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Simple Summary: PGRMC1 is a multifunctional protein regulating multiple aspects of cell prolif-
eration, including cell viability, apoptosis, entry into the cell cycle, and the subsequent progression
of cell division. In this review, we highlight the emerging role of PGRMC1 during the M phase
and cytokinesis, which, compared to other PGRMC1 functions, have received modest attention
from the scientific community. Mechanistically, we present insights into how the association with
the chromosomal passenger complex and the cytoskeleton and their participation in membrane
trafficking might contribute to the control of cell division.

Abstract: During mitosis, chromosome missegregation and cytokinesis defects have been recognized
as hallmarks of cancer cells. Cytoskeletal elements composing the spindle and the contractile ring
and their associated proteins play crucial roles in the faithful progression of mitotic cell division. The
hypothesis that PGRMC1, most likely as a part of a yet-to-be-defined complex, is involved in the
regulation of spindle function and, more broadly, the cytoskeletal machinery driving cell division
is particularly appealing. Nevertheless, more than ten years after the preliminary observation
that PGRMC1 changes its localization dynamically during meiotic and mitotic cell division, this
field of research has remained a niche and needs to be fully explored. To encourage research in
this fascinating field, in this review, we will recap the current knowledge on PGRMC1 function
during mitotic and meiotic cell division, critically highlighting the strengths and limitations of the
experimental approaches used so far. We will focus on known interacting partners as well as new
putative associated proteins that have recently arisen in the literature and that might support current
as well as new hypotheses of a role for PGRMC1 in specific spindle subcompartments, such as the
centrosome, kinetochores, and the midzone/midbody.

Keywords: progesterone receptor membrane component 1; spindle; cytokinesis; cell division;
cytoskeleton; mitosis; meiosis

1. Introduction

PGRMC1 is a small transmembrane protein that is highly conserved in eukaryotes and
has been related to an unusually high number of cellular functions, some of which were
discovered unexpectedly from the screening of different proteins in relevant biological
models. The multiplicity of the PGRMC1 function has been extensively reviewed [1–3],
which is also why this Special Issue has been proposed [1].

The primary goal of this review article is to highlight the current knowledge of
PGRMC1 function in regulating mammalian cell proliferation, specifically by mechanisms
set in motion during the progression of cell division (M phase/cytokinesis), which, so far,
has received less attention from the scientific community. Although PGRMC1, together
with its partner PGRMC2, participates in many other functions that impact cell proliferation,
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such as cell viability and apoptosis and entry into the cell cycle, these functions have been
reviewed elsewhere and will not be further discussed here [3–5].

At first glance, the question is whether a membrane protein can interact and even-
tually modulate cytoskeletal elements. Indeed, many recent studies have revealed the
complexity of cell division, which potentially holistically involves every part of the cell.
The formulation of the hypothesis about how PGRMC1 is involved in cell division cannot
be separated from a detailed description of the process itself. Therefore, in the first part of
the review, we summarize the key mechanisms of cell division that might be important in
the context of PGRMC1 biology: this part is mostly a summary of comprehensive reviews
on specific aspects of cell division. The current literature revealing the PGRMC1 function
in cell division is reviewed and critically discussed in the second part. Finally, future
directions are suggested.

2. Cell Division

Mitosis and meiosis are two forms of cell division conserved in eukaryotes and evolved
from a common ancestor by adapting to different selective pressures [6]. During mitosis, the
spindle microtubules “capture” the mitotic chromosomes (each made of two identical sister
chromatids) and move them to the equator (congression) so that, during metaphase, pairs
of sister chromatids become bioriented. During anaphase, chromatid cohesion is lost, and
the two sister chromatids are pulled apart to opposite sides of the cell (segregation), where
they decondense and are re-surrounded by the nuclear envelope during telophase [7,8].
Conversely, during the first meiotic division, the spindle arranges pairs of homologous
chromosomes (each consisting of pairs of sister chromatids) at the equator of the spindle.
Therefore, homologous chromosomes are kept side by side on the spindle equator facing
opposite poles in metaphase I, and each of them is pulled apart by spindle microtubules in
the subsequent phases of meiosis I [7,9]. Subsequently, the segregation of sister chromatids,
occurring during the second meiotic division, mirrors mitotic division [7].

Despite the highlighted differences, both types of cell division rely on the function
of a cytoskeletal “nanomachinery” [7] made of (1) the microtubule-based spindle and its
associated motor proteins that drive chromosome/chromatid segregation [8] and (2) the
actin cytoskeleton, which exerts crucial roles during mitotic entry, throughout chromosome
segregation and, later on, during cytokinesis, when the actin-based contractile ring drives
cytoplasm division into daughter cells [10–15]. In addition, the kinetochore, made up of
many proteins that associate with the centromeric region of mitotic chromosomes, forms
the mechanical hub of chromosome attachment to the spindle, aiding in correct congression,
orientation, and subsequent segregation [9,16,17]. The kinetochore also has a key role in
preventing aneuploidy since it is implicated in the spindle assembly checkpoint (SAC, see
below), which ensures that chromosome segregation starts only after the correct attachment
of all kinetochores and microtubules is established [9,16,17].

Chromosome/chromatid segregation and cytokinesis are highly interconnected and
coordinated processes in both types of cell division. For example, the spindle itself dictates
the site of furrow ingression. In turn, the position of the spindle within the dividing cell
determines the symmetry of cell division [18,19]. Thus, if the spindle is centrally located,
each daughter cell will contain approximately half of the original cytoplasmic content.
On the contrary, if the spindle is closer to one of the cell boundaries, the cytoplasm will
be unevenly distributed into the daughter cells, resulting in an asymmetrical division.
Notably, symmetry—or lack thereof—during cell division dictates the fate of the daughter
cells in many cell types [12,19–25]. In mammalian oocytes, for instance, two consecutive
asymmetrical divisions occur to generate a large cell (the ovum) and two small cells (the
polar bodies), each containing half of the genetic material of the dividing cell and a minimal
quantity of the oocyte cytoplasm. The two polar bodies degenerate, while the ovum
continues its journey by combining its genetic material with the paternal material in a
process called syngamy [26].
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The mechanisms by which actin filaments and microtubules generate forces that
ultimately move cellular elements and serve as tracks for motor proteins have been the
subject of intensive studies and are reviewed elsewhere [7,10,18,27–33]. Herein, a few
general features of cell division are recapitulated to support the discussion about putative
PGRMC1 functions in the second part of the paper. These features are summarized in
Figure 1.

Cancers 2022, 14, x FOR PEER REVIEW 3 of 23 
 

 

quantity of the oocyte cytoplasm. The two polar bodies degenerate, while the ovum con-
tinues its journey by combining its genetic material with the paternal material in a process 
called syngamy [26].  

The mechanisms by which actin filaments and microtubules generate forces that ul-
timately move cellular elements and serve as tracks for motor proteins have been the sub-
ject of intensive studies and are reviewed elsewhere [7,10,18,27–33]. Herein, a few general 
features of cell division are recapitulated to support the discussion about putative 
PGRMC1 functions in the second part of the paper. These features are summarized in 
Figure 1.  

 
Figure 1. Schematic representation of the key features of mitotic cell division and cytokinesis. (A) 
During prophase/prometaphase, cell rounding occurs due to the rearrangement of the actin cyto-
skeleton. The duplicated centrosomes migrate around the nucleus, nucleate the spindle microtu-
bules, and organize the spindle poles. The nuclear envelope breaks down, and the spindle microtu-
bules promote mitotic chromosome congression. (B) During metaphase, the spindle consists of as-
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tromere. (C) During anaphase, the chromatids segregate. The division plane is determined by a 
mechanism involving interactions between the cortex and the spindle. The cleavage furrow contain-
ing an actomyosin ring assembles and begins to contract. The CPC relocalizes at the central spindle. 
(D) During telophase/abscission, the nuclear envelopes reassemble around the decondensing chro-
mosomes. The contractile ring contracts further, leading to the ingression of the furrow and con-
stricting interpolar microtubules of the midzone into a restricted area (midbody). The CPC is con-
centrated in the midbody. During abscission, the furrow “seals” and divides the daughter cells via 
a mechanism thought to involve vesicle transport/exocytosis. Substantial rearrangements of the 
membranous compartment occur at all stages. Membrane vesicles are found associated with the 
spindle and participate in membrane remodeling during abscission. Image inspired by and modi-
fied from [7,31,33]. Created with BioRender.com (access on 10 November 2022) 
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Figure 1. Schematic representation of the key features of mitotic cell division and cytokinesis. (A) Dur-
ing prophase/prometaphase, cell rounding occurs due to the rearrangement of the actin cytoskeleton.
The duplicated centrosomes migrate around the nucleus, nucleate the spindle microtubules, and
organize the spindle poles. The nuclear envelope breaks down, and the spindle microtubules promote
mitotic chromosome congression. (B) During metaphase, the spindle consists of astral microtubules,
which link spindle poles to the cell cortex; chromosomal and kinetochore microtubules, which overall
link the chromosomes to poles; and interpolar microtubules, which link the two poles. The proteins of
the chromosomal passenger complex (CPC) are concentrated at the centromere. (C) During anaphase,
the chromatids segregate. The division plane is determined by a mechanism involving interactions
between the cortex and the spindle. The cleavage furrow containing an actomyosin ring assembles
and begins to contract. The CPC relocalizes at the central spindle. (D) During telophase/abscission,
the nuclear envelopes reassemble around the decondensing chromosomes. The contractile ring
contracts further, leading to the ingression of the furrow and constricting interpolar microtubules
of the midzone into a restricted area (midbody). The CPC is concentrated in the midbody. During
abscission, the furrow “seals” and divides the daughter cells via a mechanism thought to involve
vesicle transport/exocytosis. Substantial rearrangements of the membranous compartment occur
at all stages. Membrane vesicles are found associated with the spindle and participate in mem-
brane remodeling during abscission. Image inspired by and modified from [7,31,33]. Created with
BioRender.com (access on 10 November 2022).

2.1. The Coordinated Role of the Cytoskeleton

Cytoplasmic and nuclear events are highly interconnected and coordinated from the
beginning of mitotic entry and spindle assembly [10]. The cellular architecture globally
reorganizes, leading to so-called “mitotic cell rounding” [10,34]. In this stage, typical
events include (1) the transient loss of cellular adhesion, which is, in turn, induced by focal
adhesion disassembly [35–37], (2) the separation of centrosomes, which is powered by the
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combined action of motor proteins, microtubules, and actomyosin [38–41], (3) the assembly
of the actomyosin cortex [42,43], and (4) the substantial remodeling of the nucleus [44,45].

The formation and proper function of the bipolar spindle are crucial for cell divi-
sion. At least two mechanisms of bipolar spindle formation have been described. In
the first one, which is generally active in mitosis, the microtubules nucleate from the
centrosomes [8,46–48]. In the second one, which is mainly described in oocytes, centro-
somes are lacking, and the chromosomes induce microtubule assembly [7,8,49]. Within
this modality, however, species-specific differences have also been described [50–52] (see
Figure 2 in [51]); for instance, in mouse oocytes, canonical centrosomes are functionally re-
placed by acentriolar microtubule-organizing centers (MTOCs) [50], while human, bovine,
and porcine oocytes lack distinct acentriolar MTOC foci at their spindle poles [53,54]. These
and other differences in the localization of spindle-related structures might indicate the
species-specific functions of some proteins during oocyte meiosis.

Signaling that leads to cytokinesis commences as early as anaphase when the micro-
tubules drive chromatid segregation to the opposite poles of the spindle [31,32]. In this
stage, the overlapping microtubules in the midzone form the central spindle, and RhoA-
GTP-dependent signaling between the central spindle and the cell cortex is established [55].
This spindle/cortex cross-talk is crucial for the formation of the actomyosin-based con-
tractile ring, which, in turn, drives cytokinesis [32]. As the contractile ring constricts,
the spindle midzone matures to form a compact structure called the “midbody”, which
ultimately organizes the intercellular bridge and drives the final abscission [32].

2.2. The Spindle Assembly Checkpoint (SAC) and the Chromosomal Passenger Complex (CPC)

In metazoans, the SAC is an essential pathway that prevents chromosome missegrega-
tion and aneuploidy. Many proteins and protein complexes centered in the kinetochore
during prometaphase/metaphase contribute to its integrity [9,16,17]. The SAC ultimately
targets the Anaphase-Promoting Complex (APC) by preventing the destruction of cyclin
B and securin, thus keeping sister chromatids together. Only when all chromosomes be-
come bioriented and the SAC senses the proper chromosome–microtubule tension is the
checkpoint system finally turned off. Then, a cascade of reactions leads to the exit from
mitotic arrest, the activation of the APC, the loss of sister chromatid cohesion, and anaphase
progression [9,16,17].

A key player of the SAC is the mitotic checkpoint complex (MCC), which contains the
APC activator CDC20 and the spindle assembly checkpoint proteins MAD2, BUBR1/Mad3,
and BUB3. Other “core” SAC components include the kinase Aurora-B (AURKB). These
proteins are required to amplify the SAC signal and the rate of MCC formation (reviewed
in [16]).

A mechanism similar to the SAC has been found in meiosis, and it involves the
same crucial components [9,56,57]. However, during meiosis I, sister chromatid cohesion is
partially retained to allow homologous chromosome segregation, implying the involvement
of meiosis-specific components and tight regulation by kinase and phosphatase enzymes [9].

In addition to being part of the SAC, AURKB is the key component of one crucial
“conductor” of cell division: the chromosomal passenger complex (CPC), which also com-
prises the inner centromere protein INCENP, survivin, and borealin [30,33,58–61]. The CPC
changes its localization dynamically during mitotic and meiotic cell division: it associates
with the chromatin in prophase, the centromeres in metaphase and early anaphase, and
the midzone and midbody in late anaphase and telophase, respectively [30,33]. The dy-
namic localization correlates with its multiple functions, which include the formation of
the bipolar spindle and its stability, the centromeric cohesion and regulation of kinetochore-
microtubule attachments, the correct alignment of chromosomes on the spindle equator
and the SAC, the formation of the central spindle in anaphase, and, later on, the completion
of cytokinesis [30,33].
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2.3. The Role of the Membranous Compartment

In addition to the cytoskeletal elements and associated motor proteins, all components
of the cytoplasm, including the organelles of the endomembranous system, are substantially
rearranged during both mitotic and meiotic cell division, contributing to their successful
completion [62–68].

For instance, the endoplasmic reticulum (ER) changes its localization and structure as
soon as the cell enters mitosis. When the nuclear envelope breaks down, the ER changes
from its characteristic interphasic morphology to extended cisternae, with a reduction
in tubule structures [69,70]. As mitosis progresses, the ER accumulates and aligns along
the mitotic spindle, at the spindle poles, and, in some organisms, along the central spin-
dle/midbody [71,72]. In addition, ER tubules associate with chromatin during late mitosis,
which is essential for nuclear envelope reformation and the organization of the nuclear
pore complex [66].

While membranes largely surround the spindle apparatus and seem to be essential for
spindle function [73], electron microscopy studies have revealed that within the spindle,
there is a relatively low abundance of ER- and Golgi-derived membranes and coated vesi-
cles [74–77]. Nevertheless, membrane trafficking has recently emerged as a key component
of cell division. Strikingly, recent findings reveal that endocytic membrane trafficking is
involved in trafficking to and from the centrosome [78,79]. At the centrosome, endocytic
membrane trafficking has a role in centrosome maturation and duplication [79–83]. Inter-
estingly, recycling endosomes have been found at the spindle poles, at the central spindle’s
boundaries, and in the midbody’s proximity [84–87]. Functionally, at these locations, endo-
somes bearing distinct Rab proteins have been implicated in the formation, positioning, and
organization of the mitotic spindle, the congression of chromosomes, and cytokinesis [82].
In cytokinesis, membrane trafficking is crucial during abscission, when distinct machinery
involving the endosomal sorting complex required for transport III (ESCRT-III) splits the
plasma membrane of the nascent daughter cells [31,32,64].

In the context of membrane trafficking regulating cell division, a special mention has
to be reserved for clathrin and clathrin-coated vesicles, mainly because the perturbation
of proteins involved in membrane dynamics, including clathrin and dynamin, disrupts
cytokinesis [62,88–92]. Clathrin-coated structures change localization dynamically from
the spindle to a region between the separating chromosomes and subsequently disappear
in the equatorial region. It has been hypothesized that this directional movement drives
crucial membrane remodeling and/or signaling processes during cell division [88].

Interestingly, clathrin also controls earlier stages of cell division, localizing to the
mitotic spindle until telophase [93,94]. However, data suggest that spindle-associated
clathrin is not bound to membranes, but it directly binds to the spindle through the amino-
terminal domain of the clathrin heavy chain [94,95]. Importantly, clathrin provides a
structural lattice that organizes and stabilizes the kinetochore microtubules at the spindle,
thus exerting a role in chromosome congression and segregation [94,96,97]. Similar crucial
functions for clathrin have been described in meiosis [98,99].

3. PGRMC1 and Cell Division
3.1. Experimental Evidence That PGRMC1 Participates in the Control of Cell Proliferation and
Cell Division

The mechanism by which PGRMC1 controls cell division is difficult to dissect. In fact,
the multiplicity and cell-specificity of PGRMC1 function [1–3,100] imply that interfering
with its function likely affects key biological processes during interphase, in addition to
cell division. In addition, although the small molecule AG205 has been used as a PGRMC1
inhibitor, it is becoming evident that its effect is far from specific [1,101,102]. Therefore,
caution should be taken when interpreting findings derived solely from AG205 treatment,
unless they are validated by other means. Unfortunately, no specific PGRMC1 chemical
inhibitors have been identified to date.



Cancers 2022, 14, 5755 6 of 23

Under these circumstances, the most informative studies are those in which PGRMC1
expression is experimentally altered (Table 1). Notably, all of the studies cited in Table 1
directly measured cell proliferation, either by assessing mitotic/meiotic progression, the
fold increase in cell number, and the tumor mass or by using the MTT assay, previously
validated by cell counting [103–105].

Table 1. Experimental evidence supporting a role for PGRMC1 in cell proliferation and cell division.

Reference Title Year Cell Type Experimental Approach Used
to Disturb PGRMC1 Function

Effect on Cell Proliferation
(Phenotype)

Proposed
Mechanism (If Any) Ref.

Regulation of ovarian cancer cell
viability and sensitivity to

cisplatin by progesterone receptor
membrane component 1

2008 Ovcar-3 cells

Overexpression of exogenous
PGRMC1; siRNA-mediated

gene silencing; transfection of
antibody

Increased cell viability in
response to cisplatin

Regulation of
apoptosis and P4

antiapoptotic action
[106]

Progesterone receptor membrane
component-1 regulates the
development and Cisplatin

sensitivity of human ovarian
tumors in athymic nude mice

2009
Human ovarian

cancer cells (SKOV-3
cells)

Gene silencing by short hairpin
RNA knockdown approach;
xenograft model of athymic

nude mice

Lowered in vitro growth and
reduced tumor xenograft

growth

Regulation of
apoptosis and P4

antiapoptotic action
[107]

Progesterone receptor membrane
component 1 expression and

putative function in bovine oocyte
maturation, fertilization, and early

embryonic development

2010 Bovine oocytes Antibody injection Impaired meiotic progression Regulation of meiotic
spindle function [108]

Progesterone receptor membrane
component 1 (Pgrmc1): a heme-1

domain protein that promotes
tumorigenesis and is inhibited by

a small molecule

2010

Human A549
non-small cell lung

cancer cells and
MDA- MB-468 breast

cancer cells

siRNA-mediated gene silencing
and short hairpin RNA
knockdown approach;

xenograft model of athymic
nude mice

Reduced tumor xenograft
growth - [109]

A novel role for progesterone and
progesterone receptor membrane
component 1 in regulating spindle

microtubule stability during rat
and human ovarian cell mitosis

2011

Rat spontaneously
immortalized

granulosa cells
(SIGCs) and human
ovarian cancer cells

(SKOV-3 cells)

Antibody transfection;
PGRMC1 downregulation Lowered growth rate

Regulation of spindle
function

(microtubule-
mediated
process)

[110]

Progestogens and
membrane-initiated effects on the

proliferation of human breast
cancer cells

2012 MCF-7 PGRMC1 overexpression
Increased cell proliferation in

response to progestin
treatment

[104]

Overexpression of progesterone
receptor membrane component 1:
possible mechanism for increased

breast cancer risk with
norethisterone in
hormone therapy

2013 MCF-7
PGRMC1 overexpression;

xenograft model of athymic
nude mice

Increased cell proliferation of
PGRMC1-overexpressing

breast cancer cells in
response to E2/NET

combination

[103]

Progesterone receptor membrane
component-1 (PGRMC1) and

PGRMC-2 interact to suppress
entry into the cell cycle in

spontaneously immortalized rat
granulosa cells

2014

Rat spontaneously
immortalized

granulosa cells
(SIGCs)

siRNA-mediated gene silencing

Increased entry into the cell
cycle without cell

proliferation—PGRMC1-
and/or PGRMC2-depleted

cells accumulate in
metaphase and undergo

apoptosis

Regulation of entry
into the G1 stage of

the cell cycle through
interaction with

PGRMC2 and G3BP2

[111]

Progesterone receptor membrane
component 1 promotes survival of
human breast cancer cells and the

growth of xenograft tumors

2016 MDA-MB-468 breast
cancer cells

Short hairpin RNA knockdown
approach; xenograft model of

athymic nude mice

Reduced tumor xenograft
growth

Regulation of cell
viability [112]

PGRMC1 participates in late
events of bovine granulosa cells

mitosis and oocyte meiosis
2016

Primary bovine
granulosa cell culture;

bovine oocytes
siRNA-mediated gene silencing

Decreased cell proliferation;
accumulation of M-phase
cells that eventually die;

defective meiotic maturation

Regulation of
cytokinesis and of

mitotic spindle
function through
association with

AURKB

[113]

Haem-dependent dimerization of
PGRMC1/Sigma-2 receptor

facilitates cancer proliferation and
chemoresistance

2016

HCT116 cells and
derived tumors in a

model of liver
metastases of human

colon cancer

Stable PGRMC1 knockdown
and xenograft model of NOG

mice

Reduced cell proliferation of
spheroids grown in vitro and

reduced tumor growth
in vivo

Regulation of EGFR
and cytochrome P450

signaling
[114]

Progesterone receptor membrane
components 1 and 2 regulate

granulosa cell mitosis and
survival through a

NFKappaB-dependent
mechanism

2019 Mouse ovarian cells
Conditional knockout PGRMC1

mice; siRNA-mediated gene
silencing

Increased follicular
atresia—ovarian granulosa

cells of PGRMC1 conditional
KO mice enter the cell cycle

more frequently compared to
controls but then do not

seem to progress, causing
increased follicular atresia

Regulation of entry
into the cell cycle by
an NFkB-mediated

action

[115]

PGRMC1 Promotes
Progestin-Dependent Proliferation
of Breast Cancer Cells by Binding

Prohibitins Resulting in
Activation of ERalpha Signaling

2021 Various breast cancer
cell lines PGRMC1 overexpression

Increased cell proliferation in
response to progestin

treatment

Regulation of ERα
signaling [105]
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In the following paragraphs, we will discuss what we have learned from these studies.
Nevertheless, it should be highlighted that only a few of them experimentally tested the
hypothesis that PGRMC1 is directly involved in the progression of cell division, while the
majority concentrated on cell proliferation and the regulation of tumor growth, supporting
a role in cell cycle regulation, either direct or indirect.

3.1.1. Control of Mitotic Cell Division

The observation that PGRMC1 is overexpressed in many types of cancers was probably
the first indication of a relationship between its expression and cell proliferation. After the
discovery of PGRMC1 as a putative mediator of progesterone action [1,2,116], many studies
demonstrated that experimentally downregulating PGRMC1 in somatic cells reduced cell
growth. In these studies (Table 1), cancerous and non-cancerous cell lines where PGRMC1
was downregulated grew slower in vitro than their parental cells. Accordingly, using
cell-line-derived xenograft models, several studies have demonstrated that tumors derived
from PGRMC1-depleted cancer cells grow slower than those derived from their respective
parental cell lines.

On the other hand, fewer studies have tested the hypothesis that the exogenous
overexpression of PGRMC1 accelerates cell proliferation. In these studies, various breast
cancer cell lines overexpressing PGRMC1 showed increased cell proliferation in response
to various progestin treatments [103–105]. Importantly, PGRMC1 overexpression showed
different outcomes that were both cell- and progestin-type-dependent.

Altogether, the studies listed in Table 1 led to the general conclusion that PGRMC1
promotes proliferation. However, this conclusion is rather simplistic since the differential
regulation of the cell proliferation rate upon the attenuation or overexpression of a gene does
not necessarily confirm its involvement in the regulation of cell division. Cell proliferation
can, indeed, occur because of increased cell viability, which leads to reduced cell death in
response to stressors or as the result of an increased frequency of mitotic cell divisions. In
turn, cell division is controlled at different levels, including the entry into the cell cycle
and progression throughout the mitotic phases. Most often, the balance of these events
determines whether the proliferation of a group of cells will increase or decrease.

Notably, many studies have focused on the mechanisms by which PGRMC1 regulates
cell viability and apoptosis [106,117–121]. In addition, some studies have found that
PGRMC1, together with PGRMC2, the other member of the PGRMC family, participates
in the entry into the cell cycle through a complex mechanism that ultimately involves
the control of NFKB/p65 localization, thereby regulating its activity as a transcription
factor [115]. Notably, from a mechanistic point of view, these studies focused on the
entry into the cell cycle, which was assessed by BrdU incorporation or the expression
of the G1/S component of the FUCCI cell cycle sensor [111,115]. Thus, a specific role in
the progression of mitotic cell division was not directly assessed. Nevertheless, as also
discussed below, it is important to note that, although interfering with PGRMC 1 and
2 expression/interaction increased the rate of entry into the cell cycle and increased the
percentage of mitotic figures, this was not accompanied by increased cell proliferation, but
rather cell death [111,115]. These studies and their relevance in reproductive cancer biology
have been recently reviewed [3–5].

As anticipated, despite the clear experimental evidence that PGRMC1 downregula-
tion slows cell proliferation, few studies have specifically focused on its function in cells
undergoing mitotic cell division. For instance, to date, no published research has used
synchronized cells, which makes the interpretation of the results difficult and probably
leads to underestimating the precise role of PGRMC1 in mitotic progression.

However, some experiments were conducted in our lab to test the hypothesis that
PGRMC1 is directly involved in the progression of mitotic cell division. In these studies,
siRNA-mediated PGRMC1 downregulation reduced cell proliferation in the primary culture
of bovine granulosa cells (bGCs) [113]. Furthermore, the lower rate of cell proliferation
was accompanied by an increase in cells in the G2/M phase of the cell cycle, which is
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consistent with an arrested or prolonged M phase. This observation was supported by
time-lapse imaging revealing defects in mitotic progression when PGRMC1 was silenced,
specifically during late karyokinesis [113]. These data confirmed previous studies in rat
spontaneously immortalized granulosa cells (SIGCs), in which the transfection of an anti-
PGRMC1 antibody slowed cell proliferation while increasing the percentage of mitotic
figures [110]. Furthermore, in SIGCs, the depletion of PGRMC1 and its partner PGRMC2
increased the rate of entry into the cell cycle and the accumulation of cells in the metaphase
stage that finally underwent cell death [111]. More recently, these observations were
confirmed in conditional knockout mice in which Pgrmc1 was depleted in the reproductive
tract [115]. In this model, Pgrmc1 KO was associated with an increased rate at which
granulosa cells entered the cell cycle and, at the same time, with a ≥2-fold increase in
follicular atresia [115].

Altogether, these data support the hypothesis that the downregulation of PGRMC1
would facilitate the so-called “mitotic catastrophe”, which is defined as cell death resulting
from aberrant mitosis or, more precisely, the “atypical mechanism that senses mitotic failure
and respond to it by driving the cell to an irreversible fate, be it apoptosis, necrosis or
senescence” [122–124]. This hypothesis is relevant to cancer biology, as it would imply that
PGRMC1 overexpression in cancerous cells sustains the propagation of abnormal cancer
cells, helping them to escape mitotic catastrophe.

3.1.2. Control of Meiotic Cell Division

To the best of our knowledge, only our group has used siRNA technology to down-
regulate PGRMC1 expression in mammalian oocytes. siRNA-mediated gene silencing is
challenging in oocytes undergoing meiotic maturation (i.e., the transition from prophase I
to metaphase II), because oocytes are transcriptionally silent at this stage. Nevertheless, this
model is highly informative, as it allows PGRMC1 to be interfered with only at a precise
phase of meiotic progression. In turn, this would exclude possible biases due to a reduced
availability for other key processes in other stages of the cell cycle. Such a scenario is almost
impossible to obtain in somatic cells undergoing mitosis. In our studies, using the bovine
model, we were able to suppress mRNA and protein expression by approximately 40%,
which was consistent with a proportional decrease in oocytes properly completing the first
meiotic division by emitting the first polar body. In parallel, we observed an increased
percentage of oocytes showing aberrant meiotic figures, with misaligned chromosomes
on the metaphase II plate and, often, scattered chromosomes in the cytoplasm. The effect
of PGRMC1 silencing by siRNA technology mirrored the effect of treating oocytes with
increasing doses of AG205 [113]. Likewise, similar outcomes were obtained by perturbing
PGRMC1 function by means of an anti-PGRMC1 injection [108]. Notably, the effect on
meiotic progression was more robust when oocytes were treated with either AG205 or the
blocking antibody, which could be due to a more immediate and stronger perturbance
of PGRMC1 function. Nevertheless, we cannot exclude that both AG205 and the anti-
body could have interfered with some nonspecific (unknown) target that contributed to
defective meiotic progression. Clearly, transgenic mouse models in which Pgrmc1 expres-
sion is conditionally depleted in oocytes are highly encouraged to add insights into this
intricate issue.

Although this review focuses on mammals, it should be mentioned that the effect of
silencing PGRMC1 expression by means of both morpholino and CRISPR/Cas9 technology
was tested in zebrafish oocytes [125–127]. Nevertheless, in teleost fish, as in amphibians,
oocyte maturation is induced by a maturation-inducing steroid. This factor is secreted by
ovarian follicular cells in response to a gonadotropin surge and initiates oocyte maturation
by binding to a specific progestin receptor on the oocyte plasma membrane [128,129].
Accordingly, the above-mentioned studies focused on the putative participation of PGRMC1
in the process by which membrane progestin receptors induce oocyte maturation, rather
than on a possible role in mediating the subsequent meiotic progression.
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3.1.3. Putative PGRMC1 Mechanisms of Action Controlling the Progression of Mitotic and
Meiotic Cell Division

Only a few hypotheses on the possible mechanisms by which PGRMC1 regulates
mitotic/meiotic progression have been experimentally tested. These hypotheses include
the interaction with key components of the CPC and the modulation of the stability of the
spindle via interaction with tubulin [108,110,113,130–133]. These studies were restricted to
ovarian cells, while one study used adrenocortical NCI-H295R cells [133].

Chronologically, our interest in PGRMC1 biology was triggered by the preliminary
observation of its peculiar localization in maturing bovine oocytes (see below). To the best
of our knowledge, no data have been published on maturing oocytes of other mammals.
However, since some differences exist in the modalities by which the spindle is formed
in mammals (see Section 2.1), it would not be surprising if differences in the localization
of PGRMC1 were found. This would also imply that PGRMC1 subcompartmentalization
might depend on interacting with other spindle proteins. Later, localization in the spindle
apparatus was confirmed in somatic cells undergoing mitotic cell division.

The presence of PGRMC1 in the spindle apparatus is also confirmed by some pro-
teomic studies that analyzed the composition of the mitotic spindle and by pull-down
experiments of key proteins regulating mitotic progression (Table 2). Despite the differ-
ences in the methodological approaches used in these studies and possible issues related to
specificity, it is evident that PGRMC1 was not consistently detected in all of the reported
studies. This inconsistency may be due to cell-type specificity and, even more, to the stabil-
ity of the spindle in different cell types. Likewise, it is possible that weak interactions are
responsible for the maintenance of PGRMC1 at this location. As such, we cannot exclude
that the preparation of the cellular fraction to be analyzed strongly impacts the presence
of PGRMC1 at the spindle apparatus. In our work, for instance, PGRMC1 localization
at the meiotic spindle was less evident when high doses of detergent were used in the
permeabilization phase (unpublished data).

Table 2. Proteomic studies revealing (or not) PGRMC1 association with the spindle apparatus.

Title Year Cell Type Cellular Fraction Method Presence of
PGRMC1 (Y/N) Ref.

Dissection of the mammalian
midbody proteome reveals

conserved cytokinesis mechanisms
2004 Chinese hamster

ovaries cells Midbody Mass
spectrometry N [134]

Proteome analysis of the human
mitotic spindle 2005 HeLa S3 cells Mitotic spindle Mass

spectrometry N [135]

Phosphoproteome analysis of the
human mitotic spindle 2006 HeLa S3 cells Mitotic spindle Mass

spectrometry Y [136]

Molecular architecture of the
kinetochore–microtubule interface 2008 Various cell type Kinetochore Review paper N [137]

Quantitative analysis of the human
spindle phosphoproteome at distinct

mitotic stages
2009 HeLa S3 cells Mitotic spindle SILAC

technology N [138]

The protein composition of mitotic
chromosomes determined using

multiclassifier combinatorial
proteomics

2010 Chicken DT40
cells

Mitotic
chromosome
(kinetochore)

SILAC
technology Y [139]

Binding Partner Switching on
Microtubules and Aurora-B in the
Mitosis to Cytokinesis Transition

2010 HeLa S3 cells M/C phase
(microtubules) SILAC MS Y [140]

Mitotic spindle proteomics in
Chinese hamster ovary cells 2011 Chinese hamster

ovaries cells Mitotic spindle Mass
spectrometry Y [141]

Cell cortex composition and
homeostasis resolved by integrating
proteomics and quantitative imaging

2013
Human

melanoma
cells/HeLa cells

Cell cortex
(MII cells) LC-MS/MS N [142]

Cellular control of cortical
actin nucleation 2014

Human
melanoma

cells/HeLa cells
Cell cortex
(MII cells) LC-MS/MS N [143]
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Table 2. Cont.

Title Year Cell Type Cellular Fraction Method Presence of
PGRMC1 (Y/N) Ref.

A dynamic protein interaction
landscape of the human

centrosome-cilium interface
2015 293 T-REx cells Centrioles Mass

spectrometry Y [144]

Whole-proteome genetic analysis of
dependencies in assembly of a

vertebrate kinetochore
2015

Chicken
lymphoma B cell

line DT40

Mitotic
chromosome
(kinetochore)

Mass
spectrometry N [145]

Global phosphoproteomic mapping
of early mitotic exit in human cells

identifies novel substrate
dephosphorylation motifs

2015 HeLa Cells Mitotic spindle SILAC
technology Y [146]

The clathrin-dependent
spindle proteome 2016 Human HeLa

cells

Mitotic spindle
(KT and

centrosomes)
LC-MS/MS Y [147]

Spatial and proteomic profiling
reveals centrosome-independent

features of centriolar satellites
2019 Flp-In T-REx 293

(human) Microtubules mass
spectrometry N [148]

Mapping Proximity Associations of
Core Spindle Assembly

Checkpoint Proteins
2021

HeLa Flp-In
T-Rex and retinal

pigment
epithelium (RPE)

cells

Kinetochore
(BUB1 BUB1B

BUB3) association
LC-MS/MS Y [149]

The Proteomic Landscape of
Centromeric Chromatin Reveals an
Essential Role for the Ctf19CCAN

Complex in Meiotic
Kinetochore Assembly

2021 Yeast
(S cerevisiae)

Meiotic
centromeres and

kinetochores

Label-Free
Mass

Spectrometry
(LFQMS)

N [150]

One of the most remarkable, although not surprising, observations of studies focusing
on cell division is the conserved action that PGRMC1 seems to exert in the late stages of
mitotic division and oocyte meiosis, i.e., karyo-/cytokinesis. This function is consistent
with the localization in the spindle apparatus in both cell types and with the colocalization
with AURKB and A [108,110,113,130–133]. Specifically, immunofluorescence studies have
shown that PGRMC1 changes its localization dynamically: in somatic cells, it associates
with the spindle in metaphase, while it localizes to the midzone and the midbody in
anaphase and telophase/cytokinesis [108,110,113,130–133]. At all of these stages, PGRMC1
was found in close proximity to AURKB by means of PLA technology. This finding suggests
that PGRMC1 might mediate the action of the CPC complex, particularly at the midbody,
where the interaction is most prominent [113]. This observation is relevant since events
occurring at the central spindle are crucial for proper cell division [13,15].

In maturing bovine oocytes, in addition to the localization seen at the midzone and
midbody, well-defined localization at the centromeres was also observed [108,113,130,132].
Further experimental evidence has shown that (1) PGRMC1 predominantly colocalizes
with the active phosphorylated form of AURKB in maturing oocytes [108]; (2) PGRMC1
and AURKB are both mislocalized in oocytes with a high incidence of aneuploidy [130];
(3) altering AURKB function by using the AURKB inhibitor ZM447439 alters PGRMC1
localization in bovine oocytes, which is associated with meiotic defects [130]; (4) in adrenal
mitotic NCI-H295R cells, PGRMC1, together with its partner PGRMC2, colocalizes with
ALADIN, a nucleoporin that plays crucial roles in mitotic division by regulating AURKA;
and (5) PGRMC1 was found among the proteins that associate with core SAC components,
such as members of the BUB family [149]. Altogether, these findings support the hypothesis
that PGRMC1 is part of a complex that mediates the function of the CPC complex and/or
the SAC. Clearly, much more investigation is needed to confirm this hypothesis and finally
reveal mechanistic insights.

Part of the mechanism by which PGRMC1 controls cell division is related to its
association with beta-tubulin, as demonstrated in in vitro studies using SIGCs and SKOV-3
cells [110]. Specifically, in SKOV3, the downregulation of PGRMC1 increased the stability
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of spindle microtubules, as assessed by the rate of beta-tubulin disassembly in response to
cooling. In addition, the same study provided some insights into the possible role of the
P4-PGRMC1 interaction in controlling the spindle function. In fact, the effect of PGRMC1
depletion was mirrored by treatment with a high dose of P4 (4 µM) in the parental SKOV-3
cells. However, when the same treatment was applied to PGRMC1-depleted cells, P4
could not increase microtubule stability over that observed in PGRMC1-depleted cells.
These results indicate that the P4 effect on spindle microtubule stability is, at least in
part, mediated by PGRMC1 or, conversely, that PGRMC1’s action on the spindle can be
modulated by P4 [110].

Interestingly, the effect of P4 on microtubule assembly and its possible interaction
with the microtubule-associated protein MAP2 were reported years ago in neuronal
cells [151,152]. More recently, studies in zebrafish during gastrulation revealed that P4 mod-
ulates microtubule dynamics [153] by positively affecting microtubule plus-end growth
and tracking straightness in large yolk cells. Although the authors did not experimentally
test the participation of PGRMC1, they speculated that P4’s action on the microtubule is
mediated by a non-genomic mechanism at this stage of gastrulation, suggesting PGRMC1
as a possible mediator [153].

4. Other PGRMC1 Functions Found in Interphasic Cells Providing Insights into How
PGRMC1 Might Participate in the Progression of Cell Division
4.1. Interaction with the Actin Cytoskeleton and Function Mediating Cell Shape and Migration

In addition to its association with spindle microtubules, recent findings indicate that
PGRMC1 interacts with key components of the actin cytoskeleton [102]. As discussed
below, this evidence is particularly relevant in interphasic cells, where this interaction
seems to be responsible for the emerging role of PGRMC1 in mediating cell shape and
migration [154–159].

Between 2017 and 2020, Salsano and collaborators assessed the possible function
of PGRMC1 in decidualization, in which cells typically change their shape, becoming
rounded [158,159]. Using human endometrial stromal cells (ESCs) as an in vitro model,
they revealed that (1) PGRMC1 changes its localization during decidualization and (2) that
exogenous PGRMC1 overexpression inhibits in vitro decidualization, altering cytoskele-
ton rearrangement and prolactin secretion [158]. Further co-immunoprecipitation stud-
ies revealed a change in PGRMC1-associated proteins before and after decidualization.
Strikingly, the vast majority of these proteins were implicated in endomembrane traffick-
ing/cytoskeleton or mitochondrial function [159,160].

In 2020, Huang and collaborators used two oral squamous carcinoma cell lines with
different metastatic potentials to examine invasion mechanisms [155]. Their comparative
proteomic approach identified PGRMC1 as one of the targets involved in the invasion
mechanism. The silencing of PGRMC1 by siRNA reduced invasion in vitro as well as
in vivo using xenograft models [155]. Furthermore, in vitro, the phenotype was corre-
lated with reduced activity and/or the expression of key components of the migration
process [155]. Accordingly, Lee and collaborators [156] used a transgenic mouse model
that spontaneously developed breast tumors, which were in turn backcrossed with Pgrmc1
knockout (KO) mice to demonstrate that the tumors that developed in the Pgrmc1 KO mice
had a lower metastatic ability and a lower expression of focal adhesion kinase (FAK) [156].
This evidence was confirmed in in vitro studies with PGRMC1-depleted MCF-7 and MDA-
MB-231 breast tumor cells, which had lower in vitro migratory activity than the parental
cell lines [156].

In the same years, Thejer and collaborators [154] discovered that PGRMC1 phospho-
rylation influences the cell shape, motility, and invasion of pancreatic cancer cells (MIA
PaCa-2, MP). In this study, MP cells were stably transfected with wild-type HA-tagged
PGRMC1 or several phosphorylation mutants. Interestingly, cells transfected with wild-
type PGRMC1 mainly exhibited an elongated morphology, similar to the parental cell
lines. In contrast, the ones with PRGMC1 mutants showed a rounded morphology, which
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was dependent upon activated Rho-associated protein kinase (ROCK), which controls the
stiffening of cortical actomyosin [154]. In addition, proteomic analysis of these cells showed
that the increased motility of cells expressing PGRMC1 mutants was associated with a
higher abundance of proteins of the actin cytoskeleton [154].

Strikingly, the same group conducted pull-down experiments in the same MP cells, re-
vealing that many proteins of the actin cytoskeleton associate with HA-tagged PGRMC1 [102].
In addition, it has been reported that the cytochrome b5 domain found in PGRMC1 contains
a region of predicted coiled-coil formation similar to that of several myosins [161].

Altogether, the above findings correlate well with a putative PGRMC1 role in partici-
pating in actin-/myosin-mediated cellular function, such as contraction, which, mechanisti-
cally, would be mediated by myosin-interacting proteins [154,161]. In our laboratory, we
conducted preliminary experiments to study the PGRMC1-myosin II association by means
of immunofluorescence and an in situ proximity ligation assay (PLA), an immune-based
technique that reveals whether two proteins are in intimate proximity [162]. Although it is
possible that some nonspecific signal was generated, and more corroborating experiments
are needed to prove a direct interaction, our results seem to support the hypothesis that
PGRMC1 participates in actin-/myosin-mediated cellular function (Figure 2).
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Figure 2. Images showing immunofluorescence and in situ proximity ligation assay (PLA) to assess
the association of PGRMC1 and myosin in in vitro cultured bovine granulosa cells. Analysis was
conducted as described in [113,163] with proper combination of antibodies, which were rabbit anti-
PGRMC1 (Sigma Aldric Prestige antibody HPA002877, 1:50) and mouse monoclonal non-muscle
myosin IIA antibody (2B3) (Novus Biological H00004627-M03, 1:100). Nuclei were counterstained
with DAPI. Data were presented at the 51st Annual Meeting of the Society for the Study of Reproduc-
tion, 10–13 July 2018, New Orleans, Louisiana, USA, and the 2018 Gordon Research Conference in
Mammalian Reproduction, 29 July–3 August 2018, Barga, Lucca, IT.

Most likely, interaction with the components of the actin cytoskeleton is retained in
mitosis, which could have profound implications for cell division, as outlined in the first
part of this review. The rounded phenotype observed in MP cells bearing a PGRMC1
mutation [154] and in ESCs undergoing decidualization [159] is particularly relevant in the
context of the role of PGRMC1 in controlling cell division, given that cell rounding also
characterizes entry into mitosis, as outlined in Section 2.1 [10,34].

In addition, the hypothesis that PGRMC1 participates in the control of myosin-
mediated actin contraction is consistent with our studies showing that PGRMC1 depletion
causes karyo-/cytokinesis defects in both mitosis and meiosis, as the contraction of the con-
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tractile ring, which is initiated by signals emanating from the central spindle in anaphase,
is central to proper cell division. We hope that this assumption will soon be tested. In this
regard, co-immunoprecipitation studies [102,159] provide some insight into the possible
molecular mechanisms of PGRMC1 function. A comparison of immunoprecipitated pro-
teins in synchronized mitotic versus interphasic cells would broadly advance this field
of research.

Finally, another exciting aspect that deserves attention is the emerging evidence that
P4 regulates the actin cytoskeleton in several cell types [164–167], which could be mediated
by PGRMC1 in both interphasic cells and cells undergoing cell division.

4.2. Control of Membrane Trafficking

Another known PGRMC1 function that likely impacts cell division is the control of
membrane trafficking [2,100,168–170], which, indeed, has pivotal functions during mitosis
(see Section 2.3).

As anticipated in the previous paragraph, PGRMC1 pull-down experiments were
recently conducted in human ESCs to investigate the possible implication of PGRMC1 in the
process of decidualization [159,160]. Notably, most of the PGRMC1-coprecipitated proteins
were involved in endomembrane trafficking/cytoskeleton or mitochondrial functions,
which links PGRMC1 to membrane trafficking, cytoskeletal remodeling, and cell shape.

Endocytosis substantially contributes to the remodeling of cellular membranes, and
one of the players in endocytic membrane trafficking is clathrin [171]. Recently, Riad and
collaborators found that PGRMC1 and the Sigma-2 Receptor/TMEM97 form a complex
that mediates LDL internalization by the LDL Receptor in HeLa cells [172]. Specifically,
the authors reported LDLR internalization via clathrin-mediated endocytosis in a mecha-
nism requiring PGRMC1 and TMEM97, as knockout of PGRMC1 or TMEM97 attenuated
LDLR endocytosis. Nevertheless, knockout of TMEM97 and/or PGRMC1 did not affect
somatostatin and insulin uptake, which are also clathrin-dependent [172]. Therefore, the
PGRMC1-clathrin association seems to affect a subset of clathrin-mediated endocytosis.

Preliminary experiments conducted in our laboratory by means of immunofluores-
cence and PLA seem to confirm that at least part of PGRMC1 present in the cell cytoplasm
colocalizes and associates with clathrin (Figure 3, Lodde and Terzaghi, unpublished). This
is consistent with a model of clathrin-mediated endocytosis of the LDLR via a mechanism
requiring PGRMC1 and TMEM97, as proposed by Riad and collaborators [172]. As in the
case of the association with myosin shown in Figure 2, more experimental evidence is
needed to confirm this interaction. To the best of our knowledge, studies on a possible
interaction/mechanism of action involving PGRMC1 and other mediators of membrane
trafficking are lacking. Research in this area is foreseen, as endocytosis plays an important
role in cell division [173].

As described in Section 2.3, in addition to its role in mediating endocytosis, clathrin
exerts a peculiar function during mitotic and meiotic cell division [174]. Interestingly, Rao
and collaborators analyzed the composition of the spindle proteome and phosphoproteome
in cells that were depleted of clathrin, with the aim of describing the clathrin-dependent
mitotic spindle proteome [147]. In this study, PGRMC1 was detected in as many as four out
of five biological replicates of the phosphoproteome but in only two out of five biological
replicates of the spindle proteome. A similar situation was reported for the well-known
spindle protein TACC3. Unfortunately, PGRMC1, as well as TACC3, was not further
considered in the study. Nevertheless, this result raises the intriguing question as to
whether PGRMC1’s presence/function in the spindle is somehow related to clathrin.

A preliminary observation in our laboratory confirmed, as expected, that both PGRMC1
and clathrin localize in the cytoplasm and in the spindle area of mitotic bGCs (Figure 4,
Lodde and Terzaghi, unpublished). Furthermore, these two proteins seem to be in close
proximity in mitotic cells, as assessed by PLA. Nevertheless, this putative association does
not seem to be restricted to the spindle but rather seems to be spread throughout the whole
cell. It could be that PGRMC1 can associate (directly or indirectly) with clathrin in both its
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forms, the vesicle-associated and non-associated ones. Clearly, no conclusion can be drawn
from this sole observation, but we believe that it can stimulate further research on this
intriguing aspect of PGRMC1 biology. For instance, a key concept of clathrin biology is its
inability to directly bind to membranes or cargo; instead, clathrin binds to adaptor proteins,
which in turn can bind to membranes or proteins destined for trafficking [95,175,176]. The
temptation to hypothesize that PGRMC1 is part of this mechanism is strong.

Cancers 2022, 14, x FOR PEER REVIEW 14 of 23 
 

 

Endocytosis substantially contributes to the remodeling of cellular membranes, and 
one of the players in endocytic membrane trafficking is clathrin [171]. Recently, Riad and 
collaborators found that PGRMC1 and the Sigma-2 Receptor/TMEM97 form a complex 
that mediates LDL internalization by the LDL Receptor in HeLa cells [172]. Specifically, 
the authors reported LDLR internalization via clathrin-mediated endocytosis in a mecha-
nism requiring PGRMC1 and TMEM97, as knockout of PGRMC1 or TMEM97 attenuated 
LDLR endocytosis. Nevertheless, knockout of TMEM97 and/or PGRMC1 did not affect 
somatostatin and insulin uptake, which are also clathrin-dependent [172]. Therefore, the 
PGRMC1-clathrin association seems to affect a subset of clathrin-mediated endocytosis. 

Preliminary experiments conducted in our laboratory by means of immunofluores-
cence and PLA seem to confirm that at least part of PGRMC1 present in the cell cytoplasm 
colocalizes and associates with clathrin (Figure 3, Lodde and Terzaghi, unpublished). This 
is consistent with a model of clathrin-mediated endocytosis of the LDLR via a mechanism 
requiring PGRMC1 and TMEM97, as proposed by Riad and collaborators [172]. As in the 
case of the association with myosin shown in Figure 2, more experimental evidence is 
needed to confirm this interaction. To the best of our knowledge, studies on a possible 
interaction/mechanism of action involving PGRMC1 and other mediators of membrane 
trafficking are lacking. Research in this area is foreseen, as endocytosis plays an important 
role in cell division [173]. 

 
Figure 3. Images showing immunofluorescent and in situ proximity ligation assay to assess the as-
sociation of PGRMC1 and clathrin in in vitro cultured bovine granulosa cells. Analysis was con-
ducted as described in [113,163] with proper combination of antibodies, which were rabbit anti-
PGRMC1 (Sigma Aldric Prestige antibody HPA002877, 1:50) and mouse monoclonal anti-clathrin 
heavy-chain antibody (X22) (ThermoFisher Scientific, 1:500). Nuclei were counterstained with 
DAPI. Data were presented at the 48th Annual Meeting of the Society for the Study of Reproduction, 
18–22 June 2015, San Juan, Puerto Rico, USA. 

As described in Section 2.3, in addition to its role in mediating endocytosis, clathrin 
exerts a peculiar function during mitotic and meiotic cell division [174]. Interestingly, Rao 
and collaborators analyzed the composition of the spindle proteome and phosphoprote-
ome in cells that were depleted of clathrin, with the aim of describing the clathrin-depend-
ent mitotic spindle proteome [147]. In this study, PGRMC1 was detected in as many as 
four out of five biological replicates of the phosphoproteome but in only two out of five 
biological replicates of the spindle proteome. A similar situation was reported for the well-
known spindle protein TACC3. Unfortunately, PGRMC1, as well as TACC3, was not fur-
ther considered in the study. Nevertheless, this result raises the intriguing question as to 
whether PGRMC1’s presence/function in the spindle is somehow related to clathrin. 

Figure 3. Images showing immunofluorescent and in situ proximity ligation assay to assess the
association of PGRMC1 and clathrin in in vitro cultured bovine granulosa cells. Analysis was
conducted as described in [113,163] with proper combination of antibodies, which were rabbit anti-
PGRMC1 (Sigma Aldric Prestige antibody HPA002877, 1:50) and mouse monoclonal anti-clathrin
heavy-chain antibody (X22) (ThermoFisher Scientific, 1:500). Nuclei were counterstained with DAPI.
Data were presented at the 48th Annual Meeting of the Society for the Study of Reproduction,
18–22 June 2015, San Juan, Puerto Rico, USA.

Finally, except for the study highlighting PGRMC2 (and thus PGRMC1) with the
nuclear pore complex protein ALADIN [131,133], nothing else has been published about
the possible implication of PGRMC1 localization at the nuclear envelope. This aspect might
also be relevant, as the remodeling of the nuclear envelope is primarily implicated in cell
division. To date, this issue is entirely unexplored. Similarly, the function of the fraction of
PGRMC1 that is retained in the ER during mitosis, if any, is unknown.

Clearly, more investigation is needed. An exciting hypothesis worth testing would
be that the fraction of PGRMC1 associated with intracellular vesicles also participates in
the trafficking of these vesicles along the cytoskeleton. This might regulate the function
of other cargo proteins. On the other hand, vesicle trafficking could also bring PGRMC1
into different endomembranous compartments, where it could interact with different
effector proteins as it exerts its many functions. Such a mechanism could be relevant in
both interphase and mitosis/meiosis and could simultaneously explain how PGRMC1
might associate with the spindle. In this view, it would be interesting to test whether
PGRMC1 mediates trafficking to the centrosome or the central spindle in both mitotic
and meiotic cell division. In addition, in oocytes, it would be interesting to test whether
PGRMC1 participates in the mechanisms by which the cooperative action of vesicles and
actin filaments promote the movement of the spindle (see Section 2.1).
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Figure 4. Images showing immunofluorescent and in situ proximity ligation assay to assess the
association of PGRMC1 and clathrin in in vitro cultured bovine granulosa cells undergoing mitotic
division. Analysis was conducted as described in [113,163] with proper combination of antibodies,
which were rabbit anti-PGRMC1 (Sigma Aldric Prestige antibody HPA002877, 1:50) and mouse
monoclonal anti-clathrin heavy-chain antibody (X22) (ThermoFisher Scientific, 1:500). Nuclei were
counterstained with DAPI. Controls were performed by eliminating one of the two primary antibodies,
as shown in Supplementary Figure S1. Data were presented at the 48th Annual Meeting of the Society
for the Study of Reproduction, 18–22 June 2015, San Juan, Puerto Rico, USA.

5. Conclusions and Future Directions

As with every complex matter, PGRMC1 is undoubtedly fascinating, and the answers
to the many still-unresolved questions related to its biology will come only after extensive
research. One of these intriguing questions relates to the difference, if any, in PGRMC1
function in cancerous and non-cancerous cells. As outlined in this review, the information
we have acquired so far suggests that part of the mechanism by which PGRMC1 regulates
cell function relates to its ability to interact with the cytoskeleton and probably, directly
or indirectly, with other cytoskeleton-related regulatory molecules. This function, which
modulates cellular function in interphasic cells, is retained during cell division, conferring
PGRMC1 with additional properties.

Much essential information will have to be experimentally acquired, and the primary
purpose of this review is to stimulate new research in this field. First, we need to clar-
ify the “origin” of the PGRMC1 associated with the mitotic and meiotic spindles. Is it
membrane-bound? Does it come from the membranous compartment? Or rather, does
it come from the nucleus? In this view, PGRMC1, which also has nuclear and nucleolar
localization [108,118,163], could act like many other nuclear/nucleolar proteins that shuffle
from the nucleus to the mitotic/meiotic chromosomes, such as NumA, nucleolin, or AURKs
themselves [177,178]. Further, it is pivotal to understand which domain of the protein is
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responsible for PGRMC1 localizing at the spindle and whether dimerization and heme
binding are part of this mechanism [114,179].

It will also be of primary importance to assess the extent to which translational
regulation and/or post-translational modifications, which have been shown to be impor-
tant in the regulation of PGRMC1 function, are involved in the mechanism that ensures
proper localization/function of PGRMC1 during mitotic and meiotic division. In particular,
PGRMC1 phosphorylation affects several biological processes, including cell shape and
motility [154,180]. In addition, a phosphorylated form of PGRMC1 has been found among
the phosphoproteins of the mitotic spindle in HeLa cells [136,147]. Ubiquitination and
sumoylation have also been reported to modulate PGRMC1 localization and function;
sumoylation, in particular, is important for nuclear localization [181–183].

Clearly, the precise mechanism of action by which the PGRMC1–cytoskeleton interac-
tion affects cell division remains to be elucidated. The data in the literature clearly indicate
that PGRMC1 cooperates with many other key proteins and complexes to exert its many
functions (for example, see [125,181,184–186]). As hypothesized by many researchers,
PGRMC1 could act as an adaptor protein in many different biological processes. Thus,
PGRMC1’s action would depend on the proteins with which it interacts in different cellular
and subcellular systems. In this view, knowing that PGRMC1′s interacting protein is of
crucial importance, further studies are needed to deepen our knowledge on the role of
PGRMC1/PGRMC2 functional interaction at the spindle [111,115,187]. Although the cur-
rent proteomic studies can be used as initial data to reveal mechanistically relevant binding
partners, pull-down studies should be performed on synchronized cells to more precisely
reveal the mitotic-specific partners of PGRMC1.

Additional helpful information could also come from a phylogenetic analysis, which
could, for example, reveal when the ability to bind the actin cytoskeleton arose during
evolution. Similar studies have already been conducted to reveal crucial aspects of PGRMC1
biology [161,188].

We recognize that some of the hypotheses outlined in this review are probably too
speculative, but we believe that the answers to the many questions related to PGRMC1
biology will only come if we think outside of the box. For example, Peluso and Pru recently
suggested that PGRMC1 might be involved in the control of translation, given the high
number of ribosomal proteins that co-immunoprecipitated with PGRMC1 [3,5]. Thus,
what if all of the hypotheses are true at the same time? What if the known function of
PGRMC1 is part of a more complex mechanism of action? What if PGRMC1 brings mRNA
to specific subcellular sites and, in these sites, regulates their translation? Clearly, this story
must continue.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers14235755/s1, Figure S1: Images showing controls omit-
ting the primary antibodies of Immunofluorescent and In Situ Proximity ligation assay shown in
Figure 2, to assess the association of PGRMC1 and Clathrin in in vitro cultured bovine Granulosa
Cells undergoing mitotic division.
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