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We present an analytically solvable theory of Bose-Einstein condensation in thin film geometries.
Analytical closed-form expressions for the critical temperature are obtained in both the low-to-
moderate confinement regime (where the film thickness L is in the order of microns) as well as in
the strong confinement regime where the thickness is in the order of few nanometers or lower. The
possibility of high-temperature BEC is predicted in the strong confinement limit, with a square-root
divergence of the critical temperature Tc ∼ L−1/2. For cold Bose gases, this implies an enhancement
up to two orders of magnitude in Tc for films on the nanometer scale. Analytical predictions are also
obtained for the heat capacity and the condensate fraction. A new law for the heat capacity of the
condensate, i.e. C ∼ T 2, is predicted for nano-scale films, which implies a different λ-point behavior
with respect to bulk systems, while the condensate fraction is predicted to follow a [1 − (T/Tc)

2]
law.

I. INTRODUCTION

Bose-Einstein condensation was predicted early on
based on statistical mechanics, although its experimen-
tal discovery had to wait until modern technology allowed
experimentalists to reach low temperatures in the order
of 100 nanoKelvins [1, 2].

Much research has been directed since then towards
finding systems where BEC can be observed at higher
temperatures. Solid-state quasi-particles and photons in
microcavities can form BEC condensates at much higher
temperatures due to their very light or vanishing masses
[3]. The highest BEC critical temperatures (at room tem-
perature) have been reached with photons in dye-filled
microcavities [4], and subsequently also with excitonic
systems [5].

Ways of increasing the critical temperature Tc with
bosonic atoms are rather limited, although early research
by the Russian school in the area of superconductivity
and superfluidity highlighted the effect of spatial size con-
finement as an effective way of reaching higher Tcs for
superfluids and superconductors, see e.g. [6]. In partic-
ular, the thin film geometry is very promising because it
allows one to effectively increase the Tc by restricting the
available states at low energy [7], while at the same time
allowing one to keep the system macroscopically large
(which would be impossible with confinement increasing
in more than one spatial directions).

Much research over the past decades has also been
directed to studying the properties of atomic monolay-
ers and multi-layers of helium adsorbed on graphite or
similar carbon-based surfaces [8], in terms of structure
and dynamics, as well as onset temperature of superflu-
idity [9, 10], and similar studies are available for two-
dimensional (2D) optical Bose systems [4]. In this two-
dimensional (2D) limit [11], the onset of superfluidity is a
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very complicated problem due to various factors, includ-
ing two-phase coexistence, gas-liquid transition, possible
supersolidity of the second layer [12], various 2D tran-
sitions similar or related to the Berezinskii-Kosterlitz-
Thouless (BKT) transition. Approaches based on BKT
theory predict the onset temperature of superfluidity to
grow with film thickness in this regime [13], which is
well supported by experimental data [10], although re-
entrant behaviours and non-monotonicity are also well
documented [8, 12]. It should be noted that, according
to the Mermin-Wagner theory, there is no BEC for free
particles in 2D systems. There is, however, in the pres-
ence of a confining harmonic potential trap [14–16]. In
finite-size homogeneous 2D systems, however, BEC is re-
established once the phase correlations extend over the
entire system, see e.g. [17] and recent experimental work,
[18]. In particular, [18] has for the first time studied
the relationship between critical temperature (or parti-
cle number) and system size in a Bose gas. Further work
that is closely related, focused on exploring the dimen-
sional crossover from 2D to 1D in the context of specific
heat, has been reported very recently [19].

Furthermore, although the BKT phenomenology is ac-
tive in 2D and may have some interplay with BEC, the
two transitions are well distinct phenomena because BKT
requires interactions whereas BEC only quantum statis-
tics.

While the 2D limit has been extensively studied, the
remaining very broad range of film thickness from sub-
millimeter down to the nanometer scale has remained
surprisingly unexplored. A big open question here is
at which length scale along the confined direction the
BEC starts to appear. While the Mermin-Wagner the-
ory states that no BEC would occur at exactly d = 2 for
extended free-particle systems, calculations coming from
the 3D limit of finite films like the one reported here or
in [20] for the cubic-box geometry, suggest a divergence
of Tc as the thickness goes to zero, asymptotically. The
emerging picture, to be tested in future work, is that a
maximum in Tc could occur for some very small but fi-
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nite length scale along the confining direction, before Tc
drops to zero according to the Mermin-Wagner theory,
as the exactly 2D limit is reached.

Hence, in this paper, we focus on this largely unex-
plored problem and we develop the first systematic and
fully analytical theory of confinement effects on BEC in
thin films covering a broad range of thickness from sub-
millimeter down to the nanometer scale. The theory is
based on rigorously accounting for the deformation of
the available momentum space induced by the confine-
ment along one spatial direction. Analytical predictions
in closed-form are presented for the Tc as well as for the
heat capacity, in a broad range from sub-millimeter con-
finement to nanometer scales using two different pertur-
bative expansions. Experimentally testable predictions
are discussed as well as their implications for high tem-
perature BEC and superfluidity.

II. THEORETICAL FRAMEWORK

A. Confinement geometry in momentum space

Confinement of a quantum system causes its funda-
mental properties to change, because of the redistribution
of the accessible states in momentum space. Numerical
models for the full wave propagation problem can be for-
mulated, by considering a variety of different boundary
conditions (BCs), such as periodic or Dirichlet BCs (the
so called “hard walls” BCs). However, numerical solu-
tions often overshadow the physical mechanisms, so that
it is desirable to have analytically tractable theories. Fur-
thermore, BCs used in numerical treatments often entail
arbitrary assumptions about the behaviour at the phys-
ical borders of the system, and are ultimately irrelevant
for comparison with experimental data [20, 21].

Also, our theory applies to systems with spatial di-
mensions d > 2, i.e. for thin films where motions and
vibrations are still possible also in the confined direction,
and hence the limit L → 0 has to be taken only as an
asymptotic limit.

In this work, following the ideas from references [22,
23], we consider a system (thin film) confined in the z-
direction, as shown in Fig. 1, and unconfined in the x
and y directions. The following discussion is hence di-
rectly relevant to the study of the physics of thin films
of cold atoms and superfluids. In order to perform cal-
culations, atoms are treated as quantum plane waves as

in the standard Bose gas model, with energy ε = h̄2k2

2m
[24, 25]. The cylindrical symmetry of the system allows
one to characterize the states in momentum space of a
particle using only the angle θ. In our analytical treat-
ment we do not need to impose any arbitrary BCs, which
anyway are irrelevant for final results [20, 21].

The effect of confinement is taken into account by set-
ting a cut-off in the accessible low-energy states, by recog-
nizing that the free quantum particles (or, equivalently,
quantum waves) moving in a direction defined by the

L/c
os

(θ)

θ

x

z

FIG. 1. 2D section of a thin film of thickness L, confined
along z and infinite along the y and x directions. A Bose gas
atom (quantum plane wave) is assumed to have a maximum
wavelength equal to the length of the medium in the direction
of motion, which can be expressed as a function of the angle θ,
owing to the cylindrical symmetry, as λmax = L/ cos θ. This
leads to a cutoff in the accessible values of wavevector k.

angle θ can have a maximum possible wavelength given
by [23]:

λmax =
L

cos θ
. (1)

This condition implies that the wavelength of a quantum
particle cannot exceed the extension of the sample along
a particular direction. This is clear from Fig. 1. Since
the wavelength of a particle is related to its wavenumber
by the relation λ = 2π

k , this condition is equivalent to
a cutoff condition on the minimum possible wavenumber
that can be associated with the free particle:

kmin =
2π cos θ

L
. (2)

Upon considering plane wave states that propagate in
the real-space material depicted in Fig.1, it is possible to
analytically calculate the geometry of the corresponding
volume in momentum space. This was done in Ref.[23]
for phonons/elastic waves and the result for phonons is
summarized in Fig. 2. The condition shown above can
be used to select the correct lower limit of integration to
obtain the available volume in momentum space corre-
sponding to a given volume in real space.

B. The example of phonons

In particular, as demonstrated exactly with analytical
derivations in Ref.[23] for acoustic phonons, the condition
Eq.(2) for the sample geometry of Fig.1, identifies two
spheres of “forbidden states” in momentum space, both
of radius π

L centered in (0, 0,± π
L ), as shown in Fig. 2. In

the figure, the outer (Debye) sphere, of radius kD, which
represents all allowed states for plane waves in a bulk
unconfined material is shown together with the two “hol-
low” spheres representing states that are forbidden due
to the confinement. Therefore, when converting sums
over wave vectors to integrals over the available momen-
tum space, the integrals must not be carried over the
whole Debye sphere, as standard for phonons in uncon-
fined materials, but rather on the manifold given by the
Debye sphere minus the two spheres of forbidden states.
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FIG. 2. The allowed momentum space for phonon plane waves
propagating in a confined sample with the geometry sketched
in Fig. 1, as calculated analytically in Ref.[23] for phonons.
The two inner spheres represent the set of forbidden states in
k-space, while the outer sphere is the Debye sphere for the
bulk material. The volume of available states in k-space is
represented by the volume of the outer Debye sphere minus
the volumes of the two smaller spheres which represent states
that are not available due to confinement.

C. The case of the Bose gas

In the following we are interested in describing the
effect of confinement on the geometry of available mo-
mentum space for Bose gas particles, within the typical
assumptions of BEC in cold gases [25].

What changes in the case of the Bose gas, with respect
to the example of phonons, is that there is no maximum
energy of allowed states. This is of course very different
from the case of phonons, where the Debye frequency ωD
is strictly an insurmountable limit. Hence, in the case of
phonons, the two spheres of forbidden states can grow,
upon increasing L, only up to the point where they are
just touching the Debye wavevector kD. They cannot
grow any further than that.

In the Bose gas, the occupation of states above the
ground state is an effect entirely due to finite temper-
ature, which depends on the factor 1

exp β(ε−µ)−1 , where

µ is the chemical potential, and on the density of states
(DOS), g(ε). There is no cap imposed by an ultraviolet
cut-off such as ωD for phonons. Hence, in this case, upon
increasing the confinement (i.e. upon decreasing L) the
main consequence is that there will be a region in mo-
mentum space where the DOS is not given by the usual

DOS of the Bose gas, which is g(ε) = V (2m)3/2

(2π)2h̄3

√
ε, but has

a different form that will be derived in the next sections.
In turn, due to this different form of the DOS, the in-

tegral over the Bose-Einstein (BE) distribution will give
a different result in that region of momentum space. In
particular, as we shall see later on, since many states at
low energy become forbidden because of the confinement,
occupation of the ground state now occurs at a higher
temperature. Otherwise, the only alternative would be
that states with higher energy were to be occupied, which
however has a much lower probability due to the Boltz-
mann factor.

In the next sections we will explore the above consid-
erations quantitatively, starting from the modified DOS,
in order to arrive at an analytical theory of BEC which
takes into account the redistribution of states in momen-
tum space induced by the confinement.

III. DENSITY OF STATES

The number of allowed low energy states, in general,
will be different in the presence of confinement. Hence,
the density of states (DOS) will have a different structure
than the traditional DOS for the Bose gas. The DOS as
a function of energy can be written as:

g(ε) =
d

dε
N(ε′ < ε), (3)

where N(ε′ < ε) is the number of states with energy
smaller than ε.

FIG. 3. 2D section, in the kx-kz plane, of the volume of
allowed states in k-space (red area) for a Bose gas. The DOS
must be calculated considering only the highlighted red zone
of available states. In (a), k < 2π

L
, and the derivative of the

number of states used to evaluate the DOS must take the
two (white) spheres of forbidden states into account. In (b),
k > 2π

L
, and therefore the derivative used to evaluate the DOS

is unaffected by the forbidden states. One should note that,
for L = const, (a) would also correspond to a low temperature
(internal energy ¡ energy associated with the confinement)
situation, while (b) would correspond to the opposite case of
high temperatures.

Fixing some energy ε, it is thus necessary to count the
number of states with lower energy. In order to do so,
it is convenient to work in k-space where the DOS of a
Bose gas is simply V

(2π)3 (V is the volume of the sample

in real space).
The number of states with momentum lower than k is
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given by:

N(k′ < k) =
V

(2π)3
V olk (4)

where V olk is the available volume in k-space.
There are two different possibilities depending on

whether k < 2π
L or k > 2π

L . The latter case is trivial:
one has

V olk =
4

3
πk3 − 2

4

3
π
(π
L

)3

. (5)

The volume of two forbidden spheres of radius π
L is then

subtracted from the volume of the k-sphere (valid for an
unconfined system), which returns the volume of avail-
able states in k-space. Because this correction does not
depend on k, it does not affect the derivative and hence
does not affect the DOS. The g(ε) is therefore the usual
DOS for the Bose gas:

g(ε) =
V (2m)3/2

(2π)2h̄3 ε1/2. (6)

In the former case, namely k < 2π
L , instead, the volume

to be considered is obtained by subtracting the intersec-
tion volume of the red sphere with the two white spheres
from the red sphere.

A simple calculation yields:

V olk =
4πk3

3
− Vinter =

Lk4

2
(7)

where

Vinter =
4πk3

3
− Lk4

2
(8)

is the intersection volume between the red sphere and the
two white spheres of forbidden states in Fig.3(a). Equa-
tion (7) expresses the total volume of accessible states in
k-space when k < 2π

L , and thus can be used in order to
find the total number of accessible states by using Eq.(4).
The corresponding DOS takes the following non-trivial
form,

N(k′ < k) =
V

(2π)3

Lk4

2
,

N(ε′ < ε) =
V

(2π)3

L(2mε)2

2h̄4 ,

g(ε) =
d

dε
N(ε′ < ε) =

V Lm2

2π3h̄4 ε.

(9)

Considering the two regimes depicted in Fig.3, the
overall DOS can be finally expressed as:

g(ε) =

{
V Lm2

2π3h̄4 ε, if ε < 2π2h̄2

mL2

V (2m)3/2

(2π)2(h̄)3 ε
1/2, if ε > 2π2h̄2

mL2 .
(10)

In reality, it is possible that there is a smooth crossover
between the two regimes, which may also depend on the

detailed system-specific boundary conditions of the sam-
ple and which cannot be determined within our analytical
approach.

A similar derivation, mutatis mutandis, for the case
of phonons in confined solids has been presented in re-
cent work in [21], where it has been successfully validated
against both Molecular Dynamics (MD) simulations and
experimental data based on inelastic neutron scattering.

As a final note, in the limit L→ 0, it should be possible
to rigorously demonstrate that the red region of available
states in Fig. 3(a) should theoretically shrink to a circu-
lar surface πk2 in the kx − ky plane. Thus, when L = 0,
this ∼ k2 contribution which survives in the r.h.s. of Eq.
(7) in the asymptotic limit, would then lead one to re-
cover the exactly 2D, well-known result g(ε) ∼ const, and
Tc = 0. As currently we do not have a mathematically
rigorous proof for this limit, we should defer its detailed
discussion to future work.

IV. BEC CRITICAL TEMPERATURE UNDER
CONFINEMENT

A. Solution scheme

In order to find the critical temperature Tc in the stan-
dard theory of Bose Einstein condensation (BEC), it is
necessary to evaluate the integral:∫ ∞

0

g(ε)

zeβε − 1
dε (11)

where z = eβµ is the fugacity, with µ the chemical po-
tential. In an unconfined system, this integral is easily
solved by using the Gamma and Zeta functions. In a
confined system, the DOS will be different, and will be
determined by Eq. (10) (multiplied by the appropriate
spin factor):

g(ε) = gspin ·

{
V Lm2

2π3h̄4 ε, if ε < ε∗

V (2m)3/2

(2π)2(h̄)3 ε
1/2 if ε > ε∗

(12)

The factor gspin accounts for the total spin degeneracy
given by (2S + 1), and hence it depends on the specific
bosonic (system) which is taken into account. Without
loss of generality, we consider gs = 1, therefore the fol-
lowing discussion is appropriate for spinless bosons. In
order to consider bosons with spin, it is sufficient to mul-
tiply the final result by the appropriate spin degeneracy
factor.

As the next step to account for confinement, the eval-
uation of (11) has to be separated in the two intervals
determined by the crossover energy ε∗. Even without
solving the integral, it is easy to see that the expected
result consists in an increase of the critical temperature
Tc as confinement is turned on. This is a consequence
of the fact that, if some low-energy states are prohib-
ited, the macroscopic occupation of the ground state will
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necessarily begin at higher temperatures, since otherwise
particles would occupy high energy states, for which the
Boltzmann factor would be very small at low tempera-
tures. [7].

B. Evaluation of the Bose integral with the
modified DOS

The integral over the BE distribution, using the mod-
ified DOS of Eq.(12), can be expressed as:∫ ∞

0

g(ε)

eβε − 1
dε =

∫ ε∗

0

V Lm2

2π3h̄4

ε

eβε − 1
dε+

+

∫ ∞
ε∗

V (2m)3/2

(2π)2h̄3 ε1/2
√
ε

eβε − 1
dε.

(13)

By changing variable to x = βε, one obtains:∫ ∞
0

g(ε)

eβε − 1
dε =

∫ βε∗

0

V Lm2

2π3h̄4β2

x

ex − 1
dx+

+

∫ ∞
βε∗

V (2m)3/2

(2π)2h̄3β3/2

√
x

ex − 1
dx

(14)

To lighten the notation, we define the following quanti-

ties: A ≡ Lm2

2π3h̄4β2 and B ≡ (2m)3/2

(2π)2h̄3β3/2 . This integral

cannot be solved exactly, even with the aid of special

functions, because the integral of
√
x

ex−1 does not have an-

alytical solutions (except for the definite integral from 0
to∞, which gives the well known textbook result for the
BEC critical temperature). The second integral, with the
factor x

ex−1 , on the other hand, can be integrated, and
this will become useful in the following. Its indefinite
integral has the following solution:∫

x

ex − 1
dx = x log(1− e−x)− Li2(e−x), (15)

where the function Li2(x) =
∑∞
k=1

xk

k2 is the base-2 poly-
logarithmic function, related to the Riemann’s Zeta func-
tion via:

Lin(1) = ζ(n) −→ Li2(1) = ζ(2) =
π2

6
. (16)

Although the above integral cannot be solved exactly,
approximate solutions can be found in the different lim-
its. A possible choice for the small parameter is given by

βε∗ =
1

kBT

2π2h̄2

mL2
. (17)

If this parameter is� 1, namely if L is sufficiently large,
then the first integral in Eq.(14) can be neglected, and
calculations give the bulk value for critical temperature
Tc,∞, i.e. the standard BEC textbook result [25]. If
the parameterβε∗ is slightly increased by decreasing L,

approximate calculations can be performed by Taylor ex-
panding the arguments of the two integrals, and this will
be done in the next SectionIV C.

The opposite limit consists in the limit of large βε∗

(hence the small parameter is 1/βε∗), which is obtained
for very small values of L: in this limit, the second inte-
gral on the right hand side of (14) can be neglected, and
a new formula for critical temperature will be obtained,
as will be shown and explained in Section V C.

In the following sections we shall therefore obtain re-
sults in the limits discussed above.

C. General form of the confinement-induced
corrections

In order to Taylor-expand the integrand functions, it
is useful to write:∫ ∞

βε∗

√
x

ex − 1
dx =

∫ ∞
0

√
x

ex − 1
dx−

∫ βε∗

0

√
x

ex − 1
dx (18)

where the common prefactor BV has been omitted.
The integral in (14) can then be rewritten as:∫ ∞

0

g(ε)

eβε − 1
dε =

∫ ∞
0

B V

√
x

ex − 1
dx+

+

(∫ βε∗

0

AV
x

ex − 1
dx−

∫ βε∗

0

B V

√
x

ex − 1
dx

) (19)

The first integral in Eq.(19) is the usual integral that
has to be solved in order to find the critical temperature
of a non-confined condensate, therefore it will give the
standard result, namely V

λ3 ζ( 3
2 ), where ζ is the Riemann

zeta function and λ is the thermal (de Broglie) wave-
length. The terms in bracket provide, instead, the total
correction to the integral due to confinement, therefore
they generate a correction in the value of Tc compared
to the unconfined result Tc,∞. Moreover, the two correc-
tion integrals have now the same extremes of integration,
therefore they can be treated using the same approxima-
tions: this will prove particularly useful in calculations
of the moderate-L (small βε∗) regime of the theory.

V. APPROXIMATE ANALYTICAL SOLUTIONS

A. First-order calculations in the low-to-moderate
confinement limit

The first limit that can be investigated is the limit for
which the parameter βε∗ is small. This is the limit of
moderate or sufficiently large L: a precise evaluation of
what can be taken as “large” will be performed in Section
VIII.

If βε∗ is small, the denominators in the corrective in-
tegrals in Eq.(19) can be Taylor expanded to the desired
order, and the integrals become easily solvable (this can
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be done because the integrals are taken from 0 to βε∗,
hence the usefulness of the manipulation Eq.(18) is now
clear). By Taylor expanding the exponentials in the in-
tegrals to the first order, ex ' 1 + x, one gets:∫ βε∗

0

AV
x

ex − 1
dx '

∫ βε∗

0

AV dx = AV βε∗ =
V m

πh̄2Lβ∫ βε∗

0

B V

√
x

ex − 1
dx '

∫ βε∗

0

BV

x1/2
dx =

2
√
ε∗

β
=

2V m

πh̄2Lβ
.

(20)

The total correction is given by the difference of the
two integrals, namely − Vm

πh̄2Lβ
, as clear from Eq.(19). As

is standard [24, 25], the critical temperature Tc for BEC
can be found by considering the total number of particles
as:

N = 〈n0〉+

∫ ∞
0

g(ε)

eβε − 1
dε, (21)

where the integral can be expressed as Eq.(19). Solving
the integral gives:

N = 〈n0〉+
V

λ3
Li3/2(1)− V m

πh̄2Lβ
. (22)

The last two terms are, respectively, the solution to the
standard integral (first integral in Eq. (19)), which gives
the standard solution for bulk condensates, V

λ3 ζ( 3
2 ), and

the solution of the correction integrals just obtained. Cal-
culations can now be carried on similarly to what is done
in the standard, bulk or unconfined, case:

n =
〈n0〉
V

+
Li3/2(1)

λ3
− m

πh̄2Lβ
, (23)

λ3 〈n0〉
V

= λ3n+
mλ3

πh̄2Lβ
− Li3/2(1) (24)

where in the second line we multiplied through by the

cube of the de Broglie thermal wavelength λ = h̄
√

2π
mkBT

.

The critical wavelength λc (and thus the critical temper-
ature Tc) can be obtained by setting the right hand side
of the above equation to zero:

λ3
c n+

mλ3
c

πh̄2Lβc
− Li3/2(1) = 0. (25)

This formula can be rearranged to show the behaviour of
the critical temperature Tc or of the critical wavelength
λc as functions of the thickness of the film L.

Since λc = h̄
√

2π
mKBTc

, Eq. (25) can easily be rewritten
as:

λ3
c n+

2λc
L

= Li3/2(1). (26)

The second term, 2λc

L , is then a corrective term which de-
pends on the thickness of the confined film. It is evident

that the effect of this correction leads to a decrease in the
value of λc with respect to the bulk value λc,∞, since a
new, positive term is added to the standard n ·λ3

c term.
This equation can be solved exactly by using Cardano’s
formula, which leads to the following explicit solution:

λc =
3

√√√√Li3/2(1)

2n
+

√
Li23/2(1)

4n2
+

8

27n3L3

+
3

√√√√Li3/2(1)

2n
−

√
Li23/2(1)

4n2
+

8

27n3L3
.

(27)

As shown in Fig. 4, the critical thermal wavelength λc
calculated with the above formula decreases with respect
to the bulk value as the film thickness L is decreased.

FIG. 4. First-order calculations of the critical thermal wave-
length λc, valid for moderate confinement (L values not too
small such that βε∗ � 1) based on Eq.(27) show that λc de-
creases as L decreases. All the physical parameters used in the
calculations are taken from the case of 87Rb, see e.g. Ref.[1].
The blue line indicates the critical thermal wavelength for the
87Rb system of Ref.[1].

A more compact (compared to Eq.(27)) approximate
expression for λc in this first order limit can be obtained
by evaluating Eq. (26). This is done, again, by consid-
ering λc ≈ λc,∞ + δλc, where δλc is considered a small
parameter, such that second and higher order terms in
δλc can be neglected. This is justified by the fact that
λc does not change too drastically with respect to the
bulk value in the range of application of the approxima-
tions used in this section. Substituting in Eq. (26), one
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obtains:

λc

(
nλ2

c +
2

L

)
= Li3/2(1)

(λc,∞ + δλc)

(
n(λc,∞ + δλc)

2 +
2

L

)
= Li3/2(1).

(28)

Upon developing the square and using nλ3
c,∞ = Li3/2(1),

we then obtain:

δλc = −2λc,∞
L

1(
3nλ2

c,∞ + 2
L

) (29)

Therefore, an approximated form of Eq. (27) is given
by:

λc = λc,∞ + δλc = λc,∞

(
1− 2

2 + 3nLλ2
c,∞

)
(30)

This equation provides a more compact but still highly
accurate approximation of the exact solution of Eq. (26),
which can be implemented more easily in calculations and
further analytical developments of the theory. This ex-
pression shows that the main consequence of confinement
is a decrease in the value of λc with respect to λc,∞, and
that the magnitude of the decrease is ∝ L−1.

Since temperature is related to λ via T = h̄2 2π
mkBλ2 ,

the critical temperature Tc will do just the opposite, i.e.
it will increase as the value of L is decreased. The closed-
form expression which describes the behaviour of Tc as
a function of L can be found by inverting Eq. (26), and

substituting λc = h̄
√

2π
mkbTc

:

n h̄3

(
2π

mkBTc

)3/2

+
2h̄

L

√
2π

mkBTc
= Li3/2(1),

n h̄3

(
2π

mkB

)3/2

+
2h̄

L

√
2π

mkB
Tc − Li3/2(1)T 3/2

c = 0.

(31)
The exact formula for the Tc as a function of L can be
found by inversion of Eq.(27). This leads to a cum-
bersome and not particularly illuminating solution; it
is therefore more useful to solve the implicit Eq. (31)
graphically or numerically, obtaining the result shown in
Fig.5. In the range where this approximation is valid, the
Tc shows a slight increase with respect to the bulk value
upon increasing the confinement, i.e. upon decreasing
L. It is interesting to notice the fact that the effect of
confinement becomes relevant at much higher values of
L, compared to the case of critical temperature for su-
perconductivity in BCS-type superconductors [26]. This
can be explained by a simple consideration: the effect of
confinement will have a relevant effect when the thick-
ness L of the film becomes comparable with the thermal
wavelength of bosons, which at such low temperatures is

of the order of a few µm. Hence, the increase in Tc will
be significant for much higher L compared to the situa-
tion of electrons in a superconductor, where the thermal
wavelength is around 1 nm.

FIG. 5. The critical temperature Tc, computed based on
Eq.(31), increases significantly as the thickness L of the film
is decreased from large values (L → ∞) to L ' 10−5m. The
curves are plotted using values of the physical parameters
tabulated for 87Rb cfr. Ref.[1].

Qualitative information about the behaviour of Tc as a
function of L in this limit can be extracted by inversion
of Eq. (30). By considering Tc ∝ λ−2

c , one has:

Tc =
Tc,∞(

1− 2
2+3nLλ2

c,∞

)2

≈ Tc,∞
(

1 +
4

2 + 3nLλ2
c,∞

)
.

(32)

From this expression it is clear that also the Tc goes as
∝ L−1 (at leading order), and it increases with respect
to the bulk value upon increasing the confinement, thus
confirming analytically the results shown in Fig. 5.

B. Second-order calculations in the moderate
confinement limit

The results obtained in the previous section can be
improved by expanding the exponential to the second
order. This leads to higher precision in numerical solu-
tions although, as it will be clear shortly, the correction
is almost negligible with respect to the first order cor-
rection in the region in which the Taylor expansion is
justified. It is worth noting that, at this order, the equa-
tions obtained for λc are still solvable by using Cardano’s
formula Eq.(27), while higher orders do not provide an-
alytically solvable equations (since the equations would
involve fifth- or higher-order polynomials).
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To second-order in βε∗ we thus have for the first piece
of the Bose integral:∫ βε∗

0

x

ex − 1
dx '

∫ βε∗

0

x

x+ x2

2

dx (33)

=

∫ βε∗

0

1

1 + x
2

dx '
∫ βε∗

0

(1− x

2
)dx (34)

= βε∗ − (βε∗)2

4
(35)

and, similarly, for the second piece:∫ βε∗

0

√
x

ex − 1
dx '

∫ βε∗

0

√
x

x+ x2

2

dx (36)

=

∫ βε∗

0

1√
x

1

1 + x
2

dx '
∫ βε∗

0

1√
x

(1− x

2
)dx (37)

= 2
√
βε∗ − (βε∗)3/2

3
. (38)

The total correction is then given by:

AV

∫ βε∗

0

x

ex − 1
dx−B V

∫ βε∗

0

√
x

ex − 1
dx = − V m

πh̄2Lβ
+
V π

6L3

(39)
This new equation gives a further correction to Eq.

(25), which can be evaluated as:

N = 〈n0〉+
V

λ3
Li3/2(1)− V m

πh̄2Lβ
+
V π

6L3
(40)

λ3〈n0〉
V

= λ3n+
mλ3

πh̄2Lβ
− Li3/2(1)− πλ3

6L3
(41)

(n− π

6L3
)λ3
c + 2

λc
L

= Li3/2(1). (42)

Equation (42) provides a further correction to the critical
wavelength and hence to the Tc. In the limit now consid-
ered, this correction term is very much smaller than the
first correction term found in the previous Section, be-
cause of the dependence on L−3: as clear from the term
in parenthesis, this correction would become relevant for
values L−3 comparable to the density of bosons, but this
does not happen in the case of L ≈ 10−6m.

Therefore, as clear from Fig.6, the second order cor-
rection causes a negligible increase in the value of λc
(hence a very slight decrease in the value of the criti-
cal temperature) compared to what is predicted by first
order calculations. This provides a corroboration of the
validity of the approximation made, since higher order
corrections will provide even smaller deviations from the
curves shown in Fig. 6. The main reason to consider
second-order corrections would be to maintain high pre-
cision in the approximation when decreasing the value of
L to only a few nanometers; clearly, performing calcula-
tions at increasingly higher orders can eventually extend
the validity of the Taylor expansion to any values of L,
but this would have no actual usefulness since at low

FIG. 6. Bulk value, first and second order calculations for crit-
ical wavelength. The first and second order calculations are
completely indistinguishable on the scale of the plot. There-
fore, from a practical point of view, the first order equation
(26) provides an excellent approximation to the exact solu-
tion of the integrals, since further expansion of the exponen-
tial will give even smaller corrections (this is valid for suf-
ficiently high values of L: as it will be discussed in Section
VIII, if L ≈ 5 · 10−6 the error in the first order approximation
becomes increasingly significant, so the second order calcu-
lation becomes necessary, but that is not particularly useful
since for L ≤ 5 · 10−6 the approximation valid in the low-L is
more useful and sufficiently accurate.

values of L one can use the simpler form of the approxi-
mation valid in the low-L regime that we will develop in
the next Section.

Similar calculations as in the previous section can be
done, in order to find again a simple and compact solu-
tion of Eq. (42) without going through solving a cubic
equation. In fact, calculations are exactly the same, the
only difference being that n is replaced by (n− π

6L3 ),

λc

[
(n− π

6L3
)λ2
c +

2

L

]
= Li3/2(1)

(λc,∞ + δλc)

[
(n− π

6L3
)(λc,∞ + δλc)

2 +
2

L

]
= Li3/2(1),

(43)

where in the second line we used δλc = λc − λc,∞. Upon
developing the square and using nλ3

c,∞ = Li3/2(1), we
obtain:

δλc =

πλ3
c,∞

6L3 − 2λc,∞
L[

3(n− π
6L3 )λ2

c,∞ + 2
L

] . (44)

This equation is no longer as simple as the one found in
the calculations made in the previous section, but pro-
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vides a slightly better approximation if more precise re-
sults are needed.

C. The low-L, strong confinement limit

If L is taken small enough, i.e. on the nanometer scale,
then the parameter βε∗ will not be small enough to justify
the calculations made in the previous sections. There-
fore, a new approach is needed to investigate the be-
haviour of bosons confined in nanometer-scale thin films.
Considering the integrals in Eq.(14), it can be noted that
the integrand function goes to zero exponentially fast as

x→∞. Hence, the second integral
∫∞
βε∗

√
x

ex−1 quickly be-

comes negligible as L → 0, and the first integral is well
approximated by an integral going up to infinity. Hence,
one has:∫ ∞

0

g(ε)

ex − 1
dε '

∫ βε∗

0

AV
x

ex − 1
dx '

∫ ∞
0

AV
x

ex − 1
dx.

(45)
This integral can easily be solved using the formula in

Eq.(15), and using the fact that Li2(1) = ζ(2) = π2

6 .
This gives

AV

∫ ∞
0

x

ex − 1
dx = AV

[
x log(1− e−x)− Li2(e−x)

]∞
0

= AV
π2

6
.

(46)

Contrarily to what was done in the opposite limit, this
is not a correction to the standard calculation, but it is
the full Bose integral. The total number of particles can
be expressed as:

N = 〈n0〉+AV
π2

6
= 〈n0〉+

π2

6

V Lm2

2π3h̄4β2
, (47)

〈n0〉
V

= n− π2

6

Lm2

2π3h̄4β2
. (48)

As seen before, the critical temperature can be found
by setting the right hand side to zero. By solving for Tc
one obtains

T 2
c =

12πh̄4n

Lm2k2
B

. (49)

This leads to two compact expressions for the critical
values of temperature and wavelength:

λc =

(
πL

3n

)1/4

Tc =
2h̄2

mkB

√
3nπ

L
. (50)

This is a key result of this paper, i.e. the prediction of a
square-root divergence Tc ∼ L−1/2 for strongly confined
thin films. The corresponding predictions, using param-
eters of the 87Rb cold atomic gas [1], are shown in Fig.
7.

FIG. 7. The critical temperature Tc shows a substantial in-
crease as L becomes smaller than 10−7m, reaching around
ten times the bulk value for L ≈ 10−7m. The dashed red line
shows the values of L for which the assumption of small βε∗

is not so well justified, and so the approximations made may
not be very precise. The blue line represents the bulk value
Tc,∞.

D. Implications for high-temperature BEC

Again, the critical temperature Tc is predicted to in-
crease as L is decreased. According to this formula, Eq.
(50), high-temperature BEC could be possible in certain
systems, in particular light atoms or quasi-particle exci-
tations [3] due to the presence of mass m in the denom-
inator, and for moderate to large densities due to the
presence of the number density n in the square root in
the numerator.

For example, for 87Rb, a 0.4 nanometer thick gaseous
film at a density of n = 1015cm−3, according to the
above formula, would exhibit a critical temperature Tc =
5.4 · 10−5K. This is about two orders of magnitude higher
than the typical Tc of cold atomic gases which is in
the order of hundreds of nanoKelvins or a couple of mi-
croKelvins at most. Extrapolating (with obvious caveats
as our theory neglects interactions) to superfluid 4He
(mass density 125kg m−3), this would give Tc ≈ 6.5K,
for a 1 nm thick film and Tc ≈ 10.22K for a 0.4 nm
thick film. Since 4He liquefies at about 4.2K, this im-
plies that the onset temperature for superfluidity under
confinement can reach values that are close to the lique-
faction temperature ≈ 4K, thus higher than the typical
regime Tc < 2.7K where superfluidity of bosonic helium
is observed.

Finally, it should be noted that the above Eq.(50) is
obtained in the limit of βε∗ � 1. Hence one could ar-
gue that this formula may lose accuracy at high tem-
peratures. However, it should be noted that βε∗ goes
as ∝ L−2 (see above Eq. (17)), which means that βε∗

grows faster with decreasing L than it decays with in-
creasing T , which should make this approximation quite
robust also upon significantly increasing the considered
temperatures as the film thickness decreases.
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E. Comparison with BCS superconductivity

Interestingly, this low-L behavior with Tc monotoni-
cally increasing as L is reduced towards the 2D limit, is
just opposite to what happens in BCS superconductors,
where one has a peak or maximum in Tc vs L and, for
vanishing L, the critical temperature is observed to drop
to zero [26, 27]. This different behaviour is due to the fact
that bosons do not occupy a Fermi sphere, not having to
satisfy Pauli’s principle, and the Tc is not controlled just
by the DOS evaluated at the energy of highest occupied
level (Fermi), as is the case of BCS superconductors. As
shown in another paper focused on BCS theory, if we in-
terpret Fig.3(a) as the momentum space of fermions, it
is clear that the DOS on the surface decreases upon fur-
ther decreasing L down to below a critical value of L at
which we have a transition from the situation of Fig.3(b)
to that of Fig.3(a). Hence, one indeed observes the Tc
for superconductivity to increase with L up to a peak
or maximum in superconducting thin films where BCS
theory applies [26–28]. One should also notice, however,
that, in real-world confined superconductors, the confine-
ment does not affect only the electron density of states,
but can also change the phonon properties, as discussed
in [29–31] and references therein.

VI. HEAT CAPACITY

Together with providing a correction to the BEC crit-
ical temperature, confinement will also cause significant
modifications in the thermodynamic properties of the
condensate, such as the condensate fraction (fraction of
bosons in the ground state at a given temperature T )
and the heat capacity of the system. While in the low-to-
moderate confinement regime of micron-thick films these
corrections may be difficult to observe, for sub-micron
films where the approximations made in Section V C ap-
ply, the effect will be much more significant. Evaluating
the heat capacity of the condensate, and possibly of other
thermodynamic properties in the presence of confinement
is very important, since it offers a further possibility for
experimental validation of the theory. For details of ac-
tual experimental setups, see Refs. [18, 32–34].

A. Moderate-L regime

For bulk condensates the heat capacity goes like C ∝
T

3
2 . In order to find the heat capacity for the confined

systems, it is first necessary to determine the internal
energy, which, in general for Bose systems, can be written
as:

U =

∫ ∞
0

ε

eβ(ε−µ) − 1
g(ε)dε. (51)

Focusing on the condensate, i.e. considering only the
T < Tc situation, µ can be set to zero.

To calculate the heat capacity in the moderate-L
(micron-size) regime we need to apply the same approxi-
mations considered in Section V A to study the Tc in that
regime. Since it was seen that the effect of the second-
order corrections is negligible for a wide range of values
of L, we will only consider first-order approximations in
the present section. Starting with the general expression
for the internal energy:

U =
V Lm2

2π3h̄4

∫ ε∗

0

ε2

eβε − 1
dε+

V (2m)3/2

4π2h̄3

∫ ∞
ε∗

ε3/2

eβε − 1
dε,

(52)
this can be rewritten using the technique shown in Eq.
(18):

U =
V Lm2

2π3h̄4

∫ ε∗

0

ε2

eβε − 1
dε+

+
V (2m)3/2

4π2h̄3

[∫ ∞
0

ε3/2

eβε − 1
dε−

∫ ε∗

0

ε3/2

eβε − 1
dε

]

=
V (2m)3/2

4π2h̄3β5/2

∫ ∞
0

x3/2

ex − 1
dx+

+
V Lm2

2π3h̄4β3

∫ βε∗

0

x2

ex − 1
dx− V (2m)3/2

4π2h̄3β5/2

∫ βε∗

0

x3/2

ex − 1
dx.

(53)

The first integral can easily be solved by considering that:

∫ ∞
0

x3/2

ex − 1
dx =

3

4

√
πζ(5/2). (54)

Using again the first-order approximation ex − 1 ≈ x in
the other two integrals, this leads to the expression:

U = k1T
5/2+

V Lm2

2π3h̄4β3

∫ βε∗

0

xdx+
V (2m)3/2

4π2h̄3β5/2

∫ βε∗

0

√
xdx,

(55)

where k1 = 3
4

√
πζ(5/2)

V (2m)( 3
2 )

4π2h̄3 k
5/2
B is a constant which

does not depend on the confinement L, but only on the
mass of the bosons and on the normalization volume; the
first term in the equation is thus the bulk value of U .
Solving the other two integrals gives:

U = k1T
5/2 +

2V kBπ

3L3
T = k1T

5/2 + k2T. (56)

Since k2 depends on L, the second term provides the cor-
rection due to confinement to the internal energy of the
condensate in the limit of moderate L. The heat capacity
is obtained as usual by differentiating the internal energy
with respect to temperature:

C =
5

2
k1T

3/2 + k2(L). (57)

with k2 = 2V kBπ
3L3 .

Therefore, confinement in the sub-millimeter to micron
range causes a (in principle) measurable change in the
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heat capacity of the Bose gas, which scales as L−3, which
is another result of this paper.

Written like this, Eq. (57) might appear questionable,
as it violates the third law of thermodynamics by not
vanishing when T → 0. However, the apparent contra-
diction is solved by considering the fact that the calcu-
lations just performed are valid if the parameter βε∗ is
small, and this is impossible to occur for T = 0. There-
fore, the approximate result is consistent, and should be
valid in the range in which the βε∗ � 1 applies.

However, the correction given by Eq. (57) might be
challenging to measure experimentally, since for L ≈
10−5m the constant k2 = 2V kBπ

3L3 is extremely small, pro-

viding corrections of only about 10−8J/K per unit vol-
ume. A larger change in C due to confinement will be
found in the low-L limit, as will be discussed in the next
section.

B. Low-L limit

In this case, using the same approximations of Section
V C, we have, for the internal energy:

U =
V Lm2

2π3h̄4

∫ βε∗

0

ε2

eβε − 1
dε+

V (2m)
3
2

4π2h̄3

∫ ∞
βε∗

ε3/2

eβε − 1
dε ≈

(58)

≈ V Lm2

2π3h̄4

∫ ∞
0

ε2

eβε − 1
dε =

V Lm2

π3h̄4β3
ζ(3) (59)

and the result ∫ ∞
0

x2

ex − 1
dx = 2ζ(3) (60)

was used. Therefore, one has U ∝ T 3, and consequently
C ∝ T 2. In particular, one has:

C = ζ(3)
3V Lm2

π3h̄4 k3
BT

2 (61)

Contrarily to what was seen in the previous section, the
effect in this limit is much more relevant. First of all, the
heat capacity exhibits an altogether different dependence
on temperature compared to standard BEC theory, i.e.
C ∼ T 2 instead of C ∼ T 3/2. Furthermore, there is an L-
dependent prefactor in front of the leading T -dependent
term, hence the effect of confinement should definitely be
experimentally measurable.

Interestingly, our result agrees with the prediction
C ∼ T 2 that has been obtained with completely differ-
ent methods (i.e. a more elaborate variational approach
à la Feynman) in the context of very thin layers (just
few atomic layers) of helium on graphite [35]. This is an
interesting observation, which seems to imply that our
∼ T 2 result for nanometer-scale films may hold continu-
ously down to the 2D-like bilayer and monolayer systems
where it merges with the law of Ref. [35].

VII. CONDENSATE FRACTION

A. Moderate-L regime

Since it was seen that the effect of the second-order
correction in the expansion parameter βε∗ is negligible
for a wide range of L values, we will only consider first-
order approximation in the present section. The fraction
of particles which occupy the ground state at a given
temperature in the presence of confinement can be found
by considering:

N(ε > 0) =
V

λ3
ζ(3/2)− V m

πh̄2Lβ
=
V

λ3
ζ(3/2)− 2V

Lλ2

(62)

=
V

λ3

(
ζ(3/2)− 2λ

L

)
(63)

Now we use the fact that, in the present moderate-L
limit, from Eq. (26) one has ζ(3/2) = nλ3

c+
2λc

L , therefore
the equation above can be rewritten as:

N(ε > 0) =
V

λ3

(
nλ3

c +
2λc
L
− 2λ

L

)
= V n

λ3
c

λ3
+

2V

Lλ3
(λc − λ)

(64)

Now, considering the definition of λ, it is clear that
λ3
c

λ =(
T
Tc

) 3
2

. Using this substitution, together with nV = N ,

the result is:

N(ε > 0) = N

(
T

Tc

) 3
2

+
2V

Lλ3
h̄

√
2π

mkB

(
1√
Tc
− 1√

T

)
.

(65)
The first term is the standard term as in the bulk BEC

theory, whereas the second term is a corrective term in-
duced by confinement: it is obviously negative, since the
condensate fraction is evaluated for T < Tc. Therefore,
confinement induces a reduction in the number of parti-
cles occupying excited states, and therefore an increase
in the number of particle in the ground state, compared
to the results obtained in unconfined condensates at the
same values of T .

B. Low-L regime

In a bulk condensate, the number of particles in the
ground states is predicted to have a dependence on tem-

perature of the form 〈n0〉 = N

(
1−

(
T
Tc

) 3
2

)
. In the

case of strong confinement, having a compact formula-
tion of Tc allows us to evaluate the confinement-induced
correction to the condensate fraction, which could also
be used to experimentally verify the theory. The number
of bosons in the excited states is:

N(ε > 0) =

∫ ∞
0

g(ε)

eβε − 1
dε (66)
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Using the same steps and approximations valid in the
strong confinement, low-L regime, we obtain

N(ε > 0) =
π2V Lm2

12π3h̄4 k2
BT

2 = (67)

= V nT 2 12πh̄4n

Lm2k2
B

= N
T 2

T 2
c

. (68)

The number of particles in the ground state with ε = 0
is simply:

〈n0〉 = N

(
1−

(
T

Tc

)2
)
. (69)

Since, for T < Tc one has
(
T
Tc

)2

<
(
T
Tc

) 3
2

, the frac-

tion of particles in the ground state is greater for thin
films than for bulk condensates. This is qualitatively in
agreement with numerical results on the cubic box geom-
etry where, similarly, an enhancement of the condensate
fraction as a consequence of confinement was numerically
predicted for Dirichlet and antiperiodic boundary condi-
tions in Ref. [24].

VIII. THE EXPANSION PARAMETER βε∗

As shown above, the key parameter for the Taylor ex-
pansions in the various limits that one has to consider in
order to obtain approximate solutions is

βε∗ =
1

kBT

2π2h̄2

mL2
.

The first approximation, which was considered in Sec-
tions V A and V B, required this parameter to be small,
and hence L to be sufficiently large. To get an idea of
the orders of magnitude where this requirement applies,
it is necessary to estimate the prefactor in Eq. (70). In
order to do so, it is possible to consider the example of
rubidium, which was the first Bose gas in which conden-
sation was observed experimentally, and which has mass
m ' 87 a.m.u.. For the temperature value, we consider
the condensation temperature of bulk rubidium, namely
T ≈ 10−7K. Thus we have:

βε∗ ≈ 1.13 · 10−12

L2
. (70)

Simple numerical estimates show that the error in the
integral using the second-order expansion is around or
smaller than 0.1 %, if βε∗ = 0.1. Hence, inverting
Eq.(70), it is easy to obtain that this approximation is
justified for L > 3 · 10−6m, with a 0.1% precision. Con-
sidering just the first-order expansion leads to the neces-
sity of considering slightly higher values of L, since the
error is of more than 2.5 % for L = 3 · 10−6m. It is worth
noting that for different atoms, this value will be slightly

different because of differences in the masses of the par-
ticles: lower masses will increase the prefactor, and thus
increase the minimum value of L.

The strong confinement low-L approximation, devel-
oped in Section V C, is the opposite approximation of
large βε∗, i.e. in this case the small parameter is 1/βε∗.
In this case, the value of the parameter has to be large
enough in order to justify neglecting the term∫ ∞

βε∗
B

√
x

ex − 1
dx. (71)

Clearly, the argument of the integral is exponentially sup-
pressed as x→∞. However, the prefactor takes a value

B = (2m)3/2

(2π)2h̄3β3/2 ≈ 5 · 1018 (for rubidium). The approxi-

mation is valid if∫ βε∗

0

A
x

ex − 1
dx�

∫ ∞
βε∗

B

√
x

ex − 1
dx

and ∫ βε∗

0

A
x

ex − 1
dx ≈

∫ ∞
0

A
x

ex − 1
dx.

As we verified, one has already great precision if βε∗ ≈
20. This leads to a value of L < 2 · 10−7m, so this approx-
imation can be used to study confinement in films within
a broad range of thickness from a fraction of micrometer
down to nanometer systems.

IX. COMPARISON WITH SIMILAR SYSTEMS

Unfortunately, to date there are no experimental stud-
ies that explore the effect of confinement along a single
spatial direction on the equilibrium properties of Bose-
Einstein condensates, or the relationship between the
condensation temperature and the thickness of the film,
apart from studies focusing on the 2D limit of super-
fluids with just a couple atomic layers thickness where
the physics is much more complicated [10]. However,
various theoretical and especially numerical studies have
been performed to describe finite size effects on BEC
[7, 20, 36, 37].

Of these contributions, only the paper by Ginzburg
and Kirzhnits [36] focuses on the thin film geometry.
In order to describe a quasi-2D confined system they
basically neglected all transverse contributions to the
propagators, and obtained the following correction Tc ∝
Tc,∞

dn1/3

ln(L2dn) , where d is the width of the system in the

x and y directions. Clearly, also in this case Tc in-
creases with confinement although the formula becomes
no longer valid when L < (1/dn)1/2. This model is more
approximate than the framework presented here, since
in our case we do not arbitrarily neglect all transverse
modes, and we do retain all modes which are accessible
in the presence of confinement.



13

As in the case of BCS superconductivity [27, 38],
the numerical solutions are generally found by impos-
ing boundary conditions, such as Dirichlet “hard-wall”
conditions, or periodic/antiperiodic conditions, that the
wavefunction must satisfy at the borders. All studies pre-
dict an increase in critical temperature upon reducing the
size of the confined system: as discussed above, this is a
direct consequence of the fact that, as some low energy
states are not accessible, the macroscopic occupation of
the ground state begins at higher temperatures.

Recent results shown in Ref. [20], consider the change
in the critical temperature of a condensate when confined
in a cubic box of side L using the three classic boundary
conditions (Dirichlet, periodic/antiperiodic). The results
show clearly that the specific choice of boundary condi-
tion is irrelevant in the prediction of the behaviour of the
critical temperature, as the predicted behaviour is the
same with all three types of boundary conditions. This is
very different from the case of superconductors, for which
the choice of different boundary conditions produces rad-
ically different behaviours of the superconducting param-
eters. Although the discussion in Ref.[20] is referred to a
cubic box and not to a thin film, this provides an interest-
ing comparison to the results obtained in this work, since
in both situations the increase in the critical temperature
has the same origin. The power of the present model lays
in the fact that analytical solutions are provided, rather
than only the numerical calculations. Furthermore, the
thin film geometry has a higher potential for the achieve-
ment of high-temperature BEC as confining the system
in just one spatial direction allows for keeping the system
macroscopic as a whole. With the cubic box model this
is not possible as increasing the confinement necessarily
implies reducing the size of the system as a whole.

X. CONCLUSION

We presented a theory of Bose-Einstein condensation
in thin films which is fully analytical and covers a broad
range of confinement size, from sub-millimeter to microns
and down to the nanometer scale.

Previous approaches were either based on making
strong approximations such as neglecting transverse
modes [36], or based on numerical calculations with cer-
tain boundary conditions [7, 20].

In this paper we took a radically different approach
and developed an exact analytical solution which takes
into account the effect of confinement along one spatial
dimension on the available volume of accessible states in

momentum space. For free bosons the available volume
in momentum space is just a k-sphere, but in the pres-
ence of confinement this is no longer true and two spheres
of forbidden states develop inside the k-sphere and their
size grows with decreasing the film thickness L, as illus-
trated in Fig.3. This geometric distortion of the avail-
able momentum space has profound consequences on the
density of states (DOS), and we were able to analytically
evaluate the corrected DOS for thin-film confinement.

Analytical solutions for the critical temperature Tc
were developed for two distinct regimes, a moderate con-
finement regime valid for sub-millimeter films down to
microns, and a strong confinement regime valid from
fractions of microns down to the nanometer scale. In
both regimes the critical temperature Tc is predicted to
increase with decreasing the film thickness, L. In the
sub-millimeter to microns regime there is an additional
term that contributes to Tc and decays with L−1. In the
strong confinement regime the Tc is predicted to diverge
with increasing confinement as Tc ∼ L−1/2. This implies
that in this regime it should be possible to enhance the
Tc observed in cold atomic gases by at least two orders
of magnitude with respect to the current experimental
techniques. An enhancement up to about its liquefac-
tion temperature should be observable also for the su-
perfluidity onset temperature in helium films within the
nanomteter thickness range.

Analytical predictions are also made for the heat ca-
pacity of the condensate. In particular, in the strong con-
finement regime it is found that C ∼ T 2, which is strik-
ingly different from the standard BEC result C ∼ T 3/2

and may have important consequences: this stronger in-
crease of the heat capacity coming from the condensate
may imply a different λ-point behavior, which may have
observable consequences not only for dilute gases but also
for superfluids such as 4He where the thin film geometry
is easier to implement.

These results open up new directions for a fundamen-
tal understanding of BEC and superfluidity onset and
the enhancement thereof, with new testable predictions.
In particular, it could be interesting to extend the
confinement description of BEC presented here to
predictions of the superfluid critical temperature using
existing approximate theories [39].
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