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Abstract

We consider a recently introduced framework for the description of
memory effects based on quantum state distinguishability quantifiers, in
which entropic quantifiers can be included. After briefly presenting the
approach, we validate it considering the performance of different quanti-
fiers in the characterization of the reduced dynamics of a two-level system
undergoing decoherence. We investigate the different behavior of these
quantifiers in the dependence on physical features of the model, such as
environmental temperature and coupling strength. It appears that the
performance of the different quantifiers conveys the same physical infor-
mation, though with different sensitivities, thus supporting robustness of
the approach.

1 Introduction

The characterization of open quantum system dynamics in view of memory ef-
fects has recently attracted a lot of attention, and different approaches have
been pursued in this direction, addressing the very question of what is a non-
Markovian quantum process [1, 2, 3, 4, 5, 6]. We here focus on a strategy intro-
duced in the seminal paper [7], that only requires knowledge of the reduced state
of the open system as a function of time. The approach was initially formulated
relying on the trace distance to compare the evolution of different initial system
states. It was later shown that also entropic quantifiers based on the quantum
relative entropy can be considered [8, 9]. In the present manuscript we want to
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investigate the different behavior of these quantifiers, to check whether indeed
the thus obtained notion of non-Markovian dynamics is robust with respect to
the considered quantifier, provided it satisfies some natural general properties.
To this aim we investigate the measure of non-Markovianity introduced in [7], for
the case of a spin-boson dephasing model, evaluating it for different quantifiers.
In particular we study its dependence on physical parameters of the model, such
as temperature of the bosonic bath or coupling strength. All quantifiers exhibit
a physically coherent behavior, though showing different sensitivities. In par-
ticular, distances have a more marked dependence on the physical parameters
of the model with respect to the considered divergences.

2 A framework for the characterization of quan-
tum reduced dynamics

We first introduce the framework that we plan to use to provide a characteriza-
tion of a reduced quantum dynamics in view of memory effects. It is essentially
based on the approach originated from [7], though formulated so as to include
entropic distinguishability quantifiers, that do not obey the standard triangle
inequality. The emphasis is on the association of memory with information that
is initially stored outside the open system, in well-identified degrees of freedom,
and later retrievable by performing measurements on the system only.

2.1 States comparison and Markov condition

Following [9] we denote with S(ρ, σ) a quantifier of the distinguishability be-
tween two statistical operators ρ and σ. In the first instance we assume sym-
metry

S(ρ, σ) = S(σ, ρ), (1)

and boundedness
0 ⩽ S(ρ, σ) ⩽ 1, (2)

together with perfect discrimination capability for the case of orthogonal states

S(ρ, σ) = 1 ⇔ ρ ⊥ σ (3)

and
S(ρ, σ) = 0 ⇔ ρ = σ. (4)

We further ask the key property of being a contraction with respect to the
action of a completely positive trace preserving map Φ, describing a well-defined
evolution

S(Φ[ρ],Φ[σ]) ⩽ S(ρ, σ). (5)
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Finally, for the sake of the desired association between memory effects and infor-
mation exchange, we need a generalization of the triangle inequality, formulated
as follows

S(σ, ρ)−S(τ, ρ) ⩽ ϕ(S(σ, τ)) (6)

with τ an arbitrary state and ϕ a positive concave function starting from the
value zero at the origin. The requirements of symmetry and boundedness, let
alone the triangle inequality, are clearly not obviously satisfied by entropic quan-
tifiers. As we shall see, however, the enforcement of boundedness allows to
symmetrize and to derive a suitable triangle-like inequality.

Given a distinguishability quantifier satisfying the above properties (1) to
(6), we define a reduced dynamics described by a collection of completely posi-
tive trace preserving maps Φ(t) according to

ρS(t) = Φ(t)ρS(0) (7)

to be Markovian if

S(ρ1S(t), ρ
2
S(t)) ⩽ S(ρ1S(s), ρ

2
S(s)) ∀t ⩾ s ⩾ 0, (8)

for any pair of initial conditions ρ1S(0) and ρ2S(0). According to this definition
a quantum reduced dynamics is said to be Markovian if the distinguishability
between two states is a monotonically non-increasing function of time. It is
easily checked that this condition is verified for the case of quantum dynamical
semigroups, so that the standard identification of quantum Markovian processes
complies with this definition, that crucially depends on validity of Eq. (5). The
violation of this condition identifies reduced dynamics which are non-Markovian.

2.2 Distances and entropic quantifiers

We will consider essentially two situations. One the one hand, the case in
which the quantifier S is a distance in the mathematical sense, so that only
contractivity under completely positive trace preserving maps has to be checked.
In particular, this is true for the trace distance based on the natural norm on
the space of trace class operators, that is the trace norm

∥A∥1 = Tr |A|. (9)

On the other hand, the case in which a quantifier S with the desired properties
is obtained starting from the quantum relative entropy, defined for positive
operators as

S(A,B) = TrA(lnA− lnB). (10)

In this case, contractivity under completely positive trace preserving maps is
ensured, but further elaboration is needed in order to warrant boundedness
and a variant of the triangle inequality [9]. The main aim of this paper is to
benchmark the behavior of these two families with respect to the insurgence of
non-Markovian dynamics and its dependence on physical features of the model.
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2.2.1 Trace distance

We first recall the definition of trace distance between statistical operators

D(ρ, σ) =
1

2
∥ρ− σ∥1, (11)

where the factor 1
2 comes from the requirement Eq. (2), contractivity can be

directly proven [10] and the other properties follow from the fact that Eq. (9)
is a norm. In particular, the triangle inequality warrants Eq. (6) with ϕ the
identity function ϕ(x) = x. This distinguishability quantifier naturally arises in
a discrimination task and was the first introduced in the study of non-Markovian
dynamics [7].

2.2.2 Entropic quantifiers

We now introduce a variant of the quantum relative entropy, that satisfies all
the above mentioned properties. We consider the quantity

S(ρ, µρ+ (1− µ)σ), (12)

with 0 < µ < 1, first introduced in [11, 12] and initially called telescopic relative
entropy. It can be shown that this quantity takes values in the range

0 ⩽ S(ρ, µρ+ (1− µ)σ) ⩽ ln(1/µ), (13)

and most importantly it obeys the triangle-like inequalities

S(σ, µσ + (1− µ)ρ1)− S(σ, µσ + (1− µ)ρ2) ⩽ ln

(
1 +

1− µ

µ
D(ρ1, ρ2)

)
(14)

and

S(ρ1, µρ1+(1−µ)σ)−S(ρ2, µρ2+(1−µ)σ) ⩽ D(ρ1, ρ2) ln

(
1 +

1− µ

µ

1

D(ρ1, ρ2)

)
(15)

where D denotes the trace distance introduced in Eq. (11). These properties
allow to consider symmetric versions of the quantity and to fix the desired
range Eq. (2). There are two natural choices that can be considered [9]. A first
immediate choice is given by the quantum skew divergence

Sµ(ρ, σ) =
µ

ln(1/µ)
S(ρ, µρ+ (1− µ)ρ)

+
(1− µ)

ln(1/(1− µ))
S(σ, (1− µ)σ + µρ), (16)

symmetric by construction under the exchange

µ ↔ 1− µ ρ ↔ σ. (17)
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Thanks to Eq. (14) and Eq. (15) we further have

Sµ(ρ, σ)− Sµ(ρ, τ) ⩽ ςµ
4

√
Sµ(σ, τ), (18)

so that Eq. (6) is satisfied with ϕ(x) = ςµ 4
√
x and

ςµ = ln

(
1

µ(1− µ)

)
4

√
µ(1− µ)

2H({µ, 1− µ}) ln3(µ) ln3(1− µ)
. (19)

In Eq. (16) each term is separately normalized. Another more subtle choice is
given by the expression

Kµ(ρ, σ) =
µ

H({µ, 1− µ})
S(ρ, µρ+ (1− µ)σ)

+
1− µ

H({1− µ, µ})
S(σ, (1− µ)σ + µρ), (20)

that still shares the symmetry Eq. (17) and corresponds to a normalized version
of the Holevo information or Holevo χ quantity for the case of an ensemble
composed of two states only. We have the simple identity

Kµ(ρ, σ) =
χ({µ, ρ; 1− µ, σ})
H({1− µ, µ})

, (21)

so that we will call the distinguishability quantifier Kµ(ρ, σ) Holevo skew diver-
gence. This quantity is still bounded and in the range Eq. (2), furthermore it
obeys the inequality

Kµ(ρ, σ)−Kµ(ρ, τ) ⩽ κµ
4

√
Kµ(σ, τ), (22)

with

κµ = 4

√
8µ(1− µ)

H({µ, 1− µ})3
. (23)

We will see that they have a very close performance in the characterization
of non-Markovian dynamics. In both cases, the crucial contractivity property
Eq. (5) is warranted by contractivity of the quantum relative entropy under the
action of completely positive trace preserving maps [13].

2.2.3 Jensen-Shannon divergence

A special role is played by the case µ = 1
2 , indeed we have

S1/2(ρ, σ) = K1/2(ρ, σ) = J(ρ, σ) (24)

where J(ρ, σ) denotes the so-called Jensen-Shannon divergence

J(ρ, σ) =
1

2 ln 2

[
S

(
ρ,

ρ+ σ

2

)
+ S

(
σ,

ρ+ σ

2

)]
. (25)
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It is worth mentioning that its square root provides a distance in the strict
mathematical sense [14, 15], so that√

J(ρ, σ)−
√

J(ρ, τ) ⩽
√
J(σ, τ), (26)

while symmetry is already explicit in the very expression Eq. (25).
We are thus led to consider two distances, namely trace distance D and

square root of the Jensen-Shannon divergence
√
J , as well as two entropic quan-

tifiers, Holevo and quantum skew divergence, which we will both take for the
value µ = 1/4.

2.3 Measure of distinguishability revivals

The definition Eq. (8) naturally suggests a way to quantify the violation of the
Markovian condition, as considered in [7] introducing a so-called non-Markovianity
measure. We thus introduce the adimensional quantity

M(Φ(t),S, ρ1,2S (0)) =

∫
Ṡ>0

dtṠ(ρS(t), σS(t)), (27)

where the integration is restricted to the regions in which the integrand Ṡ(ρS(t), σS(t))
is positive, so that it can be equivalently written as

M(Φ(t),S, ρ1,2S (0)) =
∑
n

[S(ρ1S(t
n
f ), ρ

2
S(t

n
f ))−S(ρ1S(t

n
i ), ρ

2
S(t

n
i ))], (28)

with tni and tnf initial and final time of the n-th revival. Following [7, 16] we
therefore define the quantity

M(Φ(t),S) = sup
ρ1,2
S (0)

M(Φ(t),S, ρ1,2S (t0)) (29)

as measure of non-Markovianity associated to the evolution described by the
time dependent collection of completely positive trace preserving maps Φ(t).
The basic idea is to consider the sum of the revivals in distinguishability, depend-
ing on the considered quantifier S. Given that the existence and the amount
of the revivals depends on the pair of initial states whose evolution has to be
compared, the measure is defined according to Eq. (29) by optimizing over the
initial pair. Indeed, the same environment differently affects distinct initial sys-
tem states, and it is therefore important to explore the initial state dependence.
While the value itself of M(Φ(t),S) does not have a special meaning, the depen-
dence of this non-Markovianity measure on physical parameters of the model
does provide interesting information on the origin of memory effects.

2.4 Interpretation in terms of information backflow

We now want to provide a motivation for the definition of quantum Markovian
dynamics given in Sect. 2.1, building on validity of the condition Eq. (6). The
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very introduction of a reduced dynamics was possible with reference to a bipar-
tition of the Hilbert space including all interacting degrees of freedom. We can
therefore consider both the state of the system ρS(t) and of the environment
ρE(t), as well as the total state ρSE(t), assumed to undergo a unitary dynamics.
In this setting, the definition of Markovian reduced dynamics given in Eq. (8)
can be seen to be connected with a notion of unidirectional information flow
from the system to the environment.

To this aim we can introduce a notion of internal information by identifying
it with the distinguishability between system states according to the considered
quantifier S, namely

Iint(t) = S(ρ1S(t), ρ
2
S(t)). (30)

The name internal information stresses the fact that this quantity is determined
by performing measurements on the system only. The existence of a reduced
dynamics is warranted by the choice of a factorized initial condition, that is

ρSE(0) = ρS(0)⊗ ρE , (31)

with ρE a fixed environmental state independent from the system initial con-
dition. We now observe that Eq. (5) implies in particular invariance under a
unitary transformation

S(UρU†, UσU†) = S(ρ, σ), (32)

as well as under the tensor product with respect to a fixed environmental state

S(ρ⊗ ρE , σ ⊗ ρE) = S(ρ, σ). (33)

We thus have in particular

S(ρ1SE(t), ρ
2
SE(t)) = S(ρ1SE(0), ρ

2
SE(0))

= S(ρ1S(0), ρ
2
S(0)). (34)

We thus introduce the expression

Iext(t) = S(ρ1S(0), ρ
2
S(0))−S(ρ1S(t), ρ

2
S(t)), (35)

called external information, complementary to Eq. (30) in the sense that their
sum is a constant fixed by the initial distinguishability

Iint(t) + Iext(t) = S(ρ1S(0), ρ
2
S(0)). (36)

The Markov condition Eq. (8) can now be reformulated as

Iint(t)− Iint(s) ⩽ 0, (37)

for any t ⩾ s, expressing the fact that the internal information, namely the
capability to distinguish the system states after interaction with the environ-
ment, is steadily decreasing for any pair of initial states. At any time t the

7



locally available information has diminished with respect to the initial time, so
that to recover the full information at any intermediate time we would need
to perform measurements on all the degrees of freedom, since the information
has been stored outside the system degrees of freedom. If this happens in a
monotonic way, the dynamics is said Markovian according to Eq. (8), while a
non-Markovian behavior corresponds to a backflow of information, which be-
comes again locally retrievable.

2.5 Information backflow and external information stor-
age

We briefly mention another important aspect in this framework for the descrip-
tion of memory effects, already stressed in [2, 17]. Exploiting property Eq. (6),
namely the triangle-like inequality, we obtain the following constraint on possi-
ble revivals in the internal information [9]

Iint(t)− Iint(s) ⩽ ϕ ◦ ϕ(S(ρ1E(s), ρ
2
E(s)))

+ϕ(S(ρ1SE(s), ρ
1
S(s)⊗ ρ1E(s)))

+ϕ(S(ρ2SE(s), ρ
2
S(s)⊗ ρ2E(s))). (38)

The properties of the function ϕ, simply corresponding to the identity function
ϕ(x) = x for the case in which S is a distance obeying the standard triangle
inequality, implies that the three terms at the r.h.s. are non-negative. A re-
vival in the internal information, corresponding to a non-Markovian behavior,
can therefore only take place if either the same initial environmental state has
differently evolved in correspondence to different initial system states, or correla-
tions have been established between system and environment. These conditions,
corresponding to the storage of information outside the system, are necessary
in order to have memory effects. In this respect the property Eq. (6) plays
a conceptually relevant role and its verification for entropic distinguishability
quantifiers is crucial for their use in the study of non-Markovian dynamics.

3 Interaction strength and temperature depen-
dence of trace distance and entropic distin-
guishability quantifiers

To showcase and compare the behavior of different distinguishability quantifiers
in the assessment of the Markovian or non-Markovian behavior of a quantum
dynamics, we consider a physical model of decoherence that covers a wide variety
of physical situations, namely a two-level system interacting with a collection
of bosonic degrees of freedom [18]. As we shall show, the advocated notion
of memory provides a robust concept, independently of the specific quantifier
considered, with the caveat of slightly different sensitivity and behaviors with
respect to the external information storage. While the different behavior with
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respect to composition properties of the time evolution has been investigated in
[19] and the different behavior with respect to the external information storage
in [8, 9], in the present work we study the dependence of the non-Markovianity
measure on physical parameters of the model.

3.1 Decoherence function for the spin-boson model

We write the Hamiltonian of the spin-boson model in the form

H = HS +HE + V, (39)

with HS the Hamiltonian of the two-level system with energy gap ℏω0 and HE

the Hamiltonian of the free bosonic modes. The coupling term is of the form

V = HS ⊗X, (40)

with X expressed in terms of linear combinations of the bosonic creation and
annihilation operators, so that

[HS , V ] = 0. (41)

As detailed e.g. in [20], the commutator Eq. (41) implies that only the co-
herences of the two-level system are affected, in particular they are modified
according to

ρoffdiagS (t) = e−Γ(t)ρoffdiagS (0). (42)

The positive function Γ(t) starting from zero is called decoherence function and
takes the form

Γ(t) =

∫ ∞

0

dωJ(ω)
1− cos(ωt)

ω2
coth

(
β

2
ℏω
)
, (43)

for the case of a thermal bath of bosonic modes whose coupling to the system
is described by a spectral density J(ω) [21].

In the present treatment following [22] we will consider a spectral density of
the form

J(ω) = κω2
0

ηω

(ω2 − ω2
0)

2 + η2ω2
, (44)

where ω0 is the resonant frequency of the system, κ quantifies the coupling
strength, η provides the width of the relevant frequency band [23, 24]. We
consider the representation formula [25]

coth

(
βℏω
2

)
=

2

βℏω
+

1

βℏ

+∞∑
n=1

ω

ω2 + ν2n
, (45)
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for the hyperbolic cotangent, with νn = 2πn/βℏ the so-called Matsubara fre-
quencies, so that combining Eq. (43) and Eq. (44) we come to the expression

Γ(t) =
κπ

2ω4
0Ω

sinh(βℏΩ)

cosh(βℏΩ)− cos
(

βℏη
2

)
×
{
e−

ηt
2

[(
η2

4
− Ω2

)
cos(Ωt)− ηΩsin(Ωt)

]
+

η

2
ω2
0t−

(
η2

4
− Ω2

)}

+
κπ

2ω4
0Ω

sinh
(

βℏη
2

)
cosh(βℏΩ)− cos

(
βℏη
2

)
×
{
e−

ηt
2

[(
η2

4
− Ω2

)
sin(Ωt) + ηΩcos(Ωt)

]
+Ωω2

0t+ ηΩ

}
−η

κπ

βℏ

∞∑
n=1

1

νn

e−νnt + νnt− 1

(ν2n + ω2
0)

2 − η2ν2n
, (46)

with

Ω =

√
ω2
0 −

η2

4
, (47)

and we consider the so-called underdamped limit in which η/2 < ω0. The
behavior of this decoherence function Γ(t) as a function of time in the low and
high temperature regime is plotted in Fig. 1

We will now study the behavior of the non-Markovianity measure introduced
in Sect. 2.3 for the different distances and entropic distinguishability quantifiers
introduced in Sect. 2.2.

3.2 Non-Markovianity measure

In the considered dephasing model the reduced system dynamics is fixed by the
transformation Eq. (42). This allows to evaluate the expression S(ρ1S(t), ρ

2
S(t))

for relevant choices of S given by D,
√
J , K1/4 and S1/4. We will consider an

initial pair of system states given by two orthogonal pure states on the equator
of the Bloch sphere. These pairs have the maximal initial distinguishability
according to Eq. (3), and are mostly affected by the dynamics since they both
initially have the maximum amount of coherence. It has further been shown
that these pairs maximize the measure according to Eq. (29) for the case in
which S is the trace distance. We thus have

ρ1,2S (0) → P 1,2
φ , (48)

with P 1,2
φ projections on the pure orthogonal states

1√
2
(|1⟩ ± eiφ|0⟩), (49)
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βℏω0≪1

10 20 30 40 50 60
ω0t

5

10

15

20

Γ(t)

Figure 1: Behavior at high and low temperature of the decoherence function
Γ(t) given by Eq. (46), obtained considering the spectral density of Eq. (44)
and a thermal environmental state with inverse temperature β.

and we obtain for the trace distance

D(ρ1S(t), ρ
2
S(t)) = e−Γ(t), (50)

as well as for the distance given by the square root of the Jensen-Shannon
divergence√

J(ρ1S(t), ρ
2
S(t)) =

√
1−H

({
1
2 (1 + e−Γ(t)), 1

2 (1− e−Γ(t))
})

. (51)

The other quantifiers can be evaluated starting from the expression Eq. (10),
exploiting the fact that for the case at hand [ρ1S(t), ρ

2
S(t)] = 0. We finally obtain

for the quantum skew divergence with µ = 1/4

S1/4(ρ
1
S(t), ρ

2
S(t)) =

(
1

4 ln 4
+

3

4 ln(4/3)

)[
1−H

({
1
2 (1 + e−Γ(t)), 1

2 (1− e−Γ(t))
})]

− 1

8 ln(4)

[
ln
(
1− 1

4e
−2Γ(t)

)
+ e−Γ(t) ln

(
1− 1

2e
−Γ(t)

1 + 1
2e

−Γ(t)

)]

− 3

8 ln(4/3)

[
ln
(
1− 1

4e
−2Γ(t)

)
− e−Γ(t) ln

(
1− 1

2e
−Γ(t)

1 + 1
2e

−Γ(t)

)]
,

(52)
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and for the Holevo skew divergence with µ = 1/4

K1/4(ρ(t), σ(t)) =
8

4 + 6 ln(4/3)

[
1−H

({
1
2 (1 + e−Γ(t)), 1

2 (1− e−Γ(t))
})]

− 4

4 + 6 ln(4/3)
ln

(
1− 1

4
e−2Γ(t)

)
+

2e−Γ(t)

4 + 6 ln(4/3)
ln

(
1− 1

2e
−Γ(t)

1 + 1
2e

−Γ(t)

)
. (53)

3.2.1 Temperature and coupling strength dependence

We can now exploit the explicit time-dependent expressions for the decoher-
ence function and for the different distinguishability quantifiers to investigate
the temperature and coupling dependence of the non-Markovianity measure.
Making reference to Eq. (28) and Eq. (50) we have

M(Φ, D, P 1,2
φ ) =

∑
n

[e−Γ(tnf ) − e−Γ(tni )], (54)

while considering Eq. (51) we obtain

M(Φ,
√
J, P 1,2

φ ) =
∑
n

[√
1−H

({
1
2 (1 + e−Γ(tnf )), 1

2 (1− e−Γ(tnf ))
})

−
√

1−H
({

1
2 (1 + e−Γ(tni )), 1

2 (1− e−Γ(tni ))
})]

,(55)

where the pairs {tni , tnf }n denote the time windows in which the distinguisha-
bility quantifiers shows revivals. Similar but more cumbersome expressions can
be written for K1/4 and S1/4. All of these expressions provide monotonically
increasing functions of Γ, so that the pairs {tni , tnf }n are determined by the time
regions in which Γ(t) decreases, that can be determined numerically.

The behavior of these measures as a function of inverse temperature β and
coupling strength κ are plotted in Fig. 2 and Fig. 3 respectively. For the case of
the temperature dependence they all show an increase of non-Markovianity for
decreasing temperature. The two distances D,

√
J have a very similar behavior

and higher sensitivity with respect to the two divergences K1/4 and S1/4. The
Holevo skew divergence K1/4 further shows a slightly stronger temperature de-
pendence when compared with the quantum skew divergence S1/4. Investigating
the coupling dependence strength all quantifiers point to a non-monotonic be-
havior of the measure, initially increasing and later vanishing for strong enough
coupling. Also in this case the two distances D,

√
J behave similarly and exhibit

a higher sensitivity with respect to the two divergencesK1/4 and S1/4. Again the
Holevo skew divergence K1/4 features a slightly more marked coupling strength
dependence with respect to the quantum skew divergence S1/4.
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βℏη

M

Temperature dependence

Figure 2: Plot of the non-Markovianity measure for the spin-boson dephasing
model in its dependence on the inverse temperature, for the different quantifiers
D,

√
J , K1/4 and S1/4.

4 Conclusions

We have considered a general framework for the characterization of quantum
non-Markovian dynamics, that is based on the behavior in time of the distin-
guishability between system states obtained starting from different initial condi-
tions. The framework includes both distances and divergences. After a brief dis-
cussion of the physical motivation behind the approach, we have considered the
behavior of distances and divergences in the study of a general physical model
of decoherence. We investigate in particular the amount of non-Markovianity
associated to the model in the dependence on physical parameters such as tem-
perature and coupling strength. The behavior of two distances, namely trace
distance and square root of the Jensen-Shannon divergence, is compared with
the one of two divergences, namely Holevo and quantum skew divergence. It
appears that the approach is robust with respect to the choice of quantifier, in
that they all exhibit the same dependence on the physical parameters of the
model. At the same time distances are more sensitive than divergences in their
dependence on these parameters.
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Figure 3: The same as in Fig. 2, but considering the coupling strength depen-
dence of the non-Markovianity measure.

Acknowledgments

The work was partially supported by the Italian MIUR under PRIN 2022.

References
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