
The Visual Computer (2024) 40:2081–2088
https://doi.org/10.1007/s00371-023-02903-0

ORIG INAL ART ICLE

The inverse barycentric displacement problem

Andrea Maggiordomo1 · Yury Uralsky2 · Henry Moreton2 ·Marco Tarini1

Accepted: 10 May 2023 / Published online: 16 June 2023
© The Author(s) 2023

Abstract
In this short paper, we analyze the problem of finding the triangular barycentric coordinates of an interpolated ray hitting
a given point. This task, which we term the inverse barycentric displacement problem, is general and useful in geometry
processing and computer graphics. Concrete applications of the solution include the construction of displacement maps and
texture baking. We derive the set of complete, closed-form solutions and discuss the number and existence of solutions. We
close with a discussion of implementation-oriented optimizations and a few example applications.

Keywords Displacement mapping · Vertex projection · Inverse ray casting · Texture baking

1 Introduction

Consider a 3D embedded triangle T with arbitrary displace-
ment vectors (di) defined at its corners (vi) (Fig. 1, left). A
ray is defined starting at a barycentrically interpolated point
v on T , where v = uv0 + vv1 + wv2, and traveling in the
direction of the (corresponding) barycentrically interpolated
displacement d. Traveling along this ray, a displaced point q
is defined at parametric position t :

q = v + t d (1)

t is the scalar displacement value defined at v and may
be stored in a scalar displacement texture covering T . In a
common scenario,we are given an interpolated positionv and
direction d on T , and we want to find q, typically on a given
target surface (dotted line in Fig. 1, right). For example, q
can be found by ray casting against a high-resolution mesh.
Here, we use the term direct displacement to refer to the
problem of finding q (equivalently, t) for specified v and d.

In this work, we are interested in the inverse of the direct
displacement problem, where we are given a target point q

B Marco Tarini
marco.tarini@unimi.it

1 Università degli Studi di Milano, Milan, Italy

2 NVIDIA, Santa Clara, CA, USA

andwewant to find a position v onT such that the ray defined
on v hitsq. The solution is interesting, useful, and non-trivial.

Rationale: The inverse problem is useful in several contexts.
For example, it makes it possible to bake or compute a dis-
placement map, or a texture for T by processing positions q
directly on the target displaced surface, this sidesteps the need
for ray casting, which typically requires expensive iteration
over the numerous elements of a high-resolution, tessellated
target surface. The design of good support meshes to be dis-
placed can also benefit from the ability to quickly identify
where on a potential T , if anywhere, a given point q on the
target surface would be mapped.

The inverse mapping problem is not trivial, and, in spite
of its potential usefulness, has never been solved in closed
form (to our knowledge). The nontriviality is confirmed by
the observation that the solution does not necessarily exist,
nor is it necessarily unique, and certain configurations, for
example when all three rays meet into q, even admit infinite
solutions for v, as q can be reached from any point on T .

Related work: Traditionally, in contexts such as texture
baking, displacement-map construction (for curved surface
representations or polygonal meshes), inverse subdivision
surfaces, and others, existing solutions are designed to lever-
age solely on the solution of the direct problem. This may be
due, at least in part, to the perceived intricacy of the inverse
problem, which is the subject of this work. In Sect. 5, we
exemplify two scenarios where our closed-form solution to
the inverse problem offers a compelling alternative to tradi-
tional solutions. The description of each scenario starts with
a brief overview of the respective Related Work.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00371-023-02903-0&domain=pdf
http://orcid.org/0000-0003-1759-5357
http://orcid.org/0000-0001-7142-6998
http://orcid.org/0009-0008-3133-4229
http://orcid.org/0000-0003-2301-3173

2082 A. Maggiordomo et al.

Fig. 1 left - The inputs of the
displacement problem (direct or
inverse.) right - A 2D depiction
(note that in 3D, the 3 corner
rays do not meet at a point,
which would otherwise make
the problem trivial.) v1

v2

v0

q

d1

d0

d2

v

t d

T
v1

v0

v

q

d1

d0

tdT

2 Problem definition

Given a target point q, we want to find a point v on T such
that the ray shot from v in the interpolated direction d hits q
(1).

Let the corners of T be in positions v0, v1, v2, and let the
three directions defined at corners be d0, d1, d2. A point
v is identified by its nonnegative barycentric coordinates
α0, α1, α2 with

∑

i

αi = 1 (2)

so that:

v =
∑

i

αi vi (3)

d =
∑

i

αi di . (4)

Substituting (3, 4) in (1), gives

q =
∑

i

αi vi + t
∑

i

αi di (5)

where the three scalars αi and the scalar t are unknowns.
This seemingly simple geometric setup leads to a system,

(5), of three scalar equations, quadratic with the four vari-
ables, subject to the linear constraint (2). This system is not
trivial to solve directly.

3 Geometric derivation of the solution

We can rewrite Equation (5) as

q =
∑

i

αi (vi + t di)

=
∑

i

αi ai (6)

witha0,1,2 denoting the positionof the vertices ofT displaced
by t along the respective direction:

ai = vi + t di (7)

Equation (6) implies that the target point q must neces-
sarily lie on the plane P passing by the three positions ai
(see Fig. 1), irrespective of the choice of v; observe that P
is a function solely of t (and different choices of t result
in general in planes with different orientations). Moreover,
it implies that the barycentric coordinates of q in triangle
a0, a1, a2 are the same as the sought barycentric coordinates
α0, α1, α2 of v in T .

Our solution is therefore to first find value(s) of t so that q
lies on P , and then simply find α0, α1, α2 (and thus v) with
fixed t as the barycentric coordinates of q inside triangle
a0, a1, a2.

The condition for q to be on P can be expressed as

0 = (a0 − q) · n, (8)

that is, that the vector connecting q to a0 is orthogonal to n,
with n denoting a vector orthogonal to P (n is, again, as a
function of t):

n = (a1 − a0) × (a2 − a0). (9)

Rewriting (8) in terms of v,d and t gives:

0 = (a0 − q) · (a1 − a0) × (a2 − a0)

= (v0 + t d0 − q)

· (v1 + t d1 − v0 − t d0)

× (v2 + t d2 − v0 − t d0)

= ((v0 − q) + t d0)

· ((v1 − v0) + t (d1 − d0))

× ((v2 − v0) + t (d2 − d0)) (10)

This gives a polynomial that is cubic in t .

123

The inverse barycentric displacement problem 2083

Fig. 2 Construction for the geometric solution

3.1 Deriving the polynomial coefficients

To ease the derivation of the coefficients of the polynomial in
(10), it is convenient to group the constant sub-expressions
in (10) as columns of two 3 × 3 matrices:

P = [
v0 − q | v1 − v0 | v2 − v0

]
, (11)

D = [d0 |d1 − d0 |d2 − d0] (12)

We term P the position matrix, as it depends on the posi-
tions of vertices of T and of target point q; we term D
the displacement matrix, as it depends on the displacement
directions defined at the vertices of T . We will refer to their
columns as P0, P1, P2 (and likewise for D).

We can now rewrite (10) as

0 = (P0 + t D0) · (P1 + t D1) × (P2 + t D2) (13)

That is (remembering that det(a|b|c) is a · (b × c)):

0 = det (P + t D) . (14)

Extracting t gives (see Appendix for a derivation):

0 = A t3 + B t2 + C t + D (15)

with

A = det(D)

B = det(P0|D1|D2) + det(D0|P1|D2) + det(D0|D1|P2)

C = det(D0|P1|P2) + det(P0|D1|P2) + det(P0|P1|D2)

D = det(P) (16)

3.2 Finding all valid solutions (if any)

Solving (15) with the standard cubic formula returns up to
three real solutions for t , which we denote as t0, t1, and t2.

For a given choice of ti , the corresponding triangle
a0, a1, a2 is constructed (7), then, αi are trivially extracted
as the barycentric coordinates of q in that triangle:

αi = n · (q − ai+2) × (ai+1 − ai+2)

n · n . (17)

If any αi < 0, then v is outside the triangle T , and the
corresponding solution ti must be discarded (after [14], this
can be conveniently tested prior to the division by n · n).

This procedure fails when the triangle a0, a1, a2 is degen-
erate, that is, when it collapses into a line or a point (meaning
that the usedvalue of ti satisfies (8) but only in the trivial sense
that n is the zero vector). This condition can be detected by
checking that n (9) vanishes. If the target point q happens to
belong to this line or point, then we have infinite solutions
for αi – and therefore, with (4), for v; otherwise, the solution
ti must be discarded.

Depending on the context, negative values of ti , or val-
ues larger than one, may also be discarded as invalid (when
“backward” negative displacement, or displacements shoot-
ing “beyond d,” are to be disallowed).

Each non-discarded ti , if any, results in a valid solution
to the inverse projection problem. Multiple such solutions
can exist. A possible strategy to employ in such cases is to
consistently favor the smallest value of |ti |, which has the
benefit of making v vary with continuity as q varies (barring
degenerate cases).

Special cases: It is interesting to analyze a few special cases
of the general formulation above, although an implementa-
tion does not need to be aware of them.

When q is on T , or on the plane containing T , then the
positionmatrixP is singular (its three columns are co-planar),
so D is zero, and t = 0 is always a solution of (15), as
expected (observe that it is not necessarily the only solution).

When the displacement vectors di are all parallel to each
other (even ifwith different lengths), then the directionmatrix
D is singular and rank 1 (as the determinant and rank of D
are the same as [d0|d1|d2]). This makes both A and B zero
(as taking any two vectors from D zeroes the determinant),
making the polynomial (15) linear, and the solution for t
unique. This is also expected, from a geometric point of view
(observe however that this still does not make all planes P
parallel to each other, for all t : that additionally requires all
displacement vectors to be the same length).

A pathological case is when all di are in the same plane
as T . In that case, A, B, and C are zeroed (as each matrix is
made by co-planar column vectors), making the polynomial
(15) degree 0. Unless D is also 0, when q is also on the
plane of T , there is no solution for t , valid or otherwise, as
expected.

123

2084 A. Maggiordomo et al.

4 Implementation and optimizations

A reference implementation (in C++) is provided in the addi-
tional materials.

Workload: For the sake of simplicity, we will estimate the
workload by counting the number of floating-point prod-
ucts (disregarding sums; among other reasons, because most
can be absorbed by Multiply-and-Add operations). Finding
the coefficients as in (??,16) involves the computations of
8 determinants, that is, 8 cross products and 8 dot products,
amounting to 72 products (each cross costing 6 floating-point
products, and each dot costing 3).

Common sub-expressions optimization: using three tem-
porary vectors, tDD, tPD and tPP, allows the computation of
A, B,C, D with only 4 cross products and 6 dot products
(42 products in total):

tDD ← D1 × D2

tPD ← P1 × D2 + D1 × P2

tPP ← P1 × P2

(the latter is also the area vector of T) then rewriting (16) as

A ←D0 · tDD D ←P0 · tPP
B ←P0 · tDD + D0 · tPD C ←D0 · tPP + P0 · tPD

Caching optimization: When the inverse projection prob-
lem must be solved for multiple target points q over the
same triangle T , only P0 varies in each instance of the prob-
lem: The three temporary vectors, as well as three scalars A,
D0 · tPD, and D0 · tPP, can be cached for a given triangle,
reducing the cost of finding the four coefficients for a new q
to just three dot products (9 products in total).

5 Example applications

As we argued in Sect. 1, the presented inverse problem can
find applications in several contexts in Geometry Processing.
In the following,we briefly exemplify thiswith twouse cases.
A full implementation of both examples is attached in the
additional material.

5.1 Texture baking via rendering

Texture baking is a common technique, pioneered by early
research such as [3, 9] and supported today by common 3D
modeling suites [1, 5, 7, 12]. A baked texture (sometimes
referred to as transfer map, mesh map, redetail texture, or
detail-recover texture) is a synthesized texture that records
data originally stored in a high-resolution meshMH into the

texels of a texture image intended for a given low-resolution
meshML . The texels can be filledwith displacement scalars,
or any information stored on MH , such as normals, col-
ors, pre-lit values, or any other per-vertex attributes, per face
attributes, or even an original texture;ML comes with a UV-
map, which for simplicity we will assume to be free from
seams, and per-vertex displacement directions; the latter can
be per-vertex normal directions, or can even be explicitly
optimized for this specific task in preprocessing [15].

Direct approach: Traditionally, the baking is performed
leveraging on the direct problem: For each texel, a ray is cast
from the corresponding position onML , toward the interpo-
lated direction, and the information is extracted and stored
from whichever point on MH is hit.

Inverse approach (new): Using the inverse problem, we
can iterate over vertices of MH , find a position on ML by
inverse projection, and reposition that vertex in the corre-
sponding location in the 2D texture space. This way,MH is
morphed into the 2D parametric space ofML , and a simple
rasterization-based rendering suffices to produce the baked
texture. Alternatively, depth values t can also be rendered
to bake displacement maps. The attached implementation
demonstrates this process. See Fig. 3 for one example.

Vertices of MH that fail to be back-projected over any
face of ML with a valid solution can either simply be dis-
carded, or clamped to the boundary of the closest triangle in
ML (zeroing the least negative barycentric coordinate and
re-normalizing the other two).

Comparison: The relative merits of the two solutions, tra-
ditional (direct) and novel (inverse), depend on the context,
and a full analysis exceeds the scope of this paper; for our
intents, the observation suffices that the two solutions offer a
different set of advantages. In the following, we outline only
a few general considerations.

Efficiency can be compared, neglecting for the sake of
simplicity the impact of spatial indexing structures. A clear
advantage of the inverse approach is that the final rendering
pass can exploit the extremely optimized standard rasteri-
zation rendering pipeline; this is in practice extremely fast
(milliseconds atmost), andwe can safely disregard its impact
on computation time. Let RH and RL be the resolutions of
MH andML (number of primitives, either vertices or faces),
and RT be the resolution of the baked texture (number of tex-
els), with, typically

RT > RH � RL (18)

(to prevent loss of information, RT needs to surpass RH , e.g.
by a factor 2 according to Nyquist-Shannon sampling theo-
rem; considerably more ifMH comes with its own texture to
be re-baked). For a given triangle, both the inverse and direct
problems are solved in constant time, although direct ray

123

The inverse barycentric displacement problem 2085

MH ML
UV-map
of ML

Inverse-projected
MH

Baked
normal-map

Fig. 3 Texture baking via inverse displacement: an example of a result.
The input consists of a hi-resolution mesh MH (324K faces) and a
low-resolution mesh ML (1000 faces), provided with per-vertex dis-
placement directions (in blue), and a UV-map (shown). We inverse
project every vertex ofMH intoML , moving it into the corresponding
u, v position, and rasterize it using a normal rendering pass, obtaining

the baked normal-map. Used input data: MH is the Ganesa model
from [11]; ML is obtained by automatic simplification, using Mesh-
Lab; displacement directions on ML are standard per-vertex normal
directions (area-weighted average of per-face normal); the UV-map of
ML is constructed with [10]

casting necessitates fewer operations. In the direct method,
a ray from each texel must be tested against each primitive
in MH , leading to a O(RT RH) complexity; in the inverse
approach, all vertices ofMH must be inverse-projected over
each triangle of ML , costing O(RH RL), which is a much
lower asymptotic complexity. Naturally, both approaches
can be sped up considerably by employing spatial index-
ing structures (down toO(RT log(RH)) andO(RH log(RL)),
respectively), which reduces the gap. Even without that non-
trivial optimization, our reference implementation takes only
a few seconds on consumer-level hardware for the examples
in Fig. 3.

Ease of use favors the inverse-projection approach, as
fragment-shaders, e.g. the same ones used in the rendering,
can be directly re-used in the final pass to reproduce any com-
plex lighting or texturing effect to bake the results in form of
textures (including shadowing, wireframe, or any other mesh
rendering technique).

Accuracy favors the direct approach, as in the inverse
approach the linear interpolation inside the triangles of the
flattenedMH introduces a small approximation error, which
decreases with the resolution of MH . Also, the inverse
approach requires care to work in presence of texture seams
over ML .

5.2 Perfect reprojectability test

In the context of the construction of a displacement-mapped
surface, a recurrent concern is whether or not a given base
mesh, with an associated set of per-vertex displacement
directions, is able to represent a given continuous target sur-

v1

v0

d1

d0

T
MH

Fig. 4 2D depiction of a case where a given surface MH is not repro-
jectable from base triangle T , as one interpolated ray intersects MH
three times, including with one with mismatching orientation (red bold
line)

face, often discretized as a high-resolution mesh MH [4, 8,
13]. A (scalar) displacement-map is limited in that it can only
encode different heights for each point; in other words, it is a
warped “2.5D” height-field, and, as such, it can only express
a limited range of shapes. It is in general not trivial to deter-
mine if a given target surface MH can be represented by a
displacement-map encoded over a base triangle T .
Direct approach: A brute force solution using the direct
approach is to cast rays from a sampling of T and check
whether or not any given ray hits multiple valid targets on
MH , or, equivalently, whether or not it hits any back-facing
face on MH (see Fig. 4). This relies on the sampling to be
sufficiently dense, and is work intensive, making it impracti-
cal for example in contexts where the test must be performed
to inform the construction of an arrangement of T .

Existing alternatives: In [8], the displacement is redefined
as a continuous piecewise linearmapping, tomake it easier to

123

2086 A. Maggiordomo et al.

Tv0

d0

d2

d1

v1

v2

q0
q1

q2

Fig. 5 Exact reprojectability test for a triangle (q0,q1,q2), over a
base triangle T . In this instance, the test fails because the projection
of (q0,q1,q2) of T has a different orientation than T

invert,making it possible to precisely test for reprojectability;
while the test is exact, that framework changes the definition
of the displacement map, drifting away from the tradition-
ally intended semantics (vertices are displaced not along a
single straight line, but along a broken line). In many pre-
vious works, the test is only approximated, so to make it
faster. For example, in [13], the test is substituted by using
a “fitmap,” which is a scalar field defined in preprocessing
that describes, for each position p on MH , the approximate
maximal size of a base-triangle centered around p that can
still be correctly reprojected; while this is can be an efficient
way to inform the construction of an arrangement of base
triangles, the test is only an approximation.

Inverse approach (new): to perfectly test for reprojectabil-
ity, we can test if any triangle in MH is mapped, by the
inverse projection, into a triangle inside T having an orien-
tation opposite to that of T . Given a triangle (q0,q1,q2) ∈
MH , we first inverse-project q0, q1 and q2, obtain three
sets of barycentric coordinates α0, α1 and α2 on T , with
αi = (αi

0, α
i
1, α

i
2) – see Fig. 5.

The consistency of orientation of the back-projected trian-
gle on T is then determined by the sign the 2D cross product
of the 2D triangle definedby any twobarycentric coordinates:

(α1
0 − α0

0)(α
1
1 − α0

1) − (α2
0 − α0

0)(α
2
1 − α0

1) > 0 (19)

This test is exact; note that it does not explicitly require the
3D normal of either T or (q0,q1,q2).

6 Conclusions

In this work, we offer a complete solution to what we
term the “inverse displacement problem,” a basic geomet-
ric sub-problem that commonly arises in contexts such as
the construction or baking of scalar displacement-maps over
meshes, subdivision surfaces, and other representations. Our

solution is given in closed form, and can be made efficient
to evaluate; while typical problem instances admit a single
valid solution, our procedure also correctly identifies cases
admitting no solution, infinite solutions, or a set of either two
or three solutions to choose from.

We observe that the vast and long-spanning Literature on
displacement-map construction, and adjacent fields, always
strive to formulate their algorithms to employ the direct prob-
lem only (to the best of our knowledge). We conjecture this
may be due, in some part, to the perceived intricacy of the
inverse problem, which, in spite of its apparent geometric
simplicity, defies at first glance straightforward solutions.
The present work intends to offer an alternative and settle
the question.

6.1 Problem variants

We conclude by considering the effect of a few common
variations of the direct problem on the inverse problem.

In some scenario, the displacement vectorsdi are assumed
to be of the same length, or all unitary. Clearly, our solution
makes no assumption about this and is directly usable. As far
as we can tell, this additional assumption does not offer any
opportunity to ease the inverse problem.

In some scenario, the interpolated displacement vector d
is re-normalized after interpolation, defining the ray direction
as d′ = d/||d||. This change does not affect our construction
at all, provided that our final scalar displacement value t is
adjusted, after the computation is over, to t ′ = t ||d||.

A different scenario is when the base triangle T is substi-
tuted by a (flat or not flat) quadrilateral Q. For example, in
many techniques, such as [2, 6, 13] a displacement map is
applied over a quad-mesh rather than a triangle-mesh. The
direct displacement problem is not affectedmuch, except that
v and d are now bilinearly interpolated between four cor-
ners, rather than being linearly interpolated between three.
The inverse problem, however, becomes considerably more
intricate. The presented solution is now unusable: Equations
from 2 to 7 can be immediately adapted (index i now ranging
from 0 to 3), but neither P or n are defined any longer (as
the four ai are not necessarily co-planar, not even whenQ is
flat and di are unitary). In this variant, the inverse problem
is (to our knowledge) still open.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s00371-023-02903-
0.

Funding Open access funding provided by Università degli Studi di
Milano within the CRUI-CARE Agreement.

123

https://doi.org/10.1007/s00371-023-02903-0
https://doi.org/10.1007/s00371-023-02903-0

The inverse barycentric displacement problem 2087

Data Availability All data generated and analyzed during this study are
included in this published article and its supplementary information
files, including the source files.

Declarations

Conflict of interest The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

ADerivation of (15) from (14)

For any pair of 3 × 3 matrices M = [M0|M1|M2] and N =
[N0|N1|N2], we have

det(M + N) = det(M0|M1|M2) + det(M0|M1|N2)

+ det(M0|N1|M2) + det(M0|N1|N2)

+ det(N0|M1|M2) + det(N0|M1|N2)

+ det(N0|N1|M2) + det(N0|N1|N2).

(20)

This is an application of the general rule according to which
the determinant of a sum of two n × n matrices is given by
the sum of the 2n determinants of the matrices obtained by
any swapping of columns between the first and the second
matrix; for the n = 3 case, this can also be immediately
verified by rewriting det(a|b|c) as a · (b × c).

Applying (20) to (14) with M = P and N = t D, and
remembering that, for any scalar k,

det(k a|b|c) = det(a|k b|c) = det(a|b|k c) = k det(a|b|c)
(21)

gives (15).

References

1. Adobe: Bake mesh maps. Substance 3D Documentation. https://
helpx.adobe.com/substance-3d-painter/using/baking.html (2021)

2. Burley,B., Lacewell,D.: Ptex: per-face texturemapping for produc-
tion rendering. Comput. Graph. Forum 27(4), 1155–1164 (2008)

3. Cignoni, P., Montani, C., Rocchini, C., Scopigno, R., Tarini, M.:
Preserving attribute values on simplified meshes by resampling
detail textures. Vis. Comput. 15(10), 519–539 (1999)

4. Cohen, J., Manocha, D., Olano, M.: Simplifying polygonal models
using successive mappings. In: Proceedings of the 8th Conference
on Visualization ’97, VIS ’97, pp 395–402 (1997)

5. Blender Foundation: Render baking. Blender 3.3 Reference Man-
ual, https://docs.blender.org/manual/en/3.3/render/cycles/baking.
html (2022)

6. Guidi, G., Angheleddu, D.: Displacement mapping as a metric tool
for optimizing mesh models originated by 3D digitization. J. Com-
put. Cult. Herit. 9(2) (2016)

7. Autodesk Help: Transfer maps. Autodesk Knowledge Net-
work. https://knowledge.autodesk.com/support/maya/learn?s=Tra
nsfer+Maps (2021)

8. Jiang, Z., Schneider, T., Zorin,D., Panozzo,D.: Bijective projection
in a shell. ACM Trans. Graph. 39(6) (2020)

9. Lee, A., Moreton, H., Hoppe, H.: Displaced subdivision surfaces.
In: Proceedings of the 27th Annual Conference on Computer
Graphics and Interactive Techniques, SIGGRAPH ’00, pp 85-94,
USA. ACM Press/Addison-Wesley Publishing Co. (2000)

10. Liu, L., Zhang, L., Yin, X., Gotsman, C., Gortler, S.J.: A
local/global approach to mesh parameterization. Comput. Graph.
Forum 27(5), 1495–1504 (2008)

11. Maggiordomo, A., Ponchio, F., Cignoni, P., Tarini, M.: Real-
world textured things: a repository of textured models generated
with modern photo-reconstruction tools. Comput. Aided Geomet-
ric Des. 83, 101943 (2020)

12. Marmoset: Baking in toolbag. https://marmoset.co/toolbag/
baking/ (2022)

13. Panozzo, D., Puppo, E., Tarini, M., Pietroni, N., Cignoni, P.:
Automatic construction of quad-based subdivision surfaces using
fitmaps. IEEE Trans. Vis. Comput. Graph. 17(10), 1510–1520
(2011)

14. Skala, V.: Barycentric coordinates computation in homogeneous
coordinates. Comput. Graph. 32(1), 120–127 (2008)

15. Tarini, M., Cignoni, P., Scopigno, R.: Visibility based methods and
assessment for detail-recovery. In: Proceedings of the 14th IEEE
Visualization 2003 (VIS’03), VIS ’03, pp 457–464 (2003)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://helpx.adobe.com/substance-3d-painter/using/baking.html
https://helpx.adobe.com/substance-3d-painter/using/baking.html
https://docs.blender.org/manual/en/3.3/render/cycles/baking.html
https://docs.blender.org/manual/en/3.3/render/cycles/baking.html
https://knowledge.autodesk.com/support/maya/learn?s=Transfer+Maps
https://knowledge.autodesk.com/support/maya/learn?s=Transfer+Maps
https://marmoset.co/toolbag/baking/
https://marmoset.co/toolbag/baking/

2088 A. Maggiordomo et al.

Andrea Maggiordomo is a third-
year PhD Student at the Com-
puter Science department of the
University of Milan, Italy, special-
izing in Computer Graphics and
Geometry Processing. His main
research interests focus on sur-
face parametrization, texturing,
and remeshing. He obtained his
Master’s Degree in Computer Sci-
ence from the University of Pisa
in 2018 and has previously worked
as a Research Fellow at ISTI-
CNR.

Yury Uralsky graduated from the
Moscow State Technical Univer-
sity with degrees in computer sci-
ence and electrical engineering
before starting in the industry as
a game developer. Yury has been
with NVIDIA for over 18 years,
where he held senior engineer-
ing and management positions and
worked on several major GPU
designs, including the latest Ada
architecture. Yury is currently
working on next-generation graph-
ics hardware in the NVIDIA GPU
architecture team. His interests

include real-time rendering, computer architecture, programming mod-
els, and machine learning.

Henry Moreton (PhD 1992, Univ
of California Berkeley) works as
a Senior Distinguished Engineer
at the NVIDIA Corporation. He
has published in the areas of GPU
architecture, curve and surface
modeling, rendering, texture map-
ping, video and image compres-
sion, and unmanned submarine
control. He has over one hun-
dred patents in the areas of optics,
video compression, graphics, sys-
tem and CPU architecture, and
curve & surface modeling & ren-
dering. Current interests

include mesh representations, the evolution of graphics programming
models, API design, and the hardware architecture of highly parallel
programmable devices.

Marco Tarini (PhD 2003, Univ
of Pisa) works as a full professor
at the Computer Science depart-
ment of the University of Milan,
Italy. A prolific researcher in the
fields of Computer Graphics and
of Geometry Processing, he has
authored or co-authored more than
50 publications, the majority of
which in top-tier journals of the
field. His interests range in sev-
eral aspects of geometry process-
ing (surface parametrization and
remeshing, 3D acquisition, shape
reconstruction, tangent vector

fields), of 3D real-time rendering (such as texturing and computer
animation), and of their application in fields such as video-games,
scientific visualization, virtual reality, and support for digital fabri-
cation. He received several prestigious awards, including a “Young
Researcher Award” by Eurographics in 2006, and a “Test of Times”
award by Visualization in 2021.

123

	The inverse barycentric displacement problem
	Abstract
	1 Introduction
	2 Problem definition
	3 Geometric derivation of the solution
	3.1 Deriving the polynomial coefficients
	3.2 Finding all valid solutions (if any)

	4 Implementation and optimizations
	5 Example applications
	5.1 Texture baking via rendering
	5.2 Perfect reprojectability test

	6 Conclusions
	6.1 Problem variants

	A Derivation of (15) from (14)
	References

