
aggressive, population-wide modalities of diagnostics, treatments,
and secondary prevention (11). In support of this interpretation,
a TB intervention in a community of 3,000 homeless people at
Burnside, Oregon, that included skin testing, radiologic and
sputum examination and treatment, coupled with education and
outreach, obtained an 89% drop in active disease over the first 10
years of the program (12). n
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Circulating Levels of Antioxidant Vitamins
Correlate with Better Lung Function and
Reduced Exposure to Ambient Pollution

To the Editor:

Particulate matter (PM) is possibly the ambient air pollution (AAP)
that has the greatest effect on human health. Several studies
consistently report an inverse association between PM exposure
and lung function (e.g., FEV1 and FVC) (1–6) and accelerated
progression of chronic obstructive pulmonary disease (7) in adults.
Furthermore, improved air quality associates with attenuated
age-related decline in lung function (8).

Although several plausible mechanistic pathways have been
described, the underlying mechanisms linking AAP and lung
function have not been fully characterized.

High-throughput metabolomics approaches allow for an
extensive set of small molecules to be measured in biological fluids.
These metabolites represent pathways that reflect physiological
functions, allowing for the potential identification of biomarkers (9).

To test the molecular links between lung function and AAP, we
investigated the association between lung function andmetabolomic
parameters and between the same metabolites and exposure to
PM (with aerodynamic diameter< 10 mm [PM10] and < 2.5 mm
[PM2.5]) in the TwinsUK cohort.

Nontargeted metabolomic profiling using theMetabolon platform
(280 metabolites) was performed in 5,519 fasting individuals from the
TwinsUK cohort who also had undergone spirometry (Vitalograph
model 2150, Buckingham, England), as described previously (10). A
subset of 523 TwinsUK participants also had estimates of long-term
exposure to PM at participants’ postal code residences, derived from
a 203 20 m dispersion model for London. All study participants
completed a medical history and lifestyle questionnaire, including
questions on vitamin supplementation (see online supplement for
details) (11).

The study was approved by St. Thomas’ Hospital Research Ethics
Committee, and all participants provided informed written consent.
TwinsUK data are publicly available on request on the department
website (http://www.twinsuk.ac.uk/data-access/accessmanagement/).

We inverse-normalized the metabolomics data and excluded
metabolic traits with more than 20% missing values. Metabolite
associations with FEV1 and FVC were assessed by random intercept
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linear regressions adjusted for age, sex, body mass index, height,
metabolite batch, and family relatedness. We adjusted for multiple
testing, using Bonferroni correction, resulting in a significant threshold

of 8.03 1025 (=0.05/[280 metabolites3 2 traits]). The metabolites
associated with FEV1 and/or FVC were tested for correlation with
PM2.5 and PM10 after adjustment for covariates and multiple testing.
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The descriptive characteristics of the study population are shown in
Table E1 in the online supplement. After adjustment for age, sex,
body mass index, height, and family relatedness, exposure to PM2.5

was seen to correlate negatively with both FEV1 (b =20.03; 95%
confidence interval [CI], 20.04 to 20.01; P = 0.001; Figure 1) and
FVC (b =20.02; 95% CI, 20.04 to 20.01; P= 0.01). Similar results
were found for PM10 (FEV1: b =20.02 [95% CI, 20.04 to 20.01;
P= 0.002]; FVC: b =20.02 [95% CI, 20.03 to 20.001; P= 0.02]).

FEV1 correlates with 18 metabolites (Table E2), which fall
into three principal classes: eight amino acids primarily involved
in glycine, serine, and threonine metabolism; four cofactors and
vitamins; and three lipids. There is also one carbohydrate, one
nucleotide, and one xenobiotic.

The metabolomics analysis for FVC revealed 13 significantly
associated metabolites, 10 of which were also identified for FEV1

(Table E2). The associated metabolites were then tested for
correlation with PM2.5 and PM10 in a subset of 532 TwinsUK
individuals living in the Greater London area.

Of the 21 metabolites associated with lung function, eight were
also significantly associated with both PM2.5 and PM10 (Table 1).
Among the eight metabolites identified, four are amino acids, one
is a carbohydrate (glycerate), one is a salt (benzoate), and two are
cofactors and vitamins; namely, a-tocopherol and threonate. In all
eight instances, a higher exposure to PM correlates with lower
levels of the metabolite and a lower FEV1 value (Table 1).

Seven of the eight metabolites identified correlate negatively
with circulating levels of C-reactive protein, a marker of generalized
inflammation (Table 1). The amino acids identified are all highly
correlated with each other (Table E3), and in particular, glycine
has been linked in the literature to pulmonary inflammation (see
online supplement).

The strongest association both with PM2.5 and FEV1 was seen
with vitamin E (Figures 1B and C). We also identified threonate,
which is the major metabolite of ascorbic acid (vitamin C, a water
soluble antioxidant) produced under oxidative conditions (12). We
thus investigated use of vitamin supplements in study participants.
We found positive significant correlations between use of vitamin
supplements with both a-tocopherol (b =0.096; SE= 0.05; P= 0.045) and
threonate normalized levels (b =0.19; SE= 0.06; P= 0.001). However, we
found no correlation between use of vitamin supplements and PM2.5 (b =
0.02; SE= 0.11; P=0.86) and PM10 (b ==0.03; SE=0.01; P=0.79).

In conclusion, circulating levels of eightmetabolites are significantly
correlated with both exposure to AAP and lung function. The strongest
association both with PM2.5 and FEV1 was with a-tocopherol levels:
individuals with a higher PM2.5 exposure have significantly lower levels
of a-tocopherol and also have lower lung function. To our knowledge,
this is the first report of significant association between a-tocopherol
levels and PM2.5 exposure in the general population. This is consistent
with previous literature reports indicating that antioxidants,
particularly a-tocopherol (but not g-tocopherol), result in improved
lung function (13), as well as with the extensive body of evidence
indicating that lower a-tocopherol levels are observed in lung
challenges such as asthma (see DISCUSSION in the online supplement).

a-Tocopherol is a biologically active form of the fat-soluble
antioxidant vitamin E and also regulates gene expression (14).
Supplementation with vitamin E reduces the damage to lung
function caused by AAP in children (15). Circulating levels of
a-tocopherol have also been shown to correlate positively with
lung function in adults (13).

We note some study limitations: We could not access an
independent population with PM and metabolomic data on which
to confirm these results. Given the cross-sectional nature of the data,
we were unable to make causal inference. However, in these data, use of
vitamin supplements is positively correlated with circulating levels
of both a-tocopherol and threonate, and as expected, there is no
relationship between PM exposure and use of vitamins. Taken together,
these findings suggest that subjects with lower levels of a-tocopherol
are at greater risk of losing FEV1 when exposed to urban PM. If this is
indeed the case, the data may indicate that individuals with a high
exposure to AAP would benefit from an optimal antioxidant status. n
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Reduction of Airway Smooth Muscle Mass
after Bronchial Thermoplasty: Are We
There Yet?

To the Editor:

With interest, we read the letter by Pretolani and colleagues, who
performed an observational study to investigate the effect of
bronchial thermoplasty (BT) on airway smooth muscle (ASM) in
patients with severe asthma (1). Preclinical studies have shown
a reduction in ASM after BT that was associated with a reduction
in airway hyperresponsiveness (2). However, the large randomized
trials failed to reproduce this effect and showed only moderate
clinical improvement in quality of life and exacerbation frequency
(3, 4). The current study is the first that confirms reduction in ASM
in patients with severe asthma after BT. The data show quite
a dramatic (.45%) decrease in ASM in biopsies of BT-treated
airways and, even more surprisingly, in biopsies of the non–BT-
treated middle lobe. The proposed mechanism is that radiofrequent
energy delivered during BT spreads its heat shock effect beyond
the directly treated airway. This hypothesis is strengthened by
the detection of ground-glass opacities around the non–BT-treated
middle lobe in half of the patients. In our opinion, the findings
described are very important; however, great caution should
be made in drawing strong conclusions at this moment.

First, the high percentage of radiological abnormalities after BT
observed by the French group has never been reported before,
and is therefore unexpected. We can confirm this observation, as in
our practice all patients after each BT procedure develop transient
radiological abnormalities, mostly segmental atelectasis and/or
peribronchial opacities. However, on a high-resolution computed

tomography scan performed less than 24 hours after BT, no
abnormalities could be detected in the non–BT-treated middle lobe.

Second, in the current study, ASMmass was analyzed in airway
biopsies taken before and after BT at the same airway carinas,
and the non–BT-treated middle lobe carina served as a control.
Surprisingly, an unexpected decrease in ASM in the middle lobe
after BT was observed. It cannot be excluded that (part of) the
detected decrease in ASM is simply a scar effect of the prior biopsy.
This effect especially applies for the middle lobe, as the anatomic
area available for biopsies is very limited. In our opinion, this
could be a plausible alternative explanation for the high-level
decrease in ASM, as well as in the non–BT-treated middle lobe.
Furthermore, as only a partial decrease in ASM after BT was
seen in the earlier lobectomy study (5), it is hard to believe the
effect of BT on ASM is this dramatic, even in distantly located
non–BT-treated middle lobe airways.

In fact, ideally, BT-induced effects on the airway wall are assessed
in vivo by a noninvasive technology that has high spatial resolution
over a longer airway section. Optical coherence tomography
(OCT), a light-based, near-histology, high-resolution imaging
technology, is a very promising method to fulfill these requirements,
as individual airway wall layers can be identified and measured
longitudinally in an airway stretch in an accurate and reproducible
way (6). Therefore, in the TASMA (Unravelling Targets of Therapy
in Bronchial Thermoplasty in Severe Asthma) trial (ClinicalTrials.gov
NCT 02225392), which is a randomized, international, multicenter
trial to investigate BT targets, we use OCT, next to airway biopsies and
standard X-ray-based imaging, to detect immediate and late effects
of BT on airway wall layers, including ASM, and link these to clinical
outcome. As such, we propose that OCT might qualify as an effect
and/or screening technology for BT.

In line with this, we fully agree with our French colleagues that
it is important and necessary to further unravel BT targets to
ultimately improve patient selection for BT. n
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