have the Karnaugh map of the projection fA, which
is a 1-autosymmetric function. Thus, on the right, we have the Karnaugh
map of the restriction fA1. Notice that the Karnaugh map on the left con-
tains don't cares, since the D-reducibility test does not specify the don't care
conditions. If we �rst apply autosymmetry and then D-reducibility, we have
the Karnaugh maps shown in Figure 8. The incompletely speci�ed function
f is 3-autosymmetric. Thus, on the left of Figure 8, we have the Karnaugh
map of the restriction f3. On the right side, we have Karnaugh map of the
projection f3A. Notice that the Karnaugh map on the left does not contain
don't cares, since the autosymmetry test speci�es the don't care conditions in
order to obtain the best degree of autosymmetry. From this example, we can
observe that in presence of don't care conditions we can have two di�erent
�nal results, on changing the test ordering.

Title Suppressed Due to Excessive Length 13

Finally, considering the results obtained in Sections 3 and 4, we can de�ne
the following strategy:
� If the function is completely speci�ed, we can use one of the two ap-

proaches (actually, the experiments in Section 6 show that performing the
D-reducibility and then the autosymmetry seems to be the more e�cient
approach).

� If the function is incompletely speci�ed, we should use both approaches
and take the best solution (the experimental results in Section 6 show that
the running time cost for performing both approaches is a�ordable).

5 Multiplicative Complexity

In this section we discuss the multiplicative complexity of a completely spec-
i�ed autosymmetric and D-reducible function.

Since f is autosymmetric and D-reducible, we can upper bound its multi-
plicative complexity by �rst projecting f onto A, and then by estimating the
multiplicative complexity of the restriction fAk of fA, as proved in [3], in the
following way M(f) ≤ (n− dimA) +M(fAk).

Alternatively, we can �rst compute the restriction fk and then estimate the
multiplicative complexity of the projection fk,A of fk on the a�ne space A.
Indeed, we have that, since f is autosymmetric, the multiplicative complexity
of f (i.e., M(f)) is equal to the multiplicative complexity of fk (i.e., M(fk)).
In fact, f can be reconstruct from fk just replacing the yi with XORs of
literals. Moreover, as proved in [3] we have that, if f is D-reducible then
M(f) ≤ (n− dimA) +M(fA). Recall that, we have proved in Section 3 that,
if f is both autosymmetric and D-reducible, also fk is D-reducible. Therefore,
we can say that M(fk) ≤ (n − dimA) +M(fkA). Since M(f) = M(fk), we
�nally have that M(f) ≤ (n− dimA) +M(fkA), as expected.

6 Experimental Results

In this section, we report and discuss the experimental results reached ap-
plying both the autosymmetry test and the D-reducible decomposition to
Boolean functions in the benchmarks from Espresso, LGSynth'89 bench-
mark suite [17] and to some functions from cryptography benchmarks in the
context of multi-party computation (MPC) and fully homomorphic encryption
(FHE) [14, 15].

The experiments have been run on a Intel(R) Core(TM) i7-8565U 1.80
GHz processor with 8.00 GB RAM, on Windows 11 for D-reducibility, and on
a virtual machine running OS Ubuntu 64-bit for autosymmetry.

Observe that autosymmetry and D-reducibility are properties of single
outputs, e.g., di�erent outputs of the same benchmark can have di�erent

14 Anna Bernasconi, Valentina Ciriani, and Licia Monfrini

Table 1. Results for functions that are both autosymmetric and D-reducible. Bench-
marks with �*� are incompletely speci�ed. The last row shows the average values
obtained from all the benchmarks considered.

Autosymmetry [3] D-reducibility [3] A + D D + A

Benchmark_output AND XOR Time (s) AND XOR Time (s) AND XOR Time (s) AND XOR Time (s)

apla_4* 18 20 13.45 15 17 2.60 18 20 13.76 9 5 1.01

b10_4* 15 10 11.03 14 6 6.64 15 6 6.51 15 6 6.58

bench_0 * 2 0 0.01 5 15 0.33 2 0 0.01 3 2 0.01

cps_74 17 4 9.11 20 2 11.52 16 2 6.09 16 2 5.72

dk17_3* 5 3 0.39 12 5 3.19 4 9 0.05 6 0 0.01

duke2_12* 28 5 15.88 36 25 23.07 23 19 11.71 23 19 11.47

exam_4* 22 20 13.27 59 45 42.28 22 20 13.65 10 13 2.95

exep_6* 20 0 8.13 16 0 0.01 15 0 0.16 16 0 0.01

exp_11* 16 1 9.21 6 8 0.39 5 8 0.46 5 1 0.01

p1_15* 20 26 6.60 17 18 13.55 18 12 5.57 18 12 4.99

p3_7* 32 30 22.55 28 11 14.04 32 30 24.99 18 32 6.58

pdc_3* 45 17 32.50 213 65 105.92 45 17 32.70 36 23 20.22

pdc_5* 21 21 14.54 270 76 123.40 19 25 8.47 21 25 8.55

sao2_2* 7 0 5.83 27 9 11.49 7 0 1.66 7 0 1.56

spla_5* 67 40 53.53 142 55 92.78 70 28 56.70 70 28 52.70

spla_12* 64 17 43.72 95 43 56.89 59 24 37.86 95 43 49.25

t1_22 5 0 1.23 5 2 0.15 5 0 0.10 5 0 0.08

t4_3* 11 6 2.00 15 6 6.91 12 1 5.43 5 9 0.19

x1dn_2* 16 8 6.58 19 8 6.35 16 8 5.18 17 8 2.47

dec_untilsat_39 6 0 1.52 6 0 0.01 6 0 1.71 6 0 0.01

Average 10.43 6.09 5.13 22.20 9.82 9.50 9.78 5.89 4.19 11.81 5.46 3.70

autosymmetry degrees. Therefore, we perform the autosymmetry and D-
reducibility tests on the single outputs of the considered benchmark suites.
We considered each output as a separate Boolean function, and analyzed a
total of 237 D-reducible and autosymmetric (non degenerate) functions. The
given functions and their restrictions or projections have been synthesized in
XAG form using the heuristic approach proposed in [14].

We conducted four tests each composed by the following overall strat-
egy: 1) Regularity test (autosymmetry alone; or D-reducibility alone; or �rst
autosymmetry and then D-reducibility; or �rst D-reducibility and then au-
tosymmetry); 2) XAG construction on the projected/reduced function [14];
3) Reconstruction of the original function in XAG form (adding XORs from
the reduction equations and/or adding AND of XORs for the characteristic
function of the a�ne space A).

We report in Table 1 a signi�cant subset of functions as representative
indicators of our experiments. The �rst column reports the name and the
number of the considered output of each benchmark. The following triples
of columns report the multiplicative complexity of the XAG (AND) and the
number of XORs (XOR) for the case we are considering, obtained running
the heuristic in [14], and the running time in seconds. These triples describes
the results for the following four di�erent strategies: autosymmetry alone, D-
reducibility alone, �rst autosymmetry and then D-reducibility (A + D), and
�rst D-reducibility and second autosymmetry (D + A).

Title Suppressed Due to Excessive Length 15

The experiments show that the functions where the XAG minimization
can bene�t from autosymmetry and D-reducibility are about 27%, with an
average reduction of the number of ANDs of about 27.4%; the number of
functions where the estimates of the multiplicative complexity are the same is
about 66.7%, while for the 6.3% of the functions the method provides a worst
result. The worst result could come from the fact that the approach proposed
in [14], for XAG synthesis, is heuristic. Some particular benchmarks seem to
highly bene�t from the proposed strategies. For example, the benchmark t4_3
can be represented using the D+A approach with the gain of 55%, in AND
gates, with respect to exploiting autosymmetry alone. We �nally observe that
the combined methods can also provide a reduction of the number of XOR
gates, due to the XOR factorization in both approaches.
In conclusion, the experiments show that:

1. Running times deeply depend on the XAG heuristic [14]. Moreover, in
general, the running time for the XAG heuristic depends on the dimension
of its input function. For this reason, in the cases when we perform both
the testing procedures often the total running times are reduced since the
input function for the XAG heuristic is smaller. In other words, the gain in
running time for constructing the XAG is higher than the running times
required for testing the two regularities.

2. In case of completely speci�ed functions (where A+D and D+A give the
same results), the strategy more convenient is D+A since this strategy
has better running times.

3. In case of incompletely speci�ed functions, it is convenient to test both
the strategies A+D and D+A in order to �nd the best solution. The sum
of the running times of the two approaches (A+D and D+A) is about the
50% greater than the running time of the autosymmetry approach alone
(which is much more time consuming than the D-reducibility test). There-
fore, testing both the strategies (A+D and D+A) is still computationally
convenient.

7 Conclusion

This paper has addressed regular functions that are both autosymmetric and
D-reducible. The theoretical study shows that in the case of completely speci-
�ed Boolean functions, the two tests can be performed in any order, obtaining
exactly the same decomposition. In the case of incompletely speci�ed Boolean
functions this property does not hold. The experimental results validate the
proposed approach. Future works can include the study of other XOR-based
regularities for enhancing the computation of multiplicative complexity.

16 Anna Bernasconi, Valentina Ciriani, and Licia Monfrini

References

1. Albrecht, M.R., Rechberger, C., Schneider, T., Tiessen, T., Zohner, M.: Ciphers
for MPC and FHE. In: Advances in Cryptology - EUROCRYPT Proceedings,
Part I. pp. 430�454 (2015)

2. Bernasconi, A., Ciriani, V.: Autosymmetry of Incompletely Speci�ed Functions.
In: Design Automation and Test in Europe (DATE) (2021)

3. Bernasconi, A., Cimato, S., Ciriani, V., Molteni, M.C.: Multiplicative Complex-
ity of XOR Based Regular Functions. IEEE Transactions on Computers (Early
Access) (2022)

4. Bernasconi, A., Ciriani, V.: Dimension-Reducible Boolean Functions Based on
A�ne Spaces. ACM Trans. Design Autom. Electr. Syst. 16(2), 13:1�13:21 (2011)

5. Bernasconi, A., Ciriani, V., Luccio, F., Pagli, L.: Exploiting Regularities for
Boolean Function Synthesis. Theory Comput. Syst. 39(4), 485�501 (2006)

6. Bernasconi, A., Ciriani, V., Luccio, F., Pagli, L.: Synthesis of Autosymmetric
Functions in a New Three-Level Form. Theory Comput. Syst. 42(4), 450�464
(2008)

7. Boyar, J., Peralta, R., Pochuev, D.: On the multiplicative complexity of Boolean
functions over the basis (∧, +, 1). Theor. Comput. Sci. 235(1), 43�57 (2000)

8. Çalik, Ç., Turan, M.S., Peralta, R.: The multiplicative complexity of 6-variable
Boolean functions. Cryptography and Communications 11(1), 93�107 (2019)

9. Ciriani, V.: Synthesis of SPP Three-Level Logic Networks using A�ne Spaces.
IEEE Trans. on CAD of Integrated Circuits and Systems 22(10), 1310�1323
(2003)

10. Goudarzi, D., Rivain, M.: On the Multiplicative Complexity of Boolean Func-
tions and Bitsliced Higher-Order Masking. In: Cryptographic Hardware and
Embedded Systems - CHES 2016 - 18th International Conference, Santa Bar-
bara, CA, USA, Proceedings. pp. 457�478 (2016)

11. Halecek, I., Fiser, P., Schmidt, J.: Are XORs in logic synthesis really necessary?
In: 20th IEEE International Symposium on Design and Diagnostics of Electronic
Circuits & Systems, DDECS 2017, Dresden, Germany, April 19-21, 2017. pp.
134�139 (2017)

12. Liebler, R.: Basic Matrix Algebra with Algorithms and Applications. Chapman
& Hall/CRC. (2003)

13. Luccio, F., Pagli, L.: On a New Boolean Function with Applications. IEEE
Transactions on Computers 48(3), 296�310 (1999)

14. Testa, E., Soeken, M., Riener, H., Amaru, L., Micheli, G.D.: A Logic Synthesis
Toolbox for Reducing the Multiplicative Complexity in Logic Networks. In: 2020
Design, Automation Test in Europe Conference Exhibition (DATE). pp. 568�
573 (2020)

15. Testa, E., Soeken, M., Amarù, L.G., Micheli, G.D.: Reducing the Multiplicative
Complexity in Logic Networks for Cryptography and Security Applications. In:
Proceedings of the 56th Annual Design Automation Conference 2019, DAC.
p. 74 (2019)

16. Turan, M.S., Peralta, R.: The Multiplicative Complexity of Boolean Functions
on Four and Five Variables. In: Lightweight Cryptography for Security and
Privacy - Third International Workshop, LightSec 2014, Istanbul, Turkey. pp.
21�33 (2014)

17. Yang, S.: Logic synthesis and optimization benchmarks user guide version 3.0.
User guide, Microelectronic Center (1991)

Title Suppressed Due to Excessive Length 17

