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Widespread calcite and quartz pseudomorphs, interpreted as originally gypsum crystals, occur within
hemipelagic calci-mudstone accumulated in subtidal offshore environments in the broad marine foreland
basin developed on the southern flank of the Ouachita–Alleghanian–Variscan Orogen during mid-
Carboniferous times,which acted as amarine corridor connecting the Panthalassa and Palaeo-TethysOceans dur-
ing the Mississippian, and progressively narrowed during the assembly of Pangea. In this study, 67 outcrops of
radiolaria-bearing calci-mudstone deposits that contain calcite and quartz pseudomorphs located in northern
Spain and southern France were studied to constrain the gypsum spatial distribution and sedimentological fea-
tures. The recognised microfacies indicate intrasediment gypsum precipitation, accompanied by less abundant
bottom-grown precipitates and gypsum cumulates, in extensive offshore, probably several ten to a few hundred
metres deep, basinal environments. Gypsum precipitation took place during a short-lived temporal episode dur-
ing the early Bashkirian time (Voznesenkian), which can be correlated, on the basis of benthic foraminifera, with
the coastal (inter- to supratidal) gypsum evaporites identified in NW Africa (Tindouf and Reggan successions in
Morocco and Algeria) that would represent the shallow-water counterparts. The occurrence of gypsum precipi-
tates both in offshore hemipelagic calci-mudstones of the Variscan foreland basin and in inter- to supratidal en-
vironments of the epeiric Sahara Platform indicates that hypersaline conditions affected vast marine areas,
roughly coinciding with the estimated age of closure of the Panthalassa and Palaeo-Tethys marine connection.
Therefore, the studied succession represents the trace of a basin-wide evaporitic episode extending for hundreds
of kilometres driven by foreland basin restriction, mid-Carboniferous sea-level fall and arid climate. This study
provides new insights for the interpretation of gypsum precipitates in offshore marine environments encoun-
tered in the Phanerozoic and whose genesis is poorly understood.

© 2024 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC license
(http://creativecommons.org/licenses/by-nc/4.0/).
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1. Introduction

Evaporites are commonly recognised in coastal and shallow-marine
(littoral) sedimentary successions (Warren and Kendall, 1985; Demicco
and Hardie, 1994; Ortí, 2010a; Warren, 2016). However, they can also
occur in deep-water settings when hypersaline conditions (i.e. higher
ía).

. This is an open access article under
than normal marine, Ortí, 2010a) extend across restricted marine ba-
sins. The best-known examples are the Permian Zechstein Basin and
the Mediterranean Basin during the Messinian salinity crisis (e.g.
Schlager and Bolz, 1977; Tucker, 1991; Lugli et al., 2015; Warren,
2016; Manzi et al., 2021). Evaporite cumulates and reworked clastic
evaporites are described in the literature as typical features of deep-
marine deposits (Bąbel, 2004; Lugli et al., 2015; Warren, 2016; Ben
Dor et al., 2019). In contrast, displacive evaporites, which are typical of
shallow (littoral) environments such as supratidal sabkhas (Bąbel,
2004; Warren, 2016), have been rarely described in deep-marine
the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).
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deposits (Lugli et al., 2015; Natalicchio et al., 2021). Although the study
of modern sabkhas and playa-lakes has helped to decipher the factors
leading to intrasediment evaporite precipitation in shallow environ-
ments (Purser and Evans, 1973; Warren, 2016), the lack of modern an-
alogues for marine evaporite basins limits the understanding of
intrasediment evaporite precipitates in deep-water environments.

Here we report the widespread occurrence of calcite and quartz
pseudomorphs after intrasediment gypsum crystals in an offshore
hemipelagic calci-mudstone succession as thick as 30 m accumulated
in the foreland basin developed on the southern flank of the Oua-
chita–Alleghanian–Variscan Orogen during mid-Carboniferous times
(Fig. 1). The studied deposits accumulated over an area of 192,000–
231,000 km2 (>770 km in length and 250–300 km in width according
to a palinspastic restoration after the present-day distribution of the
strata studied in northern Spain and southern France). This study aims
at exploring the origin of gypsum crystals, their mode of precipitation
and depositional environment, and themechanisms that led to gypsum
precipitation in the marine foreland basin. The genesis of the associ-
ated carbonate mud is out of the scope of the study. Considering that
these strata with calcite and quartz pseudomorphs after gypsum
constitute one of the rare examples in which intrasediment gypsum
crystals are recognised in offshore calci-mudstone deposits, this
Fig. 1.A) Palaeogeographic reconstruction of the southern intertropical area of Pangea duringm
domorphs after gypsumof the Variscan foreland basin (N Spain and S France), and potentially ti
(2001) and Golonka (2002). B) Sketch showing the configuration of the Variscan massifs of Ibe
with location of the 67 studied outcrops. The boundary between the internal areas of theVarisca
García-Sansegundo et al. (2011).
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study provides a better understanding of the mechanisms involved
in the precipitation of intrasediment gypsum in deep-water environ-
ments. Furthermore, this study provides new information on the
palaeogeographic and palaeoclimatic evolution of the equatorial
zone of Pangea during the Laurentia–Gondwana collision in the
mid-Carboniferous.

2. Geological setting

The marine foreland basin developed south of the Ouachita–
Alleghanian–Variscan orogen acted as a corridor between Panthalassa
and Palaeo-Tethys Oceans during Mississippian times (Fig. 1A). This
basinwas progressively restricted due to tectonic convergence of Gond-
wana and Laurussia and eventually closed around the Mississippian–
Pennsylvanian boundary (Blakey, 2008; Davydov and Cózar, 2019).
The distalmost sectors of this basin connected southwards with the
vast epeiric marine shelf developed north of Gondwana (the Sahara
Platform).

The studied deposits form part of the Carboniferous succession that
crops out along the foreland fold and thrust belt of the Variscan Orogen
at the core of the Ibero-Armorican Arc (Fig. 1B): the so-called
Cantabrian Zone (CZ, onwards) of the Iberian Variscan Massif (Lotze,
id-Carboniferous times (≈323My) showing the location of the studieddepositswith pseu-
me equivalent gypsum strata of N Gondwana. Redrawn fromGolonka et al. (1994), Scotese
ria prior to the opening of the Bay of Biscay (modified after Martínez Catalán et al., 2021)
n orogen and the foreland fold and thrust belt in the Pyrenees has been drawn according to
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1945), and in the Axial Zone of the Pyrenees in northern Spain and
southern France (Pyrenees, onwards). The Carboniferous succession
consists of 15–40 m-thick pelagic condensed red-nodular limestones,
radiolarites and black laminated calci-mudstones, red shales and marl-
stones (Alba Fm in the CZ and Aspe Brousset Fm in the Pyrenees;
Fig. 2), and 60–400 m-thick dark grey and laminated calci-mudstone
with radiolaria (Barcaliente Fm in the CZ, and Iraty Fm and Aranza and
Chourique Lmst. in the Pyrenees), which accumulated over broad
areas of the basin during Visean to early Bashkirian times (Figs. 1B
and 2) (see Colmenero et al., 2002; Fernández et al., 2004; Merino-
Tomé et al., 2019; Sanz-López, 2019). Towards the basin foredeep,
these successions pass laterally into deep-water siliciclastic turbidites
(Olleros Fm in the CZ and CulmGroup in the Pyrenees; Fig. 2). These de-
posits are overlain by the Bashkirian–Moscovian microbial carbonate
platforms recognised in the CZ by numerous authors (see Eichmüller,
1985, 1986; Della Porta et al., 2003; Kenter et al., 2003; Bahamonde
et al., 2007, 2015, 2017; Chesnel et al., 2016) (Fig. 2).

More specifically, this study focuses on a metre- to decametre-thick
interval in the upper part of the Barcaliente Fm and its equivalent strat-
igraphic units in the Pyrenees that contain calcite and quartz pseudo-
morphs after gypsum (Figs. 3 and 4). Previous authors have locally
reported the presence of these pseudomorphs in the CZ and interpreted
them as being originally gypsum crystals (González Lastra, 1978;
Sánchez de la Torre and González Lastra, 1978; Sánchez de la Torre
et al., 1983), whereas some others interpreted them as formerly authi-
genic quartz crystals (Winkler Prins, 1971; Hemleben and Reuther,
1980). In theCZ, this stratigraphic interval is overlain in numerous local-
ities by a 6–85 m-thick carbonate breccia, named Porma Breccia
(Reuther, 1977). Although this stratigraphic interval was traditionally
interpreted as recording evaporite deposition in restricted inter- to
Fig. 2. Chronostratigraphic diagram formid-Carboniferous strata of the CZ and Pyrenees. Modifie
(2018) and Sanz-López (2019).
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supratidal settings (González Lastra, 1978; Sánchez de la Torre and
González Lastra, 1978; Sánchez de la Torre et al., 1983; Eichmüller,
1985, 1986), this interpretation is reviewed here in the light of the
new sedimentologic data acquired in this research.

3. Methods

3.1. Fieldwork

Fieldworkwas designed to provide data onmid-Carboniferous strata
with calcite andquartz pseudomorphs to constrain their spatial distribu-
tion, describe their stratigraphy and facies, and accurately define their
age. These deposits and associated carbonate breccias were observed
in 64 localities of the CZ (Figs. 1B and 3A) plus 3 other localities in the
central and western parts of the Variscan exposures in the Axial zone
of the Pyrenees (Aragón Subordán Valley and Canfranc in Spain, and
Aspe-Brousset Valley in France; Fig. 1B). A detailed characterisation of
the strata with calcite and quartz pseudomorphs including the descrip-
tion of stratigraphic logs at a decimetre scale, acquisition of sedimento-
logic information and rock sampling for further petrographic studies
(including microfacies analysis), was carried out in 23 of the above-
mentioned outcrops (21 in the CZ and two in the Pyrenees). This dataset
was complemented with precise measurements of the total thickness of
the stratawith calcite and quartz pseudomorphs, facies descriptions and
sampling from 25 additional outcrops in the CZ and one in the Pyrenees.

3.2. Petrography and image analysis

Rock samples were cut to obtain polished rock slabs and thin sec-
tions for macroscopic observations and facies characterisation. More
d from Sanz-López and Blanco-Ferrera (2012), Merino-Tomé et al. (2017, 2019), Cózar et al.



Fig. 3.A) Syntheticmapof theCZ showing the areal distribution of theBarcaliente Formation and the localities inwhich calcite and quartz pseudomorphs after gypsumhavebeen observed
or reported in the literature (see Winkler Prins, 1971; Reuther, 1977; González Lastra, 1978; Hemleben and Reuther, 1980; Dietrich, 2005). B) Stratigraphic cross section showing the
Mississippian and Early Pennsylvanian succession of the southern branch of the CZ (see location in A, red line).
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Fig. 4. Correlation of the sedimentary facies of the upper part of the Barcaliente Fm and the overlying deposits along the cross section shown in Fig. 3B. A log of the estimated abundance of calcite and quartz pseudomorphs after gypsum is shown for
the Porma Reservoir section (P).
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than 525 thin sections were studied for microfacies analysis using a
polarised light-transmitted microscope Nikon Eclipse LV100POL
equipped with a Nikon DS-Ri2 camera and the image analysis software
NIS Elements v.5.10. Visual estimates of the abundance (% per area) of
calcite and quartz pseudomorphs, sediment matrix (carbonate mud re-
crystallised inmicrosparite–sparite) and bioclastsweremade, aswell as
measurements of the size (Feret diameter, DF) of the pseudomorphs
replacing precursor gypsum.

Point and area counting methodologies (Heilbronner and Barrett,
2014) were applied for quantification of the abundance and size of the
calcite and quartz pseudomorphs. These image analyses were per-
formed on 65 thin sections scanned with a pixel density ranging from
4000 to 4800 ppi, using open-source software FIJI-ImageJ (Ferreira
and Rasband, 2012). Feret diameter (DF; also called b axis or calliper),
area equivalent diameter (DE), crystal size distribution (CSD) and
abundance (% per area) of the pseudomorphs were analysed in 40 of
these samples in which the differentiation of many individual crystals
was suitable. In further 25 samples, the objective identification and
contouring of individual pseudomorphs were not possible due to the
common presence of pseudomorph aggregates, and therefore point
counting was performed using a grid size of 0.45 mm to obtain
accurate information on the calcite pseudomorph abundance.

Optical cathodoluminescencewas performed in a total of 49 samples
selected from four of the studied sections using an ERI-MRTech equip-
ment coupled with an Olympus BX41 petrographic microscope and
using a MK 5-2 luminoscope by Cambridge Image Technology Ltd.
(beam voltage of 10 to 16 kV; beam current of 200 to 600 μA; vacuum
gauge of 50 to 70 mTorr).

SEM petrography was carried out on 13 selected samples of carbon-
ate breccias that included a groundmass replaced by quartz and calcite
with solid inclusions. SEM analyses were performed using a scanning
electronic microscope JEOL-6610LV with a coupled Energy dispersive
X-ray (EDS) analyser INCA Energy 350-Xmax 50 (energy resolution of
0,125–5,9 keV) and a JEOL-JSM7001F equipped with an EDS detector
(model JEOL EX-94300S4L1Q) coupledwith a JED2300 software (energy
resolution of 15 kV, probe current of approximately 3.5 nA). More than
115 qualitative compositional analyses of the solid inclusions contained
in the quartz and calcite replacements, complemented with 19 local
semiquantitative chemical analyses with the EDS detector, provided
new insights on the mineralogy of the original groundmass of the
breccias.

4. Results

4.1. Stratigraphy of the deposits with calcite and quartz pseudomorphs

The study of the discrete stratal packagewith calcite and quartz pseu-
domorphs in the upper part of the Barcaliente Fmand its equivalent strat-
igraphic units from the Pyrenees shows that it has an almost widespread
distribution across both the CZ and Pyrenees (see Figs. 3 and 4). Locally,
scarce pseudomorphs were identified in older strata (VV section, Fig. 3B).

The total current thickness of the stratigraphic package bearing cal-
cite and quartz pseudomorphs ranges from 4 m (INT section; Supple-
mentary data) to 30 m (HV section; see Figs. 3B and 4). Along the
studied outcrops the base of the pseudomorph-bearing strata generally
Fig. 5. Selected taxa of foraminifera recorded in samples from theCQ section (see Fig. 14). Scale b
section, Spl. CE-440. 2) Planoendothyra aff. inusitata (Reitlinger, 1950), axial section, Spl. CE-44
(Vdovenko in Brazhnikova et al., 1967), axial section, Spl. CE-406. 5) Eostaffella exilis Grozd
(Rauser-Chernousova, 1948a), close to axial section, Spl. CE-434. 7) Ikensieformis cf. proikensis
in Rauser-Chernousova et al. (1951), almost axial section, Spl. CE-406. 9) Plectostaffella sp., me
1967), tangential section, Spl. CE-402. 11, 12) Eostaffella statuta Reitlinger, 1980, axial sections,
sp., axial section, Spl. CF-7. 15)Monotaxinoides transitorius Brazhnikova and Jartzeva, 1956, axia
7. 17) Rugosoarchaediscus karreriformis (Reitlinger, 1950), axial section, CE-405. 18, 19) Asteroa
CE-398; 19 — section close to axial, Spl. CE-419B. 20) Howchinia sp., oblique section, Spl. CE-396
1937, median section, Spl. CE-419B. 22) Janischewskina sp., tangential section, Spl. CE-402. 23) H
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corresponds to a gradual transition with underlying dark-grey lami-
nated radiolarian calci-mudstones. In general terms, from the base to-
wards the top of the interval there is a progressive increase in
pseudomorph abundance accompanied by a gradual reduction of the
pseudomorph size and a change in their arrangement, from scattered
to arranged into laminae (Fig. 4; P section). In the outcrops closest to
the foredeep (Fig. 4; R and VV sections), calcite pseudomorphs are
recognised in sandstone and intraclastic rud- to packstone strata inter-
bedded with calcareous debris-flow deposits or laminated radiolarian
calci-mudstones, marlstone and shales.

The stratigraphic interval bearing calcite and quartz pseudomorphs
of the upper part of the Barcaliente Fm and equivalent stratigraphic
units is overlain either by dark-grey radiolarian-rich wackestones, or
light-grey bioclastic limestones and common microbial boundstone
strata of the Valdeteja Fm (Figs. 2, 3B and 4). The transition to these de-
posits shows variable features:

• In broad areas of the CZ, a breccia unit appears atop of the strata with
calcite and quartz pseudomorphs, which has been informally named
Porma Breccia (Reuther, 1977). This breccia unit is locally up to 85
m thick and is composed of fragments of calci-mudstone with calcite
and quartz pseudomorphs and, towards its upper part, it contains also
fragments of the overlying strata (generally dark-grey radiolarian
wackestone and locally microbial boundstone; Fig. 4). Comparable
breccias have also been observed in some of the studied sections in
the Pyrenees (CH section).

• In certain specific areas, the top of the strata with calcite and quartz
pseudomorphs consists of an irregular surface overlain by yellowish
to ochre nodular breccias (CL section; Fig. 4).

• In scattered locations, the contact between the strata bearing calcite
and quartz pseudomorphs and the overlying dark grey radiolarian
wackestones is a normal contact with no erosional features and no
brecciation (VV, and MA sections; Fig. 4).

The studied stratal package with calcite and quartz pseudomorphs
lies above the First Appearance Datum (FAD) of the conodonts
Declinognathodus inaequalis (Higgins 1975) and Idiognathoides
corrugatus (Harris and Hollingsworth 1933 (Sanz-López et al., 2013).
Samples collected in this study from strata overlying the aforemen-
tioned stratal package in the CQ section show foraminiferal associations
that are typical for uppermost Serpukhovian–lowermost Bashkirian
(Voznesenkian–Krasnopolyanian) strata. Ordinary species are
Endothyra ex gr. bowmani Phillips, 1846, Bradyina cribrostomata
Rauser-Chernousova and Reitlinger in Rauser-Chernousova, 1937,
Eostaffella statuta Reitlinger, 1980, Eostaffella acutiformis Kireeva in
Rauser-Chernousova et al., 1951, Ikensieformis cf. mirifica (Brazhnikova
in Brazhnikova et al., 1967), Ikensieformis postproikensis (Vdovenko in
Brazhnikova et al., 1967), Asteroarchaediscidae, Howchinia bradyana
(Howchin, 1888), Monotaxinoides transitorius Brazhnikova and
Jartzeva, 1956, and Janischewskina sp. (Fig. 5). In the case of the HV sec-
tion, samples collected from strata lying 23 m above the studied stratal
package provided a foraminiferal association characterised by abundant
archaediscids and eostaffellids: Monotaxinoides cf. transitorius
Brazhnikova and Jartzeva, 1956, Neoarchaediscus cf. postrugosus
(Reitlinger, 1949), Asteroarchaediscus baschkiricus (Krestovnikov and
ar is 0.2mm for each image. 1) Semiendothyra cf. tumulifera (Reitlinger, 1980), almost axial
0. 3) Endothyra ex gr. bowmani Phillips, 1846, Spl. CE-450. 4) Ikensieformis postproikensis
ilova and Lebedeva, 1950, axial section, Spl. CE-398. 6) Eostaffellina ex gr. paraprotvae
(Rauser-Chernousova, 1948a), axial section, Spl. CE-440. 8) Eostaffella acutiformis Kireeva
dian section, Spl. CE-419B. 10) Ikensieformis cf.mirifica (Brazhnikova in Brazhnikova et al.,
both from Spl. CE-440. 13) Neoarchaediscus sp., oblique section, Spl. CE-398. 14) Eostaffella
l section, CE-440. 16) Neoarchaediscus regularis (Suleymanov, 1948), axial section, Spl. CF-
rchaediscus baschkiricus (Krestovnikov and Theodorovich, 1936); 18 — median section, Spl.
.2. 21) Bradyina cribrostomata Rauser-Chernousova and Reitlinger in Rauser-Chernousova,
owchinia bradyana (Howchin, 1888), axial section, Spl. CE-396.2.
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Theodorovich, 1936), Eostaffella postmosquensis Kireeva in Rauser-
Chernousova et al., 1951, Parastaffella sp., and Plectostaffella ex gr.
varvariensis (Brazhnikova and Potievska, 1948) (Fig. 6). Specimens of
Plectostaffella are scarce.
7

4.2. Facies

Three main groups of facies have been recognised within the
stratigraphic package bearing calcite and quartz pseudomorphs



I. Díaz-García, Ó. Merino-Tomé, I.E. Quijada et al. Sedimentary Geology 464 (2024) 106605
within the Barcaliente Fm and its equivalent stratigraphic units:
1) facies devoid of calcite and quartz pseudomorphs (facies A and
B); 2) facies with calcite and quartz pseudomorphs (facies C, D, E, F
and G); and 3) carbonate breccias with clasts deriving from fractured
or reworked/altered strata belonging to facies listed above under 1
and 2 (facies H and I).
8

4.2.1. Facies A. Dark-grey calci-mudstones to wackestones with scarce
radiolaria

It is the dominant facies in the Barcaliente and Iraty Fms and in
the Aranza and Chourique Lmst, and consists of centimetre to
decimetre-thick tabular to wavy beds. This facies also occurs inter-
bedded with the facies bearing calcite and quartz pseudomorphs



Fig. 7. Transmitted light photomicrographs of facies A andB. A)Burrowedcalci-mudstonewith disperse calcite biomoulds of radiolaria (r) (faciesA). B) Pyritised radiolarian test preserving
the internal structure (facies A). C)Dark-grey radiolarianwackestones (facies B)with abundant radiolarian biomoulds (r). D) Close-up viewof radiolarian tests (r) preserving someof their
spines in facies B.
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(facies C, D, E, F, G) and overlying the stratigraphic interval with cal-
cite and quartz pseudomorphs (Fig. 4). It consists of calci-mudstones
with a variable percentage of very small peloids (generally <10 μm
in diameter). Carbonate mud forming the sediment matrix is recrys-
tallised into microsparite and sparite (Fig. 7A). The most common
bioclasts correspond to spherical calcitised (and less commonly
pyritised) radiolaria (Fig. 7A, B) and very scarce ostracods. In
addition, previous authors have also reported very scarce heterotro-
phic benthic fauna in this facies, including crinoid and holothurian
plates, sponge spicules, brachiopods, and very scarce conodonts,
calcispheres and agglutinated foraminifera (Eichmüller, 1985,
1986; Sanz-López and Blanco-Ferrera, 2012, 2013; Sanz-López
et al., 2013). Although this facies is slightly bioturbated, sub-
millimetre-size horizontal lamination is commonly recognised.
Fig. 6. Selected foraminifera of the HV section. Scale bar = 0.2 mm. 1) Calcitornella sp., Sp
3) Monotaxinoides cf. priscus Brazhnikova and Jartzeva, 1956, axial section, Spl. HV1-18. The te
section, Spl. HVB-93. 5) Eolasiodiscus sp., axial section, Spl. HVB-92.2. 6, 7) Asteroarchaediscus b
8) Asteroarchaediscus rugosus (Reitlinger, 1949), axial section, Spl. HV1-18. 9) Monotaxinoides
Monotaxinoides gracilis (Dain in Reitlinger, 1956), Spl. HVAL2-1. 11) ?Hemidiscopsis sp., Spl.
(Reitlinger, 1949), axial sections: 12 — Spl. HV1-18, 13 — HVB-93. 14) Neoarchaediscus b
Brazhnikova and Jartzeva, 1956 axial section, Spl. HVB-92.7B). The test is silicified. 16) Haplop
cf. donbassicus Reitlinger, 1956, equatorial section, Spl. HV1-18. 18, 20) Biseriella glomerata (Iv
Spl. HV1-18, 20— close to median section, Spl. HVAL2-0. 19) Biseriella cf. eogranulosa (Reitling
(Reitlinger, 1950), axial section, HVAL2-1. 22) Endothyra sp., close to axial section, Spl., HV1-
inusitata (Reitlinger, 1950), axial section, Spl. HVAL2-1. 25) Eostaffellina paraprotvae (Rauser
Chernousova et al., 1951, axial sections: both from Spl. HVB-93. 28) Eostaffella cf. parastruvei
(Postojalko, 1990), tangential section, Spl. HVAL2-0. 30) Eostaffella cf. suranensis Reitlinger, 198
andBelyaev inRauser-Chernousova et al., 1936, oblique section, Spl.HVAL2-1. 32) Plectostaffella
cf. pinguis (Thompson, 1944), almost axial section, Spl. HVAL2-0.

9

4.2.1.1. Interpretation. The carbonate mud-dominated texture with
parallel lamination that characterises facies A together with the ab-
sence of coarse silt- to sand-grade sediment, of erosional surfaces
veneered with coarse (bioclastic) lags, and of oscillatory- or com-
bined-flow tractional deposits (Dott and Bourgeois, 1982; Clifton,
1988; Son et al., 2012; amongst others), suggests sedimentation in
an offshore (i.e. below the wave base) setting. A similar interpreta-
tion was also given by Nemyrovska et al. (2011) for the equivalent
facies of the Barcaliente Fm in the Lastra section (SE of the study
area, Palentian Zone, Cantabrian Mountains, see Fig. 3 for location).
Furthermore, the low degree of bioturbation and the reported skele-
tal associations (dominated by radiolaria and ostracods, and
characterised by the scarcity of shallow-water benthic biota and, in
particular, of benthic photozoans) are compatible with hemipelagic
l., HVB-92.2. 2) Eolasiodiscus donbassicus Reitlinger, 1956, axial section, Spl. HV1-18.
st is silicified. 4) Hemidiscopsis muradymicus (Kulagina in Kulagina et al., 1992), tangential
aschkiricus (Krestovnikov and Theodorovich, 1936), axial sections: both from Spl. HV1-18.
cf. transitorius Brazhnikova and Jartzeva, 1956, near-equatorial section, Spl. HVAL2-1. 10)
HVAL2-1, axial section. The test is partly silicified. 12, 13) Neoarchaediscus postrugosus
orealis (Reitlinger, 1949), axial section, Spl. HV1-18. 15) Monotaxinoides transitorius
hragmina repens (Malakhova, 1980), longitudinal section, Spl. HVAL2-1. 17) Eolasiodiscus
anova, 1988): 18 — section of the initial part of the shell passing through the proloculus,
er, 1949), section of the initial part of the shell, Spl. HV1-18. 21) Planoendothyra aff. irinae
18. 23) Endothyra phrissa (Zeller, 1953), median section, HV1-18. 24) Planoendothyra aff.
-Chernousova, 1948a), Spl. HV1-18. 26, 27) Eostaffella postmosquensis Kireeva in Rauser-
(Rauser-Chernousova, 1948b), axial section, Spl. HVAL2-0. 29) Parastaffella cf. utkaensa
0, tangential section, Spl. HVAL2-1. 31) Eostaffella ex gr. pseudostruvei Rauser-Chernousova
cf. varvariensis (Brazhnikova and Potievska, 1948), oblique sections, HVB-93. 33) Eostaffella
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sedimentation in prevailing dysphotic to aphotic conditions (cf.
Flügel, 2010). In fact, the recorded conodont associations are charac-
teristic of deep-water conodont zonation for Northern Spain and
Eurasia (Barrick et al., 2022).

4.2.2. Facies B. Dark-grey radiolarian wackestones
This facies occurs in limestone beds overlying the stratal package

with calcite and quartz pseudomorphs (Fig. 4). It consists of centimetre
to decimetre-thick tabular to wavy beds with marly interbeds and
is composed of burrowed to laminated radiolarian-rich wackestones
with a variable percentage of other bioclasts, including small forami-
nifera (tuberitinids, lasiodiscids, calcivertellids, endothyrids and
archaediscids), ostracods, siliceous sponge spicules, brachiopods,
crinoids, trilobite fragments and scattered ammonoids (Fig. 7C, D).
Carbonate mud forming the rock matrix is generally recrystallised
into microsparite and rarely into sparite. Although bioturbation is ubiq-
uitous in facies B, some laminated intervals are also present. Silica re-
placement of both sediment matrix and skeletal grains (Fig. 6) is a
common diagenetic feature and millimetre to centimetre-sized chert
nodules can be observed in the field. Sediment distortion and fluid
escape-like structures can be commonly recognised.

4.2.2.1. Interpretation. As with facies A, the carbonate-mud-dominated
texture, occasionally with parallel lamination, which characterises
facies B is indicative of deposition in a low-energy offshore basinal
setting. However, the low grade of preservation of lamination due
to abundant bioturbation and the presence of common bioclasts
reflect higher biological activity compared to facies A and to facies
containing calcite and quartz pseudomorphs present in the underly-
ing stratigraphic interval. Eichmüller (1986), Della Porta et al. (2003)
Fig. 8.A) Polished slab of facies C showingmillimetre- to centimetre-sized lenticular calcite (Ca
sized aggregates. B and C) Transmitted lightmicrophotographs of facies C collected in the CZ (B)
sections (white arrows). D) Transmitted light photomicrograph of laminated calci-mudstones
gypsum (facies D).
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and Chesnel et al. (2016) recorded this facies as one of the typical
basin deposits accumulated at depths of several tens to hundreds of
metres, adjacent to the Bashkirian high-relief carbonate platforms
of Valdeteja, Sierra del Cuera and Valdorria, respectively.

4.2.3. Facies C. Calci-mudstones with scattered calcite and quartz
pseudomorphs after intrasediment gypsum

Togetherwith facies D, this is themost abundant andwidespread fa-
cies in the studied stratigraphic interval and shows an almost ubiqui-
tous distribution throughout the measured outcrops of the basin.
Facies C is the dominant facies in the lower part of the pseudomorph-
bearing package studied and shows gradual vertical transitions to both
the underlying strata devoid of pseudomorphs (facies A) and the over-
lying calci-mudstoneswith laminae of calcite and quartz pseudomorphs
after intrasediment gypsum (facies D).

Facies C consists of calci-mudstones characterised by the presence
of predominantly calcite and quartz pseudomorphs (Fig. 8A). Calci-
mudstone beds consist of microsparite and show a sub-millimetre-
thick lamination that generallymimics the shapes of the pseudomorphs
(Fig. 8B, C). They contain rare radiolarian biomoulds and ostracods.
The pseudomorphs show monoclinic prismatic and equant hexagonal
morphologies and, less frequently, lenticular shapes (Fig. 8A, B, C). The
b-axes of the pseudomorphs are generally >1 mm with maximum
values of 5 mm in most samples, although they can reach centimetre
sizes in some beds (Fig. 8A). Image analyses show an average DE of
evaporite crystals of 615–908 μm (Fig. 9A, B) and a wide range of CSD;
DF mean values are 816–1246 μm. The abundance of calcite pseudo-
morphs after evaporites in this facies is usually below 20 % per area
(Fig. 9C). In samples with larger and more abundant pseudomorphs,
the pseudomorphs cluster to form millimetre- to centimetre-sized
l) and quartz (Q) pseudomorphs after gypsum (white arrows), locally forming centimetre-
and Pyrenees (C). Pseudomorphs after gypsum showmonoclinic prismatic and hexagonal
alternating with submillimetre-sized laminae of aggregates of calcite pseudomorphs after



Fig. 9. A) Histograms of crystal size distribution (CSD) of the calcite and quartz pseudomorphs obtained by area counting procedure in samples of facies C and D from Gamoniteiro (G),
Viego (VI) and Porma Reservoir (P) sections (see Fig. 4A for location). B) Synthetic table showing calculated area equivalent diameter (DE; range, mode and mean values) and mean
Feret diameter (DF, calliper or b axis) of the pseudomorphs calculated for samples of facies C and D of the aforementioned sections. C) Histogram showing pseudomorph abundance (%
of area) and frequency (% of samples) in facies C and D (including samples from all the studied sections). Quantification was made by visual estimation and point and area counting
procedures. Note that samples from facies C show generally pseudomorph abundances ≤20 %, whereas abundances from facies D overcome 20 %.
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aggregates. Although calcite and quartz replacements of pseudomorphs
are the most abundant (Fig. 8A), replacements by celestite, dolomite,
pyrite and fluorite have also been observed locally.

4.2.3.1. Interpretation. The monoclinic, equant hexagonal and lenticu-
lar habits of the pseudomorphs are characteristic of gypsum crystals
(e.g. Palache et al., 1951; Ortí et al., 1984, 2014; Magee, 1991;
Kendall, 1992; Paik et al., 2007; Ortí, 2010a; Quijada et al., 2013;
Natalicchio et al., 2021; Reiss et al., 2021). The abundance of carbon-
ate mud around the pseudomorphs after gypsum crystals and the
random crystal orientations (Fig. 8A–C) are indicative of
intrasediment gypsum precipitation, which occurred at, or slightly
underneath, the sediment–water interface. Similar intrasediment
gypsum crystals precipitate interstitially in microbial mats of
present-day marine saltworks at salinities of around 140–150 ‰
(Ortí et al., 1984; Bąbel, 2004; Ortí, 2010b, 2011). The deformation
of the sediment lamination around the pseudomorphs may have
been the result of displacive gypsum growth (Paik et al., 2007;
11
Ortí, 2010a; Quijada et al., 2013) and/or differential compaction
during burial.

Previous studies in the CZ also interpreted the pseudomorphs
described in facies C as originally evaporative gypsum crystals
(González Lastra, 1978; Sánchez de la Torre and González Lastra,
1978), but precipitated in salina and sabkha settings. However, the
fact that the composition of the sediment matrix surrounding the
pseudomorphs after gypsum is equivalent to that forming facies A
allows inferring that evaporite precipitation took place in low-
energy offshore environments, instead of peritidal environments as
proposed by González Lastra (1978) and Sánchez de la Torre and
González Lastra (1978).

4.2.4. Facies D. Calci-mudstones with laminae of calcite and quartz
pseudomorphs after intrasediment gypsum

Facies D is composed of laminated calci-mudstones alternating with
laminae of aggregates of calcite and quartz pseudomorphs. The sedi-
mentmatrix shows the same characteristics as those described in facies



Fig. 10. A) Scanned thin section of facies E composed of laminae of calcite pseudomorphs
after gypsum cumulates (1, 2, 3). Note the upward increase in the abundance of pseudo-
morphs within each pseudomorph-rich lamina. Pseudomorph lamina 1 shows a sharp
upper contact and primary crystal terminations, which may have been formed by over-
growth of the cumulate crystals after their settling in the bottom. Py, pyrite replacements;
st, stylolite; b, burrow. B) Photomicrograph showing cumulate cycles 2 and 3 from image
A. The upper contact of the pseudomorph-rich lamina is stylolitised (st).
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C, with rare ostracods and very rare radiolarian biomoulds, and a thin
lamination that fits the morphology of the evaporite pseudomorph ag-
gregates (Fig. 8D). Laminae of pseudomorphs are laterally continuous
over several centimetres to decimetres and range in thickness from
hundreds of μm to 2 mm (Fig. 8D). As in facies C, individual crystals of
calcite pseudomorphs show mostly monoclinic prismatic and equant
hexagonal habits and rare lenticular shapes. Crystal size is generally
12
smaller than in facies C. DF is commonly <600 μm (546–568 μm) and
DE values range from 286 to 413 μm; CSDs exhibit narrower
distributions with modal values defining higher peaks than in the case
of facies C (Fig. 9A, B). Pseudomorph abundance commonly varies
from 20 to 60 % per area, reaching >60 % in some samples (Fig. 9C).

4.2.4.1. Interpretation. As with facies C, the characteristics of the pseudo-
morphs and sedimentmatrix of facies D suggest that this facies was de-
posited in low-energy offshore environments. The abundance of
carbonate matrix around the pseudomorphs after gypsum crystals and
the random crystal orientations (Fig. 8D) are also indicative of
intrasediment gypsum precipitation. Nevertheless, the smaller crystal
size of intrasediment gypsum and the greater evaporite abundance in
facies D than in facies C suggest higher salinities of the brines than in
C (cf. Alimi andGadri, 2004; Reiss et al., 2021). Although several authors
have described facies C in the CZ (González Lastra, 1978; Sánchez de la
Torre andGonzález Lastra, 1978), facies D has not been previously iden-
tified. However, Hemleben and Reuther (1980) reported laminated
facies in one of the sections in which facies D was identified in
this study (CAB section). These authors interpreted the laminated de-
posits at this locality as stromatolites instead of ascribing them to an
evaporitic origin, probably due to the slightly undulated character of
pseudomorph-rich laminae.

4.2.5. Facies E. Calci-mudstones with calcite pseudomorphs after gypsum
cumulates

Facies E occurs mostly in association with facies C and, locally, with
facies F and G, although its abundance is lower. This facies has been
recognised in numerous sections in both the CZ and the Pyrenees,
mainly in the upper part of the studied stratigraphic interval. It consists
of dark grey calci-mudstones, currently recrystallised in microsparite or
sparite, with millimetre- to centimetre-thick laminae composed of
relatively well-sorted calcite pseudomorphs with b axis smaller than
50 μm (Fig. 10). The pseudomorph laminae that characterise this facies
show a gradual lower contact and a progressive upward increase in
pseudomorph abundance (up to 35 to 80 %). The upper contact of
some pseudomorph laminae is sharp and corresponds to primary crys-
tal terminations (Fig. 10A).

4.2.5.1. Interpretation. The extremely well-sorted tiny pseudomorphs
defining millimetre-thick cycles of increasing abundance of pseudo-
morphs characterising facies E could correspond to cumulates formed
as the result of gypsum crystallisation at the brine–air interface or
within the water column (particularly at the pycnocline/halocline),
with later sinking and accumulation on the basin floor (cf. Castile Fm,
Schmalz, 1969; Leslie et al., 1996; Kirkland et al., 2000; Las Minas Gyp-
sum unit, Ortí et al., 2014; Messinian deposits from the Mediterranean
Sea, Lugli et al., 2015). The sharp upper contacts showing primary crys-
tal terminations observed in some pseudomorph laminae could have
formed by subsequent overgrowth of the cumulate crystals settled in
the sediment bottom. Despite their smaller size, the pseudomorphs
showing crystal terminations are similar to bottom-grown gypsum de-
scribed in the Castile Fm (Texas and New Mexico, USA) by Leslie et al.
(1996) and in Messinian deposits below the Mediterranean seafloor
by Lugli et al. (2015). Observations on present-day marine saltworks
show that salinities of 150–230 ‰ are necessary to precipitate gypsum
cumulates and millimetre-sized bottom-grown gypsum crystals (Ortí
et al., 1984; Bąbel, 2004; Ortí, 2010b, 2011). The laminatedmicrosparite
hosting these gypsum cumulates, similar to the previous facies, also
points to deposition in a low-energy offshore environment.

4.2.6. Facies F. Microbial carbonates with scattered calcite and quartz
pseudomorphs after gypsum

This facies was recognised only in two sectors of the CZ: the
distalmost sector (section MA) and the intermediate sector (sections
HV, A, Y, CQ and G) of the basin transect shown in Figs. 3 and 4. It is
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common in the upper portion of the studied stratigraphic interval that
contains calcite and quartz pseudomorphs.

Facies F consists of homogeneous to clotted micritic to microsparitic
laminae with abundant, irregular, submillimetre to millimetre-sized
pores filled by blocky calcite cements and, commonly, with calcite and
quartz pseudomorphs, whichmay occur scattered or in laterally contin-
uous laminae. The fabrics of the carbonate sediment together with dif-
ferences in the morphology and arrangement of the pseudomorphs
allow differentiating two subfacies:

- Subfacies F1. Micritic limestone with crinkly to wavy lamination
(Fig. 11A) produced by alternating submillimetre- to millimetre-
thick, dark micrite (locally clotted) to microsparite laminae and
Fig. 11. A) Outcrop image of subfacies F1 showing crinkly lamination. B–D) Transmitted light
radiolarian biomoulds and pores cemented by blocky calcite. C) Laminated microsparite with
and cm-sized calcite pseudomorphs after lenticular gypsum(e). D)Detail of themicrospariticm
radiolarian biomoulds (r). E) Scanned thin section of facies F2 showing calcite pseudormorphs
inae. Note thepotential pseudomorphs after cumulates (c) near the top of the image. F) Detail of
by a dark micrite–microspar lamina with filamentous structures (f) resembling microbe moul
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light microsparite–sparite laminae (Fig. 11A, B), or by the presence
of small, elongated pores arranged approximately parallel to lamina-
tion and filled with blocky calcite (Fig. 11C, D). Locally, this lamina-
tion defines positive reliefs with domal geometries up to few
centimetres in height and several centimetres to decimetres in
width. Radiolarian biomoulds can be abundant and locally represent
up to 8 % of the sample. Submillimetre to millimetre-sized (b axis),
calcite and quartz pseudomorphs with euhedral habits (monoclinic
prismatic, equant hexagonal and lenticular habits) are scattered in
variable proportions, but lenticular habits and calliper as large as
1–2 cm have also been recognised exceptionally (Fig. 11C).

- Subfacies F2. Slightly wavy laminated limestone composed
of dark grey micrite to microsparite with rare to very rare
photomicrographs of subfacies F1. B) Dark micritic–microsparitic laminae with abundant
common radiolarian biomoulds (r) showing small, elongated pores parallel to lamination
atrix of subfacies F1 that shows irregular porosities sub-parallel to lamination and contains
of bottom-grown gypsum crystals (e), which show subhedral habits at the top of the lam-
image E showing a calcite pseudomorph (e) after a bottom-growngypsumcrystal overlain
ds.



Fig. 12.A)Centimetre-thick,medium to fine sand-grained arenite layer (facies G), interbeddedwith dark-grey calci-mudstones (facies A) and calci-mudstoneswith scattered calcite pseu-
domorphs after intrasediment gypsum (facies C). B) Centimetre-thick arenite layer (facies G)with irregular erosive base and ripple cross-lamination. C–E) Transmitted-light photomicro-
graphs of areniteswith calcite pseudomorphs after detrital gypsum (facies G). C)Detail of the arenite shown in imageA.Main components include sand-sized quartz grains (Q) and calcite
pseudomorphs after detrital gypsumgrains (e) showing abraded sub-euhedral monoclinic and lenticular habits. D and E) Arenitesmainly composed of calcareous grains and calcite pseu-
domorphs after abraded grains with sub-euhedral and lenticular morphologies (white arrows), interpreted as being originally detrital gypsum grains.
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radiolarian biomoulds (<0.1 %), interbedded with laminae of ag-
gregates of calcite pseudomorphs after hexagonal equant crystals
(Fig. 11E and F). The pseudomorph laminae show lateral continu-
ities of up to several centimetres and thicknesses ranging from
hundreds of μm to 3 mm (exceptionally, up to 10 mm), and the
thicker laminae correspond to those formed by larger pseudo-
morphs. The bases of the laminae of pseudomorph aggregates
are poorly defined, whilst the tops generally show sharp contacts
corresponding to the original crystal terminations (Fig. 11E). The
pseudomorphs are draped by micrite to microsparite in which fil-
amentous structures (Fig. 11F) can be locally recognised. The
abundance of calcite and quartz pseudomorphs after gypsum in
subfacies F2 is 12 to 27 %.
14
4.2.6.1. Interpretation. The textures and microstructures reported in fa-
cies F (crinkly to wavy lamination, elongated pores parallel to lamina-
tion, clotted textures, filamentous structures) are comparable to the
textures and microstructures described by many authors in microbial
carbonate deposits (e.g. Aitken, 1967; Riding, 2000, 2008; Della Porta
et al., 2003; Dupraz et al., 2004; Spadafora et al., 2010; Bahamonde
et al., 2017; Suarez-Gonzalez et al., 2019b), which suggest a probable
microbial origin for the carbonate sediment of this facies. Observed fila-
mentous structures resembling microbial filaments (e.g. Monty, 1967;
Riding, 2000; Pratt, 2001; Suarez-Gonzalez et al., 2019b; Quijada et al.,
2020) reinforce this interpretation. Subfacies F1 shows calcite pseudo-
morphs with similar features to those described in facies C and D,
which are interpreted as intrasediment gypsum crystals. However, the
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characteristics of the aggregates of pseudomorphs observed in subfacies
F2 (poorly defined bases and sharp tops showing primary gypsum crys-
tal terminations) could correspond to bottom-grown gypsum precipi-
tates. The co-occurrence of microbialite deposits and intrasediment
and/or bottom-grown gypsum is common in present-day and ancient
shallow evaporite environments (Ortí et al., 1984; Rouchy and Monty,
2000; Gerdes et al., 2000; Rouchy et al., 2001; Bąbel, 2004), such as
Santa Pola salt work (eastern Spain; Ortí et al., 1984), the Trucial Coast
(United Arab Emirates, Persian Gulf; Tucker, 1990; Alsharhan and
Kendall, 2003; Bontognali et al., 2010), Al Kharrar supratidal–intertidal
sabkha (Red Sea coast, Saudi Arabia; Aref and Taj, 2018) and
Messinian shallow-marine restricted environments of Mallorca (W
Mediterranean; Suarez-Gonzalez et al., 2019a). However, during
Carboniferous times microbial deposits formed in a wide range of
Fig. 13. A–C) Scanned thin sections of facies H consisting of breccia fragments composed of m
composed of submillimetre-sizedmicrosparitic limestone fragments and cloudy spar. D) SEM im
mon quartz replacements (Q). Quartz contains numerous rectangular solid inclusions of an
E) Transmitted light photomicrograph of a quartz replacement (Q) affecting the breccia matrix
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palaeowater depths, including relatively deep carbonate platform
slope environments, particularly in the CZ (see for example Della
Porta et al., 2003; Bahamonde et al., 2007). Thus, in the absence of
additional criteria, it is not possible to determine the water depth
at which this facies formed.

4.2.7. Facies G. Arenites with calcite pseudomorphs after detrital gypsum
Facies G consists of tabular to wavy, a few centimetre-thick beds,

interlayered with facies A and C (Fig. 11A) andmarlstone/shales in sec-
tions located near the foredeep of the basin (sections R and VV; Fig. 4).
Beds show sharp bases, locally displaying erosional features, and sharp
to gradational tops below an overlying marlstone/shale division. Inter-
nally, they commonly show normal grading, parallel lamination and/
or ripple cross-lamination (Fig. 12A and B).
icritic limestone with calcite pseudomorphs after gypsum (e), embedded within a matrix
age (backscattered electrons) showing a detail of thematrix shown in image Cwith com-
hydrite (Anh) and corroded calcite (Cal). Mineralogy was confirmed by EDS analyses.
composed by calcite (Cal). Quartz shows solid inclusions of anhydrite (Anh).
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Some arenite beds are composed of well-sorted sand-sized grains
of quartz and calcite pseudomorphs, with a relatively low percentage
of bioclasts and calcareous intraclasts, and containmica flakes and tour-
maline and zircon grains (Fig. 12C). Other arenite beds consist of sand-
sized calcareous grains (mostly bioclasts, coated grains, peloids, and
intraclasts), calcite pseudomorphs and scarce terrigenous components
(Fig. 12D and E). The calcite pseudomorphs show abraded, monoclinic
prismatic and lenticular morphologies. They are homogeneous in size
(Fig. 12C, D and E), and their b axis is commonly oriented parallel to
lamination. Calcite pseudomorph abundance can reach up to 35 %.
Fig. 14.A and B) Scanned polished slab (image A) and thin section (image B) of facies I, a nodula
after gypsum (e). Note sutured contacts of intraclasts, abundant stylolitic surfaces and commo
orthic nodules. C) Photomicrograph of the breccia matrix showing a root fragment (rt). Cell w
and the floem. Chalcedony (Chc) masses replace partially the matrix and the root fragment. D)
crystals (Dol)within the calcitematrix. E and F) Transmitted light (image E) and cathodolumine
by mudstone with scattered calcite pseudomorphs after evaporites (facies C). Note that the low
fragments (rt) and the upper part of themould isfilled by a banded drusy calcite cement (dr). Th
and poorly luminescent, whereas the microspar of the geopetal infill shows brighter luminesc
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4.2.7.1. Interpretation. Facies G resembles deposits accumulated by
diluted gravity flows such as turbidity currents sensu Mulder and
Alexander (2001). The fact that the pseudomorphs after gypsum
are well sorted, commonly oriented parallel to lamination, and dis-
play abraded monoclinic and lenticular morphologies, suggests that
they were originally detrital gypsum grains (cf. Hardie and Eugster,
1971; Rouchy et al., 1995; Sanz-Montero and Rodríguez-Aranda,
2022). Furthermore, the low abrasion of evaporite crystals would in-
dicate limited transport from adjacent locations (see Lugli et al.,
2010).
r breccia with centimetre-sized carbonate intraclasts with scattered calcite pseudomorphs
n gradual contacts between the clasts and the matrix, which are characteristic features of
alls of the plant root tissues are replaced by micrite allowing the recognition of the xylem
Photomicrograph of microsparitic matrix from a stained thin section exhibiting dolomite
scence (image F) photomicrographs from a stratumunderlying facies I, which is composed
er part of the evaporite mould showsmicrosparite geopetal infill (g) with numerous root
e surroundingmicrospariticmatrix, which shows few radiolarian biomoulds (r), is blotchy
ence.
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4.2.8. Facies H. Carbonate breccia with angular–subangular fragments of
limestone bearing calcite and quartz pseudomorphs

This facies forms irregular or strata-bound rock bodies interbedded
with, cross-cutting or overlying stratigraphic intervals with abundant
calcite and quartz pseudomorphs after gypsum (facies C, D, E and F;
Fig. 4). The thickness of the breccia bodies ranges from a few centimetres
to tens of metres, whereas their lateral extent (from decimetres to
kilometres) usually exceeds the size of the studied outcrops. Contacts
with the surrounding limestone strata can be gradual or sharp.

The carbonate breccia consists of millimetre- to metre-sized angular
fragments of facies A, B, C, D, E, F and G (Fig. 13A and B). The breccia
fragments have rectangular prismatic to rhombohedral shapes. Al-
though inmany cases fragments show randomorientations, they are lo-
cally arranged into centimetre- to metre-scale folds (Fig. 13A). In
addition, where the contact between the breccia and the adjacent strata
is gradual, the original bedding can be preserved and the breccia shows
a jigsaw-fit texture.

The groundmass is composed of submillimetre-sized fragments of
microsparitic limestone, cloudy spar, and minor quartz and celestite
(Fig. 13B and C). Micrometre-sized solid inclusions (calliper of 2–35.5
μm, most frequent sizes of 6.5–9.7 μm) are preserved in both calcite and
quartz crystals (Fig. 13D and E). These inclusions show birefringence col-
ours in crossed polarisers specific of anhydrite (Fig. 13E), and SEM-EDS
analyses confirmed that they are composed of calcium sulphate (Fig. 13D).

4.2.8.1. Interpretation. Facies H is interpreted as the result of breccia-
tion of facies A, B, C, D, E and F. The fact that these breccias occur
within, or atop, stratigraphic intervals characterised by the presence
of abundant pseudomorphs after gypsum, as well as their strata-
bound geometry, suggests that their formation was closely related
to an original large quantity of calcium sulphate in the brecciated
layers. Moreover, the prismatic morphologies of the fragments, the
gradual contacts with adjacent strata that some of the breccias
show and the preservation of the original bedding of the brecciated
layers forming a jigsaw-fit texture suggest in situ brecciation during
burial.

The presence of anhydrite inclusions in the breccia groundmass indi-
cates that the groundmass consisted largely of anhydrite, which proba-
bly formed by conversion of the synsedimentary gypsum accumulated
in this stratigraphic interval into anhydrite during burial. After the for-
mation of the breccia, the anhydrite was replaced by spar and, to a
minor extent, by quartz and celestite. In addition, the groundmass also
contains submillimetre-sized fragments of microsparitic limestone,
whichwere probably formed by comminution of the carbonate of facies
A, B, C, D, E and F.

The arrangement of breccia fragments into folds observed locally sug-
gests that the brecciation mechanism produced, at least occasionally, a
plastic deformation of the anhydrite in the brecciated interval, which
might have flowed readily under stress (Müller and Briegel, 1978;
Müller et al., 1981; Jordan and Nüesch, 1989; Schreiber and Helman,
2005). The interbedded limestone layers, which have a different rheolog-
ical behaviour, were broken and rotated.

All these features suggest that the carbonate breccias of facies H
were formed during or after sediment burial and lithification. The
mechanism triggering brecciation could be related to halokinetic pro-
cesses, tectonically-induced sulphate flow processes (see Quijada
et al., 2014) or hydraulic fracturing (Hurst et al., 2011 and references
therein).

4.2.9. Facies I. Nodular breccia
This facies (Fig. 14A–D) occurs in two specific areas of the transect

located in the central part of the basin (section CL; Fig. 4) and in the
distalmost area of the foreland basin (INT section) (Supplementary
data). In these localities, the nodular breccia occurs atop the strati-
graphic interval bearing calcite and quartz pseudomorphs or in an
equivalent stratigraphic position. The basal contact of this breccia can
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be gradual or a sharp irregular surface cutting into the underlying strata.
The pseudomorphs after gypsum of the strata underlying the nodular
breccia may have geopetal infills containing well-preserved calcitised
root fragments (Fig. 14E and F).

Facies I consists of clast- to matrix-supported nodular breccias
composed of very poorly sorted calcareous intraclasts with gradual to
sutured contacts within a grey to light ochre matrix (Fig. 14A). Pres-
sure-solution features, such as sutured intraclast contacts and stylolites
(also affecting the matrix), confer the nodular appearance to the brec-
cias (Fig. 14A and B). Intraclasts comprise recrystallised radiolaria-
bearing calci-mudstones,which commonly show scattered calcite pseu-
domorphs after gypsum (facies A and C; Fig. 14A and B). Breccia matrix
is composed of micrite–microspar with chalcedony replacements
(Fig. 14C), framboidal pyrite aggregates, and scattered small (20–25
μm) dolomite crystals at specific locations (Fig. 14D), the latter being
particularly abundant near the undulated seams and stylolitic surfaces.
Furthermore, well-preserved calcitised root fragments occur as a com-
mon feature in the matrix of nodular breccias (Fig. 14C).

Cathodoluminescence studies evidence the pervasive recrystallisation
of both the calcareous intraclasts and the matrix of the breccia.
Microsparite from both the intraclasts and the matrix varies from non-
luminescent to irregularly blotchy luminescent. Dolomite crystals in the
breccia matrix show a characteristic pink luminescence, whereas root
fragments show a bright yellow luminescence. In addition, the strata un-
derlying the nodular breccias show increasing luminescence of the
microsparite matrix towards the contact with the nodular breccias. The
calcite pseudomorphs after gypsum in the layers underlying the nodular
breccias show geopetal infills, in cases exhibiting root fragments and
drusy equant-blocky calcite cements beginning with a thick non-
luminescent overgrowth followed by orange luminescent overgrowths.
The final pore filling stage shows a dull red luminescence (Fig. 14E, F).

4.2.9.1. Interpretation. Facies I and the underlying deposits show several
features that suggest that the nodular breccia formed due to subaerial
exposure of the underlying evaporite deposits. The geopetal infills of
the gypsummoulds containing root fragments recognised in the under-
lyingdeposits indicate that the calci-mudstoneswith evaporitic gypsum
crystals underlying the breccias were dissolved by meteoric waters
and potentially colonised by plants. The nodular appearance of the
breccia and intraclasts with diffuse to sharp edges resembles orthic
and disorthic nodules described in calcretes studied by Wright
(1982) (and references therein). The intense recrystallisation of
both the breccia matrix and the nodules is consistent with pedogenic
processes. Themeteoric features depicted a subaerial emergence of the
evaporite deposits due to a major sea-level drop. Overall, the lack of
large karstic dissolution features and the immature character of the ob-
served pedogenic structures suggest that arid/semiarid climatic condi-
tions prevailed during the time of exposure (cf. Esteban and Klappa,
1983).

5. Discussion

5.1. Areal distribution of the mid-Carboniferous gypsum deposits in the
North of Iberia

This study reveals an extensive distribution of mid-Carboniferous
gypsum deposits along the studied exposures of the Variscan foreland
basin, which significantly broadens the areal distribution depicted by
González Lastra (1978) and Sánchez de la Torre and González Lastra
(1978). Although the presence of calcite and quartz pseudomorphs
after gypsum was never reported in time-equivalent strata in the Pyre-
nees, this study demonstrates their presence in all the investigated out-
crops (Aragón Subordán Valley, Canfranc and Aspe-Brousset Valley).

If only the current geographical distribution of studied exposures
with reported calcite pseudomorphs after gypsum is considered, the es-
timated area with gypsum deposition would be of at least 61,000 km2



Fig. 15.Biostratigraphic correlation of studied successions in the CantabrianMountains (QC andHV sections) and time equivalent successions from the Sahara Platform (Tindouf and Reggan sections)with representation of the FADof key foraminifera
markers (1–23), conodonts (24–27), brachiopods (28, 29), and corals (30). Conodont FADs of HV section based on Sanz-López et al. (2010, 2013) and Pseudostaffella sp. based on Villa et al. (2001). Stratigraphic columns and FADs of key foraminifera,
conodonts, brachiopods and corals fromTindouf and Regganmodified fromLys (1988) and Cózar et al. (2013, 2016). New FAD of foraminifera fromCQ andHV sections from this study. Substages/horizons of the upper Serpukhovian–lower Bashkirian
and foraminifera and conodont biozones defined in the Southern Urals from Kulagina et al. (2014) and Nikolaeva et al. (2017); subdivisions of the East European Platform are after Alekseev et al. (2022).
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taking into account the current axial length and width of the Variscan
foreland fold and thrust belt where the pseudomorphs after gypsum
are reported in this study (ca. 770 km in length – present-day distance
from the southern outcrops of the CZ to the easternmost exposures in
the Pyrenees – and ca. 70 km in width). However, the area where gyp-
sum deposition took place increases significantly if the Variscan fore-
land thrust and fold belt is restored to its original size prior to
thrusting and the oroclinal bending that led to the development of the
Ibero-Armorican Arc. In the CZ, the tectonic shortening caused by the
Variscan thrusting reached up to 70 % (Alonso, 1987; Álvarez-Marrón
and Pérez-Estaún, 1988; Álvarez-Marrón et al., 1989; Bulnes and
Marcos, 2001; Alonso et al., 2009), which implies that the original
width of the preserved areas of the foreland basin in the CZ might
have reached 250–300 km. If this width is considered along the 770
km-long axial strike of the foreland fold and thrust belt, a minimum
areal extent under evaporite sedimentation of 231,000 km2 is esti-
mated. This areal estimate, whichmost likely represents a small fraction
of the original area of the basin affected by hypersaline conditions, is
comparable to the extension of saline giant deposits reported through-
out the geological record (Warren, 2010, 2016). For comparison, Ferry
Lake Anhydrite extends ca. 200,000 km2 (Loucks and Longman, 1982;
Warren, 2016) and the famous Permian Zechstein saline giant covered
>600,000 km2 (Geluk, 2000; Warren, 2016). The volume of gypsum
and other evaporites accumulated in these saline giants is, however,
considerably larger than in the case described in the present study. Nev-
ertheless, it cannot be ruled out that the carbonate breccias (Facies
H) occurring at the top of the stratigraphic interval containing pseudo-
morphs after gypsum could represent the relic of a vanished, larger
evaporite accumulation, as it has been proposed in the literature for
other breccias related with evaporite deposits (e.g., Nagy et al., 2005;
Sorento et al., 2020).

5.2. A novel interpretation for gypsum deposits in the Variscanmarine fore-
land basin

5.2.1. Relevant facts
Previous studies have interpreted the described deposits bearing

calcite and quartz pseudomorphs after gypsum in the CZ as sabkha
evaporites accumulated in shallow, restricted lagoon environments
(González Lastra, 1978; Sánchez de la Torre and González Lastra,
1978; Eichmüller, 1985, 1986) based on the knowledge on carbonate
and evaporite systems during the 1970s and 1980s. The new dataset
presented in this study provides information on the spatial distribution
and facies composition of the deposits bearing calcite and quartz pseu-
domorphs after gypsum in the Variscan foreland basin, allowing the re-
vision of previous interpretations and the proposal of a new
sedimentary scenario that may provide a plausible interpretation. To
this end, the following facts are of paramount relevance:

a) Available biostratigraphic information on both conodonts and forami-
nifera suggests that the stratal package with calcite pseudomorphs
after gypsum crystals has an early Baskhirian age. More specifically,
itmost probablywould correlatewith the Voznesenkian in theDonets
Basin, Bogdanovkian in the SouthUrals, and Krasnopolyanian strata in
the Moscow Basin. This interpretation is supported by the fact that
these strata lie above the FAD of the conodonts Declinognathodus
inaequalis and Idiognathoides corrugatus, first appearing in the
Chokierian stage (Voznesenkian) (Barrick et al., 2022), and are, in
turn, overlain by strata containing foraminifera compatible with a
Syuranian (Voznesenkian/Bogdanovkian)–Krasnopolyanian age, in
the case of the CQ section, and indicative of the Krasnopolyanian sub-
stage (upper Syuranian), in the case of the HV section. According to
these data, the studied mid-Carboniferous strata with calcite and
quartz pseudomorphs after gypsum in northern Spain are coeval
with sabkha gypsum and anhydrite accumulations described in
inter- to supratidal successions of the broad epeiric Sahara platform/
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shelf developed of northern Gondwana, which were connected to
the distalmost realms of the Variscan basin: Tindouf (Middle and
Upper Member of Ouarkziz Fm, Morocco; Mamet et al., 1966;
Conrad, 1972a, 1972b; Lys, 1988; Cózar et al., 2013, 2014a) and
Reggan (Hassi Taïbine Gypsum Fm, Algeria; Conrad, 1984; Legrand-
Blain, 1985; Lys, 1988; Wendt et al., 2009; Legrand-Blain et al., 2010;
Cózar et al., 2016), of late Serpukhovian–early Bashkirian age inferred
primarily on the basis of reported foraminiferal assemblages (Lys,
1988; Somerville et al., 2013; Cózar et al., 2014b) (Fig. 15).

b) The deposits bearing calcite and quartz pseudomorphs after gypsum
in theVariscan forelandbasin represent aminimum fraction of the po-
tential size that the mid-Carboniferous evaporitic basin might have
had in the likely event that the evaporitic strata of the epeiric Sahara
platform/shelf represent the inter- to supratidal areas of the evaporitic
system.

c) The stratigraphic thickness and facies composition of the deposits
bearing calcite and quartz pseudomorphs after gypsum are
extremely uniform across this huge domain of the Variscan foreland
basin (Figs. 1B, 3 and 4), with predominance of intrasediment
gypsum (mostly facies C and D; Fig. 8) and absence of selenite
precipitates.

d) Sedimentologic data suggesting shallow subtidal to intertidal settings
are absent across the investigated area. Instead, themicrofacies under-
lying and hosting the studied pseudomorphs after intrasediment gyp-
sums (see description and interpretation of facies A, C, D and
E) suggest that evaporite precipitation took place in low-energy off-
shore environments located below the local wave base. Furthermore,
the evaporite-bearing deposits are interbedded and interfinger with
turbidite deposits in the vicinity of the foredeep of the Variscan fore-
land basin. The exception would be the local subaerial exposure
postdating the studied stratigraphic interval containing the calcite
and quartz pseudomorphs after gypsum. The presence of this subaer-
ial exposure horizon suggests that, at least locally, the deposition of
the pseudomorph-bearing deposits took place in environments
whose depth did not exceed the maximum amplitude of sea-level
fall during mid-Carboniferous time, which could have reached up to
150 m (Rygel et al., 2008). The studied deposits are therefore
interpreted as having formed in an offshore basinal setting, probably
several ten to a few hundred metres deep, getting deeper towards
the foredeep.

e) Although bioclasts are very scarce, radiolaria biomoulds are common
along the studied succession, suggesting that environmental condi-
tions were not too saline for pelagic biota at least in the upper portion
of the water column.

5.2.2. Brine characteristics
The predominance of intrasediment gypsum growth in offshore en-

vironments requires the presence of hypersaline brines (more specifi-
cally, penesaline brines sensu Ortí, 2010a and Warren, 2016) in the
interstitial pores at, or slightly underneath, the sediment–water inter-
face (Handford, 1991; Warren, 2016). By comparison with studies in
saltworks (Ortí et al., 1984; Bąbel, 2004; Ortí, 2010b, 2011), it can be
interpreted that intrasediment gypsum (facies C and D; Fig. 8) precipi-
tated at salinities in seafloor around 140–150 ‰. Furthermore, higher
brine concentrations (salinities around 150–230 ‰; cf. Ortí et al.,
1984; Bąbel, 2004; Ortí, 2010b, 2011) could lead to the occasional pre-
cipitation of gypsum cumulates, which could settle down and accumu-
late on the bottom (facies E; Fig. 10), as well as bottom-grown gypsum
(facies E and F; Figs. 10A, 11E, F). The upward increase in evaporite
abundance and gradual reduction of gypsum crystal size, together
with the increased abundance of gypsum cumulates and bottom-
grown precipitates that occur in the studied stratigraphic interval, sug-
gest an overall gradual increase in salinity during the evaporitic event.
This salinity increase was probably accompanied by a relative sea-
level fall that eventually produced the ephemeral emersion of the shal-
lower areas of the Variscan foreland basin in the CZ (sections CL, INT;



Fig. 16. A) Coastal onlap in the Donets Basin (Eros et al., 2012) and in the US Midcontinent (Ross and Ross, 1987), and amplitude of high-frequency sea-level glacio-eustasy fromMiddle
Mississippian to Early Pennsylvanian times (Rygel et al., 2008). Redrawn fromMontañez and Poulsen (2013). Gypsum deposits of Barcaliente Fm and equivalent stratigraphic units (or-
ange arrow) are coeval with themajor sea-level fall recorded in Donets Basin, USMidcontinent and other basins from around the world (orange area). B) Evolution of seawater salinities
for the Phanerozoic Eon after Hay et al. (2006). Estimatedmean seawater salinities for themid-Carboniferous could have been as high as 45‰; the orange arrow indicates the inferred age
of the studied evaporite interval.

Fig. 17. Sedimentary scenario proposed for evaporite deposition in the Variscan foreland basin and Sahara epeiric platform. A) Palaeographic reconstruction of the southern intertropical
area of Pangea during Late Serpukhovian–Early Bashkirian times (ca. 323 My) and a hypothetic cross section across the basin showing the relative location of the Variscan exposures of
N Iberia (CZ and P) and the outcrops from the Saharan Platform (SP) where extensive evaporitic sedimentation occurred. B) Intense evaporation in shallow areas of the basin (e.g. the
Saharan Platform) developed brines that flowed down into the lower part of the water column in subtidal offshore zones, leading to precipitation of mainly intrasediment evaporites.
A pycnocline/halocline separating a normal-marine surficial water mass, which overlies the deep brine, allowed radiolaria to inhabit this epeiric sea. C) In advanced stages, a relative
sea-level fall resulted in a more restricted basin and higher salinities, which led to precipitation of more abundant intrasediment gypsum, cumulates and bottom-grown crystals.
D) Finally, sea-level drop led to local subaerial exposure. The character of the water column during this final stage is not interpreted due to the lack of information.
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Figs. 3, 4 and Supplementary data) that produced nodular breccias
(facies I).

Despite their scarcity, the presence of planktonic organisms
such as radiolaria in the carbonate matrix of facies C, D, E and F
requires the vertical stratification of the water column, at least
21
temporally, with near normal marine salinity above the
pycnocline. Furthermore, intrasediment and bottom-grown gyp-
sum precipitation and preservation of cumulate deposits, which is
hampered in anoxic brines, point to relatively oxic conditions
below the pycnocline.
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5.2.3. Global context
The data presented in this study suggest that hypersaline condi-

tions and evaporite deposition occurred nearly synchronously over
large areas of the broad epeiric shelf of Gondwana and of the distal
realms of the linked foreland basin facing the growing Ouachita–
Alleghanian–Variscan Orogen. Inferred palaeolatitudes ranged
from ca. 20°–24°S for the coastal areas of the Saharan epeiric plat-
form (Tindouf and Reggan successions in Morocco and Algeria) to
ca. 9°–14°S for the coeval basinal areas in northern Spain and south-
ern France (Scotese, 2001; Golonka, 2002; Scotese et al., 2014; Cao
et al., 2017), lying within the high-density latitudinal belt of evapo-
rites (with 50 % confidence) for mid-Carboniferous times inferred
by Cao et al. (2019). As a consequence of the closure of the connec-
tion of the Panthalassa and Palaeo-Tethys oceans, which some
authors interpret to have occurred during the Serpukhovian–
Bashkirian transition (see Blakey, 2008; Nance et al., 2010;
Davydov and Cózar, 2019), this area became a semi-enclosed
basin. Furthermore, due to its palaeogeographic location in the
westernmost embayment of the Palaeo-Tethys Ocean, it received
the influx of saline subtropical warm waters pushed westwards by
tradewinds, at a timewhen global mean sea-water salinities reached
values around 45 ‰ as estimated by Hay et al. (2006) (Fig. 16B). In
this context, the gradual narrowing of the associated foreland basin
coupled with the globally recorded mid-Carboniferous long-term
lowstand (Ross and Ross, 1987; Haq and Schutter, 2008; Rygel
et al., 2008; Eros et al., 2012; Fig. 16A), probably increased basin re-
striction favouring gypsum precipitation in offshore basinal settings.

5.2.4. Basin model, proposed mechanisms for brine development
A sedimentary model providing a potential explanation for the

widespread intrasediment gypsum precipitation documented in this
study requires that the western part of the epeiric shelf of northern
Gondwana and the Variscan foreland basin acted as a semi-closed
basin system during the mid-Carboniferous lowstand (Fig. 17A). This
scenario of a restricted connection with the Palaeo-Tethys Ocean and
temporary or intermittent negative hydrological balance would have
favoured hypersaline conditions and the development of supersatu-
rated brines alternating with phases of lower salinity. In such a context,
hydrological changes linked to variations in water input and evapora-
tion rates would have caused significant changes in salinity and water
stratification (see Bąbel, 2004).

Hypersaline water masses most likely developed in the shallow
coastal regions of the margin of the foreland basin and/or across
the vast epeiric Sahara Platform,where time-equivalent gypsumevapo-
rite deposits accumulated (e.g. Tindouf and Reggan successions in
Morocco and Algeria) (Fig. 17B). These deposits would potentially rep-
resent the shallow-water counterparts of the evaporite deposits de-
scribed in this study. The shallow, dense hypersaline brines could have
flown to deeper areas of the foreland basin, carrying the solutes needed
to precipitate intrasediment evaporites. This mechanism could explain
intrasediment gypsumprecipitation over very broad areas of themarine
basin, whilst surficial seawater could have shown near-normal marine
salinities allowing planktonic biota, such as radiolaria, to thrive. More-
over, reaching salinities elevated enough for intrasediment gypsumpre-
cipitation (around 140–150 ‰) over such broad areas of the basin was
probably favoured by the global high average salinities estimated
for this time period (ca. 45 ‰) (see Hay et al., 2006; Valdes et al.,
2021; Fig. 16B), as well as the major decoupling of water masses over
Carboniferous epeiric platforms from the open ocean (see for example
Montañez et al., 2018), particularly during mid-Carboniferous times
(Brand et al., 2009).

A gradual decrease in water inflow: evaporation rate, probably
linked to a relative sea-level fall (Fig. 17C), would eventually have
produced the increase in salinity up to 150–230‰, necessary to precip-
itate, not only intrasediment gypsum (facies C and D), but also gypsum
cumulates and bottom-growths (facies E and F2), which are more
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abundant in the upper part of the studied succession. The interbedding
of gypsum laminae (either formed by cumulates, bottom-growths
or intrasediment precipitates) with laminae composed of calci-
mudstones to wackestones with scarce radiolaria in the upper part of
the evaporitic interval studied suggests that, even during periods of
higher salinities, the water column was separated into a surface water
mass with lower salinity that enabled the presence of radiolaria and a
deep-water mass with higher salinity (up to 150–230 ‰). Under such
conditions, gypsumcumulates could precipitate either at the pycnocline
or within the supersaturated brine andmillimetre-thick bottom-grown
gypsum crusts could form at the sea floor. Although complete mixing
of the water column has been claimed for bottom growth of evaporites
by some authors (see Warren, 2016), other authors have reported or
modelled examples of bottom grown evaporites forming below the
pycnocline in stratified water columns (Bąbel, 2004; Lugli et al.,
2010; Sirota et al., 2016, 2017). The interpretation that the water col-
umn was stratified and gypsum (either bottom-grown, cumulates or
intrasediment crystals) precipitated from the deep supersaturated
brine seems more plausible than complete mixing of the water column
during short-lived and recurrent episodes to explain the sedimentary
features observed in the studied succession. The latter interpretation
would require not only a very severe basin restriction but also longer
time periods. However, it cannot be ruled out that during the final
stages of the studied evaporitic event, and as a result of enhanced
basin restriction during the mid-Carboniferous sea-level fall, the verti-
cal mixing of the water column may have occurred. However, the wide-
spread brecciation of the youngest strata of the studied evaporitic interval
(leading to the development of facies H) prevents from obtaining addi-
tional information on the final stages of the evaporitic event.

The reduced amount of intrasediment evaporites in the sections
near the foredeep of the basin (e.g., R section; Figs. 3 and 4) could be
explained by a greater input of fresh water transported by gravity
flows from the active Variscan Orogen. This would be consistent
with the climatic zones modelled by Scotese et al. (2014), which de-
fine a tropical wet belt to the north of this marine basin. In addition,
Reznik et al. (2009) observed that gypsum precipitation is adversely
affected by clay minerals, which are not as good crystallisation seeds
as aragonite/calcite. Thus, a higher clay content in the deposits of the
deeper parts of the foreland basin, transported from the orogen,
could have inhibited/limited the formation of intrasediment gyp-
sum. These gravity flows, including turbidity currents, probably
reworked and transported gypsum crystals from shallower areas of
the basin and led to the deposition of detrital gypsum-bearing beds
(facies G).

Eventually, the mid-Carboniferous sea-level fall produced a short-
lived and limited emersion of the shallower areas of the Variscan fore-
land basin in the CZ at the end of the evaporitic episode, leading to the
erosion and subaerial weathering of gypsum bearing strata (facies I).
This emersion could potentially be correlated with continental deposits
(Série de la Betana in Tindouf Basin; Lys, 1988) and karstic surfaces
(Béchar Basin; Lemosquet and Pareyn, 1975, 1983; Lys, 1988; Rygel
et al., 2008) described in the Sahara Platform.

Wackestones, calci-mudstones, marlstone and detrital carbon-
ates with diverse marine biota (Facies B) and coeval microbial
boundstone bioconstructions (Figs. 2, 3B, 4; Eichmüller, 1985,
1986; Della Porta et al., 2003; Kenter et al., 2003; Bahamonde et al.,
2007, 2015; Chesnel et al., 2016) were deposited atop of the evapo-
ritic interval, suggesting that normal marine salinity conditions
were restored in these areas of the basin during the subsequent
sea-level rise.

5.2.5. Importance of the proposed scenario
The identification of gypsum precipitation in offshore basinal

hemipelagic calci-mudstones of the Variscan foreland basin, coeval
with gypsum and anhydrite deposition in the epeiric Sahara
Platform, suggests that a scenario of basin-wide evaporite
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precipitation could have developed during mid-Carboniferous times
(early Bashkirian) in the marine areas between Gondwana and the
Variscan Orogen. The development of such an extensive evaporitic
area has not been reported so far, and sheds light on part of the evo-
lution of the marine areas between Laurasia and Gondwana when
the two continents collided. The proximity between the two ap-
proaching continents plus the mid-Carboniferous global sea-level
lowstand may have restricted the surface connection of the foreland
basin to the ocean. This, together with the fact that the basin was lo-
cated at a palaeolatitude favourable to high evaporation rates (Cao
et al., 2019), probably led to increased salinities and the develop-
ment of a large saline basin, characterised by sabkha deposits in
the peritidal areas of the Gondwana shelf (Cózar et al., 2014a,
2014b, 2016) and by laminated calci-mudstone with intrasediment
gypsum precipitates in offshore areas of the foreland basin of the
CZ and the Pyrenees.

Although the origin of the laminated carbonates accumulated in
offshore areas is still under investigation (see Merino-Tomé et al.,
2021), the mechanism of gypsum precipitation has been deter-
mined in this study. One of the most interesting aspects of the
pseudomorphs after gypsum crystals present within the offshore
hemipelagic calci-mudstones of the CZ and the Pyrenees is that
they correspond to originally intrasediment precipitates, because
such precipitates are not common in deep marine sediments.
Some of the few examples in the literature are syngenetic
displacive gypsum crystals in Messinian deposits of the Mediterra-
nean Basin (Fig. 3H in Lugli et al., 2015; Fig. 13A in Natalicchio et al.,
2021), although in that case they co-occur with abundant
cumulates, bottom-grown crystals, and reworked evaporites. The
widespread presence of intrasediment gypsum in the Variscan
foreland basin indicates that this type of evaporite growth is possi-
ble, and even dominant, in offshore environments and that it may
have occurred in other ancient saline basins in the past. This
study provides a model to explain gypsum precipitation in such
distal basinal areas, which involved brine descending from shal-
lower areas (where intense evaporation took place) to offshore
areas.

6. Conclusions

A remarkable mid-Carboniferous gypsum deposition event is
recognised across broad areas of the Variscan foreland basin devel-
oped over Gondwana during the build-up of Pangea, which is re-
corded as an up to 30 metre-thick stratigraphic package and may
have reached an area of >231,000 km2. Sedimentologic analyses pro-
vide evidence that intrasediment growth of gypsum crystals
occurred pervasively at, or slightly underneath, the sediment–
water interface within carbonate muds accumulated in offshore
hemipelagic basinal environments (probably several ten to a few
hundred metres in depth). Intrasediment gypsum abundance in-
creases upwards, and coexists with gypsum cumulates and bottom-
grown crystals in the upper part of the evaporitic interval. The gyp-
sum evaporites recognised in the Variscan outcrops of northern
Spain and southern France are coeval with gypsum deposits reported
in the Saharan epeiric platform, which probably represented the
shallow-water counterparts.

This lower Bashkirian (Vozneseian) evaporitic interval recorded a
major event of basin restriction in a marine foreland basin. In shallower
coastal realms of the vast epeiric Sahara Platform, restricted conditions
and intense evaporation rates allowed the concentration of brines,
which flowed to the deepest areas of the foreland basin. Intrasediment
gypsum crystals began to grow within the calci-mudstone sediment as
a result of deep brine supply. In the later stages of this event, sea-level
fall favoured a gradual increase in salinity, which allowed the precipita-
tion of bottom-grown gypsum and cumulates. This was followed by
local subaerial exposures.
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The evaporitic event took place during the mid-Carboniferous eu-
static sea-level fall identified in different parts of the world, coeval
with one of the highest salinity values for Phanerozoic seawaters.
Although the mid-Carboniferous lowstand potentially enhanced basin
restriction and most probably triggered gypsum precipitation in the
Variscan foreland basin, the subsequent sea-level rise caused a return
to normal marine conditions preventing the accumulation of larger vol-
umes of evaporites in the basin.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.sedgeo.2024.106605.
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